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Abstrat. One of the strongest deidability results in logi is the the-orem of Muhnik whih allows one to transfer the deidability of themonadi seond-order theory of a struture to the deidability of theMSO-theory of its iteration, a tree built of disjoint opies of the originalstruture. We present a generalisation of Muhnik's result to strongerlogis, namely guarded seond-order logi and its extensions by ount-ing quanti�ers. We also establish a strong equivalene result betweenmonadi least �xed-point logi (M-LFP) and MSO on trees by show-ing that whenever M-LFP and MSO oinide on a struture they alsooinide on its iteration.Keywords: Monadi Seond-Order Logi, Muhnik's Theorem, TreeAutomata, Fixed-Point Logis
1 IntrodutionInitiated by the work of B�uhi, L�auhli, Rabin, and Shelah in the late 60s,the investigation of monadi seond-order logi (MSO) has reeived ontinuousattention. The attrativeness of MSO is due to the fat that, on the one hand,it is quite expressive subsuming { besides �rst-order logi { most modal logis,in partiular the modal �-alulus. On the other hand, MSO is simple enoughsuh that model heking is still deidable for many strutures. Hene, one anobtain deidability results for several logis by just onsidering MSO.Of partiular interest is Rabin's Tree Theorem [7℄ whih states that themonadi theory of the in�nite binary tree is deidable. As the unravelings of(ountable) Kripke-strutures are MSO-interpretable in the in�nite binary treeand many modal logis are ontained in MSO, one immediately gets deidabilityresults for the satis�ability problem of these logis. However, the omplexitybounds obtained in this way are usually far from optimal.There have been only a few results improving Rabin's theorem. Shelah [9℄mentions a result of Stupp [10℄ whih was later improved by Muhnik. Given a? This researh has partially been supported by the European Community ResearhTraining Network \Games and Automata for Synthesis and Validation" (GAMES),(ontrat HPRN-CT-2002-00283), see www.games.rwth-aahen.de.



struture A = (A;R0; : : : ; Rs) we an onstrut a new struture A�, alled theiteration of A, whose universe A� onsists of all �nite sequenes of elements of A.For every relation Ri of A, we have the relationR�i := f (wa0; : : : ; wan�1) j w 2 A�; �a 2 Ri g ;and additionally there are two new relationssu := f (w;wa) j w 2 A�; a 2 A gand l := fwaa j w 2 A�; a 2 A g :Intuitively, A� onsists of ountably many opies of A whih are arranged in atree-like fashion. The theorem of Muhnik states that the monadi theory of A�is deidable if we an deide the theory of A.The original proof of Muhnik has never been published. It is mentioned inSemenov [8℄. The �rst published proof is due to Walukiewiz [11℄, for a reent ex-position see Berwanger and Blumensath [1℄. Reently, Kuske and Lohrey proveda version for �rst-order logi where in addition one an fatorise A� by a traeongruene [5℄.To transfer the suessful method of showing deidability results for modallogis using the deidability of MSO on the binary tree to logis of higher arity{ guarded logis for instane { one needs to extend Muhnik's theorem to logismore expressive than MSO. In the present artile we establish suh a generali-sation of Muhnik's theorem to stronger logis, namely to guarded seond-orderlogi and its extension by ounting quanti�ers. For the proof we employ the usualtehnique of translating formulae into automata and vie versa.Finally, we establish a strong equivalene result between monadi least �xed-point logi (M-LFP) and MSO on trees by showing that whenever M-LFP andMSO oinide on a given struture they also oinide on its iteration.The paper is organised as follows: In Setion 2 we introdue iterations andpresent Muhnik's theorem and some appliations. Setion 3 ontains the de�ni-tion of an automaton model introdued by Walukiewiz whih takes iterations asinput. This model has to be restrited in the following setion in order to obtainautomata whose expressive power exatly mathes the logis we are interestedin. In Setion 5 we prove our extension of Muhnik's theorem and in the �nalsetion we present some appliations to �xed-point logi.
2 Tree-like StruturesTo �x our notation, let [n℄ := f0; : : : ; n � 1g. A �-labelled A-tree is a funtionT : A� ! � whih assigns a label T (w) to eah vertex w 2 A�.We will use a variant of monadi seond-order logi where all �rst-ordervariables are eliminated. That is, formulae are onstruted from atoms of theform X � Y and RX0 : : : Xr by boolean operations and set quanti�ation. Usingslightly nonstandard semantis we say that R �X holds if �a 2 R for some elementsai 2 Xi. Note that we do not require the Xi to be singletons. Obviously, eahMSO-formula an be brought into this form.2



