
Boolean symmetric vs. functional PCSP dichotomy
Tamio-Vesa Nakajima

University of Oxford
Oxford, UK

tamio-vesa.nakajima@cs.ox.ac.uk

Stanislav Živný
University of Oxford

Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract—As our first result, we establish a dichotomy for
promise constraint satisfaction problems of the form PCSP(A,B),
where A is Boolean and symmetric and B is functional (on a
domain of any size); i.e, all but one element of any tuple in a
relation in B determine the last element. This includes PCSPs of
the form PCSP(q-in-r,B), where B is functional, thus making
progress towards a classification of PCSP(1-in-3,B), which were
studied by Barto, Battistelli, and Berg [STACS’21] for B on three-
element domains.

As our second result, we show that for PCSP(A,B), where A
contains a single symmetric relation and B is arbitrary (and thus
not necessarily functional), the combined basic linear programming
relaxation (BLP) and the affine integer programming relaxation
(AIP) of Brakensiek et al. [SICOMP’20] is no more powerful
than the (in general strictly weaker) AIP relaxation of Brakensiek
and Guruswami [SICOMP’21].

Index Terms—algebraic approach, dichotomy, constraint satis-
faction, promise CSP, polymorphisms, minions

I. INTRODUCTION

Promise constraint satisfaction problems (PCSPs) are a
generalisation of constraint satisfaction problems (CSPs) that
allow for capturing many more computational problems [4],
[8], [6].

A canonical example of a CSP is the 3-colouring problem:
Given a graph G, is it 3-colourable? This can be cast as a
CSP. Let Kk denote a clique on k vertices. Then CSP(K3),
the constraint satisfaction problem with the template K3, is
the following computational problem (in the decision version):
Given a graph G, say YES if there is a homomorphism from
G to K3 (indicated by G → K3) and say NO otherwise
(indicated by G ̸→ K3). Here a graph homomorphism is an
edge preserving map [23]. As graph homomorphisms from
G to K3 are 3-colourings of G, CSP(K3) is the 3-colouring
problem.

Another example of a CSP is 1-in-3-SAT: Given a positive
3-CNF formula, is there an assignment that satisfies exactly
one literal in each clause? This is CSP(1-in-3), where

1-in-3 = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

This work was supported by UKRI EP/X024431/1 and a Clarendon Fund
Scholarship. For the purpose of Open Access, the authors have applied a a
Creative Commons Attribution (CC BY) license to any Accepted Manuscript
version arising. All data is provided in full in the results section of this paper.
The full version of the paper is available at arXiv:2210.03343.

Yet another example is NAE-3-SAT: Given a positive 3-CNF
formula, is there an assignment that satisfies one or two literals
in each clause? This is CSP(NAE), where

NAE = {(0, 1); {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}).

A canonical example of a PCSP is the approximate graph
colouring problem [21]: Fix k ≤ ℓ. Given a graph G, determine
whether G is k-colourable or not even ℓ-colourable. (The
case k = ℓ is the same as k-colouring.) This is the same as
the PCSP over cliques; i.e., PCSP(Kk,Kℓ) is the following
computational problem (in the decision version): Given a graph
G, say YES if G → Kk and say NO if G ̸→ Kℓ. In the search
version, one is given a k-colourable graph G and the task is
to find an ℓ-colouring of G (which necessarily exists by the
promise and the fact that k ≤ ℓ).

Another example of a PCSP is PCSP(1-in-3,NAE),
identified in [8]: Given a satisfiable instance X of CSP(1-in-3),
can one find a solution if X is seen as an instance of
CSP(NAE)? I.e., can one find a solution that satisfies one or
two literals in each clause given the promise that a solution that
satisfies exactly one literal in each clause exists? Although both
CSP(1-in-3) and CSP(NAE) are NP-complete, Brakensiek
and Guruswami showed in [8] that PCSP(1-in-3,NAE) is
solvable in polynomial time and in particular it is solved by the
so-called affine integer programming relaxation (AIP), whose
power was characterised in [6].

More generally, one fixes two relational structures A and
B with A → B. The PCSP(A,B) is then, in the decision
version, the computational problem of distinguishing (input)
relational structures X with X → A from those with X ̸→ B.
In the search version, PCSP(A,B) is the problem of finding a
homomorphism from an input structure X to B given that one
is promised that X → A. One can think of PCSP(A,B) as
an approximation version of CSP(A) on satisfiable instances.
Another way is to think of PCSP(A,B) as CSP(B) with
restricted inputs. We refer the reader to [25] for a very recent
survey on PCSPs.

For CSPs, a dichotomy conjecture of Feder and Vardi [19]
was resolved independently by Bulatov [15] and Zhuk [30]
via the so-called algebraic approach [24], [14]: For every fixed
finite A, CSP(A) is either solvable in polynomial time or
CSP(A) is NP-complete.

For PCSPs, even the case of graphs and structures on Boolean
domains is widely open; these two were established for CSPs979-8-3503-3587-3/23/$31.00 ©2023 IEEE

https://arxiv.org/abs/2210.03343

a long time ago [23], [28] and constituted important evidence
for conjecturing a dichotomy. Following the important work
of Barto et al. [6] on extending the algebraic framework
from the realms of CSPs to the world of PCSPs, there have
been several recent works on complexity classifications of
fragments of PCSPs [20], [22], [8], [12], [5], [2], [9], [13],
[27], [26], hardness conditions [6], [12], [7], [29], and power
of algorithms [6], [10], [3], [17]. Nevertheless, a classification
of more concrete fragments of PCSPs is needed for making
progress with the general theory, such as finding hardness and
tractability criteria, as well as with resolving longstanding open
questions, such as approximate graph colouring.

Brakensiek and Guruswami classified PCSP(A,B) for all
Boolean symmetric structures A and B with disequalities [8].
Ficak, Kozik, Olšák, and Stankiewicz generalised this result by
classifying PCSP(A,B) for all Boolean symmetric structures
A and B [20].

Barto, Battistelli, and Berg [5] studied symmetric PCSPs
on non-Boolean domains and in particular PCSPs of the form
PCSP(1-in-3,B), where B contains a single ternary relation
over the domain {0, 1, . . . , d − 1}. For d = 2, a complete
classification PCSP(1-in-3,B) is known [8], [20]. For d =
3, Barto et al. [5] managed to classify all but one structure
B. The remaining open case of “linearly ordered colouring”
inspired further investigation in [27]. For d = 4, Barto et al. [5]
obtained partial results. In particular, for certain structures B
they managed to rule out the applicability of the BLP + AIP
algorithm from [10]. The significance of BLP + AIP here is
that it is the strongest known algorithm for PCSPs for which
a characterisation of its power is known both in terms of a
minion and also in terms of polymorphism identities. This
suggests that those cases are NP-hard (or new algorithmic
techniques are needed).

a) Contributions: We continue the work from [8], [20]
and [5] and focus on promise constraint satisfaction problems
of the form PCSP(A,B), where A is symmetric, and B is
over an arbitrary finite1 domain. Our main motivation is the
fact that more complexity classifications of PCSP fragments
are needed to make progress with the general theory of PCSPs.
Since the template A is symmetric, we can assume without
loss of generality that B is symmetric, as observed in [5] and
in [13].2

As our main result, we establish the following result.
A structure B is called functional if, for any relation
RB in B of, say, arity r, and any tuple x in RB, any
r − 1 elements of x determine the last element. In detail,
(x1, . . . , xr−1, y), (x1, . . . , xr−1, z) ∈ RB implies y = z,
and similarly for the other r − 1 positions.3 We say that a

1All structures in this article can be assumed to be finite unless they are
explicitly stated to be infinite.

2In detail, for any symmetric A and (not necessarily symmetric) B with
A → B, there is a symmetric B′ with A → B′ such that PCSP(A,B)
and PCSP(A,B′) are polynomial-time equivalent [5], [13]. This B′ is the
largest symmetric substructure of B. Observe that a functional structure has
functional substructures, so if B is functional then B′ remains functional.

3Note that for symmetric B the requirement “for the other r− 1 positions”
is satisfied automatically.

structure A has a covering tuple if and only if some tuple
(s1, . . . , sr) ∈ RA exists for some relation RA of A such that
A, the domain of A, is equal to {s1, . . . , sr}. Finite tractability
is defined in Section II. A tuple of arity different to 2 is called
non-binary.

Theorem 1. Let A be a symmetric structure with a non-binary
covering tuple, and B a functional structure such that A → B.
Then, either PCSP(A,B) is solvable in polynomial time by
AIP and is finitely tractable, or PCSP(A,B) is NP-hard.

Theorem 1 implies the following result, advertised in the
abstract.

