An Extension of Muchnik’s Theorem

Achim Blumensath! and Stephan Kreutzer?*

! LuFG Mathematische Grundlagen der Informatik
RWTH Aachen / 52056 Aachen / Germany
blume@i7.informatik.rwth-aachen.de
2 Laboratory for Foundations of Computer Science
University of Edinburgh / Mayfield Road Edinburgh EH9 3JZ / Scotland, U.K.

kreutzer@i7.informatik.rwth-aachen.de

Abstract. One of the strongest decidability results in logic is the the-
orem of Muchnik which allows one to transfer the decidability of the
monadic second-order theory of a structure to the decidability of the
MSO-theory of its iteration, a tree built of disjoint copies of the original
structure. We present a generalisation of Muchnik’s result to stronger
logics, namely guarded second-order logic and its extensions by count-
ing quantifiers. We also establish a strong equivalence result between
monadic least fixed-point logic (M-LFP) and MSO on trees by show-
ing that whenever M-LFP and MSO coincide on a structure they also
coincide on its iteration.

Keywords: Monadic Second-Order Logic, Muchnik’s Theorem, Tree
Automata, Fixed-Point Logics

1 Introduction

Initiated by the work of Biichi, Lauchli, Rabin, and Shelah in the late 60s,
the investigation of monadic second-order logic (MSO) has received continuous
attention. The attractiveness of MSO is due to the fact that, on the one hand,
it is quite expressive subsuming — besides first-order logic — most modal logics,
in particular the modal p-calculus. On the other hand, MSO is simple enough
such that model checking is still decidable for many structures. Hence, one can
obtain decidability results for several logics by just considering MSO.

Of particular interest is Rabin’s Tree Theorem [7] which states that the
monadic theory of the infinite binary tree is decidable. As the unravelings of
(countable) Kripke-structures are MSO-interpretable in the infinite binary tree
and many modal logics are contained in MSO, one immediately gets decidability
results for the satisfiability problem of these logics. However, the complexity
bounds obtained in this way are usually far from optimal.

There have been only a few results improving Rabin’s theorem. Shelah [9]
mentions a result of Stupp [10] which was later improved by Muchnik. Given a

* This research has partially been supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (GAMES),
(contract HPRN-CT-2002-00283), see www.games.rwth-aachen.de.

structure A = (A, Ry, ..., Rs) we can construct a new structure 2*, called the
iteration of 2, whose universe A* consists of all finite sequences of elements of A.
For every relation R; of 2, we have the relation

R} := {(waop,...,wan_1) | w e A", a € R; },
and additionally there are two new relations

suc:= { (w,wa) |w e A*, a€ A}
and cl:={waa|we A", a€A}.

Intuitively, A* consists of countably many copies of 2 which are arranged in a
tree-like fashion. The theorem of Muchnik states that the monadic theory of A*
is decidable if we can decide the theory of 2.

The original proof of Muchnik has never been published. It is mentioned in
Semenov [8]. The first published proof is due to Walukiewicz [11], for a recent ex-
position see Berwanger and Blumensath [1]. Recently, Kuske and Lohrey proved
a version for first-order logic where in addition one can factorise A* by a trace
congruence [5].

To transfer the successful method of showing decidability results for modal
logics using the decidability of MSO on the binary tree to logics of higher arity
— guarded logics for instance — one needs to extend Muchnik’s theorem to logics
more expressive than MSO. In the present article we establish such a generali-
sation of Muchnik’s theorem to stronger logics, namely to guarded second-order
logic and its extension by counting quantifiers. For the proof we employ the usual
technique of translating formulae into automata and vice versa.

Finally, we establish a strong equivalence result between monadic least fixed-
point logic (M-LFP) and MSO on trees by showing that whenever M-LFP and
MSO coincide on a given structure they also coincide on its iteration.

The paper is organised as follows: In Section 2 we introduce iterations and
present Muchnik’s theorem and some applications. Section 3 contains the defini-
tion of an automaton model introduced by Walukiewicz which takes iterations as
input. This model has to be restricted in the following section in order to obtain
automata whose expressive power exactly matches the logics we are interested
in. In Section 5 we prove our extension of Muchnik’s theorem and in the final
section we present some applications to fixed-point logic.

2 Tree-like Structures

To fix our notation, let [n] := {0,...,n — 1}. A X-labelled A-tree is a function
T : A* — X which assigns a label T'(w) to each vertex w € A*.

We will use a variant of monadic second-order logic where all first-order
variables are eliminated. That is, formulae are constructed from atoms of the
form X C Y and RXj ... X, by boolean operations and set quantification. Using
slightly nonstandard semantics we say that RX holds if @ € R for some elements
a; € X;. Note that we do not require the X; to be singletons. Obviously, each
MSO-formula can be brought into this form.

A relation S C A% is guarded by a relation R if, for every tuple a € S, there
is some ¢ € R such that a C ¢. A relation S is guarded if it is a union of the
form SyU---US,, where each S; is guarded by some relation R. Guarded second-
order logic, GSO, extends first-order logic by second-order quantifiers 9z and Vg
that range over relations guarded by a given relation R (see Gradel, Hirsch, and
Otto [4] for a detailed definition and further results on GSO).

