
On Datalog vs. LFP

Anuj Dawar and Stephan Kreutzer

1 University of Cambridge Computer Lab,anuj.dawar@cl.cam.ac.uk
2 Oxford University Computing Laboratory,kreutzer@comlab.ox.ac.uk

Abstract. We show that the homomorphism preservation theorem fails for LFP,
both in general and in restriction to finite structures. Thatis, there is a formula of
LFP that is preserved under homomorphisms (in the finite) butis not equivalent
(in the finite) to a Datalog program. This resolves a questionposed by Atse-
rias. The results are established by two different methods:(1) a method of diag-
onalisation that works only in the presence of infinite structures, but establishes
a stronger result showing a hierarchy of homomorphism-preserved problems in
LFP; and (2) a method based on a pumping lemma for Datalog due to Afrati,
Cosmadakis and Yannakakis which establishes the result in restriction to finite
structures. We refine the pumping lemma of Afrati et al. and relate it to the power
of Monadic Second-Order Logic on tree decompositions of structures.

1 Introduction

Among the important classical results of model theory, relating syntactic to semantic
properties of first-order logic, are the preservation theorems. For instance, the Łoś-
Tarski theorem tells us that a sentence of first-order logic is equivalent to anexistential
sentenceif, and only if, the class of its models is closed under extensions and Lyndon’s
theorem states that a sentence is monotone in a relationR if, and only if, it is equivalent
to one that is positive inR (see [12]). The study of preservation theorems has played
an important role in the development of finite model theory, with many early results
demonstrating that such results fail when we restrict consideration to finite structures
(see, for instance, [8]).

One important exception to the general failure of preservation theorems in the finite
is Rossman’s proof of the homomorphism preservation theorem [17]. This shows that
on the class of finite structures, just as on the class of all structures (finite or infinite) a
sentence of first-order logic is equivalent to anexistential positivesentence if, and only
if, it is preserved under homomorphisms. The homomorphism preservation property in
finite structures has aroused much interest in theoretical computer science through its
connections with questions in database theory and the studyof constraint satisfaction
problems (CSPs).

Each of the preservation theorems mentioned has two directions, one of which is
generally quite easy to establish: namely that the syntactic restriction (such as the re-
striction to existential positive sentences) implies the semantic restriction (being pre-
served under homomorphisms). Moreover, this direction holds generally on any class of
structuresC. The other direction, sometimes known asexpressive completeness, states
that any sentence that satisfies the semantic restriction isequivalent to one of the sim-
ple syntactic form. When we restrict this statement to a class C, we weaken both the

hypothesis and the conclusion of the statement. Thus, even for classesC andC′ where
C ⊆ C′, it is impossible to deduce either the validity or the failure of a preservation
theorem onC from the statement forC′. In particular, the statements for the class of all
structures and for the class of finite structures alone are quite independent statements.
Recently, there has been a growing interest in investigating the status of preservation
theorems for classesC more restrictive than the class of all finite structures [5, 6].

Atserias [3] (see [1, Question 4.3]) asked whether the homomorphism preservation
theorem holds forLFP—the extension of first-order logic with an operator for defin-
ing least fixed points of monotone formulas. Fixed-point logics have arguably played
a more important role in finite model theory than first-order logic. In particular, it is
known thatLFP expresses all polynomial time computable properties of finite ordered
structures [13, 18]. Thus, the question of whether a homomorphism preservation theo-
rem can be established for this logic arises naturally. The language formed by extending
existential positive formulas by means of a least fixed-point operator is Datalog and it
has been extensively studied as a database query language. It has also received atten-
tion in the study of constraint satisfaction problems as it provides a general means of
classifying many CSPs as tractable. It is easily seen that any query defined in Datalog is
preserved under homomorphisms. Thus, Atserias’ question asks whether it is the case
that every sentence ofLFP that is preserved under homomorphisms is equivalent to a
Datalog program. We show in this paper that this is not the case, either on the class of
all (finite or infinite) structures or in restriction to the class of finite structures.