A relation S � As is guarded by a relation R if, for every tuple �a 2 S, thereis some � 2 R suh that �a � �. A relation S is guarded if it is a union of theform S0[� � �[Sn where eah Si is guarded by some relation R. Guarded seond-order logi, GSO, extends �rst-order logi by seond-order quanti�ers 9R and 8Rthat range over relations guarded by a given relation R (see Gr�adel, Hirsh, andOtto [4℄ for a detailed de�nition and further results on GSO).We will also use the monadi fragment of least �xed-point logi. Let '(R; x)be a �rst-order formula with a free unary seond-order variable R and a free �rst-order variable x. On any struture A with universe A, the formula ' indues anoperator F' taking any set P � A to the set F'(P ) := f a 2 A j (A; P ) j= '[a℄ gof elements satisfying the formula if R is interpreted by P . If ' is positivein R, then this operator is monotone, i.e., for all X;Y , if X � Y then alsoF'(X) � F'(Y ), and therefore has a least �xed point LFP(F'). Monadi least�xed-point logi (M-LFP) is de�ned as the extension of FO by the followingformula building rule. If '(R; x) is a formula in M-LFP positive in its free seond-order variabe R, then [LFPR;x '(R; x)℄(x) is also a formula inM-LFP de�ning theleast �xed point of the operator indued by '. See [2℄ for details on �xed-pointlogis.We are interested in the iteration of a struture A whih onsists of disjointopies of A arranged in a tree.De�nition 2.1. Let A = (A;R0; : : : ) be a � -struture. The iteration of A is thestruture A� := (A�; su; l; R�0; : : : ) of signature �� := � �[ fsu; lg wheresu := f (w;wa) j w 2 A�; a 2 A g;l := fwaa j w 2 A�; a 2 A g;R�i := f (wa0; : : : ; war) j w 2 A�; �a 2 Ri g:Muhnik has shown that this operations preserves the deidability of monaditheories.Theorem 2.2 (Muhnik). For every sentene ' 2 MSO one an e�etivelyonstrut a sentene '̂ 2 MSO suh that A j= '̂ i� A� j= ' for all strutures A.This theorem is one of the strongest deidability results known for monadiseond-order logi. In partiular, it implies Rabin's Tree Theorem.Example 2.3. Consider the struture A with universe f0; 1g and two unary pred-iates L = f0g and R = f1g. MSO model heking for A is deidable sine A is�nite. Aording to Muhnik's Theorem, model heking is also deidable for A�.A� is similar to the binary tree. The universe is f0; 1g�, and the relations areL� = fw0 j w 2 f0; 1g� g;R� = fw1 j w 2 f0; 1g� g;su = f (w;wa) j a 2 f0; 1g; w 2 f0; 1g� g;l = fwaa j a 2 f0; 1g; w 2 f0; 1g� g:
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In order to prove that model heking for the binary tree is deidable it issuÆient to de�ne its relations in A� :S0xy := su(x; y) ^ L�y; S1xy := su(x; y) ^R�y:Similarly the deidability of S!S an be obtained diretly without the need tointerpret the in�nitely branhing tree into the binary one.Example 2.4. Let A := (!;�). The iteration A� has universe !� and relations�� = f (wa;wb) j a � b; w 2 !� g;su = f (w;wa) j a 2 !; w 2 !� g;l = fwaa j a 2 !; w 2 !� g:As �nal example let us mention that the unraveling of a graph G an bede�ned in G�.Example 2.5. The iteration G� := (V �; su; l; E�) of a graph G = (V;E) on-sists of all �nite sequenes w 2 V � of verties. We will onstrut an MSO-de�nition of those sequenes whih are paths in the original graph G. A wordw 2 V � is a path in G if for all pre�xes of the form uab with u 2 V � and a; b 2 Vthere is an edge (a; b) 2 E. The pre�x relation � is MSO-de�nable being thetransitive losure of the su relation. Given a pre�x y := uab the word z := uaaan be obtained using the lone relation as follows: (y; z) := 9u�su(u; y) ^ su(u; z) ^ l(z)�:Thus, the set of paths in G an be de�ned by'(x) := 8y8z(y � x ^  (y; z)! E�yz):3 Tree automataBy B+(X) we denote the set of (in�nitary) positive boolean formulae over X,i.e., all formulae onstruted from X with disjuntion and onjuntion. An in-terpretation of a formula ' 2 B+(X) is a set I � X of atoms we onsider true.The main tool used for the investigation of MSO are automata on A-trees.Sine A is not required to be �nite we need a model of automaton whih anwork with trees of arbitrary degree. In addition the lone relation l makes itneessary that the transition funtion depends on the urrent position in theinput tree. Walukiewiz [11℄ introdued a type of automaton whih satis�es ourneeds. Sine it is fairly general we have to restrit it in the next setion.De�nition 3.1. A tree automaton is a tuple A = (Q;�;A; Æ; q0;W ) where theinput is a �-labelled A-tree, Q is the set of states, q0 is the initial state,W � Q!is the aeptane ondition, andÆ : Q�� ! B+(Q�A)A�is the transition funtion whih assigns to eah state q and input symbol  afuntion Æ(q; ) : A� ! B+(Q�A). Frequently we will write Æ(q; ; w) instead ofÆ(q; )(w). 4



