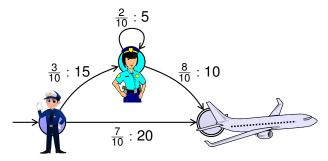
Counting Problems for Parikh Images

Christoph Haase Stefan Kiefer Markus Lohrey

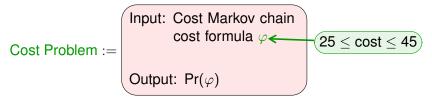
MFCS 2017, Aalborg 25 August 2017

Christoph Haase, Stefan Kiefer, Markus Lohrey Counting Problems for Parikh Images

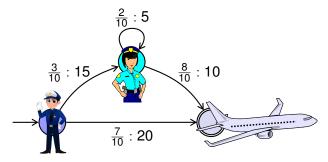
The Cost Problem



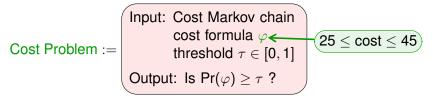
What is the probability to reach the gate in 25–45min? Quantiles?



The Cost Problem



What is the probability to reach the gate in 25–45min? Quantiles?



Theorem (Laroussinie, Sproston, FoSSaCS'05)

The cost problem is in EXPTIME. The cost problem is NP-hard.

Theorem (Laroussinie, Sproston, FoSSaCS'05)

The cost problem is in EXPTIME. The cost problem is NP-hard.

by reduction from the Kth largest subset problem

Theorem (Laroussinie, Sproston, FoSSaCS'05)

The cost problem is in EXPTIME. The cost problem is NP-hard.

by reduction from the Kth largest subset problem

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

[SP20] Kth LARGEST SUBSET (*)

INSTANCE: Finite set A, size $s(a) \in Z^+$ for each $a \in A$, positive integers K and B. QUESTION: Are there K or more distinct subsets $A' \subseteq A$ for which the sum of

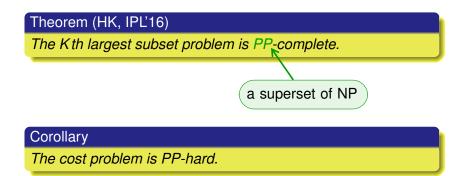
the sizes of the elements in A' does not exceed B?

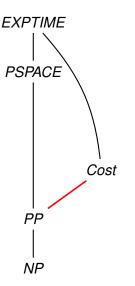
Reference: [Johnson and Keehdan, 1976]. Transformation from SUBSET SUM. Comment: Not known to be in NP. Solvable in pseudo-polynomial time (polyno-

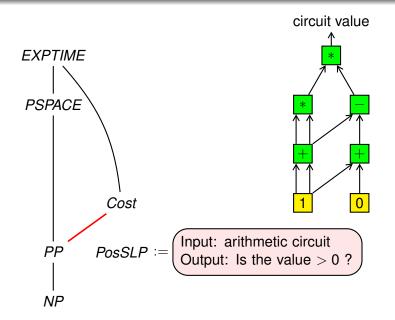
Theorem (Laroussinie, Sproston, FoSSaCS'05)

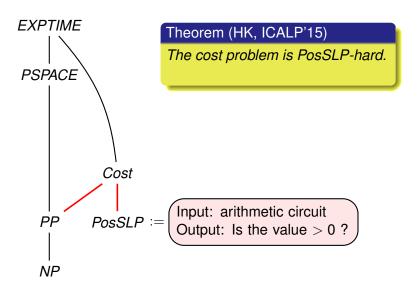
The cost problem is in EXPTIME. The cost problem is NP-hard.

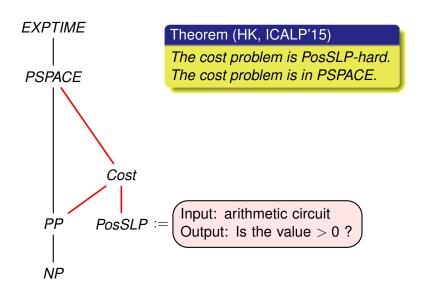
by reduction from the Kth largest subset problem

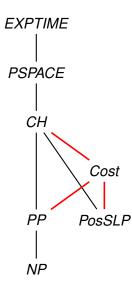










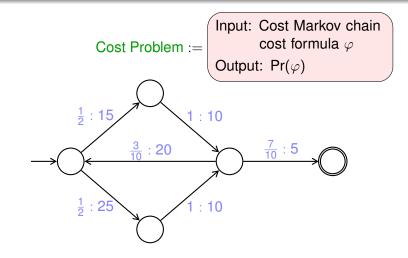


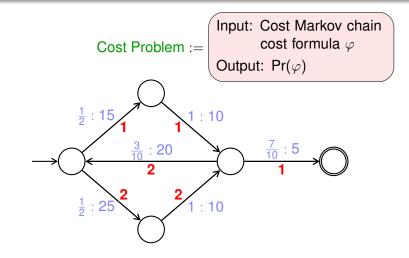
Theorem (HK, ICALP'15)

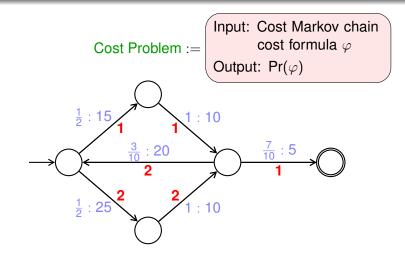
The cost problem is PosSLP-hard. The cost problem is in PSPACE.

