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Abstra
t. One of the strongest de
idability results in logi
 is the the-orem of Mu
hnik whi
h allows one to transfer the de
idability of themonadi
 se
ond-order theory of a stru
ture to the de
idability of theMSO-theory of its iteration, a tree built of disjoint 
opies of the originalstru
ture. We present a generalisation of Mu
hnik's result to strongerlogi
s, namely guarded se
ond-order logi
 and its extensions by 
ount-ing quanti�ers. We also establish a strong equivalen
e result betweenmonadi
 least �xed-point logi
 (M-LFP) and MSO on trees by show-ing that whenever M-LFP and MSO 
oin
ide on a stru
ture they also
oin
ide on its iteration.Keywords: Monadi
 Se
ond-Order Logi
, Mu
hnik's Theorem, TreeAutomata, Fixed-Point Logi
s
1 Introdu
tionInitiated by the work of B�u
hi, L�au
hli, Rabin, and Shelah in the late 60s,the investigation of monadi
 se
ond-order logi
 (MSO) has re
eived 
ontinuousattention. The attra
tiveness of MSO is due to the fa
t that, on the one hand,it is quite expressive subsuming { besides �rst-order logi
 { most modal logi
s,in parti
ular the modal �-
al
ulus. On the other hand, MSO is simple enoughsu
h that model 
he
king is still de
idable for many stru
tures. Hen
e, one 
anobtain de
idability results for several logi
s by just 
onsidering MSO.Of parti
ular interest is Rabin's Tree Theorem [7℄ whi
h states that themonadi
 theory of the in�nite binary tree is de
idable. As the unravelings of(
ountable) Kripke-stru
tures are MSO-interpretable in the in�nite binary treeand many modal logi
s are 
ontained in MSO, one immediately gets de
idabilityresults for the satis�ability problem of these logi
s. However, the 
omplexitybounds obtained in this way are usually far from optimal.There have been only a few results improving Rabin's theorem. Shelah [9℄mentions a result of Stupp [10℄ whi
h was later improved by Mu
hnik. Given a? This resear
h has partially been supported by the European Community Resear
hTraining Network \Games and Automata for Synthesis and Validation" (GAMES),(
ontra
t HPRN-CT-2002-00283), see www.games.rwth-aa
hen.de.



stru
ture A = (A;R0; : : : ; Rs) we 
an 
onstru
t a new stru
ture A�, 
alled theiteration of A, whose universe A� 
onsists of all �nite sequen
es of elements of A.For every relation Ri of A, we have the relationR�i := f (wa0; : : : ; wan�1) j w 2 A�; �a 2 Ri g ;and additionally there are two new relationssu
 := f (w;wa) j w 2 A�; a 2 A gand 
l := fwaa j w 2 A�; a 2 A g :Intuitively, A� 
onsists of 
ountably many 
opies of A whi
h are arranged in atree-like fashion. The theorem of Mu
hnik states that the monadi
 theory of A�is de
idable if we 
an de
ide the theory of A.The original proof of Mu
hnik has never been published. It is mentioned inSemenov [8℄. The �rst published proof is due to Walukiewi
z [11℄, for a re
ent ex-position see Berwanger and Blumensath [1℄. Re
ently, Kuske and Lohrey proveda version for �rst-order logi
 where in addition one 
an fa
torise A� by a tra
e
ongruen
e [5℄.To transfer the su

essful method of showing de
idability results for modallogi
s using the de
idability of MSO on the binary tree to logi
s of higher arity{ guarded logi
s for instan
e { one needs to extend Mu
hnik's theorem to logi
smore expressive than MSO. In the present arti
le we establish su
h a generali-sation of Mu
hnik's theorem to stronger logi
s, namely to guarded se
ond-orderlogi
 and its extension by 
ounting quanti�ers. For the proof we employ the usualte
hnique of translating formulae into automata and vi
e versa.Finally, we establish a strong equivalen
e result between monadi
 least �xed-point logi
 (M-LFP) and MSO on trees by showing that whenever M-LFP andMSO 
oin
ide on a given stru
ture they also 
oin
ide on its iteration.The paper is organised as follows: In Se
tion 2 we introdu
e iterations andpresent Mu
hnik's theorem and some appli
ations. Se
tion 3 
ontains the de�ni-tion of an automaton model introdu
ed by Walukiewi
z whi
h takes iterations asinput. This model has to be restri
ted in the following se
tion in order to obtainautomata whose expressive power exa
tly mat
hes the logi
s we are interestedin. In Se
tion 5 we prove our extension of Mu
hnik's theorem and in the �nalse
tion we present some appli
ations to �xed-point logi
.
2 Tree-like Stru
turesTo �x our notation, let [n℄ := f0; : : : ; n � 1g. A �-labelled A-tree is a fun
tionT : A� ! � whi
h assigns a label T (w) to ea
h vertex w 2 A�.We will use a variant of monadi
 se
ond-order logi
 where all �rst-ordervariables are eliminated. That is, formulae are 
onstru
ted from atoms of theform X � Y and RX0 : : : Xr by boolean operations and set quanti�
ation. Usingslightly nonstandard semanti
s we say that R �X holds if �a 2 R for some elementsai 2 Xi. Note that we do not require the Xi to be singletons. Obviously, ea
hMSO-formula 
an be brought into this form.2