Note that the transition funtion and aeptane ondition of these automataare not �nite. To obtain �nite automata we will represent the transition funtionby an MSO-formula and onsider only parity aeptane onditions in the nextsetion.In order to de�ne the language aepted by suh an automaton we introduegames.De�nition 3.2. A game G = (V0; V1; E;W ) is a graph whose universe V := V0 �[V1 is partitioned into positions for, respetively, player 0 and player 1.W � V ! isthe winning ondition. We assume that every position has an outgoing edge.The game G starts at a given position v0. In eah turn the player the urrentposition v belongs to selets an outgoing edge (v; u) 2 E and the game ontinuesin position u. The resulting sequene � 2 V ! is alled a play. Player 0 wins aplay � if � 2W . Otherwise, player 1 wins.A strategy for player i is a funtion � that assigns to every pre�x v0; : : : ; vnof a play with vn 2 Vi a suessor vn+1 = �(v0; : : : ; vn) suh that (vn; vn+1) 2 E.� is positional if �(wv) = �(w0v) for all sequenes wv, w0v whose last positionis the same. A winning strategy is a strategy � suh that, whenever player iplays aording to �, then the resulting play is winning for him, regardless ofthe moves of the opponent.Below the winning onditions will mostly have the following form:De�nition 3.3. A funtion 
 : � ! [n℄ indues a parity ondition W � �!that onsists of all sequenes (i)i<! 2 �! suh that the least number appearingin�nitely often in the sequene (
(i))i<! is even.A parity automaton is a tree automaton A = (Q;�;M; Æ; q0;W ) where W isa parity ondition. In this ase we sometimes write A = (Q;�;M; Æ; q0; 
).Similarly, a parity game G = (V0; V1; E; v0; 
) is a game with a parity winningondition.The importane of parity winning onditions stems from the fat that allgames with a parity ondition are determined and the orresponding winningstrategies are positional [3, 6℄.Theorem 3.4 (Determinay of parity games). For every parity game G =(V0; V1; E;
) there exists a partition W0 �[W1 of the universe suh that player ihas a positional winning strategy �i for all plays starting in a position v 2Wi.Furthermore, Walukiewiz [11℄ has shown that the winning region W0 of aparity game (V0; V1; E;
) an be de�ned by a �-alulus formula. In monadi�xed-point logi it takes the formLFPZn;x � � �GFPZ1;x _k�n �k(x; �Z)with �k := 
kx ^ [V0x! 9y(Exy ^ Zky)℄ ^ [V1x! 8y(Exy ! Zky)℄where 
k = 
�1(k) is the set of positions of priority k.5



De�nition 3.5. Let A = (Q;�;A; Æ; q0;W ) be an automaton where the formu-lae Æ(q; ) are in disjuntive normal form. For eah tree T : A� ! �, we de�nethe game G(A; T ) as follows:(a) The set of verties onsists of V0 := Q�A� and V1 :=P(Q�A)�A�.(b) The initial position is (q0; ").() Eah node (q; w) 2 V0 with Æ(q; T (w); w) = WiV�i has the suessors(�i; w) for eah i. The suessors of some node (�;w) 2 V1 are the nodes(q; wa) for (q; a) 2 �.(d) A play (q0; w0); (�0; w0); (q1; w1); (�1; w1); : : : is winning if the sequeneq0q1 : : : is in W .The language L(A) reognised by A is the set of all trees T suh that player 0has a winning strategy for the game G(A; T ).In order to obtain automata whose expressive power orresponds to a givenlogi we have to restrit our model to only allow transition funtions Æ(q; ) in agiven lass T . Walukiewiz has derived onditions on T whih ensure that thelass of automata obtained in this way is still losed under boolean operationsand projetions. Using slightly di�erent operations, we follow the presentationof Berwanger and Blumensath [1℄.Besides disjuntions, onjuntions, and duals of formulae T has to be losedunder the following operations:De�nition 3.6. Let ' 2 B+(Q�A).(a) The olletion of ' is de�ned as follows. Let WiVk(qik; aik) be the dis-juntive normal form of '.ollet(') :=_i â2A�Qi(a); a� 2 B+(P(Q)�A)where Qi(a) := f qik j aik = a g.(b) Let q0 2 Q0. The shift of ' by the state q0 is the formula shq0 ' 2B+(Q0 �Q�A) obtained from ' by replaing all atoms (q; a) by (q0; q; a).Theorem 3.7. Let T be a lass of funtions f : A<! ! B+(Q � A) whereA and Q may be di�erent for eah f 2 T . If T is losed under disjuntion,onjuntion, dual, shift, and olletion then the lass of automata with transitionfuntions Æ : Q � � ! T is losed under union, omplement, and projetion,and every suh automaton an be transformed into a nondeterministi one.
4 L-automataThe type of automata de�ned in the previous setion is muh too powerful. Inorder to prove our extension of Muhnik's Theorem we have to �nd a sublasswhose expressive power on the lass of trees obtained from relational struturesby the operation of iteration orresponds exatly to the logi in question. Sine, ingeneral, a version of this theorem for one logi does not imply the orresponding6



