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Abstract

We define a new class of games, called backtracking games. Backtracking games
are essentially parity games with an additional rule allowing players, under certain
conditions, to return to an earlier position in the play and revise a choice or to force
a countback of the number of moves. This new feature makes backtracking games
more powerful than parity games. As a consequence, winning strategies become
more complex objects and computationally harder. The corresponding increase in
expressiveness allows us to use backtracking games as model checking games for
inflationary fixed-point logics such as IFP or MIC. We identify a natural subclass of
backtracking games, the simple games, and show that these are the “right” model
checking games for IFP by a) giving a translation of formulae ϕ and structures A

into simple games such that A |= ϕ if, and only if, Player 0 wins the corresponding
game and b) showing that the winner of simple backtracking games can again be
defined in IFP.
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1 Introduction

The view of logic as a dialectic game, a set of rules by which a proponent
attempts to convince an opponent of the truth of a proposition, has deep roots
going back to Aristotle. One of the modern manifestations of this view is the
presentation of the semantics of logical operators as moves in a two-player
game. A paradigmatic example is the Hintikka semantics of first-order logic,
which is just one instance of what are now commonly called model-checking
games. These are two-player games played on an arena which is formed as the
product of a structure A and a formula ϕ where one player attempts to prove
that ϕ is satisfied in A while the other player attempts to refute this.

Model-checking games have proved an especially fruitful area of study in con-
nection with logics for the specification of concurrent systems. The modal µ-
calculus Lµ is widely used to express properties of such systems and, in terms
of expressive power it subsumes a variety of common modal and temporal log-
ics. The most effective algorithms for model checking properties specified in
Lµ are based on parity games. Formally, a parity game is played on an arena
G := (V,E, V0, V1,Ω), where (V,E) is a directed graph, V0, V1 ⊆ V form a
partition of V , and Ω : V → {0, . . . , k − 1} assigns to each node a priority.
The two players move a token around the graph, with Player 0 moving when
the token is on a node in V0 and Player 1 when it is on V1. The edges E de-
termine the possible moves. To determine the winner, we look at the sequence
of priorities Ω(vi) occurring in an infinite play v0v1 . . .. Player 0 wins if the
smallest priority occurring infinitely often is even and Player 1 wins if it is
odd.

Parity games are the model-checking games not just for Lµ but also of LFP—
the extension of first-order logic with an operator for forming relational least
fixed points. That is, for any formula ϕ of LFP and any structure A one can
easily construct a game G(A, ϕ) where Player 0 has a winning strategy if, and
only if, the formula ϕ is satisfied in A. The game arena is essentially obtained
as the product of A

w and ϕ, where w is the width of the formula—the maximal
arity of a relation defined by a subformula of ϕ. Furthermore, for any fixed
number k, the class of parity games with k priorities in which Player 0 has a
winning strategy is itself definable in Lµ and therefore by an LFP formula of
width 2. This tight correspondence between games and the fixed-point logic
leads us to describe parity games as the “right” model-checking games for
LFP.

LFP is not the only logic that extends first-order logic with a means of forming
fixed points. In the context of finite model theory, a rich variety of fixed-point
operators has been studied due to the close connection that the resulting logics
have with complexity classes. Here we are mainly concerned with IFP, the logic
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of inflationary fixed points (see Section 3.1 for a definition). In the context of
finite model theory the logics IFP and LFP have often been used interchange-
ably as it has long been known that they have equivalent expressive power
on finite structures. More recently, it has been shown that the two logics are
equally expressive even without the restriction to finite structures [8]. How-
ever, it has also recently been shown that MIC, the extension of propositional
modal logic by inflationary fixed points, is vastly more expressive than the
modal µ-calculus Lµ [2] and that LFP and IFP have very different structural
properties even when they have the same expressive power [8]. This explo-
ration of the different nature of the fixed-point operators leads naturally to
the question of what an appropriate model-checking game for IFP might look
like.

The correspondence between parity games and logics with least and greatest
fixed point operators rests on the structural property of well-foundedness. A
proponent in a game who is trying to prove that a certain element x belongs
to a least fixed point X, needs to present a well-founded justification for its
inclusion. That is, the inclusion of x in X may be based on the inclusion of
other elements in X whose inclusion in turn needs to be justified but the entire
process must be well-founded. On the other hand, justification for including
an element in a greatest fixed point may well be circular. This interaction
between sequences that are required to be finite and those that are required
to be infinite provides the structural correspondence with parity games.

A key difference that arises when we consider inflationary fixed points (and,
dually, deflationary fixed points) is that the stage at which an element x
enters the construction of the fixed point X may be an important part of the
justification for its inclusion. In the case of least and greatest fixed points, the
operators involved are monotone. Thus, if the inclusion of x can be justified at
some stage, it can be justified at all later stages. In contrast, in constructing
an inflationary fixed point, if x is included in the set, it is on the basis of
the immediately preceding stage of the iteration. It may be possible to reflect
this fact in the game setting by including the iteration stage as an explicit
component of the game position. However, our aim is to leave the notion of
the game arena unchanged as the product of the structure and the formula.
We wish only to change the rules of the game to capture the nature of the
inflationary fixed point operator.

The change we introduce to parity games is that either player is allowed to
backtrack to an earlier position in the game, effectively to force a countback of
the number of stages. That is, when a backtracking move is played, the num-
ber of positions of a given priority that are backtracked are counted and this
count plays an important role in the succeeding play. The precise definition
is given in Section 2 below. The backtracking games we define are far more
complex than parity games. We prove that winning strategies are necessarily
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more complicated, requiring unbounded memory, in contrast to the memory-
less strategies that work for parity games. Furthermore, deciding the winner
is Pspace-hard and remains hard for both NP and Co-NP even when games
have only two priorites. In contrast, parity games are known to be decidable
in NP ∩ Co-NP and in Ptime when the number of priorities is fixed. In Sec-
tion 3 we show that the model-checking problem for IFP can be represented in
the form of backtracking games. The construction allows us to observe that a
simpler form of backtracking game suffices which we call simple backtracking
games. In Section 4 we show that in IFP we can define the class of simple
backtracking games that are won by Player 0. Thus, we obtain a tight corre-
spondence between the game and the logic, as exists between LFP and parity
games.

2 Games with Backtracking

Backtracking games are essentially parity games with the addition that, under
certain conditions, players can jump back to an earlier position in the play.
This kind of move is called backtracking.

A backtracking move from position v to an earlier position u is only possible
if v belongs to a given set B of backtrack positions, if u and v have the same
priority and if no position of smaller priority has occurred between u and v.
With such a move, the player who backtracks not only resets the play back to
u, she also commits herself to a backtracking distance d, which is the number
of positions of priority Ω(v) that have been seen between u and v. After this
move, the play ends when d further positions of priority Ω(v) have been seen,
unless this priority is “released” by a lower priority.

For finite plays we have the winning condition that a player wins if her op-
ponent cannot move. For infinite plays, the winner is determined according
to the parity condition, i.e., Player 0 wins a play π if the least priority seen
infinitely often in π is even, otherwise Player 1 wins.