A relation S � As is guarded by a relation R if, for every tuple �a 2 S, thereis some �
 2 R su
h that �a � �
. A relation S is guarded if it is a union of theform S0[� � �[Sn where ea
h Si is guarded by some relation R. Guarded se
ond-order logi
, GSO, extends �rst-order logi
 by se
ond-order quanti�ers 9R and 8Rthat range over relations guarded by a given relation R (see Gr�adel, Hirs
h, andOtto [4℄ for a detailed de�nition and further results on GSO).We will also use the monadi
 fragment of least �xed-point logi
. Let '(R; x)be a �rst-order formula with a free unary se
ond-order variable R and a free �rst-order variable x. On any stru
ture A with universe A, the formula ' indu
es anoperator F' taking any set P � A to the set F'(P ) := f a 2 A j (A; P ) j= '[a℄ gof elements satisfying the formula if R is interpreted by P . If ' is positivein R, then this operator is monotone, i.e., for all X;Y , if X � Y then alsoF'(X) � F'(Y ), and therefore has a least �xed point LFP(F'). Monadi
 least�xed-point logi
 (M-LFP) is de�ned as the extension of FO by the followingformula building rule. If '(R; x) is a formula in M-LFP positive in its free se
ond-order variabe R, then [LFPR;x '(R; x)℄(x) is also a formula inM-LFP de�ning theleast �xed point of the operator indu
ed by '. See [2℄ for details on �xed-pointlogi
s.We are interested in the iteration of a stru
ture A whi
h 
onsists of disjoint
opies of A arranged in a tree.De�nition 2.1. Let A = (A;R0; : : : ) be a � -stru
ture. The iteration of A is thestru
ture A� := (A�; su
; 
l; R�0; : : : ) of signature �� := � �[ fsu
; 
lg wheresu
 := f (w;wa) j w 2 A�; a 2 A g;
l := fwaa j w 2 A�; a 2 A g;R�i := f (wa0; : : : ; war) j w 2 A�; �a 2 Ri g:Mu
hnik has shown that this operations preserves the de
idability of monadi
theories.Theorem 2.2 (Mu
hnik). For every senten
e ' 2 MSO one 
an e�e
tively
onstru
t a senten
e '̂ 2 MSO su
h that A j= '̂ i� A� j= ' for all stru
tures A.This theorem is one of the strongest de
idability results known for monadi
se
ond-order logi
. In parti
ular, it implies Rabin's Tree Theorem.Example 2.3. Consider the stru
ture A with universe f0; 1g and two unary pred-i
ates L = f0g and R = f1g. MSO model 
he
king for A is de
idable sin
e A is�nite. A

ording to Mu
hnik's Theorem, model 
he
king is also de
idable for A�.A� is similar to the binary tree. The universe is f0; 1g�, and the relations areL� = fw0 j w 2 f0; 1g� g;R� = fw1 j w 2 f0; 1g� g;su
 = f (w;wa) j a 2 f0; 1g; w 2 f0; 1g� g;
l = fwaa j a 2 f0; 1g; w 2 f0; 1g� g:
3



In order to prove that model 
he
king for the binary tree is de
idable it issuÆ
ient to de�ne its relations in A� :S0xy := su
(x; y) ^ L�y; S1xy := su
(x; y) ^R�y:Similarly the de
idability of S!S 
an be obtained dire
tly without the need tointerpret the in�nitely bran
hing tree into the binary one.Example 2.4. Let A := (!;�). The iteration A� has universe !� and relations�� = f (wa;wb) j a � b; w 2 !� g;su
 = f (w;wa) j a 2 !; w 2 !� g;
l = fwaa j a 2 !; w 2 !� g:As �nal example let us mention that the unraveling of a graph G 
an bede�ned in G�.Example 2.5. The iteration G� := (V �; su
; 
l; E�) of a graph G = (V;E) 
on-sists of all �nite sequen
es w 2 V � of verti
es. We will 
onstru
t an MSO-de�nition of those sequen
es whi
h are paths in the original graph G. A wordw 2 V � is a path in G if for all pre�xes of the form uab with u 2 V � and a; b 2 Vthere is an edge (a; b) 2 E. The pre�x relation � is MSO-de�nable being thetransitive 
losure of the su
 relation. Given a pre�x y := uab the word z := uaa
an be obtained using the 
lone relation as follows: (y; z) := 9u�su
(u; y) ^ su
(u; z) ^ 
l(z)�:Thus, the set of paths in G 
an be de�ned by'(x) := 8y8z(y � x ^  (y; z)! E�yz):3 Tree automataBy B+(X) we denote the set of (in�nitary) positive boolean formulae over X,i.e., all formulae 
onstru
ted from X with disjun
tion and 
onjun
tion. An in-terpretation of a formula ' 2 B+(X) is a set I � X of atoms we 
onsider true.The main tool used for the investigation of MSO are automata on A-trees.Sin
e A is not required to be �nite we need a model of automaton whi
h 
anwork with trees of arbitrary degree. In addition the 
lone relation 
l makes itne
essary that the transition fun
tion depends on the 
urrent position in theinput tree. Walukiewi
z [11℄ introdu
ed a type of automaton whi
h satis�es ourneeds. Sin
e it is fairly general we have to restri
t it in the next se
tion.De�nition 3.1. A tree automaton is a tuple A = (Q;�;A; Æ; q0;W ) where theinput is a �-labelled A-tree, Q is the set of states, q0 is the initial state,W � Q!is the a

eptan
e 
ondition, andÆ : Q�� ! B+(Q�A)A�is the transition fun
tion whi
h assigns to ea
h state q and input symbol 
 afun
tion Æ(q; 
) : A� ! B+(Q�A). Frequently we will write Æ(q; 
; w) instead ofÆ(q; 
)(w). 4