version for another logi, even if the latter is stritly weaker, we have to state thetheorem for eah logi separately. To avoid dupliating the proofs we introduethe following notions.De�nition 4.1. A logi L extends MSO if it ontains MSO and is losed underboolean operations and set quanti�ation.If L is a logi extending MSO then we denote by L+GSO the extension of Lby guarded seond-order quanti�ation, L(9!) extends L with the prediatejXj � �0, and L+C denotes the extension of L by prediates jXj � k (mod m)for all k;m < !. We adopt the onvention that jXj � k (mod m) is false forin�nite sets X. In partiular, this implies that L + C is at least as expressiveas L(9!).De�nition 4.2. The following lass of logis is onsidered below.L := fMSO; GSO; MSO(9!); GSO(9!); MSO(9!) + C; GSO(9!) + Cg:De�nition 4.3. Let A = (A; �R), S � (A�)s, and w 2 A�. De�neSjw := f a 2 A j wa 2 S g:A relation S is alled loal if S = S fwSw j w 2 A� g, i.e., if every tuple � 2 Sis of the form (wa0; : : : ; wan�1) for some w 2 A�, and a0; : : : ; an�1 2 A.Remark 4.4. If S � A� is guarded by R� then S is loal.Let L be a logi extending MSO. In order to evaluate L-formulae over theiteration of some struture we translate them into automata where the transitionfuntion is de�ned by L-formulae. This is done in suh a way that the resultinglass of automata is expressively equivalent to L.De�nition 4.5. Let L be an extension of MSO, A a struture, �S relationsover A�, '(X; �Y ; �Z) 2 L, and n < !. The funtionhh'; �SiiA : A� ! B+([n℄�A)is de�ned byhh'; �SiiA(") :=_n^f (q; b) j b 2 Qq g ��� Q0; : : : ; Qn�1 � A suh thatA j= '(;; �Q; �Sj") o;hh'; �SiiA(wa) :=_n^f (q; b) j b 2 Qq g ��� Q0; : : : ; Qn�1 � A suh thatA j= '(fag; �Q; �Sjwa) o:Let T nA be the set of all funtions of the form hh'; �SiiA.De�nition 4.6. Let L be an extension of MSO. An L-automaton is a tupleA = (Q;�; Æ; q0; 
) where Q = [n℄ for some n 2 ! and Æ : Q�� ! L. A aeptsa �-labelled struture A� if the automaton AA := (Q;�;A; ÆA; q0; 
) does so,where Æ : Q�� ! T nA is de�ned by ÆA(q; ) := hhÆ(q; )iiA.7