We will also use the monadic fragment of least fixed-point logic. Let ¢(R, z)
be a first-order formula with a free unary second-order variable R and a free first-
order variable z. On any structure 2l with universe A, the formula ¢ induces an
operator F, taking any set P C A to the set F,,(P) :={a € A| (A, P) = ¢la] }
of elements satisfying the formula if R is interpreted by P. If ¢ is positive
in R, then this operator is monotone, i.e., for all X,Y, if X C Y then also
F,(X) C Fy(Y), and therefore has a least fixed point LFP(F,). Monadic least
fized-point logic (M-LFP) is defined as the extension of FO by the following
formula building rule. If (R, z) is a formula in M-LFP positive in its free second-
order variabe R, then [LFPg , ¢(R, z)](z) is also a formula in M-LFP defining the
least fixed point of the operator induced by ¢. See [2] for details on fixed-point
logics.

We are interested in the iteration of a structure 2 which consists of disjoint
copies of 2 arranged in a tree.

Definition 2.1. Let 2l = (A, Ry, ...) be a T-structure. The iteration of 2 is the
structure 2* := (A*,suc,cl, R, ...) of signature 7* := 7 U {suc, cl} where
suc := { (w,wa) |w € A*, a € A},
cl:={waa|we A", ac A},
R} = {(way,...,wa,) |we A", a € R; }.

Muchnik has shown that this operations preserves the decidability of monadic
theories.

Theorem 2.2 (Muchnik). For every sentence ¢ € MSO one can effectively
construct a sentence @ € MSO such that A |= ¢ iff A* = ¢ for all structures 2.

This theorem is one of the strongest decidability results known for monadic
second-order logic. In particular, it implies Rabin’s Tree Theorem.

Ezample 2.3. Consider the structure 2 with universe {0, 1} and two unary pred-
icates L = {0} and R = {1}. MSO model checking for 2 is decidable since 2 is
finite. According to Muchnik’s Theorem, model checking is also decidable for 2*.
2A* is similar to the binary tree. The universe is {0, 1}*, and the relations are

L* ={w0|we{0,1}"},

R* ={wl|we{0,1}*},

suc = { (w,wa) | a € {0,1}, w e {0,1}"},
cl={waa|ae{0,1}, we {0,1}*}.

In order to prove that model checking for the binary tree is decidable it is
sufficient to define its relations in 2A*:

Soxy := suc(z,y) A L™y, Syzy :=suc(z,y) A R*y.

Similarly the decidability of SwS can be obtained directly without the need to
interpret the infinitely branching tree into the binary one.

Ezample 2.4. Let 2 := (w, <). The iteration 2A* has universe w* and relations
<* ={(wa,wd) |a < b, wew}
suc = { (w,wa) | a €w, wew"},
cd={waa|a€w, wew"}.

As final example let us mention that the unraveling of a graph & can be
defined in &*.

Ezample 2.5. The iteration &* := (V* suc,cl, E*) of a graph & = (V, E) con-
sists of all finite sequences w € V* of vertices. We will construct an MSO-
definition of those sequences which are paths in the original graph &. A word
w € V*is a path in & if for all prefixes of the form uab withu € V* and a,b € V
there is an edge (a,b) € E. The prefix relation < is MSO-definable being the
transitive closure of the suc relation. Given a prefix y := uab the word z := uaa
can be obtained using the clone relation as follows:

¥(y, 2) := Ju(suc(u,y) A suc(u, 2) Acl(z)).
Thus, the set of paths in & can be defined by
o(z) :=Vyvz(y <z AY(y,2) = E*yz).

3 Tree automata

By B (X) we denote the set of (infinitary) positive boolean formulae over X,
i.e., all formulae constructed from X with disjunction and conjunction. An in-
terpretation of a formula ¢ € BT (X) is a set I C X of atoms we consider true.

The main tool used for the investigation of MSO are automata on A-trees.
Since A is not required to be finite we need a model of automaton which can
work with trees of arbitrary degree. In addition the clone relation cl makes it
necessary that the transition function depends on the current position in the
input tree. Walukiewicz [11] introduced a type of automaton which satisfies our
needs. Since it is fairly general we have to restrict it in the next section.

Definition 3.1. A tree automaton is a tuple A = (Q, X, A, 8, g0, W) where the
input is a X-labelled A-tree, @ is the set of states, qp is the initial state, W C Q¥
is the acceptance condition, and

§:Qx Y = BHQx AN

is the transition function which assigns to each state g and input symbol ¢ a
function §(q,c) : A* — B¥(Q x A). Frequently we will write (g, c, w) instead of

5(g; c)(w).-

Note that the transition function and acceptance condition of these automata
are not finite. To obtain finite automata we will represent the transition function
by an MSO-formula and consider only parity acceptance conditions in the next
section.

In order to define the language accepted by such an automaton we introduce
games.