Note that the transition fun
tion and a

eptan
e 
ondition of these automataare not �nite. To obtain �nite automata we will represent the transition fun
tionby an MSO-formula and 
onsider only parity a

eptan
e 
onditions in the nextse
tion.In order to de�ne the language a

epted by su
h an automaton we introdu
egames.De�nition 3.2. A game G = (V0; V1; E;W ) is a graph whose universe V := V0 �[V1 is partitioned into positions for, respe
tively, player 0 and player 1.W � V ! isthe winning 
ondition. We assume that every position has an outgoing edge.The game G starts at a given position v0. In ea
h turn the player the 
urrentposition v belongs to sele
ts an outgoing edge (v; u) 2 E and the game 
ontinuesin position u. The resulting sequen
e � 2 V ! is 
alled a play. Player 0 wins aplay � if � 2W . Otherwise, player 1 wins.A strategy for player i is a fun
tion � that assigns to every pre�x v0; : : : ; vnof a play with vn 2 Vi a su

essor vn+1 = �(v0; : : : ; vn) su
h that (vn; vn+1) 2 E.� is positional if �(wv) = �(w0v) for all sequen
es wv, w0v whose last positionis the same. A winning strategy is a strategy � su
h that, whenever player iplays a

ording to �, then the resulting play is winning for him, regardless ofthe moves of the opponent.Below the winning 
onditions will mostly have the following form:De�nition 3.3. A fun
tion 
 : � ! [n℄ indu
es a parity 
ondition W � �!that 
onsists of all sequen
es (
i)i<! 2 �! su
h that the least number appearingin�nitely often in the sequen
e (
(
i))i<! is even.A parity automaton is a tree automaton A = (Q;�;M; Æ; q0;W ) where W isa parity 
ondition. In this 
ase we sometimes write A = (Q;�;M; Æ; q0; 
).Similarly, a parity game G = (V0; V1; E; v0; 
) is a game with a parity winning
ondition.The importan
e of parity winning 
onditions stems from the fa
t that allgames with a parity 
ondition are determined and the 
orresponding winningstrategies are positional [3, 6℄.Theorem 3.4 (Determina
y of parity games). For every parity game G =(V0; V1; E;
) there exists a partition W0 �[W1 of the universe su
h that player ihas a positional winning strategy �i for all plays starting in a position v 2Wi.Furthermore, Walukiewi
z [11℄ has shown that the winning region W0 of aparity game (V0; V1; E;
) 
an be de�ned by a �-
al
ulus formula. In monadi
�xed-point logi
 it takes the formLFPZn;x � � �GFPZ1;x _k�n �k(x; �Z)with �k := 
kx ^ [V0x! 9y(Exy ^ Zky)℄ ^ [V1x! 8y(Exy ! Zky)℄where 
k = 
�1(k) is the set of positions of priority k.5



De�nition 3.5. Let A = (Q;�;A; Æ; q0;W ) be an automaton where the formu-lae Æ(q; 
) are in disjun
tive normal form. For ea
h tree T : A� ! �, we de�nethe game G(A; T ) as follows:(a) The set of verti
es 
onsists of V0 := Q�A� and V1 :=P(Q�A)�A�.(b) The initial position is (q0; ").(
) Ea
h node (q; w) 2 V0 with Æ(q; T (w); w) = WiV�i has the su

essors(�i; w) for ea
h i. The su

essors of some node (�;w) 2 V1 are the nodes(q; wa) for (q; a) 2 �.(d) A play (q0; w0); (�0; w0); (q1; w1); (�1; w1); : : : is winning if the sequen
eq0q1 : : : is in W .The language L(A) re
ognised by A is the set of all trees T su
h that player 0has a winning strategy for the game G(A; T ).In order to obtain automata whose expressive power 
orresponds to a givenlogi
 we have to restri
t our model to only allow transition fun
tions Æ(q; 
) in agiven 
lass T . Walukiewi
z has derived 
onditions on T whi
h ensure that the
lass of automata obtained in this way is still 
losed under boolean operationsand proje
tions. Using slightly di�erent operations, we follow the presentationof Berwanger and Blumensath [1℄.Besides disjun
tions, 
onjun
tions, and duals of formulae T has to be 
losedunder the following operations:De�nition 3.6. Let ' 2 B+(Q�A).(a) The 
olle
tion of ' is de�ned as follows. Let WiVk(qik; aik) be the dis-jun
tive normal form of '.
olle
t(') :=_i â2A�Qi(a); a� 2 B+(P(Q)�A)where Qi(a) := f qik j aik = a g.(b) Let q0 2 Q0. The shift of ' by the state q0 is the formula shq0 ' 2B+(Q0 �Q�A) obtained from ' by repla
ing all atoms (q; a) by (q0; q; a).Theorem 3.7. Let T be a 
lass of fun
tions f : A<! ! B+(Q � A) whereA and Q may be di�erent for ea
h f 2 T . If T is 
losed under disjun
tion,
onjun
tion, dual, shift, and 
olle
tion then the 
lass of automata with transitionfun
tions Æ : Q � � ! T is 
losed under union, 
omplement, and proje
tion,and every su
h automaton 
an be transformed into a nondeterministi
 one.
4 L-automataThe type of automata de�ned in the previous se
tion is mu
h too powerful. Inorder to prove our extension of Mu
hnik's Theorem we have to �nd a sub
lasswhose expressive power on the 
lass of trees obtained from relational stru
turesby the operation of iteration 
orresponds exa
tly to the logi
 in question. Sin
e, ingeneral, a version of this theorem for one logi
 does not imply the 
orresponding6