Corollary 2. Let A be a Boolean symmetric structure, and
B a functional structure such that A → B. Then, either
PCSP(A,B) is solvable in polynomial time by AIP and is
finitely tractable, or PCSP(A,B) is NP-hard.

An example of a Boolean symmetric structure A is 1-in-3,
and more generally q-in-r.4

Several researchers have informally conjectured that PCSPs
of the form PCSP(1-in-3,B) admit a dichotomy. The authors,
as well as other researchers, believe that in fact not only is
there a dichotomy but also all tractable cases are solved by
AIP.

Conjecture 3. For every structure B, either PCSP(1-in-3,B)
is solvable in polynomial time by AIP, or PCSP(A,B) is NP-
hard.

Theorem 1 establishes the special case of Conjecture 3 for
functional B. We make further progress towards Conjecture 3
by proving that for any structure A with a single (not neces-
sarily Boolean) symmetric relation, and any (not necessarily
functional) structure B for which A → B, BLP + AIP
from [10] is no more powerful for PCSP(A,B) than AIP
from [8], although in general BLP + AIP is strictly stronger
than AIP [10], already for (non-promise) CSPs with two
Boolean symmetric relations, cf. Remark 33. In fact, we
establish a more general result. We say that a relation R is
balanced if there exists a matrix M whose columns are tuples
of R, where each tuple of R appears as a column (possibly a
multiple times), and where the rows of M are permutations
of each other. The matrix M below shows that the Boolean
1-in-3 relation is balanced:

M =

1 0 0
0 1 0
0 0 1

 .

Theorem 4. Let A be any structure with a single relation.
If the relation in A is balanced then, for any B such that
A → B, BLP + AIP solves PCSP(A,B) if and only if AIP
solves it.

If the (only) relation in A is binary (i.e., a digraph),
the condition of balancedness has a natural combinatorial

4q-in-r is the structure on {0, 1} with a single (symmetric) relation of
arity r containing all r-tuples with precisely q 1s (and r − q 0s).

interpretation: A binary relation is balanced if and only if
it is the disjoint union of strongly connected components.

Theorem 4 implies the following corollary. We say that a
relation of arity r is preserved by a group of permutations of
degree r if and only if permuting any tuple of the relation
according to any permutation of the group gives another tuple
of the relation.

Corollary 5. Suppose that G is a transitive group of permuta-
tions. Further, suppose that A is a relational structure with
one relation that is preserved by G. Then, for any A → B,
BLP + AIP solves PCSP(A,B) if and only if AIP does.

While Corollary 5 is more elegant than Theorem 4, it applies
to fewer structures. Indeed, we will show in Remark 36 that
there exist balanced relations that are not preserved by any
transitive group. Examples of relations that are preserved by
some transitive group of permutations G include symmetric
relations (where G is the symmetric group) or cyclic relations
(where G contains all cyclic shifts of appropriate degree).

II. PRELIMINARIES

We let [r] = {1, . . . , r}. We denote by 2S the powerset of
S.

a) Structures and PCSPs: Promise CSPs have been intro-
duced in [4] and [8]. We follow the notation and terminology
of [6].

A (relational) structure is a tuple A = (A;RA
1 , . . . , RA

t),
where RA

i ⊆ Aar(Ri) is a relation of arity ar(Ri) on a set A,
called the domain. A structure A is called Boolean if A =
{0, 1} and is called symmetric if RA

i is a symmetric relation
for each i ∈ [t]; i.e, if (x1, . . . , xar(Ri)) ∈ RA

i then for every
permutation π on [ar(Ri)] we have (xπ(1), . . . , xπ(ar(Ri))) ∈
RA

i . A structure A is called functional if

(x1, . . . , xar(Ri)−1, y) ∈ RA
i

and
(x1, . . . , xar(Ri)−1, z) ∈ RA

i

implies y = z for any i ∈ [t], and that the same hold for all
other r − 1 positions in the tuple.

For two structures A = (A;RA
1 , . . . , RA

t) and B =
(B;RB

1 , . . . , R
B
t) with t relations with the same arities, a

homomorphism from A to B is a function h : A → B such
that, for any i ∈ [t], for each x = (x1, . . . , xar(Ri)) ∈ RA

i , we
have h(x) = (h(x1), . . . , h(xar(Ri))) ∈ RB

i . We denote the
existence of a homomorphism from A to B by A → B.

Let A and B be two structures with A → B; we call
(A,B) a (PCSP) template. In the search version of the promise
constraint satisfaction problem (PCSP) with the template
(A,B), denoted by PCSP(A,B), the task is: Given a structure
X with the promise that X → A, find a homomorphism from
X to B (which necessarily exists as homomorphisms compose).
In the decision version of PCSP(A,B), the task is: Given a
structure X, output YES if X → A, and output NO if X ̸→ B.
The decision version trivially reduces to the search version.
We will use the decision version in this paper.

We will be interested in the complexity of PCSP(A,B), in
particular for symmetric A, and functional B. (As discussed
in Section I, the symmetricity of A means that we can without
loss of generality assume symmetricity of B.)

b) Operations and polymorphisms: A function h :
An → B is called an operation of arity n. A (2n + 1)-
ary operation f : A2n+1 → B is called 2-block-symmetric
if f(a1, . . . , a2n+1) = f(aπ(1), . . . , aπ(2n+1)) for every
a1, . . . , a2n+1 ∈ A and every permutation π on [2n+ 1] that
preserves parity; i.e, π maps odd values to odd values and
even values to even values.

A (2n + 1)-ary operation f : A2n+1 → B is called
alternating if it is 2-block-symmetric, and furthermore

f(a1, . . . , a2n−1, a, a) = f(a1, . . . , a2n−1, a
′, a′)

for every
a1, . . . , a2n−1, a, a

′ ∈ A.

Consider structures A,B with t relations with the same
arities. We call h : An → B a polymorphism of (A,B) if
the following holds for any relation R = Ri, i ∈ [t], of
arity r = ar(R). For any x1, . . . , xr ∈ An, where xi =
(xi

1, . . . , x
i
n), with (x1

i , . . . , x
r
i) ∈ RA for every 1 ≤ i ≤ n,

we have (h(x1), . . . , h(xr)) ∈ RB. One can visualise this as
an (r × n) matrix whose rows are the tuples x1, . . . , xr. The
requirement is that if every column of the matrix is in RA

then the application of h on the rows of the matrix results
in a tuple from RB. We denote by Pol(n)(A,B) the set of
n-ary polymorphisms of (A,B) and by Pol(A,B) the set of
all polymorphisms of (A,B).

c) Relaxations: There are two standard polynomial-time
solvable relaxations for PCSPs, the basic linear programming
relaxation (BLP) and the affine integer programming relaxation
(AIP) [8]. There is also a combination of the two, called
BLP + AIP [10], that is provably stronger than both BLP
and AIP. We will show that for certain PCSPs, this is not the
case (cf. Theorem 4). The precise definitions of the relaxations
are not important for us as we will only need the notion of
solvability of PCSPs by these relaxations and characterisations
of the power of the relaxations; we refer the reader to [8],
[6], [10] for details. Let X be an instance of PCSP(A,B). It
follows from the definitions of the relaxations that if X → A
then both AIP and BLP + AIP accept [8], [6]. We say that
AIP (BLP + AIP, respectively) solves PCSP(A,B) if, for
every X with X ̸→ B, AIP (BLP + AIP, respectively) rejects.

The power of AIP and BLP + AIP for PCSPs is charac-
terised by the following results.

Theorem 6 ([6]). PCSP(A,B) is solved by AIP if and only
if Pol(A,B) contains alternating operations of all odd arities.

Theorem 7 ([10]). PCSP(A,B) is solved BLP + AIP if and
only if Pol(A,B) contains 2-block-symmetric operations of
all odd arities.

In particular, this immediately implies the following result.
For this result, we first define finite tractability [6], [2]. We
say that PCSP(A,B) is finitely tractable if and only if A →

E → B for some finite structure E and CSP(E) is tractable.
For a group G, we use the standard notation H◁G to indicate
that H is a normal subgroup of G.

Lemma 8. Suppose A → E → B, where E = G for some
Abelian group (G,+), and each relation of E is either of the
form (i) c+H for some r ∈ N, c ∈ Gr and H ◁Gr, or (ii)
empty. Then PCSP(A,B) is finitely tractable and solved by
AIP.

Proof. The following alternating operation is a polymorphism
of E

f(x1, y1, . . . , yk, xk+1) =

k+1∑
i=1

xi −
k∑

i=1

yi.