Definition 8.2. A game G = (V;, V1, E, W) is a graph whose universe V := VjUJ
V1 is partitioned into positions for, respectively, player 0 and player 1. W C V¥ is
the winning condition. We assume that every position has an outgoing edge.

The game G starts at a given position vg. In each turn the player the current
position v belongs to selects an outgoing edge (v,u) € E and the game continues
in position u. The resulting sequence w € V¥ is called a play. Player 0 wins a
play 7 if # € W. Otherwise, player 1 wins.

A strategy for player i is a function o that assigns to every prefix vg, ..., v,
of a play with v,, € V; a successor v, 11 = o(vg, ..., v,) such that (v,,v,11) € E.
o is positional if o(wv) = o(w'v) for all sequences wv, w'v whose last position
is the same. A winning strategy is a strategy o such that, whenever player i
plays according to o, then the resulting play is winning for him, regardless of
the moves of the opponent.

Below the winning conditions will mostly have the following form:

Definition 3.3. A function {2 : ¥ — [n] induces a parity condition W C X¥
that consists of all sequences (¢;)i<., € X such that the least number appearing
infinitely often in the sequence (£2(¢;))i<w is even.

A parity automaton is a tree automaton A = (Q, X, M, §, qo, W) where W is
a parity condition. In this case we sometimes write A = (Q, X, M, 4, qo, £2).
Similarly, a parity game G = (Vo, Vi, E, v, £2) is a game with a parity winning
condition.

The importance of parity winning conditions stems from the fact that all
games with a parity condition are determined and the corresponding winning
strategies are positional [3, 6].

Theorem 3.4 (Determinacy of parity games). For every parity game G =
(Vo, Vi, E, 2) there ezists a partition Wy U Wy of the universe such that player i
has a positional winning strategy o; for all plays starting in a position v € W;.

Furthermore, Walukiewicz [11] has shown that the winning region W of a
parity game (Vo, Vi, E, 2) can be defined by a p-calculus formula. In monadic
fixed-point logic it takes the form

LFPz, o GFPz, o \/ m(z, 2)

with g = 2pz A [Vor — Jy(Ezy A Zpy)| A [Viz — Vy(Ezy — Ziy)]

where 2, = 271(k) is the set of positions of priority k.

Definition 8.5. Let A= (Q, X, A, d, g0, W) be an automaton where the formu-
lae §(q, ¢) are in disjunctive normal form. For each tree T : A* — X, we define
the game G(A, T) as follows:

(a) The set of vertices consists of V := @Q x A* and V; := Z(Q x A) x A*.

(b) The initial position is (g, €).

(c) Each node (q,w) € Vu with 6(¢, T(w),w) = \, A®P; has the successors
(®;,w) for each 7. The successors of some node (¥, w) € V; are the nodes
(¢, wa) for (q,a) € P.

(d) A play (qo,wo), (Do, wq), (g1, w1), (P1,w1),... is winning if the sequence

qoq1 .. isin W.

The language L(.A) recognised by A is the set of all trees T such that player 0
has a winning strategy for the game G(A,T).

In order to obtain automata whose expressive power corresponds to a given
logic we have to restrict our model to only allow transition functions é(g,c) in a
given class 7. Walukiewicz has derived conditions on 7 which ensure that the
class of automata obtained in this way is still closed under boolean operations
and projections. Using slightly different operations, we follow the presentation
of Berwanger and Blumensath [1].

Besides disjunctions, conjunctions, and duals of formulae 7 has to be closed
under the following operations:

Definition 3.6. Let ¢ € BT(Q x A).
(a) The collection of ¢ is defined as follows. Let \/;, A, (gix, aix) be the dis-
junctive normal form of ¢.

collect(p) := \/ /\ (Qi(a),a) € BY(2(Q) x A)

7 a€EA

where Q;(a) :== {qir | aixr = a }.
(b) Let ¢ € Q'. The shift of ¢ by the state ¢’ is the formula shy ¢ €
BT (Q' x Q x A) obtained from ¢ by replacing all atoms (g, a) by (¢, g, a).

Theorem 3.7. Let T be a class of functions f : A<Y — BY(Q x A) where
A and @ may be different for each f € T. If T is closed under disjunction,
conjunction, dual, shift, and collection then the class of automata with transition
functions § : Q x X — T is closed under union, complement, and projection,
and every such automaton can be transformed into a nondeterministic one.

4 g£-automata

The type of automata defined in the previous section is much too powerful. In
order to prove our extension of Muchnik’s Theorem we have to find a subclass
whose expressive power on the class of trees obtained from relational structures
by the operation of iteration corresponds exactly to the logic in question. Since, in
general, a version of this theorem for one logic does not imply the corresponding

version for another logic, even if the latter is strictly weaker, we have to state the
theorem for each logic separately. To avoid duplicating the proofs we introduce
the following notions.

Definition 4.1. A logic £ extends MSO if it contains MSO and is closed under
boolean operations and set quantification.