version for another logi
, even if the latter is stri
tly weaker, we have to state thetheorem for ea
h logi
 separately. To avoid dupli
ating the proofs we introdu
ethe following notions.De�nition 4.1. A logi
 L extends MSO if it 
ontains MSO and is 
losed underboolean operations and set quanti�
ation.If L is a logi
 extending MSO then we denote by L+GSO the extension of Lby guarded se
ond-order quanti�
ation, L(9!) extends L with the predi
atejXj � �0, and L+C denotes the extension of L by predi
ates jXj � k (mod m)for all k;m < !. We adopt the 
onvention that jXj � k (mod m) is false forin�nite sets X. In parti
ular, this implies that L + C is at least as expressiveas L(9!).De�nition 4.2. The following 
lass of logi
s is 
onsidered below.L := fMSO; GSO; MSO(9!); GSO(9!); MSO(9!) + C; GSO(9!) + Cg:De�nition 4.3. Let A = (A; �R), S � (A�)s, and w 2 A�. De�neSjw := f a 2 A j wa 2 S g:A relation S is 
alled lo
al if S = S fwSw j w 2 A� g, i.e., if every tuple �
 2 Sis of the form (wa0; : : : ; wan�1) for some w 2 A�, and a0; : : : ; an�1 2 A.Remark 4.4. If S � A� is guarded by R� then S is lo
al.Let L be a logi
 extending MSO. In order to evaluate L-formulae over theiteration of some stru
ture we translate them into automata where the transitionfun
tion is de�ned by L-formulae. This is done in su
h a way that the resulting
lass of automata is expressively equivalent to L.De�nition 4.5. Let L be an extension of MSO, A a stru
ture, �S relationsover A�, '(X; �Y ; �Z) 2 L, and n < !. The fun
tionhh'; �SiiA : A� ! B+([n℄�A)is de�ned byhh'; �SiiA(") :=_n^f (q; b) j b 2 Qq g ��� Q0; : : : ; Qn�1 � A su
h thatA j= '(;; �Q; �Sj") o;hh'; �SiiA(wa) :=_n^f (q; b) j b 2 Qq g ��� Q0; : : : ; Qn�1 � A su
h thatA j= '(fag; �Q; �Sjwa) o:Let T nA be the set of all fun
tions of the form hh'; �SiiA.De�nition 4.6. Let L be an extension of MSO. An L-automaton is a tupleA = (Q;�; Æ; q0; 
) where Q = [n℄ for some n 2 ! and Æ : Q�� ! L. A a

eptsa �-labelled stru
ture A� if the automaton AA := (Q;�;A; ÆA; q0; 
) does so,where Æ : Q�� ! T nA is de�ned by ÆA(q; 
) := hhÆ(q; 
)iiA.7



In order to translate formulae into automata, the latter must be 
losed underall operations available in the respe
tive logi
.Proposition 4.7. Let L be an extension of MSO. L-automata are 
losed underboolean operations and proje
tion.Proof. The proof follows the same lines as the 
orresponding one of Walukie-wi
z [11℄. By Theorem 3.7 it is suÆ
ient to show 
losure under disjun
tion,
onjun
tion, dual, shift, and 
olle
tion. To do so we will frequently need to
onvert between interpretations I � Q � A of boolean formulae hh'; �RiiA(w) 2B+(Q�A) and sets �Q su
h that A j= '(C; �Q). Given I � Q�A de�neQi(I) := f a 2 A j (qi; a) 2 I gfor i < n, and given Q0; : : : ; Qn�1 � A de�neI( �Q) := f (qi; a) j a 2 Qi; i < n g:Note that I( �Q(I)) = I and Qi(I( �Q)) = Qi. ThenI j= hh'; �RiiA(w) i� A j= '(C; �Q(I); �R)and vi
e versa. (Here and below C denotes the set 
onsisting of the last elementof w.)(disjun
tion) For the disjun
tion of two L-de�nable fun
tions we 
an simplytake the disjun
tion of their de�nitions sin
eI j= hh'0; �RiiA(w) _ hh'1; �RiiA(w)i� I j= hh'i; �RiiA(w) for some ii� A j= 'i(C; �Q(I); �R) for some ii� A j= '0(C; �Q(I); �R) _ '1(C; �Q(I); �R)i� I j= hh'0 _ '1; �RiiA(w):(dual) The de�nition of the dual operation is slightly more involved.I j= hh'; �RiiA(w)i� Q�A n I 6j= hh'; �RiiA(w)i� J j= hh'; �RiiA(w) implies J \ I 6= ;i� A j= '(C; �P ; �R) implies Pi \Qi(I) 6= ; for some ii� A j= 8 �P �'(C; �P ; �R)! Wi<n Pi \Qi 6= ;�(
onjun
tion) follows from (disjun
tion) and (dual).(shift) For a shift we simply need to renumber the states. If the pair (qi; qk)is en
oded as number ni+ k we obtain'(C;Qni+0; : : : ; Qni+n�1; �R):
8