Consider a relation RE of E, of the form c+H . Consider a
matrix of inputs whose columns are x1, y1, . . . , yk, xk+1 ∈ RE.
In other words, xi ∈ c +H and yi ∈ c +H for each xi, yi.
Note that the column that results from applying f to the rows
of this matrix is just

x1 − y1 + · · · − yk + xk+1 ∈ (c+H)− (c+H) + · · ·
− (c+H) + (c+H) ⊆ c+H

Thus f is an alternating polymorphism of E. It follows that
CSP(E) is solved by AIP, from whence it follows that
PCSP(A,B) is finitely tractable and solved by AIP.

d) Minions and hardness: We will use the theory of
minions from [6].

Let M be a set, where each element f ∈ M is assigned
an arity ar(f). We write M(n) = {f ∈ M | ar(f) = n}.
Further, let M be endowed with, for each π : [n] → [m], a
(so-called minor) map f 7→ fπ : M(n) → M(m) such that, for
π : [m] → [k] and σ : [n] → [m], and any f ∈ M(n) we have
(fπ)

σ
= fσ◦π , and f id = f . Then, M is called a minion.5 We

often write f
π−→ g instead of g = fπ .

Consider two minions M,N ; a minion homomorphism is
a map ξ : M → N such that, for any f ∈ M(n) and π :
[n] → [m], we have that ξ(f)π = ξ(fπ).6 If such a minion
homomorphism exists, we write M → N .

Given an n-ary operation f : An → B and a map π : [n] →
[m], an m-ary operation g : Am → B is called a minor of f
given by the map π if

g(x1, . . . , xm) = f(xπ(1), . . . , xπ(n)).

The polymorphisms Pol(A,B) thus form a minion, where fπ

is given by the minor of f at π.
The main hardness theorem that we will use is the following.

Theorem 9 ([6]). Fix constants m and C. Take any template
(A,B) such that Pol(A,B) =

⋃m
i=1 Mi is the union of m

parts. Suppose that for each i ∈ [m] there exists a map Ii that
takes f ∈ Mi to a subset of [ar(f)] of size at most C such

5We can see a minion as a functor from the skeleton of the category of
finite sets to the category of sets.

6Minions are just functors and minion homomorphisms are just natural
transformations.

that the following holds: for any f, g ∈ Mi such that g = fπ

we have that Ii(g) ∩ π(Ii(f)) ̸= ∅. Then, PCSP(A,B) is
NP-hard.

III. DICHOTOMY

In this section we will show a dichotomy for PCSP(A,B)
where A,B are functional and symmetric, and A has a non-
binary covering tuple.

Theorem 1. Let A be a symmetric structure with a non-binary
covering tuple, and B a functional structure such that A → B.
Then, either PCSP(A,B) is solvable in polynomial time by
AIP and is finitely tractable, or PCSP(A,B) is NP-hard.

Before proving this theorem, we will show how this
immediately implies a stronger dichotomy when A is Boolean.

Corollary 2. Let A be a Boolean symmetric structure, and
B a functional structure such that A → B. Then, either
PCSP(A,B) is solvable in polynomial time by AIP and is
finitely tractable, or PCSP(A,B) is NP-hard.

Lemma 10. Suppose A is Boolean, B is functional, and every
relation of A is either binary or contains only constant tuples.
Then PCSP(A,B) is solved by AIP and is finitely tractable.

Proof. Consider any h : A → B. Suppose h(0) = h(1). Then
every relation in B contains a constant tuple of the form
(h(0), . . . , h(0)); in this case, PCSP(A,B) is trivially solved
by AIP and is finitely tractable. Thus suppose h(0) ̸= h(1).
Any empty relation in A can be removed (together with the
corresponding relation in B) as it does not affect Pol(A,B)
and the complexity of PCSP(A,B).

Since B is functional, the binary relations of A that do not
contain only constant tuples must be the binary disequality.
To see why, consider any relation RA in A that contains
the tuple (0, 1). RA cannot contain (0, 0) or (1, 1), since the
corresponding relation RB in B contains (h(0), h(1)) and
if it contained (h(0), h(0)) or (h(1), h(1)) it would not be
functional. Since A is symmetric, RA also contains the tuple
(1, 0). Thus RA = {(0, 1), (1, 0)} is the disequality relation. It
follows that every relation in A is either a binary disequality,
or consists only of constant tuples. In this case, CSP(A) is
solved by AIP and thus PCSP(A,B) is solved by AIP and
is finitely tractable.

Proof of Corollary 2. If A has a covering non-binary tuple
then we can apply Theorem 1 to get the desired conclusion.
Otherwise, A contains only binary relations or relations that
contain only constant tuples (since any non-constant tuple
would be a covering tuple). In this case we can apply Lemma 10.

We will now move on to a proof of Theorem 1.
Let (s1, . . . , sr) ∈ RA be the covering tuple of A. Recall

that r ̸= 2 by assumption. If r ≤ 1 then AIP immediately
solves CSP(A) and thus PCSP(A,B), so assume r ≥ 3.
Recall that we can assume without loss of generality that B
is symmetric, since A is [5], [13]. Assume also that A and

B have domains of size greater than 1 (or else PCSP(A,B)
is obviously finitely tractable and solvable by AIP). We start
with some important definitions.

Suppose throughout, without loss of generality, that A =
{s1, . . . , sr} = [a]. Note that a function f : [a]

n → B can be
seen as a function from an ordered partition of [n] into a sets to
B: the first subset is the set of coordinates in the input set to 1
and so on. We let a[n] denote the set of ordered partitions of [n]
into a sets. We thus view any polymorphism f ∈ Pol(n)(A,B)
as a function f : a[n] → B i.e. for a partition S1, . . . , Sa ⊆ [n]

we can evaluate f(S1, . . . , Sa). We will use
−→
S to denote the

partition (S1, . . . , Sa) ∈ a[n].

Definition 11. Fix some polymorphism f : Pol(n)(A,B). For
i, j ∈ A, let fij : 2[n] → B be a function given by

fij(S) = f(x1, . . . , xn),

where xk = j if k ∈ S and xk = i otherwise.
Let fp : 2[n] → Ba×a be a function given by

(fp(S))ij = fij(S).

(The p stands for “pairs”.) Let f∗ : a[n] → (Ba×a)
a be a

function given by

f∗(S1, . . . , Sa) = (fp(S1), . . . , f
p(Sa)).

Definition 12. Consider a polymorphism f ∈ Pol(n)(A,B).
We call it k-degenerate if there exist x1, . . . , xk ∈ range(fp)
such that for any S1, . . . , Sk ⊆ [n] for which fp(Si) = xi we
have that not all Si are disjoint. Note that no polymorphism
can be 1-degenerate as a single set is a disjoint family.

For any polymorphism f ∈ Pol(n)(A,B), we call a set
S ⊆ [n] a hard set if, for any T ⊇ S, we have fp(T) ̸= fp(∅).7

We will prove Theorem 1 using the following two cases. For
the following, define Nd = 1 + |B|a2

a2rmax and Nh = |B|a2

,
where rmax is the maximum arity of any relation in A.

Theorem 13. If Pol(A,B) contains a polymorphism that is
not k-degenerate, for any k ≤ Nd, and that has no hard sets
of size at most Nh, then PCSP(A,B) is solved by AIP and
is finitely tractable.

Theorem 14. If every polymorphism within Pol(A,B) is k-
degenerate for some k ≤ Nd, or has a hard set of size at most
Nh, then PCSP(A,B) is NP-hard.

These two theorems will be proved in their own sections
later. We will first prove some results of common interest to
both of them.

Proof of Theorem 1. A result of Theorem 13 and Theorem 14.

7These two notions are similar to those of unbounded antichains and fixing
sets in [20]. The notion of hard-set is similar to the notion of an f(∅)-avoiding
set from [18], [29].

A. Common results

Lemma 15. There exists a partial operation + on |B|a×a

such that, for any f ∈ Pol(n)(A,B), for disjoint S, T ⊆ [n],
we have that fp(S ∪ T) = fp(S) + fp(T). In particular,
fp(S) + fp(T) must always be defined for such f, S, T .

Proof. To show this, we show that the value of fp(S ∪ T) is
uniquely determined by fp(S) and fp(T) i.e. the values fij(S),
fij(T) for any i, j ∈ A determine the values fi′j′(S ∪ T)
for any i′, j′ ∈ A. Since fii(S) = fii(T) = fii(S ∪ T),
it only remains to show this for i ̸= j. In particular, we
show that f12(S ∪ T) satisfies this property. Without loss of
generality, suppose s1 = 1, s2 = 2: we can do this since
{s1, . . . , sr} = A.

We will first consider the case where S = {1}, T = {2}, n =
3, r = 3. We will show at the end of the proof that this particular
example generalises completely.