Definition 2.1 The arena G := (V,E, V0, V1, B,Ω) of a backtracking game is
a directed graph (V,E), with a partition V = V0 ∪ V1 of V into positions of
Player 0 and positions of Player 1, a subset B ⊆ V of backtrack positions and
a map Ω : V → {0, . . . , k − 1} that assigns to each node a priority.

In case (v, w) ∈ E we call w a successor of v and we denote the set of all
successors of v by vE. A play of G from initial position v0 is formed as follows.
If, after n steps the play has gone through positions v0v1 . . . vn and reached
a position vn ∈ Vσ, then Player σ can select a successor vn+1 ∈ vnE; this is
called an ordinary move. But if vn ∈ B is a backtrack position, of priority
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Ω(vn) = q, say, then Player σ may also choose to backtrack; in that case
she selects a number i < n subject to the conditions that Ω(vi) = q and
Ω(vj) ≥ q for all j with i < j < n. The play then proceeds to position
vn+1 = vi and we set d(q) = |{k : i ≤ k < n ∧ Ω(vk) = q}|. This number d(q)
is relevant for the rest of the game, because the play ends when d(q) further
positions of priority q have been seen without any occurrence of a priority
< q. Therefore, a play is not completely described by the sequence v0v1 . . . of
the positions that have been visited. For instance, if a player backtracks from
vn in v0 . . . vi . . . vj . . . vn, it matters whether she backtracks to i or j, even if
vi = vj because the associated numbers d(p) are different.

We now proceed to a more formal description of how backtracking games are
played. We distinguish therefore between the notion of a (partial) play, which is
a word π ∈ (V ∪N)≤ω and the sequence path(π) of nodes visited by π. Further,
we associate with every partial play π a function dπ : {0, . . . , k−1} → N∪{∞}
associating with every priority p the distance dπ(p). Here d(p) =∞means that
p is not active: either there never has been a backtracking move of priority p, or
the priority p has since been released by a smaller priority. Every occurrence of
a node with priority p decrements dπ(p), with the convention that∞−1 =∞.
A play π cannot be extended if dπ(p) = 0 for some p.

Definition 2.2 (Playing backtracking games) Let G = (V,E, V0, V1, B,Ω)
be a backtracking game with priorities {0, . . . , k − 1}, and v0 ∈ V . The set of
partial plays π from position v0, together with the associated sequence path(π)
of the visited positions and the distance function dπ : {0, . . . , k−1} → N∪{∞},
are inductively defined as follows.

start: v0 is a partial play, with path(v0) = v0, and dv0
(p) =∞ for all p.

ordinary move: If π is a partial play with dπ(p) > 0 for all p, path(π) =
v0 . . . vn and vn ∈ Vσ, then Player σ can extend π to πv for each v ∈ vnE;
Further, path(πv) = path(π)v and dπv(p) := dπ(p) for p < Ω(v), dπv(p) :=
dπ(p)− 1 for p = Ω(v), and dπv(p) :=∞ for p > Ω(v).

backtracking move: Suppose that π is a partial play with dπ(p) > 0 for all
p and that path(π) = v0 . . . vn with vn ∈ Vσ∩B, Ω(vn) = q, and dπ(q) =∞.
Then Player σ can extend π to πi for any number i < n such that Ω(vi) = q
and Ω(vk) ≥ q for all k with i < k < n. Further path(πi) = path(π)vi and
dπi(p) := dπ(p) for p < q, dπi(p) := |{k : i ≤ k < n : Ω(vk) = q}| for p = q,
and dπi(p) :=∞ for p > q.

Definition 2.3 (Winning condition) A partial play π with path(π) = v0 . . . vn

is won by Player σ, if vn ∈ V1−σ and no move is possible. This is the case if
either dπ(p) = 0 for some p, or if vnE is empty and no backtracking move is
possible from π. An infinite play π is won by Player 0 if the smallest priority
occurring infinitely often on path(π) is even; otherwise π is won by Player 1.
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A game is determined if from each position one of the two players has a
winning strategy. Determinacy of backtracking games follows from general
facts on infinite games. Indeed, by Martin’s Theorem [9] all Borel games are
determined, and it is easy to see that backtracking games are Borel games.

Proposition 2.4 Backtracking games are determined.

Backtracking games generalise parity games. Indeed a parity game is a back-
tracking game without backtrack positions. Since parity games are determined
via positional (i.e. memoryless) winning strategies, the question arises whether
this also holds for backtracking games. We present a simple example to show
that this is not the case. In fact, no fixed amount of finite memory suffices.
For background on positional and finite-memory strategies we refer to [7].

Theorem 2.5 Backtracking games in general do not admit finite-memory
winning strategies.

Proof. Consider the following game (where circles are positions of Player 0
and boxes are positions of Player 1) and the numbers indicate priorities.

0
B

1 0 0 0

We claim that Player 0 wins from the leftmost position, but needs infinite
memory to do so. Clearly, if Player 1 never leaves the leftmost position, or
if she leaves it before doing a backtracking move, then Player 0 wins seeing
priority 0 infinitely often. If Player 1 at some point backtracks at the leftmost
position and then moves on, the strategy of Player 0 depends on the value of
d(0) to make sure that the fourth node is hit at the point when d(0) = 0. But
as Player 1 can make d(0) arbitrarily large, no finite-memory strategy suffices
for Player 0. 2

This result establishes that winning strategies for backtracking games are more
complex than the strategies needed for parity games. It is also the case that
the computational complexity of deciding which player has a winning strategy
is also higher for backtracking games than for parity games. While it is known
that winning regions of parity games can be decided in NP ∩ Co-NP (and it
is conjectured by many, that this problem is actually solvable in polynomial
time), we shall see below that the corresponding problem for backtracking
games is Pspace-hard. Further, for any fixed number of priorities, parity
games can be decided in Ptime, but we show that backtracking games with
just two priorities are already NP-hard. This is shown by reduction from the
language equivalence problem for finite automata over a unary alphabet, which
is known to be Co-NP-hard [4]. As the problem of deciding the winner of a
backtracking game is closed under complementation, it is also NP-hard.
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Theorem 2.6 Deciding the winner of backtracking games is Co-NP and NP-
hard, for games with only two priorities.

Proof. Consider the problem of deciding, for two given directed graphs A and
B with distinguished pairs of nodes (sA, tA) and (sB, tB) (which you may think
of as automata over a unary alphabet with initial states s and final states t),
whether the possible lengths of paths between sA and tA in A and sB and tB in
B are the same. This problem is called the unary trace or language equivalence
problem and is known to be Co-NP-hard [4, problem AL1]. Here, we use the
variant where it is only verified that all possible lengths of paths between sA

and tA are also possible between sB and tB. Clearly, this is Co-NP-hard too.
It is this language inclusion problem we are going to reduce to backtracking
games with two priorities.