(
olle
tion) The 
olle
tion of a formula 
an be de�ned the following way:I j= 
olle
t hh'; �RiiA(w)i� there are Q0S � QS(I) su
h that �Q0 partitions A and A j= '(C; �P ; �R)where a 2 Pi : i� i 2 S for the unique S � [n℄ with a 2 Q0Si� there are �Q0 partitioning A su
h that A j= '(C; �P ; �R) wherePi := SS:i2S Q0Si� A j= '(C; �P ; �R) for some Pi � SS:i2S QS withPi \QS = ; for all S with i =2 Si� A j= 9 �P�'(C; �P ; �R) ^ Vi<n Pi � SS:i2S QS^ VS�[n℄Vi=2S Pi \QS = ;�: �For proper extensions L of MSO, we further have to prove that L-automataare 
losed under the additional operations available in L.Proposition 4.8. Let L be an extension of MSO. L+GSO-automata are 
losedunder guarded quanti�
ation.Proof. In a formula of the form 9su
T every k-tuple �a 2 T is 
ontained inan edge (w0; w1) 2 su
. We 
an en
ode �a by the element w1 and a fun
tionh : [k℄ ! [2℄ su
h that ai = wh(i). Consequently, the quanti�er 9su
T 
an berepla
ed by 2k monadi
 quanti�ers 9Xh where h ranges over [2℄[k℄.Similarly, sin
e 
l is unary we 
an rewrite a formula of the form 9
lT usinga monadi
 quanti�er.It remains to 
onsider formulae 9R�T ( �X; �S; T ) with non-monadi
 vari-able T . Let A = (Q;�; ÆA; q0; 
) be a nondeterministi
 automaton equivalentto  . Sin
e T ranges over lo
al relations we have A� j= 9T ( �P ; �S; T ) if and onlyif there are sets Tw � A su
h that A� j=  ( �P ; �S; T ) where T := Sw wTw. By in-du
tion hypothesis, this is equivalent to A a

epting the stru
ture (A�; �P; �S; T ).We 
laim that this is the 
ase if and only if (A�; �P; �S) is a

epted by theautomaton B = (Q;�; ÆB; q0; 
) where ÆB(q; 
) := 9TÆA(q; 
). Before we provethat B is the desired automaton, we �rst show that it is also nondeterministi
.Suppose otherwise. Then there exists a model I of hh9TÆ(q; 
); �SiiA(w) whi
his minimal and 
ontains pairs (q0; a), (q1; a) 2 I for some q0 6= q1. Sin
eA j= 9TÆ(q; 
)(C; �Q(I); �Sjw; T )we �nd some T 0 � A su
h thatA j= Æ(q; 
)(C; �Q(I); �Sjw; T 0):Setting T := wT 0 it follows thatI j= hhÆ(q; 
); �S; T iiA(w):As A is nondeterministi
 there exists a model I0 � I su
h that Qi(I0)\Qk(I0) =; for i 6= k. ButI0 j= hhÆ(q; 
); �S; T iiA(w):
9



implies thatI0 j= hh9TÆ(q; 
); �SiiA(w)in 
ontradi
tion to the minimality of I.It remains to prove the above 
laim.()) Let % : A� ! Q be the run of A on (A�; �P; �S; T ). Let w 2 A� and de�neIw := f (%(wa); a) j a 2 A g. For all w 2 A� we haveIw j= hhÆ(q; 
); �S; T iiA(w)) A j= Æ(q; 
)(C; �Q(Iw); �Sjw; Tw)) A j= 9TÆ(q; 
)(C; �Q(Iw); �Sjw; T )) Iw j= hh9TÆ(q; 
); �SiiA(w):Consequently, % is also a run of B on (A; �P ; �S).(() Let % : A� ! Q be the run of B on (A�; �P; �S). For w 2 A� de�neIw := f (%(wa); a) j a 2 A g and �x some Tw � Ar su
h thatA j= Æ(q; 
)(C; �Q(Iw); �Sjw; Tw):De�ne T := Sw wTw. Then Iw j= hhÆ(q; 
); �S; T iiA(w). Hen
e, % is a run of A on(A; �P; �S; T ). �Lemma 4.9. Let L be an extension of MSO. There exists an L(9!)-automatonre
ognising the predi
ate jXj � �0.Proof. There are two possible s
enarios for in�nite sets Xi. The pre�x 
losure#Xi may 
ontain an in�nite path, or there is some w 2 #Xi su
h that wa 2 #Xifor in�nitely many elements a 2 A. The automaton for the predi
ate jXij � �0has states Q := fq0; q1g and priority fun
tion 
(q0) := 0, 
(q1) := 1. In state q0it looks for in�nitely many elements x 2 Xi, whereas in state q1 it looks for atleast one su
h element. We de�ne the transition fun
tion Æ su
h thatÆA(q0; 
; w) = _a2A�(q0; a) ^ (q1; a)� _ _A0�AjA0j��0 ^a2A0(q1; a);
ÆA(q1; 
; w) = (true if i 2 
;Wa2A(q1; a) otherwise,by settingÆ(q0; 
) = 9x(Q0x ^Q1x) _ jQ1j � �0;Æ(q1; 
) = (true if i 2 
;9xQ1x otherwise, �Lemma 4.10. Let L be an extension of MSO. There exists an �L+C�-automatonre
ognising the predi
ate jXj � k (mod m).10