We show how to deduce f(2, 2, 1) = f12(S ∪ T) from
fp(S), fp(T). First suppose that s3 = 1. Then, consider the
following two matrices of inputs:2 1 1

1 2 1
1 1 2

 2 2 1
1 1 1
1 1 2

Apply f to the rows of these matrices. The first two rows of
the first matrix are f12(S) and f12(T); by the functionality of
B and since f is a polymorphism, we can determine f(1, 1, 2).
Now, in the second matrix, the image through f of the second
row is f11(S), and the image of the last row is the already
determined f(1, 1, 2). By functionality again these uniquely
determine f(2, 2, 1) = f12(S ∪ T). Thus we have our result.

Consider now if s3 = 2. Then, symmetrically to before,
we see that f21(S ∪ T) is a function of fp(S), fp(T). Now,
consider the matrix of values2 2 1

1 1 2
2 2 2

Since the image of the second and third row through f are a
function of fp(S), fp(T), it follows, by functionality of B,
that the first row i.e. f(2, 2, 1) = f12(S ∪ T) is as well.

Finally, suppose s3 ̸∈ {1, 2}; without loss of generality, let
s3 = 3. Then consider the following two matrices of inputs3 1 2

2 3 3
1 2 1

 3 1 2
1 3 3
2 2 1

Similarly to before, we see that f(3, 1, 2) is uniquely de-
termined by f(2, 3, 3) = f32(S) and f(1, 2, 1) = f12(T),
and f(3, 1, 2) together with f(1, 3, 3) = f31(S) uniquely
determines f(2, 2, 1) = f12(S ∪ T).

Now, note that this proof generalises to any values of n, S, T
and r. To see why, note that if r is changed, we merely
pad the matrix with rows containing constant tuples equal to
the new values of si. Thus fp(S ∪ T) remains a function of
fp(S), fp(T) (recalling that the value of f applied to any
constant tuple appears in fp(S) and fp(T), as f(i, . . . , i) =

fii(S) = fii(T)). Furthermore, if S or T are changed, all that
is necessary is to duplicate and permute the columns in the
matrices presented above to fit the new values of S and T (and
[n]\(S∪T); crucially, our example above has [n]\(S∪T) ̸= ∅).
In other words, if π is a function that takes S to 1, T to 2
and [n] \ (S ∪ T) to 3, we apply the reasoning from above to
fπ .

For the next two results, let Sc = [n] \ S i.e. Sc is the
complement of S. Beware that the superscript T below denotes
the matrix transpose.

Lemma 16. For any n-ary polymorphism f and S ⊆ [n], we
have fp(S)

T
= fp(Sc).

Proof. (fp(S)
T
)ij = fp(S)ji = fji(S) = fij(S

c) =
fp(Sc)ij .

Lemma 17. There exists a partial operation − on |B|a×a

such that for any n-ary polymorphism f , for S ⊆ T ⊆ [n], we
have that fp(T \ S) = fp(T)− fp(S).

Proof. Define x − y = (xT + y)
T . For S ⊆ T ⊆ [n], since

T c ∩ S = ∅, we have

fp(T)− fp(S) = (fp(T)
T
+ fp(S))

T
=

fp((T c ∪ S)
c
) = fp(T \ S).

Thus fp(T)− fp(S) = fp(T \ S) as required.

Lemma 18. Fix a polymorphism f ∈ Pol(n)(A,B). Consider
any family of disjoint sets A ⊆ 2[n], containing at least |B|a2

sets. Then some nonempty subset B ⊆ A exists such that
fp(

⋃
B) = fp(∅).

The approach used to prove this is analogous to the following
well known exercise (first set out by Vázsonyi and Sved,
according to Erdös [1]): Prove that any sequence of n integers
has a subsequence whose sum is divisible by n.

Proof. Note that A contains at least |B|a2 ≥ | range(fp)|
different sets. Let A1, . . . , A| range(fp)| be some of these sets.
Define Bi =

⋃
j≤i Aj for 0 ≤ i ≤ | range(fp)|; note that

B0 = ∅. By the pigeonhole principle there exists 0 ≤ i < j ≤
| range(fp)| such that fp(Bi) = fp(Bj). Then fp(Bj \Bi) =
fp(Bj)− fp(Bi) = fp(Bi)− fp(Bi) = fp(Bi \Bi) = fp(∅).
Thus B = {Ai+1, . . . , Aj} is the required family of sets.

Lemma 19. Fix a polymorphism f ∈ Pol(n)(A,B). Consider
any S ⊆ [n]. There exists T ⊆ S of size at most |B|a2

such
that fp(S) = fp(T).

Proof. Suppose this is not the case, and suppose that S is the
minimal counterexample to this claim. Clearly |S| > |B|a2

,
or else taking T = S shows that S is no counterexample at
all. Thus, apply Lemma 18 to the set family {{x} | x ∈ S}
to find that some nonempty subset U ⊆ S exists such that
fp(U) = fp(∅). But now, take S′ = S \U ⊆ S, and note that
fp(S′) = fp(S \ U) = fp(S) − fp(U) = fp(S) − fp(∅) =
fp(S \ ∅) = fp(S). By the minimality of S, S′ has a subset

T of size at most |B|a2

such that fp(T) = fp(S′) = fp(S),
which contradicts the fact that S is a counterexample.

The following lemma elucidates the relation between f∗ and
f .

Lemma 20. There exists a partial function h : Ba×a → B
such that, for any polymorphism f ∈ Pol(n)(A,B), we have
f = h ◦ f∗.

Proof. Without loss of generality suppose s1 = 1, s2 =
2, . . . , sa = a. To show our result, we will show that for any−→
S = S1, . . . , Sa, the value of f(

−→
S) is uniquely determined

by f∗(
−→
S) i.e. the values fij(Sk). In particular, we will show

that f(
−→
S) is uniquely determined by f21(S2), . . . , fa1(Sa) and

fii(S1) = f(i, i, . . . , i) for i ∈ [a].
To do this, create a matrix with r rows and n columns

where the first row is distributed according to
−→
S , and row i for

2 ≤ i ≤ a contains a 1 on positions j for which j ∈ Si, and
contains an i otherwise. Rows a+1, . . . , r will be constant and
will contain the values sa+1, . . . , sr respectively. Apply f to
the rows, and note that the image of the first row is f(

−→
S), the

image of the following a−1 rows is f21(S2), . . . , fa1(Sa), and
the last rows are constant and thus their images are equal to
fii(S1) for some i ∈ [a]. Furthermore, each column contains
a tuple of RA, namely a tuple that is a swap away from
(s1, . . . , sr). By the functionality of RB it follows that f(

−→
S)

is indeed uniquely determined by f∗(
−→
S), as required.

B. Proof of Theorem 13

In this section we assume that Pol(n)(A,B) has a poly-
morphism f of arity n that is not k-degenerate for k at most
Nd, and has no hard sets of size at most Nh. Given this, we
will prove that PCSP(A,B) is solved by AIP and is finitely
tractable.

Definition 21. Define 0 = fp(∅) and 1 = fp([n]).

Lemma 22. G = (range(fp),+, 0) forms a group.8

Proof. We prove this in a few parts.
Closure, well-definedness: Consider x, y ∈ range(fp). As f is
not 2-degenerate, there exist disjoint S, T such that fp(S) =
x, fp(T) = y. Thus

x+ y = fp(S) + fp(T) = fp(S ∪ T) ∈ range(fp),

so + is closed and well-defined.
Associativity: Consider any x, y, z ∈ range(fp). Since f is
not 3-degenerate, there exist disjoint S, T, U ⊆ [n] such that
fp(S) = x, fp(T) = y, fp(U) = z. Thus,

x+ (y + z) = x+ f(T ∪ U) = f(S ∪ (T ∪ U))

= f((S ∪ T) ∪ U) = f(S ∪ T) + z = (x+ y) + z.

Identity element: Consider any x ∈ range(fp). Suppose
fp(S) = x for some S ⊆ [n]. Thus,

x+ 0 = fp(S ∪ ∅) = fp(S) = x.

8This group happens to be Abelian, but this is not needed for the proof.

Inverses: Consider any x ∈ range(fp). Suppose that f(S) = x;
by Lemma 19, some T ⊆ S exists with size at most |B|a2

such that fp(T) = fp(S) = x. Since f has no hard sets of
size at most Nh = |B|a2

, T is not a hard set, and thus some
U ⊇ T exists such that fp(U) = 0. Thus x + fp(U \ T) =
fp(T) + fp(U \ T) = fp(U) = 0, so x has an inverse.

Thus we conclude that (range(fp),+, 0) is a group.

Definition 23. Let G be the Abelian subgroup of

(range(fp),+, 0)

generated by 1 = fp([n]). Let m be the order of 1. Thus
G ∼= Zm. Note that m ≤ | range(fp)| ≤ |B|a2

. We will
identify Zm with G.