The homomorphism preservation question for extensions of first-order logic was
also studied by Feder and Vardi [10]. They showed that on finite structures, the homo-
morphism preservation property holds for a number ofexistentialinfinitary and fixed-
point logics. In particular, they established that any query definable in Datalog(¬, 6=)
that is closed under homomorphisms is already definable in Datalog. The former lan-
guage is the extension of Datalog with inequality and negation on EDB predicates. Just
as Datalog can be seen as the existential positive fragment of LFP, Datalog(¬, 6=) is its
existential fragment. Thus, our results show that the theorem of Feder and Vardi cannot
be extended from Datalog(¬, 6=) to LFP.

The two examples we construct separatingLFP from Datalog bear some similarity to
each other in that they are defined in terms of graphs having path lengths in some setS.
In addition, to guarantee that the classes we consider are closed under homomorphisms,
we take the union with the class of all graphs containing a cycle. The main differences
in the two results are in the choice of the setS and in the method used to prove that the
resulting class of graphs is not definable in Datalog. In the case where we allow infinite
structures, the proof is somewhat simpler as we can construct a setS that is undefinable
in Datalog (over the natural numbers) using standard diagonalisation arguments and
then obtain the result by means of a reduction of the graph problem to this set. This
actually establishes something stronger. It shows that foreveryk, there are formulas
of LFP that are preserved under homomorphisms but not definable by aformula with
only k nested alternations of the fixed-point operator with negation. These results are
established in Section 4.

When we restrict ourselves to finite structures, such diagonalisation methods are un-
available and we adapt a pumping lemma due to Afrati et al. [2]for our purpose. Afrati

2

et al. use their pumping lemma to demonstrate polynomial-time monotone properties
that are not definable in Datalog. In order to adapt it to theLFP-definable properties we
are interested in, we need to show that it works on a class of acyclic graphs. What we es-
tablish is that ifπ is a Datalog program which accepts a directed acyclic graph(G, s, t)
if, and only if, G contains a path froms to t of lengthp for somep in a given setS,
thenS cannot grow too fast (the precise statement is given in Lemma5.2). This suffices
to establish the result we seek. An apparently stronger pumping lemma (saying thatS
cannot grow faster than linearly) is stated in [2], but without the restriction to acyclic
graphs. In the absence of this restriction, we cannot use their lemma directly and it is not
clear from their description of the proof that it can be adapted. This is explained in more
detail in Section 5. One virtue of our proof of this pumping lemma is that it connects it
with other recent innovations in the analysis of Datalog queries, namely their relation-
ship with tree decompositions and with the power of monadic second-order logic over
these. This new insight into Datalog may be of independent interest.

One source of interest in the relationship betweenLFP and Datalog is research on
the classification of tractable constraint satisfaction problems. We can associate with
any structureB, the decision problemCSP(B) of determining for a given structureA
whether there is a homomorphismA→ B. This is theconstraint satisfaction problem
associated withB (see [9]). Much research work has been devoted to classifying those
structuresB for which this problem is decidable in polynomial time. It isimmediate
from the above definition that the complement ofCSP(B) is closed under homomor-
phisms. If we could find afinite structureB for which the complement ofCSP(B) is
definable inLFP but not in Datalog, this would resolve certain conjectures on the classi-
fication of tractable CSPs (see [4] for a discussion). We notehere that our example of a
homomorphism closed class separatingLFP from Datalog on finite structures is not the
complement ofCSP(B) for any finiteB, but is of this form for aninfinitestructureB.

We begin in Section 2 with definitions, including those ofLFP and Datalog as well
as first-order and monadic second-order logic. We also recall the definitions of tree
decompositions of structures and relate them to Datalog programs.

2 Preliminaries

We briefly introduce the fundamental concepts and notation we need in later sections.

Homomorphisms and Preservation.Let σ be a finite signature. We use boldface let-
ters for structuresA,B, ... and corresponding Roman lettersA, B, ... to denote their
universe. We also writea for a tuplea1, . . . , ak.