If £ is a logic extending MSO then we denote by £+ GSO the extension of £
by guarded second-order quantification, £(3“) extends £ with the predicate
|X| > Rg, and £ + C denotes the extension of £ by predicates | X| =k (mod m)
for all k,m < w. We adopt the convention that |X| = k (mod m) is false for

infinite sets X. In particular, this implies that £ 4+ C is at least as expressive
as £(3v).

Definition 4.2. The following class of logics is considered below.
£ := {MSO, GSO, MSO(3*), GSO(3*), MSO(3*) + C, GSO(3*) + C}.
Definition 4.3. Let 2 = (4, R), S C (A*)%, and w € A*. Define
Slw:={a€A|lwaeS}.

A relation S is called local if S = |J{wS, | w € A* }, i.e., if every tuple ¢ € S
is of the form (way,...,wa,_1) for some w € A*, and ao,...,a,_1 € A.

Remark 4.4. If S C A* is guarded by R* then S is local.

Let £ be a logic extending MSO. In order to evaluate £-formulae over the
iteration of some structure we translate them into automata where the transition
function is defined by £-formulae. This is done in such a way that the resulting
class of automata is expressively equivalent to £.

Definition 4.5. Let £ be an extension of MSO, 2 a structure, S relations
over A*, ¢(X,Y;Z) € £, and n < w. The function

{3 SNa + A" = B¥([n] x A)
is defined by

(¢: Shale) = \/{ Af(@5) | beQ,} ‘ Qo .-, Qn_1 C A such that

A= 0(0,Q;S.) },
(3 Shau(wa) := \/{ /\{ (¢,0) | b€ Qq} ‘ Qo; .-, Qn-1 C A such that
A= ¢({a}, Q; Slua) }.

Let 73 be the set of all functions of the form ((; S))a.

Definition 4.6. Let £ be an extension of MSO. An £-automaton is a tuple
A =(Q,X,d,qo, 2) where Q = [n] for some n € wand § : Q@ x ¥ — £. A accepts
a Y-labelled structure 2* if the automaton Ag = (Q, X, A, da(, qo, £2) does so,
where § : Q x X — Ty is defined by du(q, c) := (6(q,¢)))a-

In order to translate formulae into automata, the latter must be closed under
all operations available in the respective logic.

Proposition 4.7. Let £ be an extension of MSO. £-automata are closed under
boolean operations and projection.

Proof. The proof follows the same lines as the corresponding one of Walukie-
wicz [11]. By Theorem 3.7 it is sufficient to show closure under disjunction,
conjunction, dual, shift, and collection. To do so we will frequently need to
convert between interpretations I C @ x A of boolean formulae ((; R)o(w) €
B*(Q x A) and sets Q such that A = ¢(C, Q). Given I C Q x A define

Qi(I):={a€ Al (q,a) €T}

for i < n, and given Q, ..., Qn_1 C A define
1(Q) :={(gi,a) |a€ Qs i <n}.

Note that 1(Q(I)) = I and Q;(1(Q)) = Q;. Then
I'= (g R)a(w) iff A= o(C,Q(I);R)

and vice versa. (Here and below C' denotes the set consisting of the last element
of w.)

(disjunction) For the disjunction of two £-definable functions we can simply
take the disjunction of their definitions since

I = (po; R)a(w) V ({15 R)au(w)
iff T = (i; R)a(w) for some i
iff AE ¢;(C,Q(I); R) for some ¢
iff A= po(C,QUI); R)V ¢1(C,Q(I); R)
iff 1= {(poVer; R)a(w).

(dual) The definition of the dual operation is slightly more involved.

I'= (o R)au(w)
iff Qx A\I % (o5 R)a(w)
iff JE (¢; R)o(w) implies JNT # ()
iff 2 = ¢(C, P; R) implies P; N Q;(I) # () for some %
iff A=VP(p(C,P;R) =\, ., PiNQ; #0)

(conjunction) follows from (disjunction) and (dual).
(shift) For a shift we simply need to renumber the states. If the pair (¢;, qx)
is encoded as number ni + k we obtain

<P(Ca Qni+07 ey Qni+n71; R)

(collection) The collection of a formula can be defined the following way:

1 = collect (ig; R)a(w)

iff there are Qs C Qs(I) such that Q" partitions A and 2 = ¢(C, P; R)
where a € P; :iff i € S for the unique S C [n] with a € QY

iff there are Q' partitioning A such that A = ¢(C, P; R) where
Pi:=Usuies @5

iff A= ¢(C,P;R) for some P; C (Jg,;cg @s With
PiNQgs=0forall S withi¢ S

iff A=3P(p(C,P;R)A Nicn Pi € Uguies @s

A Nscpn Nigs PiN Qs = 0). O

For proper extensions £ of MSO, we further have to prove that £-automata
are closed under the additional operations available in £.

Proposition 4.8. Let £ be an extension of MSO. £ + GSO-automata are closed
under guarded quantification.