Define the Abelian group (H,+) = Ga. We will identify H
with Za

m. We will also define 0 to be the 0 element in H as
well as G.

For any i ∈ [a], define i ∈ H as the unit vector that has
a 1 at position i. For some tuple (x1, . . . , xs) ∈ [a]

s, define
(x1, . . . , xs) = (x1, . . . , xs) ∈ Hs. Define 0 to be the zero
vector in Hs as well.9

For any relation QA of A of arity s, define M(QA) to be
the subgroup of Hs generated by p− q for p, q ∈ QA. Since
Hs is Abelian, M(QA) is a normal subgroup.

Lemma 24. Fix some relation QA of A; suppose it has arity s.
Let t be some tuple of QA. Define M = M(QA). Consider
any (a1, . . . , as) ∈ Hs such that (a1, . . . , as) ≡ t mod M .
There exists a matrix (xij) with N ≤ Nd columns and s rows,
where N ≡ 1 mod m, with elements in [a], such that each
column is a tuple of QA, and, for each row i, we have

N∑
j=1

xij = ai.

Proof. Note that every element in Hs has order that divides
m (since Hs ∼= (Ga)

s ∼= (Za
m)

s). Thus, since (a1, . . . , as) ≡
t mod M , and since M is generated by p− q for p, q ∈ QA,
it follows that there exist coefficients cpq ∈ {0, . . . ,m − 1}
for p, q ∈ QA such that

(a1, . . . , as) = t+
∑

p,q∈QA

cpq(p− q) =

t+
∑

p,q∈QA

cpqp+ (m− cpq)q. (1)

This indicates the matrix we will use: let (xij) be a matrix
whose first column is t, and, for each p, q ∈ QA, has cpq
columns equal to p and m− cpq columns equal to q. Clearly
we use N ≤ 1 +m|QA|2 = 1 + |B|a2

a2rmax = Nd columns,
and N ≡ 1 mod m. To see why

∑N
j=1 xij = ai for each i, note

9We can see the elements of H as frequency vectors modulo m. Indeed,
for x1, . . . , xn ∈ [a], x1 + · · · + xn counts the number of appearances
of 1, 2, . . . , a modulo m among x1, . . . , xn. In line with this, the elements
of Hs can be seen as tuples of s frequency vectors. Under this view, for
t1, . . . , tn ∈ [a]s, the sum t1 + · · ·+ tn is a tuple of s frequency vectors,
where the i-th frequency vector counts the frequencies of the elements of [a]
among the i-th elements of the tuples t1, . . . , tn, modulo m.

that this condition is equivalent to (a1, . . . , as) =
∑N

j=1 cj ,
where c1, . . . , cN are the columns of the matrix. But this is
precisely Equation (1). Thus we have created the required
matrix.

We can now prove the main theorem in this subsection.

Proof of Theorem 13. We will show that (A,B) admits a
homomorphic sandwich A → E → B, where E is a relational
structure whose domain is H , and where each relation will be
of the form (i) c+M for some c ∈ Hs and M ◁Hs, or (ii)
empty. By Lemma 8 this implies our desired conclusion. The
homomorphism A → E will be given by the map g(x) = x.
The homomorphism E → B will be given by any function h
for which f = h ◦ f∗. (Recall that such a function exists by
Lemma 20.)10 We will construct E relation by relation, showing
along the way that g and h are in fact homomorphisms.

Consider some relation QA of A, of arity s, that corresponds
to a relation QB of B, and QE in E. If QA is empty, then we
can simply set QE to be empty, and then g and h map tuples
of QA to tuples of QE, and then to tuples of QB vacuously.
Thus, suppose t = (t1, . . . , ts) is some tuple of QA, and let
M = M(QA). Then we set QE = t + M ; in other words,
a tuple x ∈ Hs will belong to this relation if and only if
x ≡ t mod M .

We first show that g maps QA to t+M . Indeed, consider
any tuple x ∈ QA. We know that g(x) = x by definition. Thus,
g(x) = x = t+ (x− t) ∈ t+M . Thus g maps QA to t+M .

We now show that h maps t+M to QB. Consider any tuple
(a1, . . . , as) ∈ t+M . By Lemma 24 there exists some matrix
(xij) with N ≤ Nd columns and s rows, where N ≡ 1 mod m,
such that each column is an element of QA, and for each i ∈ [s]
we have

N∑
j=1

xij = ai.

Let Iij = {k | k ∈ [N], xik = j}; in other words, Iij is the
set of columns k such that the (i, k)-th entry of the matrix is
equal to j. Clearly

−→
I i = Ii1, . . . , I

i
a is a partition of [N].

By assumption, f is not N -degenerate. Thus there exist
disjoint subsets S1, . . . , SN of [n] where fp(S1) = · · · =
fp(SN) = fp([n]) = 1. Let T = [n] \ (S1 ∪ . . . ∪ SN). Note
that S1, . . . , SN , T form a partition of [n]. Furthermore,

1 = fp([n]) = fp(S1) + · · ·+ fp(SN) + fp(T) =

N + fp(T) = 1 + fp(T).

The last equation holds as N ≡ 1 mod m, and addition is
done in G ∼= Zm. Thus fp(T) = 0.

We will now create partitions
−→
U 1, . . . ,

−→
U s ∈ a[n] such that

(the vectors that correspond to) these partitions constitute valid
inputs for the polymorphism f (i.e. they are the rows of a
matrix whose columns are tuples of QA), and f∗(

−→
U i) = ai.

10The h given by Lemma 20 is a partial function; take h to be any extension
of it to the domain of E.

First, let T i
j be the empty set if ti ̸= j and T otherwise. In

either case, fp(T i
j) = 0. Define

−→
U i = U i

1, . . . , U
i
a by

U i
j = T i

j ∪
⋃
k∈Ii

j

Sk.

Note that U i
1, . . . , U

i
a form a partition of [n], since each of

S1, . . . , SN , T will appear in exactly one of these sets (T in the
set indicated by ti, and Sk according to the partition

−→
I i), and

S1, . . . , SN , T form a partition of [n]. To see why
−→
U 1, . . . ,

−→
U s

form a valid input to the polymorphism f , suppose we create
a matrix whose rows are distributed according to

−→
U 1, . . . ,

−→
U s.

Consider column j ∈ [n]: if j ∈ T then this column is equal
to t ∈ QA, and if j ∈ Sk then this column is equal to column
k of the matrix (xij), which is a tuple of QA.

We must now show that f∗(
−→
U i) = ai. Consider component

j ∈ [a] of the vector f∗(
−→
U i) i.e. fp(U i

j). Note that

fp(U i
j) = fp

T i
j ∪

⋃
k∈Ii

j

Sk

 = fp(T i
j) +

∑
k∈Ii

j

fp(Sk) =

0 + |Iij |1 = |Iij |.

Thus, since f∗(
−→
U) is a vector that has |Iij | as its j-th element

(modulo m), and since j is the j-th unit vector, we can deduce
that

f∗(
−→
U i) =

a∑
j=1

|Iij |j.

Now, recall that Iij = {k | xik = j}. In other words, |Iij |
counts the multiplicity of j in the sum

∑N
k=1 xik. But then

clearly

f∗(
−→
U i) =

a∑
j=1

|Iij |j =
N∑

k=1

xik = ai.

Thus f∗(
−→
U i) = ai as required.

Now, to see why h maps the tuple (a1, . . . , as) ∈ c+M to
a tuple of QB, note that

(h(a1), . . . , h(as)) = (h(f∗(
−→
U 1)), . . . , h(f∗(

−→
U s))) =

(f(
−→
U 1), . . . , f(

−→
U s)) ∈ QB.

The last inclusion holds since f is a polymorphism, and−→
U 1, . . . ,

−→
U s are valid inputs to this polymorphism.

Thus we note that A → E → B for some structure
E that satisfies the conditions in Lemma 8. In conclusion,
PCSP(A,B) is finitely tractable and solved by AIP.

C. Proof of Theorem 14

In this section we will prove that PCSP(A,B) is NP-hard
if each polymorphism f ∈ Pol(A,B) is k-degenerate for some
k at most Nd, or has a hard set of size at most Nh.

Lemma 25. If f ∈ Pol(A,B), then f cannot have more than
|B|a2

disjoint hard sets.

Proof. Consider any n-ary polymorphism f ∈ Pol(n)(A,B)
and suppose it has more than |B|a2

disjoint hard sets. Let
H be a family of more than |B|a2

disjoint hard sets. Apply
Lemma 18 to H to find a nonempty subfamily G of hard sets
for which fp(

⋃
G) = fp(∅). For any G ∈ G, this contradicts

the fact that G is a hard set.