Proof. Sin
e there is an L(9!)-automaton for jXij � �0 we may assume thatXi is �nite when 
onstru
ting an automaton for the predi
ate jXij � k (mod m).Let Q := f qk j k < m g and 
(qk) := 0 for all k. We label an element wby qk if jX \wA�j � k (mod m). If nk is the number of su

essors wa su
h thatjX \ waA�j � k (mod m) then we havejX \ wA�j � Xk<m knk + jX \ fwgj (mod m):Obviously, we only need to know nk modulo m. Consequently, we de�ne
Æ(qk; 
) = 8>><>>:

_�n2Nk�1 ^l<m jQlj � nl (mod m) if i 2 
;_�n2Nk ^l<m jQlj � nl (mod m) otherwise;whereNk := n �n 2 [m℄k ��� Xl<m lnl � k (mod m)o: �Using the pre
eding propositions we 
an state the equivalen
e result. We saythat an automaton A is equivalent to an L-formula '(X0; : : : ; Xm�1) where allfree variables are monadi
 if L(A) 
onsists of those stru
tures whose labellingen
ode sets �U su
h that '( �U) holds. The en
oding of �U is the P([m℄)-labelledtree T su
h that T (w) = f i 2 [m℄ j w 2 Xi g for all w 2 f0; 1g�.Theorem 4.11. Let L 2 L. For every formula ' 2 L there is an equivalentL-automaton and vi
e versa.Proof. ()) By indu
tion on '( �X) we 
onstru
t an equivalent L-automatonA := (Q;P([m℄); Æ; q0; 
). We have already seen that L-automata are 
losedunder all operations of L. Hen
e, it only remains to 
onstru
t automata foratomi
 formulae.(Xi � Xj) We have to 
he
k for every element w of the input tree T thati =2 T (w) or j 2 T (w). Thus, we set Q := fq0g with 
(q0) := 0 and de�ne thetransition fun
tion su
h thatÆA(q0; 
; w) = (Va2A(q0; a) if i =2 
 or j 2 
;false otherwise:for ea
h input stru
ture A�. This 
an be done by settingÆ(q0; 
) := (8xQ0x if i =2 
 or j 2 
;false otherwise:(R�Xi1 : : :Xik) Set Q := fq0; : : : ; qkg and 
(qi) := 1. The automaton guessesa node in the input tree while in state q0 and 
he
ks whether its 
hildren are in11



the relation R. That is,ÆA(q0; 
; w) = _a2A(q0; a) __f (q1; a1) ^ � � � ^ (qk; ak) j �a 2 RA g;
ÆA(qj ; 
; w) = (true if j 2 
;false otherwise; for 1 � j � k:The 
orresponding L-de�nition isÆ(q0; 
) := 9xQ0x _ 9�x(R�x ^Q1x1 ^ � � � ^Qkxk);Æ(qj ; 
) = (true if ij 2 
;false otherwise; for 1 � j � k:
(SXi1 : : : Xik for a relation variable S) We reuse the automaton for R� �X. SetQ := fq0; : : : ; qkg, 
(qi) := 1, and de�neÆ(q0; 
) := 9xQ0x _ 9�x(S�x ^Q1x1 ^ � � � ^Qkxk);Æ(qj ; 
) = (true if ij 2 
;false otherwise; for 1 � j � k:
(su
(Xi; Xj)) Let Q := fq0; q1g and 
(qi) := 1. We guess some elementw 2 Xi having a su

essor in Xj .ÆA(q0; 
; w) = (Wa2A(q0; a) if i =2 
;Wa2A�(q0; a) _ (q1; a)� otherwise;ÆA(q1; 
; w) = (true if j 2 
;false otherwise:The 
orresponding L-de�nition isÆ(q0; 
) := (9xQ0x if i =2 
;9x(Q0x _Q1x) otherwise;Æ(q1; 
) := (true if j 2 
;false otherwise:(
l(Xi)) Let Q := fq0; q1g and 
(qi) := 1. We guess some element wa su
hthat its su

essor waa is in Xi.ÆA(q0; 
; w) = (Wa2A(q0; a) if w = ";Wa2A(q0; a) _ (q1; b) if w = w0b;ÆA(q1; 
; w) = (true if i 2 
;false otherwise:

12



The 
orresponding L-de�nition isÆ(q0; 
) := 9xQ0x _ 9x(Cx ^Q1x);Æ(q1; 
) := (true if i 2 
;false otherwise:Note that this is the only pla
e where the transition fun
tion a
tually dependson the 
urrent vertex.(() Let A = (Q;�; Æ; 0; 
) be an L-automaton and �x an input stru
-ture A�. W.l.o.g. assume that A is nondeterministi
. A� is a

epted by A ifthere is an a

epting run % : A� ! Q of A on A�. This 
an be expressed byan L-formula '( �X) in the following way: we quantify existentially over tuples �Qen
oding % (i.e., Qi = %�1(i)), and then 
he
k that at ea
h position w 2 A�a valid transition is used and that ea
h path in % is a