For any given pair (A, sA, tA), (B, sB, tB) of graphs we construct a backtracking
game GA,B := (V,E, V0, V1, B,Ω) such that Player 0 wins the game if, and only
if, for any path in A between sA and tA of length n there also is a path of that
length between sB and tB in B. The arena is formally defined as follows. The
set of positions is V := VA∪VB∪{v1, v2, v3, v4}, where VA and VB are the state
sets of the automata A and B respectively. The positions v1, t

B and all nodes
in VA belong to Player 1 and all other positions belong to Player 0. Further,
the positions v2 and v4 have priority 1 and all other positions have priority 0.
Finally, the set of backtrack positions B only contains tA. The game starts at
v1.

v1

v2 v3

sA sB

A B

tA tB

v4

We claim that Player 0 wins the game if, and only if, for every path from sA

to tA there exists a path of the same length from sB to tB. Consider a play
starting at v1. As v1 ∈ V1, Player 1 moves first. If she goes to v2, she loses
immediately as then Player 0 can move to v3 and loop forever. As Ω(v3) = 0,
Player 0 wins this play. Thus Player 1 has to move from v1 to sA. All positions
in the graphA belong to 1 but have priority 0. So if Player 1 stays inA forever,
she will lose. The only chance for her to win is to choose a path from sA to
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tA and then backtrack to v1. Let n be the length of this path. Thus, after the
backtracking move, the play continues at v1 with n positions of priority 0 left
to be played. Now, Player 1 can not again move to sA as she will lose in this
case. Thus, she has to choose v2 as the next position. Now, it is Player 0’s
choice. She no longer can go to v3 but has to continue with sB. Now, the only
chance for Player 0 to win this play is to find a path of length n from sB to tB

and follow it. If there is such a path, then after n positions of priority 0 the
play will stop at tB with Player 1 to move next. Thus 1 loses. On the other
hand, if there is no such path, then Player 0 loses. Thus, Player 1 wins the
game if, and only if, there is a path of length n from sA to tA but there is no
such path between sB and tB. 2

3 Model checking games for inflationary fixed point logic

In this section we want to show that backtracking games can be used as model
checking games for inflationary fixed point logics. We will present the games in
terms of IFP, the extension of first-order logic by inflationary and deflationary
fixed points, but the construction applies, with the obvious modifications, also
to the modal iteration calculus MIC [2].

3.1 Inflationary fixed point logic

A formula ϕ(R,x) with a free k-ary second-order variable and a free k-tuple of
first-order variables x defines, on every structure A, a relational operator Fϕ :
P(Ak) → P(Ak) taking R ⊆ Ak to the set {a : (A, R) |= ϕ(a)}. Fixed point
extensions of first-order logic are obtained by adding to FO explicit constructs
to form fixed points of definable operators. The type of fixed points that are
used determines the expressive power and also the algorithmic complexity of
the resulting logics. The most important of these extensions are least fixed
point logic (LFP) and inflationary fixed point logic (IFP).

The inflationary fixed point of any operator F : P(Ak) → P(Ak) is defined
as the limit of the increasing sequence of sets (Rα)α∈Ord defined as R0 := ∅,
Rα+1 := Rα∪F (Rα), and Rλ :=

⋃

α<λR
α for limit ordinals λ. The deflationary

fixed point of F is constructed in the dual way starting with Ak as the initial
stage and taking intersections at successor and limit ordinals.

Definition 3.1 Inflationary fixed-point logic (IFP) is obtained from FO by
allowing formulae of the form [ifpRx . ϕ(R,x)](x) and [dfpRx . ϕ(R,x)](x),
for arbitrary ϕ, defining the inflationary and deflationary fixed point of the
operator induced by ϕ.
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3.2 Inflationary and deflationary fixed points: examples

To illustrate the power of IFP, we present here a few examples of situations
where inflationary and deflationary fixed points arise.

Bisimulation. Let K = (V,E, P1, . . . , Pm) be a transition system with a binary
transition relation E and unary predicates Pi. Bisimilarity onK is the maximal
equivalence relation ∼ on V such that any two equivalent nodes satisfy the
same unary predicates Pi and have edges into the same equivalence classes.
To put it differently, ∼ is the greatest fixed point of the refinement operator
F : P(V × V )→ P(V × V ) with

F : Z 7→ {(u, v) ∈ V × V :
∧

i≤m
Piu↔ Piv

∧ ∀u′(Euu′ → ∃v′(Evv′ ∧ Zu′v′))

∧ ∀v′(Evv′ → ∃u′(Euu′ ∧ Zu′v))}.

For some applications (one of which will appear in Section 4) one is interested
to have not only the bisimulation relation ∼ but also a linear order on the
bisimulation quotient K/∼. That is, we want to define a pre-order 4 on K
such that u ∼ v iff u 4 v and v 4 u. We can again do this via a fixed
point construction, by defining a sequence 4α of pre-orders (where α ranges
over ordinals) such that 4α+1 refines 4α and 4λ, for limit ordinals λ, is the
intersection of the pre-orders 4α with α < λ. Let

u 41 v :⇐⇒
∧

i≤m

Piu→
(

Piv ∨
∨

j<i

(¬Pju ∧ Piv)
)

(i.e. if the truth values of the Pi at u are lexicographically smaller or equal
than those at v), and for any α, let

u ∼α v :⇐⇒ u 4α v ∧ v 4α u.

To define the refinement, we say that the ∼α-class C separates two nodes u
and v, if precisely one of the two nodes has an edge into C. Now, let u 4α+1 v
if, and only if, u 4α v and there is an edge from v (and hence none from
u) into the smallest ∼α-class (wrt. 4α) that separates u from v (if it exists).
Since the sequence of the pre-orders 4α is decreasing, it must indeed reach a
fixed point 4, and it is not hard to show that the corresponding equivalence
relation is precisely the bisimilarity relation ∼.

The point that we want to stress here is that 4 is a deflationary fixed point
of a non-monotone induction. Indeed, the refinement operator on pre-orders
is not monotone and does, in general, not have a greatest fixed point. We
remark that is not difficult to give an analogous definition of this order by an
inflationary, rather than deflationary induction.
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The lazy engineer: iterated relativisation. Let ϕ(x) be a specification that
should be satisfied by all states a of a system, which we assume to be described
as a relational structure A. Now, suppose that the engineer notices that the
system he designed is faulty, i.e., that there exist elements a ∈ A where ϕ does
not hold. Rather than redesigning the system, he tries to just throw away all
bad elements of A, i.e. he relativizes A to the substructure A|ϕ induced by
{a : A |= ϕ(a)}. Unfortunately, it need not be the case that A|ϕ |= ∀xϕ(x).
Indeed, the removal of some elements may have the effect that others no
longer satisfy ϕ. But the lazy engineer can of course iterate this relativisation
procedure and define a (possibly transfinite) sequence of substructures Aβ ,
with A0 = A, Aβ+1 = Aβ |ϕ and Aλ =

⋂

β<λ Aβ for limit ordinals λ. This
sequence reaches a fixed point A∞ which satisfies ∀xϕ(x) — but it may be
empty.