Lemma 26. Suppose f ∈ Pol(n)(A,B) and π : [n] → [m].
Then (fπ)

p
= fp ◦ π−1.

Proof. Note that fij(S) = f(T1, . . . , Ta) where Tj = S, Ti =
[n] \ S, and all the other inputs are ∅. Now, (fπ)ij(S) =

fπ(T1, . . . , Ta) = f(π−1(T1), . . . , π
−1(Ta)) = fp(π−1(S)),

and so (fπ)ij = fij ◦π−1. Our conclusion follows by applying
this fact for each i, j ∈ A.

Lemma 27. Suppose f ∈ Pol(n)(A,B) and π : [n] → [m]. If
S is a hard set of f then π(S) is a hard set of fπ .

Proof. We prove this by contrapositive. Suppose π(S) is not
a hard set of fπ. Then some T ⊇ π(S) exists such that
(fπ)

p
(T) = (fπ)

p
(∅). So,

(fp)(π−1(T)) = (fπ)
p
(T) = (fπ)

p
(∅) =

(fp)(π−1(∅)) = fp(∅).

Thus fp(π−1(T)) = fp(∅), and S is not a hard set, as S ⊆
π−1(T).

Let Mh denote the subset of Pol(A,B) whose polymor-
phisms have hard sets of size at most Nh. Let Mx1,...,xk

denote the subset of Pol(A,B) whose polymorphisms are k-
degenerate, yet not (k − 1)-degenerate, where x1, . . . , xk ∈
Ba×a are witnesses to this degeneracy. By assumption, and as
no polymorphism is 1-degenerate,

Pol(A,B) = Mh ∪
Nd⋃
k=2

⋃
x1,...,xk∈Ba×a

Mx1,...,xk
. (2)

Lemma 28. There exists some assignment I that takes f ∈
M(n)

h to a subset of [n] of size at most |B|2a2

such that,
whenever g ∈ M(m)

h and g = fπ for some π : [n] → [m], we
have that π(I(f)) ∩ I(g) ̸= ∅.

Proof. To construct I(f), let S1, . . . be a maximal sequence
of disjoint hard sets of f of size at most |B|a2

, constructed
greedily, and then set I(f) to be the union of these sets. Since
there can be at most |B|a2

disjoint hard sets by Lemma 25, it
follows that |I(f)| ≤ |B|2a2

.
Consider now any f, g ∈ Mh such that g = fπ. Note that

I(f) contains within it a hard set S of size at most |B|a2

. Thus
π(I(f)) ⊇ π(S), which is a hard set of size at most |B|a2

by Lemma 27, and thus must intersect I(g) by maximality. It
follows that π(I(f)) ∩ I(g) ̸= ∅.

Lemma 29. For k ≥ 2, x1, . . . , xk ∈ A, there exists some
assignment I that takes f ∈ M(n)

x1,...,xk to a subset of [n] of size
at most k|B|a2

such that, whenever g ∈ M(m)
x1,...,xk and g = fπ

for some π : [n] → [m] we have that π(I(f)) ∩ I(g) ̸= ∅.

Proof. To construct I(f), take S1, . . . , Sk−1 to be disjoint sets
such that fp(Si) = xi, and take T to be any set such that
f(T) = xk. Such sets exist since f is not (k − 1)-degenerate,
and we can take all of these sets to be of size at most |B|a2

, by
replacing them with the subsets given by Lemma 19. Let I(f)
be the union of S1, . . . , Sk−1, T . Note that |I(f)| ≤ k|B|a2

.
Consider now any f, g ∈ Mx1,...,xk

such that g = fπ . Note
that I(f) contains within it disjoint sets S1, . . . , Sk−1 such
that fp(Si) = xi, and I(g) contains within it a set T such that
gp(T) = xk. Now, fp(π−1(T)) = (fπ)

p
(T) = gp(T) = xk,

and thus by the k-degeneracy of f and the disjointness of
S1, . . . , Sk−1 it follows that π−1(T) and S1, . . . , Sk−1 must
intersect. It follows that π(I(f)) ∩ I(g) ̸= ∅, as required.

Proof of Theorem 14. We see in (2) that Pol(A,B) is the
union of m = 1 +

∑Nd

k=2 (|B|a2

)
k

sets, each of which has
an assignment I that satisfies the condition of Theorem 9
for C = max(Nd|B|a2

, |B|2a2

). Thus PCSP(A,B) is NP-
hard.

IV. BLP + AIP = AIP WHEN A HAS ONE BALANCED
RELATION

In this section we prove Theorem 4 and Corollary 5. Recall
that we say that a relation R is balanced if and only if there
exists a matrix whose columns are tuples of R, that contains
every tuple of R as a column, and whose rows are permutations
of each other.

Theorem 4. Let A be any structure with a single relation.
If the relation in A is balanced then, for any B such that
A → B, BLP + AIP solves PCSP(A,B) if and only if AIP
solves it.

Suppose that A = [a], and the relation of A is R = RA.
Furthermore suppose that each element in [a] appears in R
(otherwise these elements can just be eliminated from A).
Suppose A ̸= ∅, R ̸= ∅ (otherwise the conclusion is trivially
true). Suppose also that the columns of the matrix that witness
the balancedness of R are t1, . . . , tN ∈ R.

For any i ∈ [a], let i be a unit vector in Za; i.e., it has a 1 at
position i. For any tuple (a1, . . . , ar) ∈ Ar, let (a1, . . . , ar) =
(a1, . . . , ar) ∈ (Za)

r. Let R = {t | t ∈ R} ⊆ (Za)
r. Endow

all of these vectors with additive structure. For any k ∈ Z,
define Sk ⊆ Za to be the set of vectors that sum up to k, with
non-negative coordinates.11

Lemma 30. (k + 1)R− kR+ k
∑

i ti ⊆ (kN + 1)R.

Proof. If x ∈ (k+1)R− kR+ k
∑

i ti, it can be written as a
sum of k+1 vectors from R, minus k vectors from R, plus k
copies of each vector ti. Since each tuple of R appears among
t1, . . . , tN , the last kN vectors in the sum above include at least
k copies of each vector in R. By removing the k subtracted
vectors from the k copies of each vector from R, we find that
x can be written as a sum of k+1−k+kN = kN+1 vectors
from R, i.e. x ∈ (kN + 1)R.

11We see the elements of Za as frequency vectors, and the elements of
(Za)r as tuples of frequency vectors.

Lemma 31. If (A,B) has a 2-block-symmetric polymorphism
f of arity 2k + 1 then there exists a function g : Sk ×
Sk+1 → B such that (g(x1, y1), . . . , g(xr, yr)) ∈ RB for
all (x1, . . . , xr) ∈ kR, (y1, . . . , yr) ∈ (k + 1)R.

Proof. To compute g(x, y), create sequences of elements in
[a], of lengths k and k+1, whose frequencies correspond to x
and y respectively (i.e. the sequence for x = (x1, . . . , xa) has
xi appearances of i), and interleave these to create a sequence
a1, . . . a2k+1. Then g(x, y) = f(a1, . . . , a2k+1).

To see why this function satisfies the required condition,
suppose (x1, . . . , xr) ∈ kR and (y1, . . . , yr) ∈ (k+1)R. Thus
we can, by definition, create matrices M and N , with k and
k+1 columns respectively, and r rows, where each column is an
element of R, and each row i has frequencies corresponding to
xi and yi respectively. Interleave the columns of these matrices
to create a matrix A. Apply f to the rows of A. We find
that the image of row i of A is g(xi, yi) by the symmetry
of f ; furthermore, the images of the rows of A must form a
tuple of RB, since f is a polymorphism. This is the desired
conclusion.

Lemma 32. Assume there exists a function f : (Sk+1 −
Sk) → B such that (f(x1), . . . , f(xr)) ∈ RB for any
x1, . . . , xr ∈ Sk+1 − Sk with (x1, . . . , xr) ∈ (k + 1)R − kR.
Then, PCSP(A,B) has an alternating polymorphism of arity
2k + 1.

Proof. If such a function exists, then

g(x1, . . . , x2k+1) =

f(x1 + x3 + · · ·+ x2k+1 − x2 − x4 − · · · − x2k)

is the required polymorphism.

Proof of Theorem 4. By Theorem 6, AIP solves PCSP(A,B)
if and only if Pol(A,B) contains alternating operations of all
odd arities. By Theorem 7, BLP + AIP solves PCSP(A,B) if
and only if Pol(A,B) contains 2-block-symmetric operations
of all odd arities. As any alternating operation is 2-block-
symmetric, it follows that any PCSP solved by AIP is
also solved by BLP + AIP.12 It suffices to show that 2-
block-symmetric operations in Pol(A,B) imply alternating
operations.

