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Hidden Markov Models = Labelled Markov Chains
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Each Labelled Markov Chain (LMC) generates a probability
distribution over X*.
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Hidden Markov Models = Labelled Markov Chains

Very widely used:

@ speech recognition
@ gesture recognition
@ signal processing
@ climate modelling
°

computational biology

o DNA modelling
e biological sequence analysis
e structure prediction

probabilistic model checking: see tools like Prism or Storm
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Hidden Markov Models = Labelled Markov Chains
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Each LMC generates a probability distribution over X *.
[Equivalence problem:

Are the two distributions equal?

Solvable in O(|Q[%|x|) with linear algebra [Schiitzenberger'61].
Direct applications in the verification of anonymity properties.
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Total Variation Distance in Football
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Total Variation Distance for Words

Let Prq, Pro be two probability distributions over L*.

d(Pry,Prg) := max |Prs(W) = Pra(W)]

The maximum is attained by
Wy = {w e *: Pry(w) > Pra(w)}.

As in the football case:

d(Prq,Pry) = Zypn — Pro(w)|

WE)Z*
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Total Variation Distance for Words

Let Prq, Pro be two probability distributions over L*.

d(Pry,Prg) := max |Prs(W) = Pra(W)]

The maximum is attained by
Wy = {w e *: Pry(w) > Pra(w)}.

As in the football case:

d(Prq,Pry) = Zypn — Pro(w)|

WE)Z*

By a simple calculation:
1+ d(PH, Prg) = Pr1(W1) + Prz(Wg)

for Wo := {w € ¥ : Pry(w) < Pra(w)}.
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Verification View
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Vi @ Pra(p) € [Pri(e) — d,Pri(¢) + d]

Small distance saves verification work.
Especially for parameterised models.
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Irrational Distances
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Given two LMCs and a threshold 7 € [0, 1].
Is d > 77 strict distance-threshold problem
Is d > 7? non-strict distance-threshold problem

NP-hard: [Lyngse,Pedersen’02], [Cortes,Mohri,Rastogi’'07],
[Chen,K14]
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Decidability of the Distance-Threshold Problem

Theorem (K.18)
The strict distance-threshold problem is undecidable.

Reduction from emptiness of probabilistic automata.

What about the non-strict distance-threshold problem?
It is sgrt-sum-hard [Chen,K.14] and PP-hard [K.18].

Decidability status “strict vs. non-strict” similar as for the
joint spectral radius of a set of matrices.
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Acyclic LMCs

oS0t

Theorem (K. 18)
For acyclic LMCs:
@ Computing the distance is #P-complete.
@ Approximating the distance is #P-complete.

@ The strict and non-strict distance-threshold problems are
PP-complete.

N

Reduction from #NFA:

@iven an NFA A and n € N in unary, compute |L(A) N X"|. )

Probably simpler than previous NP-hardness reductions.
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Approximation

Theorem (K.18)

Given two LMCs and an error bound € > 0 in binary,
one can compute in PSPACE a number x € [d —e,d + ¢].

1+ d(Pry,Pra) = Pry(Wy) +Pra(Wz)  where
Wy = {we*:Pry(w) > Pra(w)}
Wo = {we *:Pry(w) < Pra(w)}
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Approximation

Theorem (K.18)

Given two LMCs and an error bound > 0 in binary,
one can compute in PSPACE a number x € [d —e,d + ¢].

1+ d(Pry,Pra) = Pry(Wy) +Pra(Wz)  where
Wy = {we*:Pry(w) > Pra(w)}
Wo = {we *:Pry(w) < Pra(w)}
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Approximation

Theorem (K.18)

Given two LMCs and an error bound > 0 in binary,
one can compute in PSPACE a number x € [d —e,d + ¢].

1+ d(Pry,Pra) = Pry(Wy) +Pra(Wz)  where
Wy = {we*:Pry(w) > Pra(w)}
Wo = {we *:Pry(w) < Pra(w)}
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In the cyclic case: we have to sample exponentially long words.
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Approximation

Theorem (K.18)

Given two LMCs and an error bound > 0 in binary,
one can compute in PSPACE a number x € [d —e,d + ¢].

1+d(Pry,Prz) = Pry(Wy) + Pra(Wz)  where
Wy = {we*:Pry(w) > Pra(w)}
Wo = {weX*:Pry(w) < Pray(w)}
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In the cyclic case: we have to sample exponentially long words.
Floating-point arithmetic computes Pry(w), Pra(w)
up to small relative error.
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Approximation

Theorem (K.18)

Given two LMCs and an error bound > 0 in binary,
one can compute in PSPACE a number x € [d —e,d + ¢].

1+d(Pry,Prz) = Pry(Wy) + Pra(Wz)  where
Wy = {we*:Pry(w) > Pra(w)}
Wo = {weX*:Pry(w) < Pray(w)}
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In the cyclic case: we have to sample exponentially long words.
Floating-point arithmetic computes Pry(w), Pra(w)

up to small relative error.

Use Ladner’s result on counting in polynomial space.
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Infinite-Word LMCs
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E.g. if W= {aw: w e £¥} then Pry(W) = § and Pro(W) =

win

d(Pry,Prp) = Jnax, |Pry(W) — Pra(W)]

= V{/ngazxw (PH(W) — Prg(W))

Theorem (Chen,K.14)

One can decide in polynomial time if d(Pry, Pro) = 1.

One can also decide in polynomial time if Pry = Pro.
Finite-word LMCs are a special case of infinite-word LMCs.
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Theorem (main results again)

The strict distance-threshold problem is undecidable.
Approximating the distance is #P-hard and in PSPACE.

Open problems:

@ decidability of the non-strict distance-threshold problem
@ complexity of approximating the distance of

e infinite-word LMCs
@ non-hidden/deterministic LMCs
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