This process of iterated relativisation is definable by a fixed point induction
in A. Let ϕ|Z be the syntactic relativisation of ϕ to a new set variable Z,
obtained by replacing inductively all subformulae ∃yα by ∃y(Zy ∧ α) and
∀yα by ∀y(Zy → α). Iterated relativisation means repeated application of the
operator

F : Z 7→ {a : A|Z |= ϕ(a)} = {a : A |= Za ∧ ϕ|Z(a)}

starting with Z = A (the universe of A). Note that F is deflationary but not
necessarily monotone.

In logics with inflationary and deflationary fixed points (the universe of) A
∞

is uniformly definable in A by a formula of form [dfpZx . ϕ|Z ](x). Since IFP

and LFP have the same expressive power A∞ is also LFP-definable. However,
the only known way to provide such a definition is by going through the proof
of Kreutzer’s Theorem [8]. There seems to be no simple direct definition based
on least and greatest fixed points only.

Knowledge and Public Announcement. Iterated relativisation has a natural
meaning also in epistemic logics, i.e. logics of knowledge. For background we
refer to [3]. Basic epistemic logic (for a group A of agents and a set of atomic
propositions {Pb : b ∈ B}) is just propositional modal logic, interpreted on
possible-world models, i.e., Kripke structures K = (V, (Ea : a ∈ A), (Pb : b ∈
B)), where each possibility relation Ea is an equivalence relation. The intended
meaning of [a]ϕ is “agent a knows ϕ”, which is true in a world v ∈ V if ϕ
holds in all worlds w that agent a considers possible in world v.

A key concept in epistemic logics is common knowledge. A proposition ϕ is
common knowledge at a world v (in short: K, v |= Cϕ) if everybody knows
ϕ, and everybody knows that everybody knows ϕ, and everybody knows that
everybody knows that everybody knows . . . . Clearly, common knowledge is
a greatest fixed point. In the modal µ-calculus, Cϕ is defined by νX.ϕ ∧
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∧

a∈A[a]X.

Suppose now that somebody (who is trusted by all agents) publicly announces
ϕ. One would think that by this action, ϕ has become common knowledge,
since everybody has learned that ϕ is true and everybody has learned that
everybody has learned, and so on. Indeed, the announcement changes the state
of knowledge of the agents, and thus induces an update of the model: all worlds
which currently do not satisfy ϕ are eliminated, in other words, K is relativised
to ϕ. Epistemic logics with public announcement (as considered for instance
in [1,10]) admit formulae [ϕ!]ψ expressing that ψ holds after announcement of
ϕ, i.e., after the model has been relativised to ϕ. Of course this can easily be
captured via syntactic relativisation so it does not go beyond basic epistemic
logic (if common knowledge is present, it has to be expanded as a greatest
fixed point before relativisation).

However, it is important to note that in the updated model K|ϕ, ϕ is not
necessarily common knowledge. Consider announcements involving ignorance
like ¬[a][b]ψ (“a considers it possible that b does not know ψ”). Removal of
those worlds where this is false may have the effect that at others, agent a
now knows that b knows, so the announced statement becomes false there by
its very announcement. But if somebody keeps announcing ϕ after each rela-
tivisation step, we have a process of iterated relativisation that will eventually
restrict the model to the deflationary fixed point (dfpX ← ϕ|X). We can
again ask if this fixed point is definable by monotone inductions, but this time
in a more specific scenario.

Johan van Benthem has aked whether iterated relativisations of formulae from
basic epistemic logic (with or without common knowledge) are definable in the
modal µ-calculus? In [6] we have shown that this is not the case.

3.3 Model checking games for LFP

Let us recall the definitions of model checking games for least fixed-point logic
LFP (the games for the modal µ-calculus are analogous). Consider a sentence
ψ ∈ LFP which we assume is in negation normal form and well-named, i.e.
every fixed-point variable is bound only once.

The game G(A, ψ) is a parity game whose positions are subformulae of ψ
instantiated by elements of A, i.e. expressions ϕ(a) such that ϕ(x) is a sub-
formula of ψ, and a a tuple of elements of A. Player 0 (Verifier) moves at
positions associated with disjunctions and formulae ∃yϕ(a, y). From a posi-
tion (ϕ∨ϑ)(a) she moves to either ϕ(a) or ϑ(a) and from a position ∃yϕ(a, y)
she can move to any position ϕ(a, b) such that b ∈ A. In addition, Verifier is
supposed to move at atomic false positions, i.e., at positions Ra where a 6∈ RA
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and ¬Ra where a ∈ RA. However, these positions do not have successors, so
Verifier loses at atomic false positions. Dually, Player 1 (Falsifier) moves at
conjunctions and formulae ∀yϕ(a, y), and loses at atomic true positions. The
rules described so far determine the model checking game for FO-formulae ψ
and it is easily seen that Verifier has a winning strategy in this game G(A, ψ)
starting at a position ϕ(a) if, and only if, A |= ϕ(a).

For formulae in LFP, we also have positions [fpTx.ϕ](a) (where fp stands
for either lfp or gfp) and Ta, for fixed-point variables T . At these positions
there is a unique move (by Falsifier, say) to ϕ(a), i.e. to the formula defining
the fixed point. The priority labelling assigns even priorities to gfp-atoms Ta

and odd priorities to lfp-atoms Ta. Further, if T, T ′ are fixed-point variables
of different kind with T ′ depending on T (which means that T occurs free in
the formula defining T ′), then T -positions get lower priority than T ′-positions.
The remaining positions, not associated with fixed-point variables, do not have
a priority (or have the maximal one). As a result, the number of priorities
in the model checking game equals the alternation depth of the fixed-point
formula plus one. For more details and explanations, and for the proof that
the construction is correct, see e.g. [5,11].

Theorem 3.2 For all formulae ψ ∈ LFP and all structures A, A |= ψ if,
and only if, Verifier has a winning strategy for the parity game G(A, ψ) from
position ψ.

If LFP-formulae have unbounded width the game graph of G(A, ψ) may be-
come rather large; indeed the model checking problem for LFP is Exptime-
complete, even for rather simple formulae, with just one fixed point. For LFP-
formulae where both the alternation depth and the width are bounded, the
model checking problem can be solved in polynomial time (for instance via
solving the model checking game). The important unresolved case concerns
LFP-formulae with bounded width, but unbounded alternation depth. This
includes the µ-calculus, since every formula of Lµ can be translated into
an equivalent LFP-formula of width two. In fact the following three prob-
lems are algorithmically equivalent, in the sense that if one of them admits a
polynomial-time algorithm, then all of them do.

(1) Computing winning sets in parity games.
(2) The model checking problem for LFP-formulae of width at most k, for

any k ≥ 2.
(3) The model checking problem for the modal µ-calculus.
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3.4 Games for IFP

We restrict attention to finite structures. The model checking game for an
IFP-formula ψ on a finite structure A is a backtracking game G(A, ψ) =
(V,E, V0, V1, B,Ω). As in the games for LFP, the positions are subformulae
of ψ, instantiated by elements of A. We only describe the modifications.

