On Computing the Total Variation Distance of Hidden Markov Models

Stefan Kiefer

University of Oxford, UK

ICALP 2018 Prague, 10 July 2018

Hidden Markov Models = Labelled Markov Chains

$$Pr_1(aa) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{4}$$

$$Pr_2(aa) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

Each Labelled Markov Chain (LMC) generates a probability distribution over Σ^* .

Hidden Markov Models = Labelled Markov Chains

Very widely used:

- speech recognition
- gesture recognition
- signal processing
- climate modelling
- computational biology
 - DNA modelling
 - biological sequence analysis
 - structure prediction
- probabilistic model checking: see tools like Prism or Storm

Hidden Markov Models = Labelled Markov Chains

$$Pr_1(aa) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{4}$$
 $Pr_2(aa) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2}$

Each LMC generates a probability distribution over Σ^* .

Equivalence problem:

Are the two distributions equal?

Solvable in $O(|Q|^3|\Sigma|)$ with linear algebra [Schützenberger'61]. Direct applications in the verification of anonymity properties.

Total Variation Distance in Football

Total Variation Distance for Words

Let Pr_1 , Pr_2 be two probability distributions over Σ^* .

$$d(\mathsf{Pr}_1,\mathsf{Pr}_2) := \max_{W \subseteq \Sigma^*} \left| \mathsf{Pr}_1(W) - \mathsf{Pr}_2(W) \right|$$

The maximum is attained by

$$W_1:=\{w\in\Sigma^*: \mathsf{Pr}_1(w)\geq \mathsf{Pr}_2(w)\}.$$

As in the football case:

$$d(Pr_1, Pr_2) = \frac{1}{2} \sum_{w \in \Sigma^*} |Pr_1(w) - Pr_2(w)|$$

Total Variation Distance for Words

Let Pr_1 , Pr_2 be two probability distributions over Σ^* .

$$d(\mathsf{Pr}_1,\mathsf{Pr}_2) := \max_{W \subseteq \Sigma^*} \left| \mathsf{Pr}_1(W) - \mathsf{Pr}_2(W) \right|$$

The maximum is attained by

$$W_1:=\{w\in\Sigma^*: \mathsf{Pr}_1(w)\geq \mathsf{Pr}_2(w)\}.$$

As in the football case:

$$d(Pr_1, Pr_2) = \frac{1}{2} \sum_{w \in \Sigma^*} |Pr_1(w) - Pr_2(w)|$$

By a simple calculation:

$$1 + d(Pr_1, Pr_2) = Pr_1(W_1) + Pr_2(W_2)$$

for
$$W_2 := \{ w \in \Sigma^* : \Pr_1(w) < \Pr_2(w) \}.$$

Verification View

$$\forall \varphi : \mathsf{Pr}_2(\varphi) \in [\mathsf{Pr}_1(\varphi) - d, \mathsf{Pr}_1(\varphi) + d]$$

Small distance saves verification work. Especially for parameterised models.

Irrational Distances

$$d = \frac{\sqrt{2}}{4} \approx 0.35$$

Given two LMCs and a threshold $\tau \in [0,1]$. Is $d > \tau$? strict distance-threshold problem Is $d \geq \tau$? non-strict distance-threshold problem

NP-hard: [Lyngsø,Pedersen'02], [Cortes,Mohri,Rastogi'07], [Chen,K.'14]

Decidability of the Distance-Threshold Problem

Theorem (K.'18)

The strict distance-threshold problem is undecidable.

Reduction from emptiness of probabilistic automata.

What about the non-strict distance-threshold problem? It is sqrt-sum-hard [Chen,K.'14] and PP-hard [K.'18].

Decidability status "strict vs. non-strict" similar as for the joint spectral radius of a set of matrices.

Acyclic LMCs

Theorem (K.'18)

For acyclic LMCs:

- Computing the distance is #P-complete.
- Approximating the distance is #P-complete.
- The strict and non-strict distance-threshold problems are PP-complete.

Reduction from #NFA:

Given an NFA \mathcal{A} and $n \in \mathbb{N}$ in unary, compute $|L(\mathcal{A}) \cap \Sigma^n|$.