Proof. In a formula of the form 34,7 every k-tuple @ € T is contained in
an edge (wp,w;) € suc. We can encode @ by the element w; and a function
h : [k] — [2] such that a; = wp(;). Consequently, the quantifier 35,7 can be
replaced by 2F monadic quantifiers 3X), where h ranges over [2][’“].

Similarly, since cl is unary we can rewrite a formula of the form 3,7 using
a monadic quantifier.

It remains to consider formulae Jg-T%(X;S,T) with non-monadic vari-
able T. Let A = (Q, X, 04,490, {2) be a nondeterministic automaton equivalent
to 1. Since T ranges over local relations we have 2* |= 3T+ (P; S, T) if and only
if there are sets T,, C A such that 2* = ¢(P; S, T) where T := U,, wT,. By in-
duction hypothesis, this is equivalent to A accepting the structure (*, P, S, T).

We claim that this is the case if and only if (%, P,S) is accepted by the
automaton B = (Q, X, d5, qo, 12) where d5(q,c) := ITé 4(q, ¢). Before we prove
that B is the desired automaton, we first show that it is also nondeterministic.

Suppose otherwise. Then there exists a model I of (3T4(q, c);)« (w) which
is minimal and contains pairs (gq,a), (¢1,a) € I for some gy # g;. Since

A = 3T6(q,c)(C,Q(I); S|w, T)
we find some 77 C A such that

A= 6(q,0)(C,Q(I); S|w, T").
Setting T := wT" it follows that

I'=(6(g,¢); S, T)a(w).

As A is nondeterministic there exists a model Iy C I such that Q;(Iy)NQx(Ip) =
(0 for i # k. But

Iy = (6(g,¢); S, Tha(w).

implies that

Iy |5 (3T6(q, ¢); S)a(w)
in contradiction to the minimality of I.

It remains to prove the above claim.

(=) Let o : A* — @Q be the run of A on (A*, P, S,T). Let w € A* and define
I, := {(o(wa),a) | a € A}. For all w € A* we have

Ty = (0(q,)5 S, Thau(w)
= A= (g, ¢)(C QUw); Slw, Tw)
= 2A ‘: E|T5(q, C)(C, Q(Iw); §|7u7 T)

= I, E (3T6(q, c); ShHa(w).

Consequently, ¢ is also a run of B on (2, P, S).
(<) Let 0 : A* — Q be the run of B on (2*,P,S). For w € A* define
I, := {(¢(wa),a) | a € A} and fix some T;, C A" such that

2 |=0(q,¢)(C, Q(Iw)§ g‘waTw)-

Define T := J,, wT,. Then I, |= (d(g, c); S, T)a(w). Hence, ¢ is a run of A on
(2, P, 5, 7). O

Lemma 4.9. Let £ be an extension of MSO. There exists an £(3“)-automaton
recognising the predicate | X| > 8q.

Proof. There are two possible scenarios for infinite sets X;. The prefix closure
JX; may contain an infinite path, or there is some w € | X; such that wa € | X;
for infinitely many elements a € A. The automaton for the predicate | X;| > N
has states Q := {qo, ¢1} and priority function £2(qo) := 0, £2(g1) := 1. In state g
it looks for infinitely many elements x € X;, whereas in state g; it looks for at
least one such element. We define the transition function § such that

Sa(go,csw) = \/ ((g0,a) A (gr,a)) v\ A (a1,0),
acA AoCA a€Ag
[Ao|>Ro
true if 1 € ¢,

Vacalqi,a) otherwise,

52[(‘11,0, ’U)) = {

by setting
(g0, c) = Fz(Qoz A Q1) V |Q1] > N,

5() true if 1 € ¢,
) c =
n Jdx@Qq,x otherwise, 0

Lemma 4.10. Let £ be an extension of MSO. There exists an (£+C)-automaton
recognising the predicate | X| =k (mod m).

10

Proof. Since there is an £(3“)-automaton for |X;| > N, we may assume that
X is finite when constructing an automaton for the predicate | X;| = k£ (mod m).

Let Q := {qr | k < m} and 2(gx) := 0 for all k. We label an element w
by qx if [X NwA*| = k (mod m). If ny is the number of successors wa such that
|X NwaA*| =k (mod m) then we have

| X NwA*| = Z kng + | X N {w}| (mod m).

k<m

Obviously, we only need to know ng modulo m. Consequently, we define

\/ /\\Ql\znl (mod m) ifi€c,

§(ar,c) = "
, \/ /\ |Q:| = (mod m) otherwise,
nENE I<m
where

Nk::{ﬁe[m]k‘zmlzk(modm)}. .
I<m

Using the preceding propositions we can state the equivalence result. We say
that an automaton A is equivalent to an £-formula ¢(Xo,..., X,, 1) where all
free variables are monadic if L(A) consists of those structures whose labelling
encode sets U such that ¢(U) holds. The encoding of U is the & ([m])-labelled
tree T such that T(w) = {i € [m] | w e X, } for all w € {0,1}*.

Theorem 4.11. Let £ € L. For every formula ¢ € £ there is an equivalent
L-automaton and vice versa.