Theorem (HKL, LICS'17)

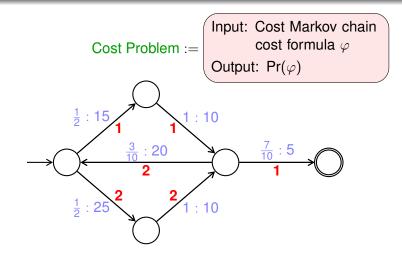
The cost problem is in CH.





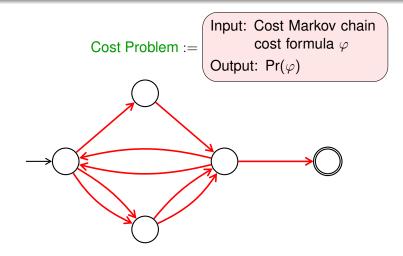


Enumerate the Parikh images.



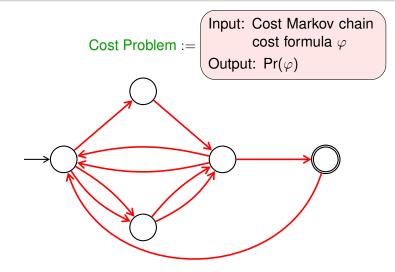
Enumerate the Parikh images.

Problem: there might be multiple paths per Parikh image.



Enumerate the Parikh images.

Problem: there might be multiple paths per Parikh image.



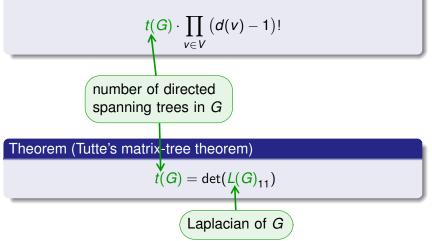
Enumerate the Parikh images.

Problem: there might be multiple paths per Parikh image.

The BEST Theorem

Theorem (de Bruijn, van Aardenne-Ehrenfest, Smith, Tutte)

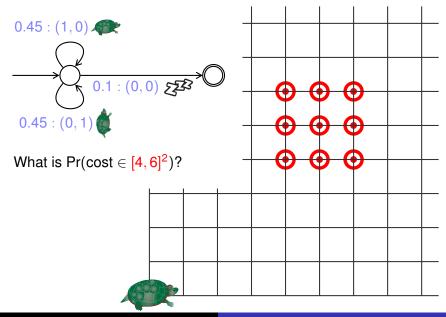
The number of Eulerian cycles in an Eulerian graph G equals

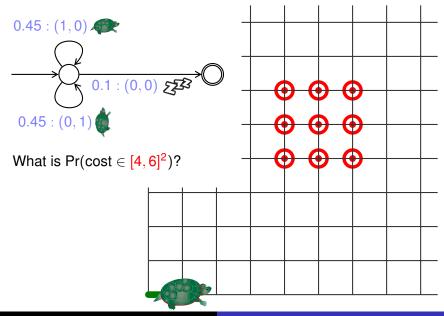


Theorem ([HK, ICALP'15], [HK, IPL'16], [HKL, LICS'17])

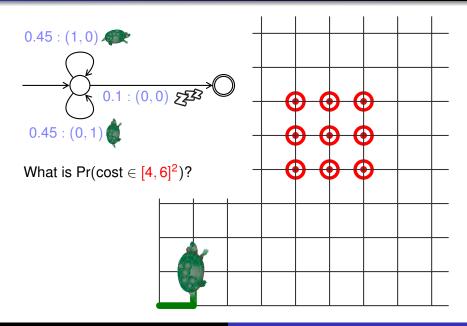
The cost problem is hard for PP and PosSLP. The cost problem is in CH.