We always assume that formulae are in negation normal form, and write
ϑ for the negation normal form of ¬ϑ. Consider any ifp-formula ϕ∗(x) :=
[ifpTx . ϕ(T,x)](x) in ψ. In general, ϕ can have positive or negative occur-
rences of the fixed point variable T . We use the notation ϕ(T, T ) to separate
positive and negative occurrences of T . To define the set of positions we in-
clude also all subformulae of Tx∨ϕ and Tx∧ϕ. Note that an ifp-subformula
in ϕ is translated into a dfp-subformula in ϕ, and vice versa. To avoid con-
flicts we have to change the names of the fixed-point variables when doing this,
i.e., a subformula [ifpRy . ϑ(R,R,y)](y) in ϕ will correspond to a subformula
[dfpR′y . ϑ(R′, R′,y)](y) of ϕ where R′ is a new relation variable, distinct
from R.

From a position ϕ∗(a) the play proceeds to Ta∨ϕ(T,a). When a play reaches
a position Tc or Tc the play proceeds back to the formula defining the fixed
point by a regeneration move. More precisely, the regeneration of an ifp-atom
Tc is Tc ∨ ϕ(T, c), the regeneration of Tc is Tc ∧ ϕ(T, c). Verifier can move
from Tc to its regeneration, Falsifier from Tc. For dfp-subformulae ϑ∗(x) :=
[dfpRx . ϑ(R,x)](x), dual definitions apply. Verifier moves from Rc to its
regeneration Rc∨ϑ(R, c), and Falsifier can make regeneration moves from Rc

to Rc∧ϑ(R, c). The priority assignment associates with each ifp-variable T an
odd priority Ω(T ) and with each dfp-variable R an even priority Ω(R), such
that for any two distinct fixed point variables S, S ′, we have Ω(S) 6= Ω(S ′),
and whenever S ′ depends on S, then Ω(S) < Ω(S ′). Positions of the form
Sc and Sc are called S-positions. All S-positions get priority Ω(S), all other
formulae get a higher priority. The set B of backtrack positions is the set of
S-positions, where S is any fixed-point variable.

Let us focus on IFP-formulae with a single fixed point, ψ := [ifpTx . ϕ](a)
where ϕ(T,x) is a first-order formula. When the play reaches a position Tc

Verifier can make a regeneration move to Tc ∨ ϕ(T, c) or backtrack. Dually,
Falsifier can regenerate from positions Tc or backtrack. However, since we
have only one fixed point, all backtrack positions have the same priority and
only one backtrack move can occur in a play.

In this simple case, the rules of the backtracking game ensure that infinite
plays (which are plays without backtracking moves) are won by Falsifier, since
ifp-atoms have odd priority. However, if one of the players backtracks after
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the play has gone through α T -positions, then the play ends when α further
T -positions have been visited. Falsifier has won, if the last of these is of form
Tc, and Verifier has won if it is of form Tc.

The differences between IFP model checking and LFP model checking are in
fact best illustrated with this simple case. For this reason, we give a full proof
of the correctness of the model checking game for this case only.

We claim that Verifier has a winning strategy for the game G(A, ψ) if A |= ψ
and Falsifier has a winning strategy if A 6|= ψ.

To prove our claim, we look at the first-order formulae ϕα defining the stages
of the induction. Let ϕ0(a) = false and ϕα+1(a) = ϕα(a)∨ϕ[T/ϕα, T /ϕα](x).
On finite structures ψ(a) ≡

∨

α<ω ϕ
α(a).

The first-order game G(A, ϕα(a)) can be seen as an unfolding of the game
G(A, ψ(a)). Every position in G(A, ϕα(a)) corresponds to a unique position in
G(A, ψ(a)), and conversely, for a pair (p, β) where p is a position of G(A, ϕα(a))
and β ≤ α is an ordinal, there is a unique associated position pβ of the un-
folded game G(A, ϕα(a)). When a play in G(A, ϕα(a)) reaches a position Tc, it
is regenerated to either Tc or ϕ(T, c) and such regeneration move decrements
the associated ordinal. The corresponding play in G(A, ϕα(a)) proceeds to po-
sition ϕβ(c) or ϕ[T/ϕβ, T /ϕβ ](c). We can use this correspondence to translate
strategies between the two games. Notice that the lifting of a positional strat-
egy f in the unfolded game G(A, ϕα(a)) will produce a non-positional strategy
f ∗ in the original game G(A, ψ): start with β = α and let, for any position p,
let f ∗(p) := f(pβ); at regeneration moves, the ordinal β is decremented.

Consider now a play in G(A, ψ) after a backtracking move prior to which β
T -positions have been visited, and suppose that A |= ϕβ(a). Then Verifier has
a winning strategy in the first-order game G(A, ϕβ(a)) (from position ϕβ(a))
which translates into a (non-positional) strategy for the game G(A, ψ) with
the following properties: Any play that is consistent with this strategy will
either be winning for Verifier before β T -positions have been seen, or the β-th
T -position will be negative.

Similarly, if A 6|= ϕβ(a) then Falsifier has a winning strategy for G(A, ϕβ(a)),
and this strategy translates into a strategy for the game G(A, ψ) by which
Falsifier forces the play (after backtracking) from position ψ(a) to a positive
β-th T -position, unless she wins before β T -positions have been seen. We hence
have established the following fact.

Lemma 3.3 Suppose that a play on G(A, ψ) has been backtracked to the initial
position ψ(a) after β T -positions have been visited. Verifier has a winning
strategy for the remaining game if, and only if, A |= ϕβ(a).
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From this we obtain the desired result.

Theorem 3.4 If A |= ψ(a), then Verifier wins the game G(A, ψ(a)) from
position ψ(a). If A 6|= ψ(a), then Falsifier wins the game G(A, ψ(a)) from
position ψ(a).

Proof. Suppose first that A |= ψ(a). Then there is some ordinal α < ω such
that A |= ϕα(a). We construct a winning strategy for Verifier in the game
G(A, ψ(a)) starting at position ψ(a).

From ψ(a) the game proceeds to (Ta ∨ ϕ(a)). At this position, Verifier re-
peatedly chooses the node Ta until this node has been visited α-times. After
that, she backtracks and moves to ϕ(a). By Lemma 3.3 and since A |= ϕα(a),
Verifier has a strategy to win the remaining play.

Now suppose that A 6|= ψ(a). If, after α T -positions, one of the players back-
tracks, then Falsifier has a winning strategy for the remaining game, since
A 6|= ϕα(a). Hence, the only possibility for Verifier to win the game in a finite
number of moves is to avoid positions Tb where Falsifier can backtrack.