epting. �Before pro
eeding to the proof of our extension of Mu
hnik's Theorem let usgive an immediate 
orollary to the equivalen
e result.Theorem 4.12. If L0, L1 2 L then L0 � L1 on A implies L0 � L1 on A�.Proof. Let '0 2 L0 and A0 be the 
orresponding L0-automaton. For every for-mula Æ0(q; 
) 2 L0 there is an equivalent L1-formula. Hen
e, we 
an translate A0into an L1-automaton A1. The 
orresponding L1-formula '1 is the desired trans-lation of '0 into L1. �
5 Mu
hnik's TheoremWe are now ready to prove the main result of this arti
le.Theorem 5.1. Let L 2 L. For every senten
e ' 2 L one 
an e�e
tively 
on-stru
t a senten
e '̂ 2 L su
h that A j= '̂ i� A� j= ' for all stru
tures A.Corollary 5.2. Let A be a stru
ture. The L-theory of A� is de
idable if andonly if we 
an de
ide the L-theory of A.The proof of Mu
hnik's Theorem is split into several steps. First, let A =(Q;�; Æ; q0; 
) be the L-automaton equivalent to '. W.l.o.g. assume that 
(i) =i for all i 2 Q = [n℄. Note that the input alphabet � = f;g of A is unary sin
e' is a senten
e. We 
onstru
t a formula '̂ stating that player 0 has a winningstrategy in the game G(A;A). It follows that A j= '̂ i� A� 2 L(A) i� A� j= '.The game stru
ture. We 
onstru
t '̂ by modifying the formula of Walukiewi
zso that it 
an be evaluated in the stru
ture A. To do so we embed the gameG(A;A) in the A. First, we redu
e the se
ond 
omponent of a position (X;w)from w 2 A� to a single symbol a 2 A. Let G0(A;A) be the game obtained fromG(A;A�) by identifying all nodes of the form (q; wa) and (q; w0a), i.e.:(a) Let V0 := Q�A. The verti
es of player 0 are V0[f(q0; ")g, those of player 1are V1 :=P(Q�A). 13



(b) The initial position is (q0; ").(
) Let hhÆ(q; ;)iiA(a) = WiV�i for a 2 A [ f"g. The node (q; a) 2 V0 hasthe su

essors �i for all i. Nodes � 2 V1 have their elements (q; a) 2 � assu

essors.(d) A play (q0; a0); �0; (q1; a1); �1; : : : is winning if the sequen
e (qi)i<! satis�esthe parity 
ondition 
.Lemma 5.3. Player 0 has a winning strategy from the vertex (q; wa) in thegame G(A;A�) if and only if he has one from the vertex (q; a) in the gameG0(A;A).Proof. The unravelings of G(A;A�) and G0(A;A) from the respe
tive verti
esare isomorphi
. �In the se
ond step we en
ode the game G0(A;A) as the stru
tureG(A;A) := �V0 [ V1; E; eq2; V0; V1; (Sq)q2Q; R0; : : :�where (V0; V1; E) is the graph of the game,eq2(q; a)(q0; a0) : i� a = a0;Sq(q0; a) : i� q = q0;Ri(q0; a0) : : : (qr; ar) : i� (a0; : : : ; ar) 2 RAi :Note that these relations only 
ontain elements of V0. Let G(A;A)jV0 denote therestri
tion of G(A;A) to V0.Finally, we 
an embed G(A;A)jV0 in A via an interpretation.De�nition 5.4. Let A = (A;R0; : : : ; Rr) and B be stru
tures. An L-interpre-tation of A in B is a sequen
e of L-formulae I := 
k; (#R�{ )R;�{� where, given R ofarity r, the indi
es �{ range over [k℄r, su
h that(i) A �= B � [k℄;(ii) Rj �= � �(a1; i1); : : : ; (ar; ir)� �� B j= #Rj�{ (�a)	:The use of interpretations is made possible by the following property. ByMSO+0 we denote the set of quanti�er-free, positive MSO-formulae.Lemma 5.5. Let I be an MSO+0 -interpretation and ' 2 L for L 2 L. There isa formula 'I 2 L su
h that I(A) j= ' i� A j= 'I for every stru
ture A.To 
onstru
t 'I one simply repla
es ea
h relation in ' by its de�nition.Lemma 5.6. There is an MSO+0 -interpretation I with G(A;A)jV0 = I(A) forall stru
tures A.Proof. Let I be de�ned by #eq2ik (X;Y ) := X = Y and#Sik (X) := (true if i = k;false otherwise; #Ri�k ( �X) := (R �X if k0 = � � � = kr;false otherwise: �14