Proof. (=) By induction on p(X) we construct an equivalent £-automaton
A = (Q, P(Im]),d,qo, 2). We have already seen that L-automata are closed
under all operations of £. Hence, it only remains to construct automata for
atomic formulae.

(X; € X;) We have to check for every element w of the input tree T that
i ¢ T(w) or j € T(w). Thus, we set Q := {go} with 2(go) := 0 and define the
transition function such that

Nacalao,a) ifidcorjec
4 » &y = acA ’ ’
alg0, & w) {false otherwise.

for each input structure 2*. This can be done by setting

false otherwise.

VeQox ifi¢corjeec,
5((10’6):_{ Qo ¢ J

(R*X;, ... X;,) Set Q :=={qo,---,qr} and £2(g;) := 1. The automaton guesses
a node in the input tree while in state ¢y and checks whether its children are in

11

the relation R. That is,

da(go, ¢, w) = \/ (g0,a) V \/{ (g1,a1) A=+ A (qr,ar) | a € R*},

acA
true ifjec
da(qi,c,w) = ' for 1 < j <k.
algs,) {false otherwise, =7 =

The corresponding £-definition is

d(qo,¢) = FzQozx V IT(RT A Q121 A - -+ A Qrg),

true ifi; €c
(g c) = J ’ for1 <j<k.
(95, ¢) {false otherwise, =7 =

(SX;, ... X;, for a relation variable S) We reuse the automaton for R* X . Set
Q = {q(]a .. -an}, Q((b) = 1, and define

0(qo,¢) := FxQoz V IZ(ST A Q121 A -+ - N Qrg),

true ifi; €c
(g c) = J ’ for1 <j<k.
(a5,¢) {false otherwise, =J=

(suc(X;, X;)) Let @ := {qo,q1} and 2(¢g;) := 1. We guess some element
w € X; having a successor in Xj.

da(qo, ¢, w) = {VaeA(QO,a) itide

Vaea((g0,a) V (q1,a)) otherwise,

true if j € ¢,

59{(Q1: C,’U)) = {

false otherwise.

The corresponding £-definition is

5() JzQox ifi ¢ec,
,C) =
1 Jz(Qox V Q1) otherwise,

5() true if j € c,
) c = .
« false otherwise.

(cl(X;)) Let Q := {qo,q1} and 2(g;) := 1. We guess some element wa such
that its successor waa is in X;.

V A(qua’) ifw= €,
Sau(qo, ¢, w) = { Ve
(4o, €) {vaeA(qO,anl,b) it w = w,

Sar() true if i € ¢,
JC,w) = i
2 false otherwise.

12

The corresponding £-definition is

8(qo,¢) = FzQpz V Ix(Cz A Q12),

true ifi € ¢,
d(q1,c) == {

false otherwise.

Note that this is the only place where the transition function actually depends
on the current vertex.

(<) Let A = (Q,X,6,0,1) be an £-automaton and fix an input struc-
ture A*. W.Lo.g. assume that A is nondeterministic. A* is accepted by A if
there is an accepting run p : A* — @ of A on 2*. This can be expressed by
an £-formula (X) in the following way: we quantify existentially over tuples Q
encoding o (i.e., Q; = 0 '(i)), and then check that at each position w € A*
a valid transition is used and that each path in p is accepting. O

Before proceeding to the proof of our extension of Muchnik’s Theorem let us
give an immediate corollary to the equivalence result.

Theorem 4.12. If £3, £1 € L then £y < £1 on A implies Ly < £1 on A*.

Proof. Let ¢y € £9 and Ag be the corresponding £g-automaton. For every for-
mula g (g, ¢) € £¢ there is an equivalent £;-formula. Hence, we can translate 4
into an £1-automaton A;. The corresponding £;-formula ¢ is the desired trans-
lation of ¢(into £4. O

5 Muchnik’s Theorem

We are now ready to prove the main result of this article.

Theorem 5.1. Let £ € L. For every sentence ¢ € £ one can effectively con-
struct a sentence ¢ € £ such that A = ¢ iff A* = ¢ for all structures 2.

Corollary 5.2. Let 2 be a structure. The £-theory of A* is decidable if and
only if we can decide the £-theory of .

The proof of Muchnik’s Theorem is split into several steps. First, let A =
(@, X, 6, q0, 12) be the L-automaton equivalent to ¢. W.l.o.g. assume that 2(i) =
i for all ¢ € @ = [n]. Note that the input alphabet X = {0} of A is unary since
¢ is a sentence. We construct a formula ¢ stating that player 0 has a winning

strategy in the game G(A,2l). It follows that 2 = ¢ iff A* € L(A) iff A* | .

The game structure. We construct ¢ by modifying the formula of Walukiewicz
so that it can be evaluated in the structure 2. To do so we embed the game
G(A,2) in the 2. First, we reduce the second component of a position (X, w)
from w € A* to a single symbol a € A. Let G'(A,2l) be the game obtained from
G(A,2*) by identifying all nodes of the form (¢, wa) and (g, w'a), i.e.:

(a) Let V; := @ x A. The vertices of player 0 are Vo U{(qo,¢€)}, those of player 1
are V; := 2(Q x A).