Definition 2.1. Let σ be a relational signature possibly with constant symbols and let
A,B beσ-structures. Ahomomorphismfrom A to B is a functionh : A → B such
that for everyk-ary relation symbolR ∈ σ and everyk-tuplea ∈ Ak if a ∈ RA then
(h(a1), . . . , h(ak)) ∈ RB and for every constant symbolc ∈ σ, h(cA) = cB. We write
A→ B to denote that there is a homomorphism fromA to B.

Definition 2.2. Let C be a class of structures. A subclassD ⊆ C is closed under ho-
momorphismsif wheneverA,B ∈ C so thatA ∈ D and there is a homomorphism

3

h : A → B thenB ∈ D. We are particularly interested in model classes of sentences.
If ϕ is a sentence of a logic, we sayϕ is preserved under homomorphisms onC if the
classModC(ϕ) := {A ∈ C : A |= ϕ} is closed under homomorphisms.

First-Order Logic, Monadic Second-Order Logic and Types.Let σ be a signature. We
assume that the reader is familiar with first-order logic. Wewrite FO(σ) for the class
of all first-order formulas over the signatureσ. Monadic Second-Order Logic(MSO) is
the extension of first-order logic by quantification over sets of elements, i.e. there are
quantifiers∃X, ∀X , whereX is a unary relation variable, and a formula∃Xϕ is true in
a structureA, writtenA |= ∃Xϕ, if there is a setX ⊆ A such that(A, X) |= ϕ. The
semantics of∀Xϕ is defined analogously. See e.g. [8] for more onMSO.

Thequantifier rankqr(ϕ) of a formulaϕ (of FO or MSO) is the maximal depth of
nesting of quantifiers inϕ. Note that up to logical equivalence there are only finitely
manyMSO-formulas of quantifier rank at mostq in a finite signatureσ. We writeMSOq

for the class ofMSO-formulas of quantifier rank at mostq. We writeA ≡q B to denote
that two structuresA andB cannot be distinguished inMSOq.

A type is a maximally consistent class of formulas. For a structureA andq ∈ N,
the MSOq-type ofA is the class ofMSO-sentences of quantifier rank at mostq which
are true inA and if a ∈ Ak, then theMSOq-type ofa in A is the class of allMSOq-
formulasϕ(x) such thatA |= ϕ(a). As, for eachq ∈ N, MSOq only contains finitely
many formulas up to equivalence, theMSOq-type of a tuple or a structure can com-
pletely be described by a single formula inMSOq (see [8]). We will use the following
decomposition theorem forMSO. See e.g. [15] or [11].

Lemma 2.3. LetA andB be structures and letu be a tuple listing the vertices in the
intersection ofA andB. TheMSOq-type ofu in A ∪ B is uniquely determined by the
MSOq-types ofu in A and inB.

In particular, ifA, B1 andB2 are structures such thatA ∩B1 = A ∩B2 =: u and the
MSOq-types ofu in B1 andB2 are the same, thenA ∪B1 ≡

q A ∪B2.

Least Fixed-Point Logic.We first present a brief introduction to least fixed-point logic.
For a detailed exposition see [8]. Letσ be a signature and letϕ(R, x) be a formula
of signatureσ which ispositivein thek-ary relation variableR, i.e. every atom of the
form Rt in ϕ occurs within the scope of anevennumber of negation symbols. For
everyσ-structureA, ϕ defines a monotone operator3 FA,ϕ : Pow(Ak)→ Pow(Ak) via
FA,ϕ(P) := {a ∈ Ak : (A, P) |= ϕ[a]}, for everyP ⊆ Ak. A theorem due to Knaster
and Tarski shows that on every structureA every monotone operatorFA,ϕ has a least
fixed point which we denote bylfp(FA,ϕ).

The logicLFP(σ) is the extension ofFO(σ) by least fixed-point operators. To be
precise:LFP(σ) containsFO(σ) and is closed under Boolean connectives and first-order
quantification; and ifϕ(R, x, z, Q) is anLFP(σ)-formula which is positive in thek-
ary relation variableR then for everyk-tuple t of terms[lfpR,x ϕ](t) is anLFP(σ)-
formula such that for every

(

σ ∪̇ {z, Q}
)

-structureA and every tuplea ∈ Ak we have
A |= [lfpR,x ϕ](a) if, and only if, a ∈ lfp(FA,ϕ).