In order to translate formulae into automata, the latter must be losed underall operations available in the respetive logi.Proposition 4.7. Let L be an extension of MSO. L-automata are losed underboolean operations and projetion.Proof. The proof follows the same lines as the orresponding one of Walukie-wiz [11℄. By Theorem 3.7 it is suÆient to show losure under disjuntion,onjuntion, dual, shift, and olletion. To do so we will frequently need toonvert between interpretations I � Q � A of boolean formulae hh'; �RiiA(w) 2B+(Q�A) and sets �Q suh that A j= '(C; �Q). Given I � Q�A de�neQi(I) := f a 2 A j (qi; a) 2 I gfor i < n, and given Q0; : : : ; Qn�1 � A de�neI( �Q) := f (qi; a) j a 2 Qi; i < n g:Note that I( �Q(I)) = I and Qi(I( �Q)) = Qi. ThenI j= hh'; �RiiA(w) i� A j= '(C; �Q(I); �R)and vie versa. (Here and below C denotes the set onsisting of the last elementof w.)(disjuntion) For the disjuntion of two L-de�nable funtions we an simplytake the disjuntion of their de�nitions sineI j= hh'0; �RiiA(w) _ hh'1; �RiiA(w)i� I j= hh'i; �RiiA(w) for some ii� A j= 'i(C; �Q(I); �R) for some ii� A j= '0(C; �Q(I); �R) _ '1(C; �Q(I); �R)i� I j= hh'0 _ '1; �RiiA(w):(dual) The de�nition of the dual operation is slightly more involved.I j= hh'; �RiiA(w)i� Q�A n I 6j= hh'; �RiiA(w)i� J j= hh'; �RiiA(w) implies J \ I 6= ;i� A j= '(C; �P ; �R) implies Pi \Qi(I) 6= ; for some ii� A j= 8 �P �'(C; �P ; �R)! Wi<n Pi \Qi 6= ;�(onjuntion) follows from (disjuntion) and (dual).(shift) For a shift we simply need to renumber the states. If the pair (qi; qk)is enoded as number ni+ k we obtain'(C;Qni+0; : : : ; Qni+n�1; �R):
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(olletion) The olletion of a formula an be de�ned the following way:I j= ollet hh'; �RiiA(w)i� there are Q0S � QS(I) suh that �Q0 partitions A and A j= '(C; �P ; �R)where a 2 Pi : i� i 2 S for the unique S � [n℄ with a 2 Q0Si� there are �Q0 partitioning A suh that A j= '(C; �P ; �R) wherePi := SS:i2S Q0Si� A j= '(C; �P ; �R) for some Pi � SS:i2S QS withPi \QS = ; for all S with i =2 Si� A j= 9 �P�'(C; �P ; �R) ^ Vi<n Pi � SS:i2S QS^ VS�[n℄Vi=2S Pi \QS = ;�: �For proper extensions L of MSO, we further have to prove that L-automataare losed under the additional operations available in L.Proposition 4.8. Let L be an extension of MSO. L+GSO-automata are losedunder guarded quanti�ation.Proof. In a formula of the form 9suT every k-tuple �a 2 T is ontained inan edge (w0; w1) 2 su. We an enode �a by the element w1 and a funtionh : [k℄ ! [2℄ suh that ai = wh(i). Consequently, the quanti�er 9suT an bereplaed by 2k monadi quanti�ers 9Xh where h ranges over [2℄[k℄.Similarly, sine l is unary we an rewrite a formula of the form 9lT usinga monadi quanti�er.It remains to onsider formulae 9R�T ( �X; �S; T ) with non-monadi vari-able T . Let A = (Q;�; ÆA; q0; 
) be a nondeterministi automaton equivalentto  . Sine T ranges over loal relations we have A� j= 9T ( �P ; �S; T ) if and onlyif there are sets Tw � A suh that A� j=  ( �P ; �S; T ) where T := Sw wTw. By in-dution hypothesis, this is equivalent to A aepting the struture (A�; �P; �S; T ).We laim that this is the ase if and only if (A�; �P; �S) is aepted by theautomaton B = (Q;�; ÆB; q0; 
) where ÆB(q; ) := 9TÆA(q; ). Before we provethat B is the desired automaton, we �rst show that it is also nondeterministi.Suppose otherwise. Then there exists a model I of hh9TÆ(q; ); �SiiA(w) whihis minimal and ontains pairs (q0; a), (q1; a) 2 I for some q0 6= q1. SineA j= 9TÆ(q; )(C; �Q(I); �Sjw; T )we �nd some T 0 � A suh thatA j= Æ(q; )(C; �Q(I); �Sjw; T 0):Setting T := wT 0 it follows thatI j= hhÆ(q; ); �S; T iiA(w):As A is nondeterministi there exists a model I0 � I suh that Qi(I0)\Qk(I0) =; for i 6= k. ButI0 j= hhÆ(q; ); �S; T iiA(w):
9



implies thatI0 j= hh9TÆ(q; ); �SiiA(w)in ontradition to the minimality of I.It remains to prove the above laim.()) Let % : A� ! Q be the run of A on (A�; �P; �S; T ). Let w 2 A� and de�neIw := f (%(wa); a) j a 2 A g. For all w 2 A� we haveIw j= hhÆ(q; ); �S; T iiA(w)) A j= Æ(q; )(C; �Q(Iw); �Sjw; Tw)) A j= 9TÆ(q; )(C; �Q(Iw); �Sjw; T )) Iw j= hh9TÆ(q; ); �SiiA(w):Consequently, % is also a run of B on (A; �P ; �S).(() Let % : A� ! Q be the run of B on (A�; �P; �S). For w 2 A� de�neIw := f (%(wa); a) j a 2 A g and �x some Tw � Ar suh thatA j= Æ(q; )(C; �Q(Iw); �Sjw; Tw):De�ne T := Sw wTw. Then Iw j= hhÆ(q; ); �S; T iiA(w). Hene, % is a run of A on(A; �P; �S; T ). �Lemma 4.9. Let L be an extension of MSO. There exists an L(9!)-automatonreognising the prediate jXj � �0.Proof. There are two possible senarios for in�nite sets Xi. The pre�x losure#Xi may ontain an in�nite path, or there is some w 2 #Xi suh that wa 2 #Xifor in�nitely many elements a 2 A. The automaton for the prediate jXij � �0has states Q := fq0; q1g and priority funtion 
(q0) := 0, 
(q1) := 1. In state q0it looks for in�nitely many elements x 2 Xi, whereas in state q1 it looks for atleast one suh element. We de�ne the transition funtion Æ suh thatÆA(q0; ; w) = _a2A�(q0; a) ^ (q1; a)� _ _A0�AjA0j��0 ^a2A0(q1; a);
ÆA(q1; ; w) = (true if i 2 ;Wa2A(q1; a) otherwise,by settingÆ(q0; ) = 9x(Q0x ^Q1x) _ jQ1j � �0;Æ(q1; ) = (true if i 2 ;9xQ1x otherwise, �Lemma 4.10. Let L be an extension of MSO. There exists an �L+C�-automatonreognising the prediate jXj � k (mod m).10