Fix some natural number k; we will now show that there
exists an alternating operation in Pol(A,B) of arity 2k + 1.
Since Pol(A,B) contains a 2-block-symmetric operation of
arity 2kN + 1, let f : SkN × SkN+1 → B be the function
given by Lemma 31. We will construct the function required
by Lemma 32 in order to prove the existence of an alternating
polymorphism.

Consider the vector v =
∑

i ti ∈ (Za)
r. We claim that

v is a constant vector. To see why this is the case, observe
that one way to compute

∑
i ti is to make t1, . . . , tN into the

columns of a matrix, and then to compute the frequencies of
each element of [a] in each row. Element i of v is a tuple,

12This also directly follows from the definitions of the AIP and BLP + AIP
algorithms [10].

where element j is the number of appearances of j in row i in
this matrix. But, since t1, . . . , tN witness the balancedness of
R, these frequencies are equal for each row. Thus v is indeed a
constant vector; suppose that v = (c, . . . , c) for some c ∈ SN .
Note that each element in [a] appears in some tuple of R by
assumption, and each tuple of R appears in the sum

∑
i ti.

Thus each coordinate in c ∈ Za is at least 1.
The function we are interested in is g : (Sk+1 − Sk) → B,

where
g(x) = f (kc, x+ kc) .

First note that these inputs are legal inputs for the function f .
To see why, note first that c ∈ SN and thus kc ∈ SkN . Second,
consider x+ kc. As x ∈ Sk+1 −Sk, the elements in x sum up
to 1. Since the elements in kc sum up to kN , it follows that the
elements in x+kc sum up to 1+kN as required. Furthermore,
all the elements of x+ kc are non-negative: each element of
x is at least −k, whereas each element of c is at least 1, and
thus each element of kc is at least k. Thus x+ kc ∈ SkN+1.

Why does g satisfy the conditions from Lemma 32? Consider
any x1, . . . , xr ∈ Sk+1 − Sk such that (x1, . . . , xr) ∈ (k +
1)R− kR. Note that

(kc, . . . , kc) = k(c, . . . , c) = k
∑
i

ti ∈ kNR,

and

(x1 + kc, . . . , xr + kc) = (x1, . . . , xr) + k(c, . . . , c) ∈

(k + 1)R− kR+ k
∑
i

ti ⊆ (kN + 1)R,

due to Lemma 30. Thus, since f satisfies the conditions in
Lemma 31,

(g(x1), . . . , g(xr)) =

(f (kc, x1 + kc) , . . . , f (kc, xr + kc)) ∈ RB .

Thus (g(x1), . . . , g(xr)) ∈ RB, as required.

Theorem 4 does not generalise to structures with multiple
relations (even just two), as the following examples shows.

Remark 33. Consider a Boolean symmetric template A
that has two balanced relations, namely RA = {(0)} and
QA = {(0, 1), (1, 0), (1, 1)}, which are unary and binary, re-
spectively. Then CSP(A) is solved by BLP + AIP, and indeed
by BLP, since the symmetric operation max(x1, . . . , xn) is a
polymorphism for any n [6], but not by AIP. This is because
A fails to have any alternating non-unary polymorphisms, even
of arity 3: suppose f(x, y, z) is such a polymorphism. Then
f(1, 1, 0) = f(0, 0, 0) = f(0, 1, 1) as f is alternating; and
f(0, 0, 0) = 0 due to RA. However, due to QA, f(1, 1, 0)
and f(0, 1, 1) cannot both be 0. This contradiction implies our
conclusion.

One cannot simply remove the balancedness condition from
Theorem 4, as the following example shows.

Remark 34. Let A be a Boolean template with relation
SA = {(0, 0, 1), (0, 1, 0), (0, 1, 1)}. Note that SA is not

balanced. Then CSP(A) is solved by BLP + AIP, and indeed
by BLP, since the symmetric operation max(x1, . . . , xn) is a
polymorphism for any n [6], but not by AIP. A fails to have
any alternating polymorphism, even of arity 3, for exactly the
same reason as the problem from Remark 33. (The identities
that would result from RA in that example now result from
the first element in each tuple in SA, and the identities that
would result from QA in that example now result from the
last two elements in each tuple in SA.)

On the other hand, there are templates that are unbalanced
for which AIP and BLP + AIP have equivalent power, as the
following example shows.

Remark 35. Consider a Boolean template A that has one
relation PA = {(0, 1)}. Then CSP(A) is solved by AIP and
by BLP + AIP, since the alternating operation x1 + · · · +
xn mod 2 is a polymorphism of A for every odd n. This is
in spite of the fact that PA is unbalanced.

We now prove Corollary 5.

Corollary 5. Suppose that G is a transitive group of permuta-
tions. Further, suppose that A is a relational structure with
one relation that is preserved by G. Then, for any A → B,
BLP + AIP solves PCSP(A,B) if and only if AIP does.

Proof. Let R be the relation of A, of arity r. It is sufficient to
show that R is balanced. Let M be a matrix whose columns
are the tuples of R. Suppose that the rows of M are r1, . . . , rn.
We show that row i is a permutation of row j, for arbitrary
i, j ∈ [r].

Represent the elements of G as permutation matrices. Let
π ∈ G be a permutation (matrix) that sends i to j (it exists by
transitivity). Consider πM . Note that no two columns of πM
can be equal, since then two columns of π−1πM = M would
be equal, which is false. Furthermore each column of πM is a
tuple of R, and thus a column of M , since R is preserved by π.
Thus we see that πM can be seen as M but with its columns
permuted. In other words, for some permutation matrix σ, we
have πM = MσT .

Now, let us look at row j in πM = MσT . In πM this is ri
(since π sends i to j). In MσT this is rjσ

T . Thus ri = rjσ
T ,

i.e. row i of M and row j of M are permutations of each
other. We conclude that R is balanced, as required.

This corollary applies to fewer structures than Theorem 4,
as shown in the next example.

Remark 36. Consider any digraph A with edge relation
EA that is strongly connected but not symmetric. Then, it
is easy to show that EA is balanced. On the other hand, the
unique transitive permutation group with degree 2 (i.e. the
group containing the identity permutation and the permutation
swapping two elements) does not preserve EA.

V. CONCLUSION

Our first result classifies problems PCSP(A,B) where A
is symmetric and has a non-binary covering tuple and B is

functional into being either NP-hard or solvable in polynomial
time. This is the first step towards the following more general
problem.

Problem 37. Classify the complexity of PCSP(A,B) when
B is functional.

Looking more specifically at the case PCSP(1-in-3,B), we
note that our proof of Theorem 1 implies that, for functional
B, we have that PCSP(1-in-3,B) is tractable if and only
if Eqnm,1 → B for some m ≤ |B|, where Eqnm,1 is
a relational structure over {0, . . . ,m − 1} with one ternary
relation defined by x+y+z ≡ 1 mod m. By using the Chinese
remainder theorem, Eqnm,1 = Eqn3p,1 × Eqnq,1, where q
is coprime to 3. Since this latter template contains a constant
tuple (namely (x, x, x) where x is the inverse of 3 modulo q),
we find that, for functional B, PCSP(1-in-3,B) is tractable
if and only if Eqn3p,1 → B.

Looking at non-functional templates PCSP(1-in-3,B) that
are tractable, all the examples the authors are aware of are
either tractable for the same reason as a functional template
is (i.e. Eqn3p,1 → B), or because they include the not-all-
equal predicate (i.e. NAE → B). Thus, we pose the following
problem.

Problem 38. Is PCSP(1-in-3,B) tractable if and only if
Eqn3p,1 ×NAE → B for some p?

Problem 38 has a link with the problem of determining
the complexity of PCSP(1-in-3,C+

k), where C+
k is a ternary

symmetric template on domain [k] which contains tuples of the
form (1, 1, 2), . . . , (k−1, k−1, k), (k, k, 1), as well as all tuples
of three distinct elements (rainbow tuples). Such templates are
called cyclic, with the cycle being 1 → . . . → k → 1.

The link is the following: Eqn3p,1 ×NAE is a template
containing one cycle of length 2 × 3p, together with certain
rainbow tuples — in other words, Eqn3p,1×NAE → C+

2×3p .
Likewise, Eqn3p,1 has a cycle of length 3p and some rainbow
tuples, i.e. Eqn3p,1 → C+

3p . That PCSP(1-in-3,C+
k) is

tractable whenever k = 3p or k = 2× 3p was first observed
in [11]. If Problem 38 were answered in the affirmative then
we would have that PCSP(1-in-3,C+

k) is tractable if and only
if k = 3p or k = 2× 3p. In particular, this would mean that
PCSP(1-in-3,C+

4) is NP-hard, as conjectured in [5].13

Answering Problem 38 in the affirmative would resolve Con-
jecture 3, i.e., PCSP(1-in-3,B) would be tractable (via AIP)
if and only if Eqn3p,1 × NAE → B. Perhaps determining
whether this equivalence is true might be easier than resolving
Conjecture 3; thus we pose the following problem.