3 An operatorF : Pow(M) → Pow(M) is monotoneiff F (A) ⊆ F (B) for all A ⊆ B ⊆ M .

4

The alternation depthof an LFP formula ϕ is defined as the maximal number of
alternations between fixed-point operators and negations insideϕ. We write LFPk for
the class ofLFP formulas of alternation depth at mostk.
Datalog. Datalog is a database query language which could be defined asthe collection
of formulas ofLFP which do not use negation or universal quantification. However, the
usual presentation of the language is in terms of function-free Horn clauses, and we
follow this presentation below as the structure of the program in terms of rules is useful
for our proof of the pumping lemma in Section 5.

A Datalog programis a finite set of rules of the formT0 ← T1, . . . , Tm, where
eachTi is an atomic formula.T0 is called theheadof the rule, while the right-hand
side is called thebody. The relation symbols that occur in the heads are theinten-
sional database predicates (IDBs), while all others are theextensionaldatabase pred-
icates (EDBs). Note that IDBs may occur in the bodies too, thus, a Datalog program
is a recursive specification of the IDBs with semantics obtained via least fixed-points
of monotone operators. The collection of EDB predicates occurring in π constitute its
signatureσ, and a Datalog program of signatureσ is interpreted inσ-structures. One
IDB predicate is distinguished as thegoal predicate. In general, we will assume that
the goal predicate is a0-ary predicate, so that the program defines a Boolean query.
In the interests of space, we will not give a formal definitionof the semantics of the
program, which can be found in standard textbooks such as [8]. A key parameter in
analysing Datalog programs is the number of variables used.We write k-Datalog for
the collection of all Datalog programs with at mostk distinct variables in total.

A formula of first-order logic is said to be aconjunctive queryif it is obtained
from atomic formulas using only conjunctions and existential quantification. Every fi-
nite structureA with n elements gives rise to acanonical conjunctive queryϕA, which
is obtained by first associating a different variablexi with every elementai of A,
1 ≤ i ≤ n, then forming the conjunction of all atomic facts true inA, and finally
existentially quantifying all variablesxi, 1 ≤ i ≤ n. In other words, the formulaϕA is
the existential closure of thepositive diagramof A (see [12]). The significance of these
queries lies in the fact (first noted by Chandra and Merlin [7]) that for any structureB,
B |= ϕA if, and only if, there is a homomorphism fromA to B.

For every positive integerk, let CQk be the collection of conjunctive queries that
have at mostk distinct variables. Note that each variable may be reused, so its number
of occurrences may be arbitrarily large. The significance ofCQk lies in that the number
of variables required to expressϕA is closely related to thetree widthof A. We first
review the definition of tree width and then state its relationship with CQk.

Let A be aσ-structure. Atree-decompositionof A is a pair(T, B) whereT is a
directed tree oriented from the root to the leaves andB is a labelling that associates to
each nodet of T a non-empty set of elementsBt ⊆ A such that
1. for every tuplea in some relationR of A, there is a nodet ∈ T such thata is

contained inBt; and
2. for everya ∈ A, the set{t ∈ T : a ∈ Bt} forms a connected subtree ofT.

Thewidth of a tree-decomposition is the maximum cardinality of a setBt minus one.
Thetreewidthof A is the smallestk for whichA has a tree-decomposition of widthk.

The connection between the number of variables inϕA and the tree width ofA can
now be summarised as follows (see [14, 6]).

5

Lemma 2.4. If A has tree width less thank, thenϕA is equivalent to a formula of
CQk. For any satisfiable formulaϕ in CQk, there is a structureA with tree width less
thank, such thatϕA is logically equivalent toϕ.