Proof. Sine there is an L(9!)-automaton for jXij � �0 we may assume thatXi is �nite when onstruting an automaton for the prediate jXij � k (mod m).Let Q := f qk j k < m g and 
(qk) := 0 for all k. We label an element wby qk if jX \wA�j � k (mod m). If nk is the number of suessors wa suh thatjX \ waA�j � k (mod m) then we havejX \ wA�j � Xk<m knk + jX \ fwgj (mod m):Obviously, we only need to know nk modulo m. Consequently, we de�ne
Æ(qk; ) = 8>><>>:

_�n2Nk�1 ^l<m jQlj � nl (mod m) if i 2 ;_�n2Nk ^l<m jQlj � nl (mod m) otherwise;whereNk := n �n 2 [m℄k ��� Xl<m lnl � k (mod m)o: �Using the preeding propositions we an state the equivalene result. We saythat an automaton A is equivalent to an L-formula '(X0; : : : ; Xm�1) where allfree variables are monadi if L(A) onsists of those strutures whose labellingenode sets �U suh that '( �U) holds. The enoding of �U is the P([m℄)-labelledtree T suh that T (w) = f i 2 [m℄ j w 2 Xi g for all w 2 f0; 1g�.Theorem 4.11. Let L 2 L. For every formula ' 2 L there is an equivalentL-automaton and vie versa.Proof. ()) By indution on '( �X) we onstrut an equivalent L-automatonA := (Q;P([m℄); Æ; q0; 
). We have already seen that L-automata are losedunder all operations of L. Hene, it only remains to onstrut automata foratomi formulae.(Xi � Xj) We have to hek for every element w of the input tree T thati =2 T (w) or j 2 T (w). Thus, we set Q := fq0g with 
(q0) := 0 and de�ne thetransition funtion suh thatÆA(q0; ; w) = (Va2A(q0; a) if i =2  or j 2 ;false otherwise:for eah input struture A�. This an be done by settingÆ(q0; ) := (8xQ0x if i =2  or j 2 ;false otherwise:(R�Xi1 : : :Xik) Set Q := fq0; : : : ; qkg and 
(qi) := 1. The automaton guessesa node in the input tree while in state q0 and heks whether its hildren are in11



the relation R. That is,ÆA(q0; ; w) = _a2A(q0; a) __f (q1; a1) ^ � � � ^ (qk; ak) j �a 2 RA g;
ÆA(qj ; ; w) = (true if j 2 ;false otherwise; for 1 � j � k:The orresponding L-de�nition isÆ(q0; ) := 9xQ0x _ 9�x(R�x ^Q1x1 ^ � � � ^Qkxk);Æ(qj ; ) = (true if ij 2 ;false otherwise; for 1 � j � k:
(SXi1 : : : Xik for a relation variable S) We reuse the automaton for R� �X. SetQ := fq0; : : : ; qkg, 
(qi) := 1, and de�neÆ(q0; ) := 9xQ0x _ 9�x(S�x ^Q1x1 ^ � � � ^Qkxk);Æ(qj ; ) = (true if ij 2 ;false otherwise; for 1 � j � k:
(su(Xi; Xj)) Let Q := fq0; q1g and 
(qi) := 1. We guess some elementw 2 Xi having a suessor in Xj .ÆA(q0; ; w) = (Wa2A(q0; a) if i =2 ;Wa2A�(q0; a) _ (q1; a)� otherwise;ÆA(q1; ; w) = (true if j 2 ;false otherwise:The orresponding L-de�nition isÆ(q0; ) := (9xQ0x if i =2 ;9x(Q0x _Q1x) otherwise;Æ(q1; ) := (true if j 2 ;false otherwise:(l(Xi)) Let Q := fq0; q1g and 
(qi) := 1. We guess some element wa suhthat its suessor waa is in Xi.ÆA(q0; ; w) = (Wa2A(q0; a) if w = ";Wa2A(q0; a) _ (q1; b) if w = w0b;ÆA(q1; ; w) = (true if i 2 ;false otherwise:

12



The orresponding L-de�nition isÆ(q0; ) := 9xQ0x _ 9x(Cx ^Q1x);Æ(q1; ) := (true if i 2 ;false otherwise:Note that this is the only plae where the transition funtion atually dependson the urrent vertex.(() Let A = (Q;�; Æ; 0; 
) be an L-automaton and �x an input stru-ture A�. W.l.o.g. assume that A is nondeterministi. A� is aepted by A ifthere is an aepting run % : A� ! Q of A on A�. This an be expressed byan L-formula '( �X) in the following way: we quantify existentially over tuples �Qenoding % (i.e., Qi = %�1(i)), and then hek that at eah position w 2 A�a valid transition is used and that eah path in % is aepting. �Before proeeding to the proof of our extension of Muhnik's Theorem let usgive an immediate orollary to the equivalene result.Theorem 4.12. If L0, L1 2 L then L0 � L1 on A implies L0 � L1 on A�.Proof. Let '0 2 L0 and A0 be the orresponding L0-automaton. For every for-mula Æ0(q; ) 2 L0 there is an equivalent L1-formula. Hene, we an translate A0into an L1-automaton A1. The orresponding L1-formula '1 is the desired trans-lation of '0 into L1. �
5 Muhnik's TheoremWe are now ready to prove the main result of this artile.Theorem 5.1. Let L 2 L. For every sentene ' 2 L one an e�etively on-strut a sentene '̂ 2 L suh that A j= '̂ i� A� j= ' for all strutures A.Corollary 5.2. Let A be a struture. The L-theory of A� is deidable if andonly if we an deide the L-theory of A.The proof of Muhnik's Theorem is split into several steps. First, let A =(Q;�; Æ; q0; 
) be the L-automaton equivalent to '. W.l.o.g. assume that 
(i) =i for all i 2 Q = [n℄. Note that the input alphabet � = f;g of A is unary sine' is a sentene. We onstrut a formula '̂ stating that player 0 has a winningstrategy in the game G(A;A). It follows that A j= '̂ i� A� 2 L(A) i� A� j= '.The game struture. We onstrut '̂ by modifying the formula of Walukiewizso that it an be evaluated in the struture A. To do so we embed the gameG(A;A) in the A. First, we redue the seond omponent of a position (X;w)from w 2 A� to a single symbol a 2 A. Let G0(A;A) be the game obtained fromG(A;A�) by identifying all nodes of the form (q; wa) and (q; w0a), i.e.:(a) Let V0 := Q�A. The verties of player 0 are V0[f(q0; ")g, those of player 1are V1 :=P(Q�A). 13



(b) The initial position is (q0; ").() Let hhÆ(q; ;)iiA(a) = WiV�i for a 2 A [ f"g. The node (q; a) 2 V0 hasthe suessors �i for all i. Nodes � 2 V1 have their elements (q; a) 2 � assuessors.(d) A play (q0; a0); �0; (q1; a1); �1; : : : is winning if the sequene (qi)i<! satis�esthe parity ondition 
.Lemma 5.3. Player 0 has a winning strategy from the vertex (q; wa) in thegame G(A;A�) if and only if he has one from the vertex (q; a) in the gameG0(A;A).Proof. The unravelings of G(A;A�) and G0(A;A) from the respetive vertiesare isomorphi. �In the seond step we enode the game G0(A;A) as the strutureG(A;A) := �V0 [ V1; E; eq2; V0; V1; (Sq)q2Q; R0; : : :�where (V0; V1; E) is the graph of the game,eq2(q; a)(q0; a0) : i� a = a0;Sq(q0; a) : i� q = q0;Ri(q0; a0) : : : (qr; ar) : i� (a0; : : : ; ar) 2 RAi :Note that these relations only ontain elements of V0. Let G(A;A)jV0 denote therestrition of G(A;A) to V0.Finally, we an embed G(A;A)jV0 in A via an interpretation.De�nition 5.4. Let A = (A;R0; : : : ; Rr) and B be strutures. An L-interpre-tation of A in B is a sequene of L-formulae I := 
k; (#R�{ )R;�{� where, given R ofarity r, the indies �{ range over [k℄r, suh that(i) A �= B � [k℄;(ii) Rj �= � �(a1; i1); : : : ; (ar; ir)� �� B j= #Rj�{ (�a)	:The use of interpretations is made possible by the following property. ByMSO+0 we denote the set of quanti�er-free, positive MSO-formulae.Lemma 5.5. Let I be an MSO+0 -interpretation and ' 2 L for L 2 L. There isa formula 'I 2 L suh that I(A) j= ' i� A j= 'I for every struture A.To onstrut 'I one simply replaes eah relation in ' by its de�nition.Lemma 5.6. There is an MSO+0 -interpretation I with G(A;A)jV0 = I(A) forall strutures A.Proof. Let I be de�ned by #eq2ik (X;Y ) := X = Y and#Sik (X) := (true if i = k;false otherwise; #Ri�k ( �X) := (R �X if k0 = � � � = kr;false otherwise: �14