Consider the formulae ϕα
f , with ϕ0

f = false and ϕα+1
f (x) = ϕ[T/ϕα

f , T /false](x).
They define the stages of [ifpTx . ϕ[T, false](x)], obtained from ψ by replacing
negative occurrences of T by false. If Verifier could force a finite winning play,
with α−1 positions of the form Tc and without positions Tc, then she would
in fact have a winning strategy for the model checking game G(A, ϕα

f (a)).
Since ψα

f implies ϕα, it would follow that A |= ϕα(a). But this is impossible.
2

The extension of the proof of Theorem 3.4 to arbitrary IFP-formulae poses
no major difficulties although a detailed exposition would be quite lengthy.
Proceeding by induction on the number of nested fixed point formulae, one
has to combine the argument just given (applied to the outermost fixed point)
with the correctness proof for the LFP-model checking games. Notice that
the essential differences between backtracking games and parity games are
in the effects of backtracking moves. Backtracking moves impose a finiteness
condition on one priority (unless it is later released by smaller priority) and
the effect of such a move remains essentially the same in the general case as
in the case of formulae with a single fixed point. On the other side, an infinite
play in an IFP-model checking game is a play in which the backtracking moves
do not play a decisive role. The winner of such a play is determined by the
parity condition and the analysis of such plays closely follows the proof that
parity games are the model checking games for LFP-formulae.

Theorem 3.4 allows us also to draw a consequence regarding the complexity of
backtracking games. In [2] it is shown that the model-checking problem for MIC
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is Pspace-complete. As the coding of the model-checking problem for IFP,
and hence MIC, into backtracking games described above clearly constitutes
a polynomial-time reduction, we have the following.

Corollary 3.5 Deciding the winner of a backtracking game is Pspace-hard.

It is natural to ask whether this lower bound is optimal. We do not know
whether backtracking games are decidable in Pspace. If it could be shown
that there is a polynomial bound on the maximum distance that a player
might need to backtrack, we would obtain such an upper bound. However,
this is not the case. The construction in the proof of Theorem 2.6 shows that
an exponential amount of backtracking is necessary. Indeed, it is known that
there is a family of pairs of nondeterministic automata in a one-letter alphabet
such that the shortest string distinguishing the languages accepted by a pair
is exponential in the size of the automata. This follows from the construction
showing the NP-hardness of the language equivalence problem in [12].

4 Definability of Backtracking Games

In the previous section we demonstrated that backtracking games can be used
as model-checking games for IFP. The aim of this section is to show that they
are, in some sense, the “right” model-checking games for inflationary fixed-
point logics. For this, we identify a natural sub-class of backtracking games,
which we call simple, such that for every formula ϕ ∈ IFP and finite structure
A, the game G(A, ϕ) can trivially be modified to fall within this class and,
on the other hand, for every k ∈ N there is a formula ϕ ∈ IFP defining the
winning region for Player 0 in any simple game with at most k priorities. In
this sense, simple backtracking games precisely capture IFP model-checking.

Consider again the proof given in Section 3.4 for winning strategies in a game
G(A, ϕ) and the way backtracking was used there: if Player 0 wanted to back-
track it was always after opening a fixed point, say [ifpRx . Rx∨ϕ]. She then
looped α times through the Rx sub-formula and backtracked. By choosing the
α she essentially picked a stage of the fixed-point induction on ϕ and claimed
that x ∈ ϕα. From this observation we can derive two important consequences.
As every inflationary fixed-point induction must close after polynomially many
steps in the size of the structure A and therefore in linearly many steps in terms
of the game graph, there is no need for Player 0 to backtrack more than n
steps, where n is the size of the game graph. Further, the game can easily
be modified such that instead of having the nodes for the disjunction Rx ∨ ϕ
and the sub-formula Rx, we simply have a node for ϕ with a self-loop. In
this modified game graph, not only is it sufficient for Player 0 to backtrack
no more than n steps, we can, in addition, require that whenever she back-
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tracks from a node v, it must be to v again, i.e. when she decides to backtrack
from a node corresponding to the formula ϕ, she loops α times through ϕ and
then backtracks α steps to ϕ again. The same is true for Player 1 and her
backtracking.

Definition 4.1 A strategy in a backtracking game G is local if, for any back-
tracking node v, all backtracking moves from v are to a previous occurrence
of v. Given a function f : N → N, we call a strategy f -backtracking if all
backtracking moves made by the strategy have distance at most f(|G|). The
strategy is called linear in case f(n) = n and polynomial if f is a polynomial
in n.

As explained above, we can easily modify the construction of the game graph
G(A, ϕ) for a formula ϕ and structure A such that every node in B has a self
loop. We call such game graphs inflationary.

Definition 4.2 A backtracking game G := (V,E, V0, V1, B,Ω) is inflationary,
if every node in B has a self-loop. An inflationary game G is called simple if
both players have local linear winning strategies on their winning regions.

Proposition 4.3 For any IFP-formula ψ and every finite structure A, the
model-checking game G(A, ϕ), as defined in Section 3.4, is simple.

We will construct IFP-formulae defining the winning regions of simple back-
tracking games. Since backtracking games are extensions of parity games we
start with the formula defining winning regions in parity games (see [13]). Let
G be a parity game with k + 1 priorities and consider the formula

ϕ(x) := [gfpR0x . lfpR1x . . . . fpRkx . ϑ(x,R0, . . . , Rk)](x),

where

ϑ(x,R0, . . . , Rk) :=
∧k

i=0(V0x ∧ Ω(x) = i→ ∃y (Exy ∧Riy)) ∧
∧k

i=0(V1x ∧ Ω(x) = i→ ∀y (Exy → Riy)).

For every node v ∈ V , we have that G |= ϕ(v) if, and only if, Player 0 has a
winning strategy for the game G from v. A simple way to see this is to analyse
the model checking game for ϕ(v) on G. If we remove the edges which would
force a player to lose immediately, we obtain G itself (from position v).

We take this formula as a starting point for defining an IFP-formula deciding
the winner of backtracking games. To define strategies involving backtracking,
we first need some preparation. In particular, in order to measure distances
we need an ordering on the arenas.

It is easily seen that backtracking games are invariant under bisimulation.
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Thus, it suffices to consider arenas where no two distinct nodes are bisimilar
(we refer to such arenas as bisimulation minimal). The next step is to define
an ordering on the nodes in an arena. This is done by ordering the bisimulation
types realised in it.

Lemma 4.4 There is a formula ϕord(x, y) ∈ IFP defining on every bisimula-
tion minimal arena a linear order.

This is well-known in finite model theory. An explicit construction has been
given in Section 3.2. As a result, we can assume that the backtracking games
are ordered and that we are given an arithmetical predicate for addition with
respect to the order defined above.

In Theorem 2.5 we exhibited a backtracking game that requires infinite mem-
ory strategies. All strategies in this game are necessarily local. Thus Theorem
2.5 also applies to games with local strategies. In general, the reason for the in-
creased memory consumption is that when the decision to backtrack is made,
it is necessary to know which nodes have been seen in the past, i.e. to which
node a backtracking move is possible. Furthermore, after a backtracking move
occured, both players have to remember the backtracking distance, as this de-
termines their further moves. However, since here we consider strategies with
local backtracking only, it suffices to know the distance of the backtracking
moves that are still active, i.e. have not yet been released, whereas the history
of the play in terms of nodes visited may safely be forgotten. Thus we can
capture all the relevant information about a partial play π ending in position
v by the tuple (v, dπ(0), . . . , dπ(k)), where dπ denotes the distance function as
defined in Definition 2.2. This is formalised in the notion of a configuration.