A Datalog programπ can beunfoldedinto a conjunctive query, by repeatedly ex-
panding the rules. There are infinitely many such unfoldingsfor a recursive program.
We are interested in the structures, calledexpansionsof π, for which these unfoldings
are the canonical conjunctive queries.

Definition 2.5. Given a Datalog programπ, apartial unfoldingof π is any conjunctive
query obtained using the following rules:

– The goal predicateG of π is a partial unfolding ofπ;
– If ϑ is a partial unfolding ofπ; R is an IDB predicate ofπ; R(x) is an atomic

formula occurring inϑ; andR(y)← T1(z1), . . . , Tm(zm) is a rule ofπ, let ϕ(x)
be the formula obtained from∃z(T1(z1) ∧ · · · ∧ Tm(zm)) (wherez includes all
variables occurring in the rule except for those iny) by replacing the variables iny
by x. Then, the formulaϑ′ obtained fromϑ by replacing the occurrenceR(x) by
ϕ(x) is also a partial unfolding ofπ.

An unfoldingof π is a partial unfolding in which no IDB predicate occurs.

It is not difficult to see that any unfolding of a Datalog program is a conjunctive query,
and more particularly, ifπ is ak-Datalog program, then any unfolding ofπ is in CQk.
It is also easily established that a structureA is in the query defined byπ if, and only
if, there is some unfoldingϑ of π such thatA |= ϑ.

Definition 2.6. An expansionof a k-Datalog programπ is a structureA of tree width
less thank such that the canonical conjunctive queryϕA is logically equivalent to an
unfolding ofπ.

Now, it is clear, by Lemma 2.4, thatB |= π if, and only if, A → B for some ex-
pansionA of π. Indeed, the models ofπ are generated from expansions whose tree
decompositions are given by the unfolding ofπ.

Definition 2.7. A decorated expansionof thek-Datalog programπ is a tree decompo-
sition (T, B) of an expansionA of π along with a labellingL that associates to each
nodet of T a pair(r, ρ) wherer is either a rule ofπ or an atomic formulaR(x) (for an
EDB predicateR); andρ is an injective mapping from the variables ofr to Bt.

The labellingL must satisfy the following conditions:

1. If L(t) = (r, ρ) andr is an atomic formula, thent is a leaf ofT.
2. If L(t) = (r, ρ) andr is a ruleR(x)← T1(z1), . . . , Tm(zm), thent has exactlym

childrent1, . . . , tm where for eachi, if L(ti) = (ri, ρi) thenri is either an atomic
formulaTi(y) or a rule whose head isTi(y). Furtherρi(y) = ρ(zi).

3 LFP Definable Classes Closed Under Homomorphisms

In this section we introduce the classes of structures whichwe will use to separateLFP

from Datalog, and show that they areLFP definable, though proofs are omitted for lack
of space.

6

A source-target graphis a (finite or infinite) directed graphG with two distin-
guished verticess andt, i.e. a structure over the signature{E, s, t} whereE is a binary
relation symbol ands, t are constant symbols. For a source-target graphA = (G, s, t),
let nA denotesup{p : G contains a simple path of lengthp starting ats}. Note thatnA

is either a finite ordinal orω. In the sequel, when we speak about a graph, we mean a
source-target graph.

Fix a setS ⊆ ω of natural numbers. We define the following classes of graphs.

– Cyc – the class of graphs that contain a cycle.
– Unb – the class of graphsA for whichnA = ω.
– PS – the class of graphsA that contain a path froms to t of lengthp for some

p ∈ S.
– CS := PS ∪ Cyc.
– C∞

S = (PS ∩Unb) ∪ Cyc.

It is the classesCS andC∞
S (for suitable choices of the setS) which we show separate

LFP from Datalog. Note that all acyclic graphs inC∞
S are infinite, whileCS may contain

finite as well as infinite acyclic graphs. We begin first by noting that these classes are
closed under homomorphisms.

Lemma 3.1. The classesCS andC∞
S are closed under homomorphisms.