Probably simpler than previous NP-hardness reductions.

Theorem (K.'18)

Given two LMCs and an error bound $\varepsilon > 0$ in binary, one can compute in PSPACE a number $x \in [d - \varepsilon, d + \varepsilon]$.

```
1 + d(Pr_1, Pr_2) = Pr_1(W_1) + Pr_2(W_2) where W_1 = \{w \in \Sigma^* : Pr_1(w) \ge Pr_2(w)\} W_2 = \{w \in \Sigma^* : Pr_1(w) < Pr_2(w)\}
```

Theorem (K.'18)

Given two LMCs and an error bound $\varepsilon > 0$ in binary, one can compute in PSPACE a number $x \in [d - \varepsilon, d + \varepsilon]$.

$$1 + d(Pr_1, Pr_2) = Pr_1(W_1) + Pr_2(W_2)$$
 where $W_1 = \{w \in \Sigma^* : Pr_1(w) \ge Pr_2(w)\}$ $W_2 = \{w \in \Sigma^* : Pr_1(w) < Pr_2(w)\}$

Theorem (K.'18)

Given two LMCs and an error bound $\varepsilon > 0$ in binary, one can compute in PSPACE a number $x \in [d - \varepsilon, d + \varepsilon]$.

$$1 + d(Pr_1, Pr_2) = Pr_1(W_1) + Pr_2(W_2)$$
 where $W_1 = \{w \in \Sigma^* : Pr_1(w) \ge Pr_2(w)\}$ $W_2 = \{w \in \Sigma^* : Pr_1(w) < Pr_2(w)\}$

In the cyclic case: we have to sample exponentially long words.

Theorem (K.'18)

Given two LMCs and an error bound $\varepsilon > 0$ in binary, one can compute in PSPACE a number $x \in [d - \varepsilon, d + \varepsilon]$.

$$1 + d(Pr_1, Pr_2) = Pr_1(W_1) + Pr_2(W_2)$$
 where $W_1 = \{w \in \Sigma^* : Pr_1(w) \ge Pr_2(w)\}$ $W_2 = \{w \in \Sigma^* : Pr_1(w) < Pr_2(w)\}$

In the cyclic case: we have to sample exponentially long words. Floating-point arithmetic computes $\Pr_1(w), \Pr_2(w)$ up to small relative error.

Theorem (K.'18)

Given two LMCs and an error bound $\varepsilon > 0$ in binary, one can compute in PSPACE a number $x \in [d - \varepsilon, d + \varepsilon]$.

$$1 + d(Pr_1, Pr_2) = Pr_1(W_1) + Pr_2(W_2)$$
 where $W_1 = \{w \in \Sigma^* : Pr_1(w) \ge Pr_2(w)\}$ $W_2 = \{w \in \Sigma^* : Pr_1(w) < Pr_2(w)\}$

In the cyclic case: we have to sample exponentially long words. Floating-point arithmetic computes $\Pr_1(w), \Pr_2(w)$ up to small relative error.

Use Ladner's result on counting in polynomial space.

Infinite-Word LMCs

E.g., if
$$W = \{aw : w \in \Sigma^{\omega}\}$$
 then $\Pr_1(W) = \frac{1}{3}$ and $\Pr_2(W) = \frac{2}{3}$.

$$d(\Pr_1, \Pr_2) := \max_{W \subseteq \Sigma^{\omega}} |\Pr_1(W) - \Pr_2(W)|$$
$$= \max_{W \subseteq \Sigma^{\omega}} (\Pr_1(W) - \Pr_2(W))$$

Theorem (Chen,K.'14)

One can decide in polynomial time if $d(Pr_1, Pr_2) = 1$.

One can also decide in polynomial time if $Pr_1 = Pr_2$. Finite-word LMCs are a special case of infinite-word LMCs.

Summary

Theorem (main results again)

The strict distance-threshold problem is undecidable. Approximating the distance is #P-hard and in PSPACE.

Open problems:

- decidability of the non-strict distance-threshold problem
- complexity of approximating the distance of
 - infinite-word LMCs
 - non-hidden/deterministic LMCs