Definition 4.5 Let G be a backtracking game with k+ 1 priorities. A config-
uration is a pair (v,d) consisting of a node v and a tuple d ∈ (N ∪ {∞})k+1.
Let π be a (partial) play ending in node v. The configuration of π is defined
as the tuple (v, dπ(0), . . . , dπ(k)).

We are now ready to present a formula defining the winning region for Player
0 in a simple backtracking game with priorities 0, . . . , k. For this recall that in
a simple backtracking game the distance of all backtracking moves is at most
n, where n := |G| is the number of nodes in the game graph G. Furthermore,
by Lemma 4.4, we can assume that we are given a linear order on the nodes
of the game graph. Thus the configuration of any (partial) play π in a simple
game can be represented by a pair (v,d) where d ∈ {0, . . . , n,∞}k+1 and we
can use nodes in the game graph to represent the values of the di. Note that
strictly speaking we need to encode each di by a pair of elements, as the di

can take values between 0 and n and may also take the value ∞. However, to
simplify notation, we only use one variable for each di and allow it to take all
possible values.
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The structure of the formula is similar to the structure of ϕ(x) for parity
games, in the sense that for games with k+1 priorities we have k+1 nested fixed
points of the form gfpR0xd . lfpR1xd . . . . fpRkxd and a ψ which is first-
order, up to the IFP-subformula defining the order of the bisimulation types.
In its various nested fixed points the formula builds up sets of configurations
(x, d0, . . . , dk) such that if (x, d0, . . . , dk) ∈ RΩ(x), then Player 0 can extend
any partial play π, ending in node x with dπ(j) = dj for all 0 ≤ j ≤ k, to a
winning play.

The inner formula ψ is split in two parts ψ0 ∨ ψ1 taking care of positions
where Player 0 moves and positions where Player 1 moves. We first present
the formula ψ0(x,R0, . . . , Rk) defining positions in V0 from which Player 0 can
win. As explained above, we encode elements from the set {0, . . . , n,∞} by
a single variable instead of pairs of variables. Further, we will use symbols i,
j, . . . in typewriter font to denote constants between 0 and k. Finally, in the
case distinctions below we write di = m for ∃m ∈ {0, . . . , n} ∧ di = m.

ψ0(x,d) := V0x ∧
∨

i
Ω(x) = i ∧

∧k
l=i+1 dl =∞ ∧

∃y∃d′Exy ∧
∨

j Ω(y) = j ∧ Rjyd
′∧

di =∞ ∧ d′ = (d0, . . . , dj,∞, . . . ,∞) ∨

Bx ∧ ∃m 6=∞Ri(x, d0, . . . , di−1, m,∞, . . . ,∞) ∨

di = m ∧ j < i ∧ d′ = (d0, . . . , dj,∞, . . . ,∞) ∨

j = i ∧ d′ = (d0, . . . , di−1, m− 1,∞, . . . ,∞) ∨

j > i ∧ d′ = d

The first line of the formula states that x has to be in V0, the priority of x is
i, for some i, and the tuple (d0, . . . , dk) has ∞ at all positions greater than i.
This corresponds to the fact that a node of priority i releases all backtracking
moves on higher priorities. Now, Player 0 can win from configuration (x,d)
if she can move to a successor y of x from which she wins the play. Winning
from y means that the configuration (x,d′) reached from (x,d) after moving
to y is in RΩ(y). The second line of the formula states the existence of such a
successor y and the rest of the formula defines what it means for (y,d′) to be
the configuration reached from x when moving to y.

The remaining part of the formula consists of two somewhat independent
subformulae. The first, where di =∞, consists of a case distinction taking the
various options for Player 0 to win into account: She can make an ordinary
move to a successor y of x from which she can win. In this case there must be
a successor y and a tuple d′ such that (y,d′) ∈ RΩ(y), i.e. Player 0 wins from
y, and (y,d′) is the configuration reached when Player 0 moves from x with
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configuration (x,d) to y. Alternatively, she can decide to backtrack, provided
that x ∈ B. Then there must be a number m ≤ n = |G| such that Player 0
wins the m-step game from x.

The second part, where di = m for some m ≤ n, defines the numbers m
such that Player 0 wins the m-step game on priority i from node x. This
game is won by Player 0 if there is a successor y of x from which she wins
and either the priority j of y is less than i, i.e. all backtracking moves on
priorities greater than j are released (dl = ∞ for all l > j), or the priority
j of y equals i and Player 0 wins the m − 1 step game from y (and all dl

with l < i are left unchanged), or the priority j of y is greater than i. In
this case the play continues with the configuration (y, d0, . . . , di,∞, . . . ,∞),
i.e. all active backtracking moves (whose distances are stored in d0, . . . , di)
remain unchanged and the play continues on priority j without any active
backtracking moves on priorities greater than i.

The next formula ψ1 takes care of nodes x ∈ V1.

ψ1(x,d) := V1x ∧
∨

i
Ω(x) = i ∧

∧k
l=i+1 dl =∞ ∧

(Bx→ ∀m <∞Ri(x, d0, . . . , di−1, m,∞, . . . ,∞)) ∧

∀y(Exy →
∨

j Ω(y) = j ∧ ∃d′Rjyd
′∧

di =∞ ∧ d′ = (d0, . . . , dj,∞, . . . ,∞) ∨

di = m ∧ j < i ∧ d′ = (d0, . . . , dj,∞, . . . ,∞) ∨

j = i ∧ d′ = (d0, . . . , di−1, di − 1,∞, . . . ,∞) ∨

j > i ∧ d′ = d ∨

m = 0)

A node x ∈ V1 with configuration (x,d) is good for Player 0 if Player 1 has
no choice but to move to a node from which Player 0 wins. The formula is
defined similarly to ψ0 only that in the second line we ensure that if x ∈ B
then Player 0 must win the m-step game from x for all m, as otherwise Player
1 could backtrack and win. Further Player 0 now also wins the m-step game
from x for m = 0.

With ψ0 and ψ1 defined we can now present the formula ϕ0(x) which is true
for a node x in a simple backtracking game with k + 1 priorities if, and only
if, Player 0 has a linear winning strategy from x with local backtracking.

ϕ0(x) := [gfpR0xd . lfpR2xd . . . . fpRkxd . (ψ0 ∨ ψ1)](x,∞, . . . ,∞)

The next step is to show that the formula indeed defines the winning region

20



for Player 0. This is done by showing that whenever for a node x the tuple
(x,∞, . . . ,∞) satisfies ϕ0 then Player 0 has a winning strategy for the game
starting at x. For (x,d) ∈ R∞

0 define ord(x,d) as the lexicographically small-
est tuple α := (α0, . . . , αk) such that αi := ∞ for all even i and (x,d) ∈
ψ(Rα0

0 , . . . , R
αk

k ), where ψ := ψ0 ∨ ψ1. We write ordi(x,d) := (α0, . . . , αi) for
the tuple of stages up to position i ≤ k.