In order to speak about all ofG(A;A) in its restri
tion to V0 we treat elements� 2 V1 =P(V0) as sets � � V0. All we have to do is to de�ne the edge relation.We split E into three partsE0 � V0 � V1; E1 � V1 � V0; and E2 � f(q0; ")g � V1whi
h we have to de�ne separately by formulae "0(x; Y ), "1(X; y), and "2(Y ).Lemma 5.7. There are L-formulae "0(x; Y ), "1(X; y), and "2(Y ) de�ning theedge relations E0, E1 and E2 respe
tively.Proof. Sin
e ��; (q; a)� 2 E1 i� (q; a) 2 � we set "1(Y; x) := Y x.The de�nition of "0 is more involved. Let Æq(C; �Q) := hhÆ(q; ;)iiA. We have((q; a); �) 2 E0 i� A j= Æq(fag; �Q)where Qi := f b j (i; b) 2 � g. In order to evaluate Æq we need to de�ne A in-side G(A;A). Sin
e the latter 
onsists of jQj 
opies of A with universes (Sq)q2Q,we pi
k one su
h 
opy and relativise Æq to it. For simpli
ity we 
hoose Sq 
orre-sponding to the �rst 
omponent of (q; a).((q; a); �) 2 E0 i� G(A;A)jV0 j= ÆSqq �f(q; a)g; �Q0�where Q0i := f (q; b) j (i; b) 2 � g. This 
ondition 
an be written asG(A;A)jV0 j= 9C9 �Q�ÆSqq (C; �Q) ^ C = f(q; a)g^ î2QQi = f (q; b) j (i; b) 2 � g�:Thus, we de�ne"0(x; Y ) := _q2Q�Sqx ^ "q0(x; Y )�where"q0(x; Y ) := 9C9 �Q�ÆSqq (C; �Q) ^ C = fxg ^ î2QQi = f (q; b) j (i; b) 2 Y g�:Obviously, Qi = f (q; b) j (i; b) 2 Y g 
an be expressed by an FO-formula us-ing eq2. In the same way we de�ne"2(Y ) := 9 �Q�ÆSq0q0 (;; �Q) ^ î2QQi = f (q0; b) j (i; b) 2 Y g�: �The winning set. It remains to evaluate the formulaLFPZ1;x � � �GFPZn;x _i�n �i(x; �Z)with �i := Six ^ [V0x! 9y(Exy ^ Ziy)℄ ^ [V1x! 8y(Exy ! Ziy)℄whi
h de�nes the winning set in the original game graph G0(A;A). Sin
e in thegiven game the nodes of V0 and V1 are stri
tly alternating, we remain in V0 ifwe take two steps ea
h time.�0i := Six ^ V0x ^ 9y�V1x ^Exy ^ 8z(Eyz ! Ziz)�
15



Lemma 5.8. The formulae GFPZ1;xWi�n �i and GFPZ1;xWi�n �0i de�ne thesame subset of V0 in G(A;A) for ea
h assignment of the free variables.Finally, interpreting elements of V1 by subsets of V0, as explained above, weobtain�00i := Six ^ V0x ^ 9Y �Y � V0 ^ "0(x; Y ) ^ 8z("1(Y; z)! Ziz)�Again, the equivalen
e of �0i and �00i is 
he
ked easily. Thus, we 
an state thatplayer 0 has a winning strategy in G0(A;A) from position (q0; ") by'̂ := 9Y �"2(Y ) ^ 8x�"0(Y; x)! LFPZ1;x � � �GFPZn;xWi�n �00i ��:This 
on
ludes the proof of Theorem 5.1.
6 Least �xed-point logi
We 
on
lude this arti
le by deriving 
onditions whi
h imply that monadi
 se
ond-order logi
 
ollapses to monadi
 �xed-point logi
.Theorem 6.1. Let A be a stru
ture where MSO (e�e
tively) 
ollapses to M-LFP.For every formula '( �X) 2 MSO one 
an (e�e
tively) 
onstru
t a formula '̂( �X) 2M-LFP su
h that A� j= '( �P ) i� A� j= '̂( �P ).Proof. The proof is analogous to the one of Mu
hnik's Theorem. Let A =(Q;�; Æ; q0; 
) be the MSO-automaton equivalent to '. We 
onstru
t an LFP-formula '̂ stating that player 0 has a winning strategy in the game G(A;A).Hen
e, A� j= '̂( �P ) i� A� 2 L(A) i� A� j= '( �P ).This time, we embed the game G(A;A) dire
tly into A�. We 
onsider thefollowing variant of G(A;A) whi
h obviously is equivalent.(a) The sets of verti
es are V0 := Q�A� and V1 := Sw2A�P(Q� wA).(b) The initial position is (q0; ").(
) If hhÆ(q; ;)iiA(w) = WiV�i for w 2 A� then the su

essors of a node (q; a) 2V0 are the sets f (p; wa) j (p; a) 2 �i g for all i. Nodes � 2 V1 have theirelements (q; w) 2 � as su

essors.(d) A play (q0; w0); �0; (q1; w1); �1; : : : is winning if the sequen
e (qi)i<! satis�esthe parity 
ondition 
.In the same was as above we 
an en
ode this game as a stru
ture G(A;A)su
h that G(A;A)jV0 
an be interpreted in A�. Again, elements of V1 are en
odedas subsets of V0. Note that, for ea
h su
h subset �, the set fwa j (p; wa) 2� for some p g is �rst-order de�nable with the parameter w.Let "0(x; Y ) be the formula de�ning the relation E \ V0 � V1 and "1(X; y)the one de�ning E \ V1 � V0.It remains to evaluate the formula LFPZ1;x � � �GFPZn;xWi�n �i(x; �Z) withwhi
h de�nes the winning set in the original game graph G0(A;A). Again, we
an repla
e �i by�00i := Six ^ V0x ^ 9Y �Y � V0 ^ "0(x; Y ) ^ 8z("1(Y; z)! Ziz)�
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Note that this formula is lo
al to one 
opy of A as it only speaks about thevertex x = (q; w) and elements of the (de�nable) set Q�wA. Consequently, thereis some LFP-formula �i(x; �Z) equivalent to �00i , and we 
an write the winningformula as '̂ := LFPZ1;x � � �GFPZn;xWi�n �i. �Remark 6.2. The pre
eding theorem and its proof also hold for the logi
sMSO(9!)and M-LFP(9!), and for MSO+C and M-LFP+C.
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