Problem 39. Is PCSP(1-in-3,B) solved by AIP if and only
if Eqn3p,1 ×NAE → B for some p?

There already exists such a characterisation for the power
of AIP using an infinite structure [6]. In particular, if we let
Z be an infinite structure whose domain is Z, and with a tuple
(x, y, z) in the relation if and only if x + y + z = 1, then

13Our structure C+
4 is called Č+

in [5].

PCSP(1-in-3,B) is solved by AIP if and only if Z → B.
We are interested in a finite template of this kind.

Turning from problems to algorithms, our second result
shows us that, for certain problems of the form PCSP(A,B)
where B need not be functional, and A,B have one relation,
AIP and BLP + AIP have the same power. A natural question
is for which other templates is it true?

Problem 40. For which templates do AIP and BLP + AIP
have the same power?

We remark that the recent work [16] does not answer
any problem from this section, and the results from [16] are
consistent with positive answers to Problems 38 and 39.

ACKNOWLEDGMENT

We thank all three anonymous reviewers for their comments
and suggestions for changes.

REFERENCES

[1] M. Aigner and G. M. Ziegler, Proofs from THE BOOK, 4th ed. Germany:
Springer Publishing Company, Incorporated, 2009.

[2] K. Asimi and L. Barto, “Finitely tractable promise constraint satisfaction
problems,” in Proc. 46th International Symposium on Mathematical
Foundations of Computer Science (MFCS’21), ser. LIPIcs, vol. 202.
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021, pp. 11:1–11:16.

[3] A. Atserias and V. Dalmau, “Promise Constraint Satisfaction and Width,”
in Proc. 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA’22).
USA: SIAM, 2022, pp. 1129–1153.

[4] P. Austrin, V. Guruswami, and J. Håstad, “(2+ϵ)-Sat is NP-hard,” SIAM
J. Comput., vol. 46, no. 5, pp. 1554–1573, 2017. [Online]. Available:
https://eccc.weizmann.ac.il/report/2013/159/

[5] L. Barto, D. Battistelli, and K. M. Berg, “Symmetric Promise Constraint
Satisfaction Problems: Beyond the Boolean Case,” in Proc. 38th
International Symposium on Theoretical Aspects of Computer Science
(STACS’21), ser. LIPIcs, vol. 187. Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021, pp. 10:1–10:16.

[6] L. Barto, J. Bulı́n, A. A. Krokhin, and J. Opršal, “Algebraic approach to
promise constraint satisfaction,” J. ACM, vol. 68, no. 4, pp. 28:1–28:66,
2021.

[7] L. Barto and M. Kozik, “Combinatorial Gap Theorem and Reductions
between Promise CSPs,” in Proc. 2022 ACM-SIAM Symposium on
Discrete Algorithms (SODA’22). USA: SIAM, 2022, pp. 1204–1220.

[8] J. Brakensiek and V. Guruswami, “Promise Constraint Satisfaction:
Algebraic Structure and a Symmetric Boolean Dichotomy,” SIAM J.
Comput., vol. 50, no. 6, pp. 1663–1700, 2021.

[9] ——, “The quest for strong inapproximability results with perfect
completeness,” ACM Trans. Algorithms, vol. 17, no. 3, pp. 27:1–27:35,
2021. [Online]. Available: https://eccc.weizmann.ac.il/report/2017/080/

[10] J. Brakensiek, V. Guruswami, M. Wrochna, and S. Živný, “The power of
the combined basic LP and affine relaxation for promise CSPs,” SIAM J.
Comput., vol. 49, pp. 1232–1248, 2020.

[11] A. Brandts, “Promise constraint satisfaction problems,” Ph.D. dissertation,
University of Oxford, 2022. [Online]. Available: https://ora.ouls.ox.ac.
uk/objects/uuid:5efeff56-d5c8-42e8-9bd2-95243a1367ad

[12] A. Brandts, M. Wrochna, and S. Živný, “The complexity of promise
SAT on non-Boolean domains,” ACM Trans. Comput. Theory, vol. 13,
no. 4, pp. 26:1–26:20, 2021.

[13] A. Brandts and S. Živný, “Beyond PCSP(1-in-3,NAE),” Information and
Computation, vol. 289, no. Part A, p. 104954, 2022.

[14] A. Bulatov, P. Jeavons, and A. Krokhin, “Classifying the complexity of
constraints using finite algebras,” SIAM J. Comput., vol. 34, no. 3, pp.
720–742, 2005.

[15] A. A. Bulatov, “A dichotomy theorem for nonuniform CSPs,” in Proc.
58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’17). USA: IEEE, 2017, pp. 319–330.

https://eccc.weizmann.ac.il/report/2013/159/
https://eccc.weizmann.ac.il/report/2017/080/
https://ora.ouls.ox.ac.uk/objects/uuid:5efeff56-d5c8-42e8-9bd2-95243a1367ad
https://ora.ouls.ox.ac.uk/objects/uuid:5efeff56-d5c8-42e8-9bd2-95243a1367ad

[16] L. Ciardo, M. Kozik, A. Krokhin, T.-V. Nakajima, and S. Živný, “On
the complexity of the approximate hypergraph homomorphism problem,”
Tech. Rep., 2023.

[17] L. Ciardo and S. Živný, “CLAP: A New Algorithm for Promise CSPs,”
SIAM J. Comput., vol. 52, no. 1, pp. 1–37, 2023.

[18] I. Dinur, O. Regev, and C. Smyth, “The hardness of 3-uniform hypergraph
coloring,” Comb., vol. 25, no. 5, pp. 519–535, 2005.

[19] T. Feder and M. Y. Vardi, “The Computational Structure of Monotone
Monadic SNP and Constraint Satisfaction: A Study through Datalog and
Group Theory,” SIAM J. Comput., vol. 28, no. 1, pp. 57–104, 1998.

[20] M. Ficak, M. Kozik, M. Olšák, and S. Stankiewicz, “Dichotomy for
Symmetric Boolean PCSPs,” in Proc. 46th International Colloquium on
Automata, Languages, and Programming (ICALP’19), vol. 132. Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, pp.
57:1–57:12.

[21] M. R. Garey and D. S. Johnson, “The complexity of near-optimal graph
coloring,” J. ACM, vol. 23, no. 1, pp. 43–49, 1976.

[22] V. Guruswami and S. Sandeep, “d-To-1 Hardness of Coloring
3-Colorable Graphs with O(1) Colors,” in Proc. 47th International
Colloquium on Automata, Languages, and Programming (ICALP’20),
ser. LIPIcs, vol. 168. Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020, pp. 62:1–62:12. [Online].
Available: https://eccc.weizmann.ac.il/report/2019/116/

[23] P. Hell and J. Nešetřil, “On the Complexity of H-coloring,” Journal of
Combinatorial Theory, Series B, vol. 48, no. 1, pp. 92–110, 1990.

[24] P. G. Jeavons, “On the Algebraic Structure of Combinatorial Problems,”
Theor. Comput. Sci., vol. 200, no. 1-2, pp. 185–204, 1998.

[25] A. Krokhin and J. Opršal, “An invitation to the promise constraint
satisfaction problem,” ACM SIGLOG News, vol. 9, no. 3, pp. 30–59,
2022.

[26] A. A. Krokhin, J. Opršal, M. Wrochna, and S. Živný, “Topology and
adjunction in promise constraint satisfaction,” SIAM J. Comput., vol. 52,
no. 1, pp. 38–79, 2023.

[27] T.-V. Nakajima and S. Živný, “Linearly Ordered Colourings of Hyper-
graphs,” ACM Transactions on Computation Theory, vol. 14, no. 3–4,
pp. 12:1–12:19, 2022.

[28] T. Schaefer, “The complexity of satisfiability problems,” in Proc. 10th
Annual ACM Symposium on the Theory of Computing (STOC’78). USA:
ACM, 1978, pp. 216–226.

[29] M. Wrochna, “A note on hardness of promise hypergraph colouring,”
2022.

[30] D. Zhuk, “A proof of the CSP dichotomy conjecture,” J. ACM, vol. 67,
no. 5, pp. 30:1–30:78, 2020.

https://eccc.weizmann.ac.il/report/2019/116/

	Introduction
	Preliminaries
	Dichotomy
	Common results
	Proof of Theorem 13
	Proof of Theorem 14

	BLP+AIP = AIP when A has one balanced relation
	Conclusion
	References