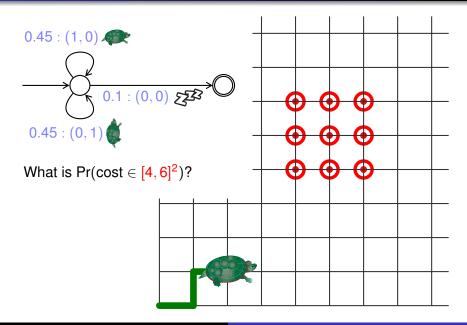
```
while solver.check() == sat:
   model = solver.model()
   for t in T:
        v = model[tv[t]].as long()
       M.itemset((t[0], t[1]), v)
   minor = Decimal(round(np.linalg.det(laplacian(M)[1:,1:])))
   degs = Decimal(np.prod(map(math.factorial, degreeVector(M) -
                               np.ones(m+1))))
   weights = Decimal(np.prod(map(math.factorial, [ model[tv[t]].as long()
   probs = Decimal(np.prod([math.pow(P[t],
                                      model[tv[t]].as long()) for t in T]))
   p += ((minor * deas) / weights) * probs
   if p > threshold:
       return p
   solver.add(Or([tv[t] != model[tv[t]] for t in T]))
return p
```

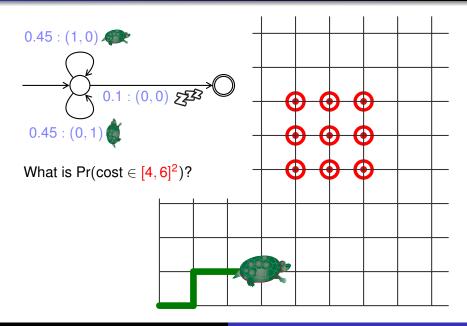


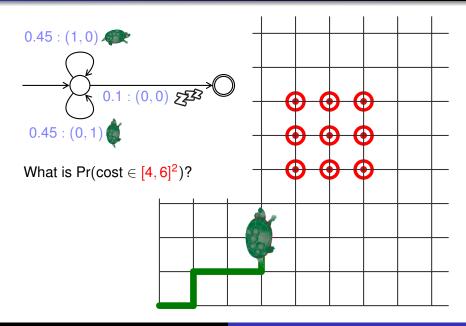


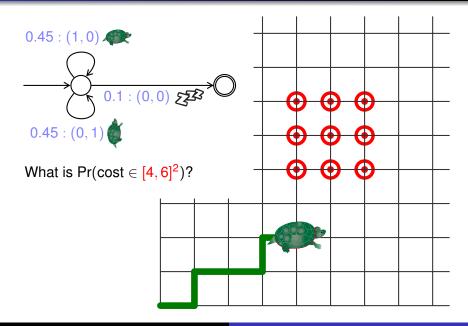
Christoph Haase, Stefan Kiefer, Markus Lohrey

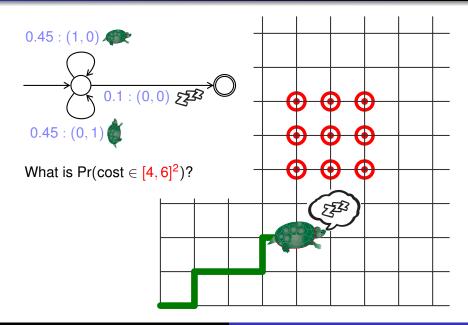


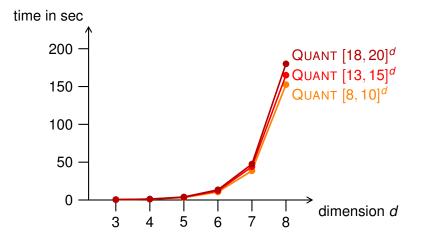


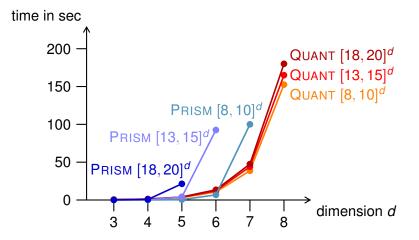


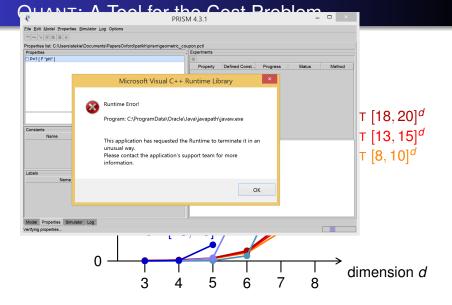


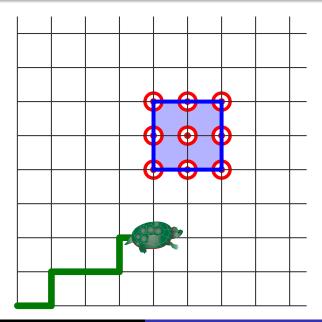




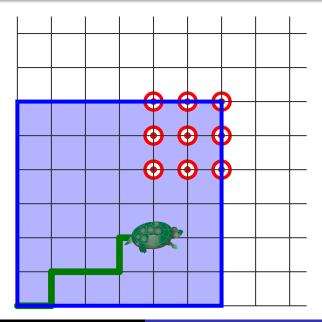








Christoph Haase, Stefan Kiefer, Markus Lohrey



Christoph Haase, Stefan Kiefer, Markus Lohrey Counting F

Counting Parikh Images

 Σ : finite alphabet

 $\textbf{\textit{p}} \in \mathbb{N}^{\Sigma}$: vector

 \mathcal{A} : language generator (DFA, NFA, CFG)