It can be shown that even the classesPS are closed under homomorphisms. The reason
we work with the classesCS andC∞

S is for the sake of definability inLFP. It is difficult
to useLFP to determine the lengths of paths in the presence of cycles. In fact, the longest
path problem is NP-complete and hence unlikely to be definable in LFP. By including
all graphs with cycles, we make the problem easier, as then weonly have to consider
the longest path in acyclic digraphs. We now aim to show that if the setS is definable
in LFP, in some sense, then the classesCS andC∞

S are also definable.
For an ordinalα ∈ [0, ω], we write(α, succ) to denote the structure whose universe

is {β : β < α} and wheresuccis interpreted as the binary successor relation.

Lemma 3.2. There is a uniformLFP interpretation of(nA, succ) in acyclic source-
target graphsA.

The proof of Lemma 3.2 relies on the use ofstage comparison relations, see [16].
We remark that the interpretation in Lemma 3.2 is already definable inLFP1, the alter-
nation free fragment ofLFP.

Lemma 3.3. There is a formulaϕunb of LFP that defines Unb on acyclic graphs.

This is used to show the definability of the classesCS andC∞
S .

Lemma 3.4. If S ⊆ ω is definable in the structure(ω, succ) by a formula ofLFPk, then
the classC∞

S is defined by a sentence ofLFPk+1.

Note that the class of setsS that are definable byLFP formulas in(ω, succ) is very
rich. In particular, it includes allΠ1

1 -definable sets of numbers.

Lemma 3.5. If the class of finite structuresS = {(n, succ) : n ∈ S} is definable in
LFP, thenCS is defined by a sentence ofLFP.

Note that{(n, succ) : n ∈ S} is definable inLFP if, and only if, the setS, repre-
sented in unary, is decidable in polynomial time.

7

4 The Diagonalisation Method

The main result of this section is the following theorem.

Theorem 4.1. There is a sentence ofLFP that is preserved under homomorphisms on
the class of all structures but which is not equivalent to anyDatalogprogram.

Since Datalog is in the negation-free fragment ofLFP, it is clear that every Datalog
program is equivalent to a formula inLFP1. Using diagonalisation methods, one can
show that for eachk there is a subsetSk ⊂ ω such thatSk can be defined in the
structure(ω, succ) by anLFPk+1 formulaϕk(x) but not by any formula inLFPk, where
succdenotes the successor relation onω. See e.g. [16]. Thus, we can choose a setS of
natural numbers which is definable inLFP on the structure(ω, succ) but not in Datalog.
Our aim is to show that the classC∞

S is not definable in Datalog.

Lemma 4.2. For any setS, if there is aDatalogprogram definingC∞
S , thenS is defin-

able in(ω, succ) by aDatalogprogram.

This allows us to prove Theorem 4.1, as we can choose a setS that is definable in
LFP but not inLFP1. Then, Lemma 3.4, 3.1 and 4.2 together imply the theorem. The
proof actually implies a somewhat stronger result.

Corollary 4.3. For everyk, there is anLFPk+2-definable class of structures which is
closed under homomorphisms but which cannot be defined inLFPk.

5 The Pumping Method

The result in the previous section relies crucially on infinite structures. In particular, the
classC∞

S restricted to finite structures is just the class of all graphs containing a cycle,
and this is definable in Datalog. Moreover, the stronger Corollary 4.3 cannot hold on
finite structures since it is known that every formula ofLFP is equivalent, in the finite, to
a formula ofLFP1 (see [13]). Still, in this section we establish that the homomorphism
preservation property fails even when we restrict ourselves to finite structures.

Theorem 5.1. There is anLFP sentenceϕ which is preserved under homomorphisms
on the class of all finite structures such that there is noDatalogprogram equivalent to
ϕ on finite structures.

Specifically, we show that there are sets of numbersS, which are polynomial-time
decidable when written in unary, such that there is no Datalog program whose finite
models are exactly the ones inCS . This is established by showing the following pump-
ing lemma.