In order to speak about all ofG(A;A) in its restrition to V0 we treat elements� 2 V1 =P(V0) as sets � � V0. All we have to do is to de�ne the edge relation.We split E into three partsE0 � V0 � V1; E1 � V1 � V0; and E2 � f(q0; ")g � V1whih we have to de�ne separately by formulae "0(x; Y ), "1(X; y), and "2(Y ).Lemma 5.7. There are L-formulae "0(x; Y ), "1(X; y), and "2(Y ) de�ning theedge relations E0, E1 and E2 respetively.Proof. Sine ��; (q; a)� 2 E1 i� (q; a) 2 � we set "1(Y; x) := Y x.The de�nition of "0 is more involved. Let Æq(C; �Q) := hhÆ(q; ;)iiA. We have((q; a); �) 2 E0 i� A j= Æq(fag; �Q)where Qi := f b j (i; b) 2 � g. In order to evaluate Æq we need to de�ne A in-side G(A;A). Sine the latter onsists of jQj opies of A with universes (Sq)q2Q,we pik one suh opy and relativise Æq to it. For simpliity we hoose Sq orre-sponding to the �rst omponent of (q; a).((q; a); �) 2 E0 i� G(A;A)jV0 j= ÆSqq �f(q; a)g; �Q0�where Q0i := f (q; b) j (i; b) 2 � g. This ondition an be written asG(A;A)jV0 j= 9C9 �Q�ÆSqq (C; �Q) ^ C = f(q; a)g^ î2QQi = f (q; b) j (i; b) 2 � g�:Thus, we de�ne"0(x; Y ) := _q2Q�Sqx ^ "q0(x; Y )�where"q0(x; Y ) := 9C9 �Q�ÆSqq (C; �Q) ^ C = fxg ^ î2QQi = f (q; b) j (i; b) 2 Y g�:Obviously, Qi = f (q; b) j (i; b) 2 Y g an be expressed by an FO-formula us-ing eq2. In the same way we de�ne"2(Y ) := 9 �Q�ÆSq0q0 (;; �Q) ^ î2QQi = f (q0; b) j (i; b) 2 Y g�: �The winning set. It remains to evaluate the formulaLFPZ1;x � � �GFPZn;x _i�n �i(x; �Z)with �i := Six ^ [V0x! 9y(Exy ^ Ziy)℄ ^ [V1x! 8y(Exy ! Ziy)℄whih de�nes the winning set in the original game graph G0(A;A). Sine in thegiven game the nodes of V0 and V1 are stritly alternating, we remain in V0 ifwe take two steps eah time.�0i := Six ^ V0x ^ 9y�V1x ^Exy ^ 8z(Eyz ! Ziz)�
15



Lemma 5.8. The formulae GFPZ1;xWi�n �i and GFPZ1;xWi�n �0i de�ne thesame subset of V0 in G(A;A) for eah assignment of the free variables.Finally, interpreting elements of V1 by subsets of V0, as explained above, weobtain�00i := Six ^ V0x ^ 9Y �Y � V0 ^ "0(x; Y ) ^ 8z("1(Y; z)! Ziz)�Again, the equivalene of �0i and �00i is heked easily. Thus, we an state thatplayer 0 has a winning strategy in G0(A;A) from position (q0; ") by'̂ := 9Y �"2(Y ) ^ 8x�"0(Y; x)! LFPZ1;x � � �GFPZn;xWi�n �00i ��:This onludes the proof of Theorem 5.1.
6 Least �xed-point logiWe onlude this artile by deriving onditions whih imply that monadi seond-order logi ollapses to monadi �xed-point logi.Theorem 6.1. Let A be a struture where MSO (e�etively) ollapses to M-LFP.For every formula '( �X) 2 MSO one an (e�etively) onstrut a formula '̂( �X) 2M-LFP suh that A� j= '( �P ) i� A� j= '̂( �P ).Proof. The proof is analogous to the one of Muhnik's Theorem. Let A =(Q;�; Æ; q0; 
) be the MSO-automaton equivalent to '. We onstrut an LFP-formula '̂ stating that player 0 has a winning strategy in the game G(A;A).Hene, A� j= '̂( �P ) i� A� 2 L(A) i� A� j= '( �P ).This time, we embed the game G(A;A) diretly into A�. We onsider thefollowing variant of G(A;A) whih obviously is equivalent.(a) The sets of verties are V0 := Q�A� and V1 := Sw2A�P(Q� wA).(b) The initial position is (q0; ").() If hhÆ(q; ;)iiA(w) = WiV�i for w 2 A� then the suessors of a node (q; a) 2V0 are the sets f (p; wa) j (p; a) 2 �i g for all i. Nodes � 2 V1 have theirelements (q; w) 2 � as suessors.(d) A play (q0; w0); �0; (q1; w1); �1; : : : is winning if the sequene (qi)i<! satis�esthe parity ondition 
.In the same was as above we an enode this game as a struture G(A;A)suh that G(A;A)jV0 an be interpreted in A�. Again, elements of V1 are enodedas subsets of V0. Note that, for eah suh subset �, the set fwa j (p; wa) 2� for some p g is �rst-order de�nable with the parameter w.Let "0(x; Y ) be the formula de�ning the relation E \ V0 � V1 and "1(X; y)the one de�ning E \ V1 � V0.It remains to evaluate the formula LFPZ1;x � � �GFPZn;xWi�n �i(x; �Z) withwhih de�nes the winning set in the original game graph G0(A;A). Again, wean replae �i by�00i := Six ^ V0x ^ 9Y �Y � V0 ^ "0(x; Y ) ^ 8z("1(Y; z)! Ziz)�
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Note that this formula is loal to one opy of A as it only speaks about thevertex x = (q; w) and elements of the (de�nable) set Q�wA. Consequently, thereis some LFP-formula �i(x; �Z) equivalent to �00i , and we an write the winningformula as '̂ := LFPZ1;x � � �GFPZn;xWi�n �i. �Remark 6.2. The preeding theorem and its proof also hold for the logisMSO(9!)and M-LFP(9!), and for MSO+C and M-LFP+C.
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