Lemma 4.6 For all nodes x of priority i and all d := (d0, . . . , di,∞, . . . ,∞)
such that (x,d) ∈ R∞

0 :

(i) If di =∞, x ∈ V0 and x 6∈ B then there is a successor y of x such that

(y,d′) ∈ R∞
0 and ordi(y,d

′) ≤ ordi(x,d) and
if i is odd then ordi(y,d

′) < ordi(x,d)
(1)

where j := Ω(y) and d′ := (d0, . . . , dj,∞, . . . ,∞).
(ii) If di = ∞, x ∈ V0 and x ∈ B then there is a successor y of x such

that condition (1) of Part (i) holds true for y or there is an m ∈
{0, . . . , n} such that (x,d′) ∈ R∞

0 and ordi(x,d
′) < ordi(x,d), where

d′ := (d0, . . . , di−1, m,∞, . . . ,∞).
(iii) If di =∞ and x ∈ V1 then (1) of Part (i) is true for all successors y of

x.
(iv) If di = m <∞ and x ∈ V0 then there is a successor y of x such that for

j := Ω(y)j condition (1) of Part (i) is true for y and d′, defined by

d′ :=







(d0, . . . , dj,∞, . . . ,∞) if j < i

(d0, . . . , di−1, d
′
i,∞, . . . ,∞) if i ≤ j

where d′i :=







di if j > i

di − 1 otherwise.

(v) Finally, if di = m, where 0 < m <∞ and x ∈ V1 then the same applies
to all successors y of x.

The proof of the lemma follows immediately from the construction of the
formulae ψ0 and ψ1. The lemma allows us to define a strategy for Player 0 for
all games starting from nodes x such that (x,∞, . . . ,∞) ∈ R∞

0 .

Strategy for Player 0: Let π := v0 . . . vs be a partial play with vs ∈ V0 and
let (vs,d), with d := (d0, . . . , dk), be the configuration for vs in π. Depending
on di and vs, Player 0 chooses one of the successors y of x satisfying the criteria
of the matching Part (i), (ii), or (iv) of Lemma 4.6.

We show next that this is indeed a winning strategy for Player 0.
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Lemma 4.7 Following the above strategy, Player 0 wins every play from a
node x such that (x,∞, . . . ,∞) ∈ R∞

0 .

Proof. Suppose (x,∞, . . . ,∞) ∈ R∞
0 and let π := v0 . . . with v0 = x be a play

where Player 0 plays according to the strategy outlined above. Consider the
sequence of configurations d0,d1, . . . induced by the play.

We prove by induction on i that (vi,di) ∈ R∞
0 for all vi. This is clear for

i = 0. We show now that if the claim holds true for vi it is also true for
vi+1. For all nodes vi ∈ V0 this follows immediately from the definition of
the strategy for Player 0. For all nodes vi ∈ V1 where Player 1 does not
backtrack this follows from Lemma 4.6. Finally, let vi be a node such that
Player 1 backtracks m steps from vi to vi. Thus the game continues with the
node vi+1 and the configuration di+1 := (di,0, . . . , di,Ω(vi)−1, m,∞, . . . ,∞). By
induction hypothesis, (vi,di) ∈ R

∞
0 . This implies that for all m ∈ {0, . . . , n},

(vi, di,0, . . . , di,Ω(vi)−1, m,∞, . . . ,∞) ∈ R∞
0 , as otherwise (vi,di) would not have

satisfied ψ1. Thus, we have (vi+1,di+1) ∈ R
∞
0 . This proves the claim.

Suppose first that the play is infinite. Let i be the smallest priority occur-
ring infinitely often in the play and let vs be the first node after which no
node of priority less than i occurs. Lemma 4.6 implies that for all l ≥ s,
ordi(vl,dl) ≥ ordi(vl+1,dl+1) and furthermore, ordm(vl,dl) > ordm(vl+1,dl+1)
whenever Ω(vl) is odd. Thus, if i is odd, the ordinals up to priority i strictly
decrease whenever the play reaches a node of priority i. As the ordering on
the ordinals is well-founded but the game is infinite, this implies that i must
be even and thus Player 0 wins the play.

Now suppose that the play is finite, i.e. π := v0 . . . vs. Then either vs is a leaf
or the play is terminated according to the backtracking condition. If vs is a
leaf, then using Lemma 4.6 and the construction of the strategy for Player 0,
a simple induction on s shows that vs must be a position for Player 1 and thus
Player 0 wins the play.

If the play is terminated according to the backtracking condition, then there
must be a node v ∈ B with priority i such that one of the players backtracks
on v and after v no node of priority less than i occurs. Let vm be the maximal
node with this property, i.e. the play is terminated by the backtracking move
on vm and priority i. Let, for all l, dl be the configuration at node vl and let
dm := (d0, . . . , di,∞, . . . ,∞). If vm ∈ V0, then, by construction of the strategy,
there is a 0 ≤ l ≤ n such that (vm, d0, . . . , di−1, l,∞, . . . ,∞) ∈ R∞

0 and Player
0 backtracks from vm l steps. Otherwise, vm ∈ V1 and Player 1 backtracks
l-steps for some l. As (vm, d0, . . . , di,∞, . . . ,∞) ∈ R∞

0 and vm ∈ V1 ∩ B, the
formula ψ1 ensures that for all 0 ≤ j ≤ n, (vm, d0, . . . , di−1, j,∞, . . . ,∞) ∈
R∞

0 . In particular, (v,d0, . . . di−1, l,∞, . . . ,∞) ∈ R∞
0 for the value l chosen

by Player 1. In either case, the game continues with configuration dm+1 =
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(vm+1, d0, . . . , di−1, l,∞, . . . ,∞) for vm+1 = vm and (vm+1,dm+1) ∈ R
∞
0 . As,

by assumption on m, no node of priority less than i = Ω(vm) occurs after
vm, Lemma 4.6 implies that for all m ≤ j ≤ n, (vj ,dj) ∈ R∞

0 with dj :=
(d0, . . . , di−1, lj, . . . ). Further, lj ≥ lj′ for j < j′ and if Ω(vj) = i then lj > lj′.

The play terminates at vn, with configuration dn = (d0, . . . , di−1, ln,∞, . . . ,∞),
so we get that ln = 0 and Ω(vn) = i. Further, (vn,dn) ∈ R∞

0 . But this can
only be the case if vn ∈ V1 as (vn,dn) with vn ∈ V0 would not satisfy ψ0. Thus,
Player 1 is to move at vn and therefore loses the play. 2

It is a simple observation that the formula ϕ1 defining the winning positions
for Player 1 analogous to ϕ0 is equivalent to the dual formula of ϕ0. Thus, all
nodes x either satisfy ϕ0 or ϕ1 and therefore ϕ0 defines the winning region
for Player 0 and analogously ϕ1 defines the winning region for Player 1. This
establishes the definability theorem for backtracking games.

Theorem 4.8 Winning regions of simple backtracking games are definable in
IFP.

Note that the definition of simple games involves semantic conditions, i.e. the
players having linear strategies. It is open whether there is a purely syntactic
criterion on game graphs allowing for the same kind of results.

Clearly, this result extends to polynomial backtracking games.

Corollary 4.9 Winning regions of local polynomial backtracking games are
definable in IFP.
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