Lemma 5.2. Let S ⊆ ω be an infinite set of numbers andπ a Datalogprogram which
accepts a directed acyclic graph(G, s, t) if, and only if,G contains a path froms to
t of lengthp for somep ∈ S. Then, there is a constantc and an increasing sequence
(ai)i∈ω of numbers such that:

1. ai+1 < ac
i for all i; and

8

2. S ∩ [ai, ai+1] 6= ∅ for all i.

Before we give a proof, a few remarks are in order. Recall thata Datalog programπ
determines a collectionC of expansions of bounded tree width such that a structureB

is accepted byπ if, and only if,A→ B, for someA ∈ C. If π is as in Lemma 5.2, then
it accepts a structure(G, s, t) whereG is a simple path of lengthp ∈ S. The expansion
A that maps to this structure must be an acyclic graph in which all paths froms to t
are of lengthp. To prove the lemma, we proceed from a decorated expansion for A to
“pump” a portion of the tree decomposition and obtain a sequence of expansionsAi

which are all acyclic and such that the lengths of all paths inAi from s to t are in the
interval[ai, ai+1] for a suitably defined sequence(ai)i∈ω . This establishes the result.

It should be noted that a similar pumping lemma is stated by Afrati et al. [2], and
proved by similar means. Indeed, their statement is apparently stronger in that condition
(1) can be replaced byai+1 < c + ai, which is to say that the sequence(ai)i∈ω can
be chosen to grow linearly ini rather than exponentially. However, their statement is
not confined to acyclic graphs, which is an essential restriction for our result. It would
suffice for our purposes if, in the proof of the pumping lemma of Afrati et al., it could
be shown that when an acyclic expansion is pumped, we always obtain an acyclic ex-
pansion, but we are unable to recover this fact from their proof. To be precise, they
present the proof in detail only for the case when the expansion A is itself a simple
path. In this case, the proof below can also be used to yield a linear sequence(ai)i∈ω.
They then state that the general case can be handled similarly, by choosing in the dec-
orated expansion ofA a collection of pairs of points to pump such that each simple
path crosses exactly one such pair. We are unable to determine how such a collection
could be chosen and, if the points at which we pump an expansion are crossed by more
than one path, it is quite possible that pumping may create shortcuts. This is the reason
why, in the proof below, we have to pump each pair of points multiple times, forcing an
exponential growth in the sequence(ai)i∈ω. However, this is still sufficient to establish
Theorem 5.1, which is our aim here. We now proceed to a proof ofLemma 5.2.

Proof of Lemma 5.2.Let π be a Datalog-program that accepts a directed acyclic graph
(G, s, t) if, and only if, G contains a path froms to t of lengthp for somep ∈ S and
let k be the number of variables inπ. Then, for any such(G, s, t), there is an expansion
A of π such thatA → (G, s, t), and there is a corresponding decorated expansion
(T, B, L) where(T, B) is a tree decomposition ofA of width k − 1. We can assume,
without loss of generality that eachBu, u ∈ T , has exactlyk elements. It will be
clear how to adapt the construction to the case where this is not so. SinceA is acyclic
(otherwise there would be no homomorphismA→ G), we let< be the (partial) order
on vertices ofA induced by distance fromsA (where vertices that are not reachable
from s have distance∞).

We now represent the decorated expansion(T, B, L) as a relational structureD as
follows:

– the universe ofD is D := T ∪̇A, the disjoint union ofT andA;
– the constantss andt are interpreted inD by sA andtA;
– D has ak + 1-ary relationB such that for eachu ∈ T there is exactly one tuple

(u, a1, . . . , ak) ∈ B, and it satisfies:Bu = {a1, . . . , ak} anda1 ≤ a2 · · · ≤ ak;
and

9

– for every ruler of π and every mappingρ from the variables ofπ to {1, . . . , k},
there is a unary relationLr,ρ interpreted inD by {u ∈ T : L(u) = (r, ρ′)}, where
ρ′ is the map that takesx to aρ(x) where(u, a1, . . . , ak) ∈ B.