13

(b) The initial position is (go,€).

(c) Let {(6(q,0))a(a) = V,; \N®; for a € AU {e}. The node (¢,a) € Vp has
the successors @; for all i. Nodes & € Vi have their elements (¢,a) € & as
SUCCESSOrs.

(d) A play (qgo,a0),Po, (q1,a1),P1,. .. is winning if the sequence (g;);<,, satisfies
the parity condition (2.

Lemma 5.3. Player 0 has a winning strategy from the vertex (q,wa) in the
game G(A,2A*) if and only if he has one from the vertex (q,a) in the game
G (A,).

Proof. 'The unravelings of G(A,2*) and G'(A,2) from the respective vertices
are isomorphic. (I

In the second step we encode the game G'(A,) as the structure
G(AA) := (oUW, E, eqy, Vo, Vi, (Sq)qeqs Ro, .- .)
where (Vp, V1, E) is the graph of the game,
edy(q,a)(q’,a) :iff a =d,
Sq(d',a) Hiff ¢ =4,
Ri(qo,a0) .. (qr,ay) :iff (aq,...,a,) € R}

Note that these relations only contain elements of Vy. Let &(A,)|y, denote the
restriction of &(A,A) to Vj.
Finally, we can embed &(.A,)|y, in A via an interpretation.

Definition 5.4. Let 2 = (A, Ry, ..., R,) and B be structures. An £-interpre-
tation of 2 in B is a sequence of £-formulae 7 := (k, (9%)g ;) where, given R of
arity 7, the indices 7 range over [k]", such that

(i) A=~BxIk],
(i) R; ={((ar,ir),---, (arir)) | B E 97 (@)}

The use of interpretations is made possible by the following property. By
MSOO+ we denote the set of quantifier-free, positive MSO-formulae.

Lemma 5.5. Let T be an MSO{ -interpretation and ¢ € £ for £ € L. There is
a formula T € £ such that Z(A) = ¢ iff A | T for every structure 2.

To construct p? one simply replaces each relation in ¢ by its definition.

Lemma 5.6. There is an MSO{ -interpretation T with &(A,A)|y, = Z(A) for
all structures 2.

Proof. Let T be defined by 9;,2(X,Y) := X =Y and

195"(X) _Jtrue ifi=k, IR () = RX ifky=---=k,,
k " |false otherwise, k " lfalse otherwise. O

14

In order to speak about all of &(.A,) in its restriction to Vj we treat elements
deVy =P (V) as sets @ C V. All we have to do is to define the edge relation.
We split F into three parts

EgCVox Vi, E;CVixVy, and E;C{(q,¢)} xW
which we have to define separately by formulae o(z,Y), £1(X,y), and e5(Y).

Lemma 5.7. There are £-formulae ey(x,Y), e1(X,y), and e2(Y) defining the
edge relations Eg, F1 and FE5 respectively.

Proof. Since (@, (q,a)) € By iff (¢,a) € & we set e1(Y,z) := Y.
The definition of ¢ is more involved. Let d4(C, Q) := ((6(g, ?)))a. We have

((q,a),@) € By iff 2 ‘: 5(1({&}7@)

where Q; := {b | ({,b) € &}. In order to evaluate J; we need to define 2 in-
side &(.A,2). Since the latter consists of |@Q| copies of 2 with universes (S;)4e0,
we pick one such copy and relativise §, to it. For simplicity we choose S, corre-
sponding to the first component of (g, a).

((g,0),9) € By iff &AWy, 577 ({(3,0)}, Q')
where Q} :={(g,b) | (¢,b) € @ }. This condition can be written as

B(A Wy, = ICIQ(554(C,Q) A C = {(g,0)}
AN Qi={(ab)](i,b) € 2}).

Thus, we define €Q
eo(2,Y) = \/ (Sqz Ael(z,Y))
where q€Q
i, Y) = 303Q(65(C,Q A C = {a} A \ Qi ={(9,8) | (i,b) € Y }).

i€Q
Obviously, @Q; = {(g,b) | (i,b) € Y } can be expressed by an FO-formula us-
ing eq,. In the same way we define

= (<Sq =)
ea(V) = 3Q (602 (0,Q) A J\ Qi = {(a0,b) | (i-0) € V' }).
i€Q 0
The winning set. It remains to evaluate the formula

LFPz, o+ GFPz, . \/ ni(z, 2)
i<n
with n; := Siz A [Vox — Jy(Ezy A Ziy)] A [Viz — Yy(Exy — Z;y)]
which defines the winning set in the original game graph G'(A,2l). Since in the

given game the nodes of Vj and V; are strictly alternating, we remain in Vj if
we take two steps each time.

ni := S;x A Voz A Jy(Viz A Ezy AVz(Byz — Z;z))

15

Lemma 5.8. The formulae GFPz, ,\/,.,,ni and GFPgz, . \/.., 0. define the
same subset of Vo in &(A,2) for each assignment of the free variables.