 $N(\mathcal{A}, \boldsymbol{p})$: number of words accepted by \mathcal{A} with Parikh image \boldsymbol{p}

Example: for $\mathcal{A} = a^*ba^*$ and $\boldsymbol{p} = (2, 1)$: $N(\mathcal{A}, \boldsymbol{p}) = 3$

 $\mathsf{PosParikh} := \begin{pmatrix} \mathsf{Input: Language generators } \mathcal{A}, \mathcal{B} \\ \mathsf{vector } \boldsymbol{p} \in \mathbb{N}^{\Sigma} \\ \mathsf{Output: Is } \mathcal{N}(\mathcal{A}, \boldsymbol{p}) > \mathcal{N}(\mathcal{B}, \boldsymbol{p}) \end{pmatrix} ?$

Different variants:

- language generator: DFA, NFA, CFG
- unary or binary encoding of *p*
- fixed or variable alphabet Σ

Results of This Paper: Complexity of PosParikh

vector <i>p</i>	size of Σ	DFA	NFA	CFG
unary encoding	unary	in L	NL-c.	P-c.
	fixed	PL-c.		
	variable	PP-c.		
binary encoding	unary	in L	NL-c.	DP-c.
	fixed	PosMatPow-hard, in CH	PSPACE-c.	PEXP-c.
	variable	PosSLP-hard, in CH		

Results of This Paper: Complexity of PosParikh

vector <i>p</i>	size of Σ	DFA	NFA	CFG
unary encoding	unary	in L	NL-c.	P-c.
	fixed	PL-c.		
	variable	PP-c.		
binary encoding	unary	in L	NL-c.	DP-c.
	fixed	PosMatPow-hard, in CH	PSPACE-c.	PEXP-c.
	variable	PosSLP-hard, in CH		

BitParikh :=	Input: Language generator \mathcal{A} vector $\boldsymbol{p} \in \mathbb{N}^{\Sigma}$ number $i \in \mathbb{N}$ in binary	
	Output: Is the <i>i</i> -th bit of $N(A, \mathbf{p})$ equal to 1 ?	

PosMatPow

PosMatPow :=

Input: $m \times m$ integer matrix M (in binary) number $n \in \mathbb{N}$ (in binary)

Output: Is $(M^n)_{1,m} \ge 0$?

The entries of M^n are of exponential size.

Theorem (Galby, Ouaknine, Worrell, 2015)

PosMatPow is in P for m = 2. PosMatPow is in P for m = 3 and M given in unary.

PosMatPow reduces to PosSLP.

Theorem (HKL, 2017)

PosMatPow reduces to

PosParikh with DFAs, binary encoding of **p**, even for $|\Sigma| = 2$.

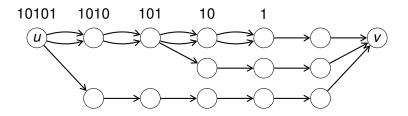
G: multi-graph with edges labelled by multiplicities N(G, u, v, n): number of paths from *u* to *v* of length *n*

Lemma

Given an integer matrix M and indices i, j, one can compute in logspace a multi-graph G with vertices u, v^+, v^- such that

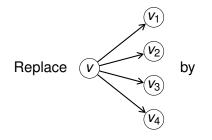
$$(M^n)_{i,j}= \mathsf{N}(G,u,v^+,n)-\mathsf{N}(G,u,v^-,n) \qquad ext{for all } n\in\mathbb{N}.$$

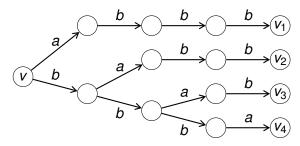
Replace
$$(u) \xrightarrow{21} (v)$$
 by



The edge weights are removed at the expense of longer paths.

From Graphs to DFAs





Counting Parikh images is closely related to performance analysis of probabilistic systems.

The complexity depends strongly on various parameters:

- language generator: DFA, NFA, CFG
- unary or binary encoding of *p*
- fixed or variable alphabet Σ

vector <i>p</i>	size of Σ	DFA	NFA	CFG
unary encoding	unary	in L	NL-c.	P-c.
	fixed	PL-c.		
	variable	PP-c.		
binary encoding	unary	in L	NL-c.	DP-c.
	fixed	PosMatPow-hard, in CH	PSPACE-c.	PEXP-c.
	variable	PosSLP-hard, in CH		