Finally, interpreting elements of Vi by subsets of Vj, as explained above, we
obtain

n! == Siz AVoz AIY (Y C Vo Aeo(z,Y) AVz(er(Y,2) = Z;2))

Again, the equivalence of n; and 7}’ is checked easily. Thus, we can state that
player 0 has a winning strategy in G'(A,2l) from position (g,) by

¢ :=3Y [e2(Y) AVz(eo(Y,2) = LFPy, ,---GFPy, . ;. n/)].
This concludes the proof of Theorem 5.1.

6 Least fixed-point logic

We conclude this article by deriving conditions which imply that monadic second-
order logic collapses to monadic fixed-point logic.

Theorem 6.1. Let 2 be a structure where MSO (effectively) collapses to M-LFP.

For every formula ¢(X) € MSO one can (effectively) construct a formula p(X) €
M-LFP such that 2A* |= o(P) iff A* = ¢(P).

Proof. The proof is analogous to the one of Muchnik’s Theorem. Let A =
(@, X, 6,90, §2) be the MSO-automaton equivalent to ¢. We construct an LFP-
formula ¢ stating that player 0 has a winning strategy in the game G(A,%2A).
Hence, A* = ¢(P) iff A* € L(A) iff A* = o(P).

This time, we embed the game G(A,2) directly into 2A*. We consider the
following variant of G(A,2() which obviously is equivalent.

(a) The sets of vertices are Vp := @ x A* and V; := (J,c4- L(Q x wA).

(b) The initial position is (g,).

(c) It {(6(q,0))a(w) = V; AN ®; for w € A* then the successors of a node (¢,a) €
Vo are the sets { (p,wa) | (p,a) € &;} for all i. Nodes & € V; have their
elements (¢, w) € @ as successors.

(d) A play (go,wo), Po, (g1, w1),P1, . .. is winning if the sequence (g;)i <., satisfies
the parity condition (2.

In the same was as above we can encode this game as a structure &(A4,2l)
such that &(A,)|y, can be interpreted in 2*. Again, elements of V; are encoded
as subsets of Vj. Note that, for each such subset @, the set {wa | (p,wa) €
& for some p } is first-order definable with the parameter w.

Let ¢(z,Y) be the formula defining the relation E NV, x Vi and &1(X,y)
the one defining ENV; x V4.

It remains to evaluate the formula LFPy, ,---GFPy . \/,., ni(z,Z) with
which defines the winning set in the original game graph G'(A,2l). Again, we
can replace 7; by

n =S8z AVoz AIY (Y C Vo Aeo(z,Y) AVz(e1(Y,2) = Ziz))

16

Note that this formula is local to one copy of 2 as it only speaks about the
vertex z = (g, w) and elements of the (definable) set @ x wA. Consequently, there
is some LFP-formula x;(z,Z) equivalent to 5}, and we can write the winning
formula as ¢ 1= LFPyz, »---GFPz, . .., Xxi. |

Remark 6.2. The preceding theorem and its proof also hold for the logics MSO(3*)
and M-LFP(3“), and for MSO + C and M-LFP + C.

References

1. D. BERWANGER AND A. BLUMENSATH, The monadic theory of tree-like structures,
in Automata, Logic, and Infinite Games, E. Gr”adel, W. Thomas, and T. Wilke,
eds., no. 2500 in LNCS, Springer Verlag, 2003, pp. 285-301.

2. H.-D. EBBINGHAUS AND J. FLUM, Finite Model Theory, Springer, 2nd ed., 1999.

3. E. A. EMERSON AND C. S. JUTLA, Tree automata, mu-calculus and determinacy
(extended abstract), in Proc. of the 32nd Annual Symp. on Foundations of Com-
puter Science, FoCS, 1991, pp. 368-377.

4. E. GRADEL, C. HIRSCH, AND M. OTTO, Back and forth between guarded and modal
logics, in Proc. 15th IEEE Symp. on Logic in Computer Science, 2000, pp. 217-228.

5. D. KUSKE AND M. LOHREY, Decidable theories of graphs, factorized unfoldings
and cayley-graphs, Tech. Rep. 37, University of Leicester, 2002.

6. A. W. MosTowski, Games with forbidden positions, Tech. Rep. 78, Uniwersytet
Gdanski, Poland, Instytut Matematyki, 1991.

7. M. O. RABIN, Decidability of second-order theories and automata on infinite trees,
Trans. Amer. Math. Soc., 141 (1969), pp. 1-35.

8. A. L. SEMENOV, Decidability of monadic theories, LNCS, 176 (1984), pp. 162-175.

9. S. SHELAH, The monadic second order theory of order, Annals of Mathematics,
102 (1975), pp. 379-419.

10. J. Stupp, The lattice model is recursive in the original model. manuscript, The
Hebrew University, Jerusalem, 1975.

11. 1. WALUKIEWICZ, Monadic second-order logic on tree-like structures, Theoretical
Computer Science, 275 (2002), pp. 311-346.

17