We will not distinguish notationally between(T, B, L) andD in the sequel, as it will
always be clear from the context in which presentation we formally work. It is easily
seen that we can write a formulaϕ of MSO such thatD |= ϕ if, and only if, D is
a decorated expansion ofπ and the underlying expansionA is acyclic. Letq be the
quantifier rank ofϕ and letQ be the number of distinctMSO-types of quantifier rank at
mostq. Note that the values ofq andQ are determined byπ and do not depend on the
choice of the expansionA.

For x ∈ T , we writeDx for the substructure ofD induced by the subtree ofT
rooted atx, and the elements related to nodes of this subtree byB. Note that the only el-
ements thatDx shares with the rest ofD are inBx. We writeD[x/D′] for the structure
obtained fromD by replacingDx by D′. That is, it is the disjoint union of the structure
D \Dx, obtained by removingDx from D, with the structureD′ while identifying the
elements inBD

′

r (wherer is the root ofD′) with BD
x . It is then an easy consequence of

Lemma 2.3 thatD ≡q D[x/D′] if Dx ≡
q D′. In particular this implies that ifD is an

acyclic decorated expansion thenD[x/D′] is also an acyclic expansion. Forx, y ∈ T ,
we writey ≺ x to denote thaty is an ancestor ofx in T.

We begin with an informal account of the proof of Lemma 5.2. The idea is to start
with an acyclic expansionD that maps homomorphically to a simple path of lengthN ,
for some large enoughN . This enables us to find a pairx, y ∈ T such thatDx ≡

q Dy

and y ≺ x. We can thenpump, i.e. consider the expansionsD′ := D[x/Dy] and
D′′ := D[x/D′

y], etc. in order to obtain larger acyclic expansions with longer s-t-
paths. IfD itself consisted of a single path,x andy could be chosen so that the pumped
expansions themselves consisted of simple paths and we would obtain a set of such
paths growing linearly in length. However, ifD contains multiple intersecting paths, the
process of pumping may create new paths, including ones shorter thanN . Moreover,
in order to ensure thatall paths in the new expansion are affected by pumping, it is
not sufficient to choose one pumping pair(x, y), rather we need pairs intersecting (in a
suitable way) alls-t-paths inD. Unfortunately, these pairs may overlap and we need to
define the process of pumping carefully.

The difficult part of the proof is therefore to choose the set of pairs(x, y) we want to
use, and to define the process of pumping carefully. In the construction outlined below,
we show how such a set of pairs can be found such that after repeating the pumping
processn times, everys-t-path has length at leastn and at mostnc, for somec ∈ N

that depends onD but not onn. This is enough to prove the lemma. We begin by giving
a definition of pumping for a setC of pairs(x, y) which form ananti-chainin D (in
a sense we make precise below). We then use this to inductively define the pumped
expansions for more general setsC.

Pumping at an antichain: LetD = (T, B, L) be a decorated expansion andC ⊆ T 2 a
set of pairs(x, y) such thaty ≺ x and if(x, y), (x′, y′) ∈ C thenx 6= x′ andy 6� y′. We
define the expansionsDC

n by induction onn: DC
0 := D andDC

n+1 := D[x/(DC
n)y :

(x, y) ∈ C].

10

In other words,DC
n is obtained fromD by pumping each pair(x, y) in C simultane-

ouslyn times. Since, for distinct pairs(x, y) and(x′, y′), y andy′ (and hence alsox and
x′) are incomparable, this is well-defined. We now use this to define pumping for sets
of pairsC which are not necessarily incomparable. To be specific, suppose thatC ⊆ T 2

is a set of pairs(x, y) with y ≺ x andx 6= x′ for distinct pairs(x, y) and(x′, y′). We
define a partial order onC by letting(x, y) ⊏ (x′, y′) just in casey′ ≺ y and let ht(x, y)
denote the length of the maximal⊏-chain below the pair(x, y). Let m be the maximal
value of ht(x, y) among all pairs inC. WriteCp for the set{(x, y) ∈ C : ht(x, y) = p}.
Pumping: We define the pumped expansions by induction onp: D0

n = DC0

n and
Dp+1

n = (Dp
n)Cp+1

n . Finally, letDC
n denoteDm

n .
Intuitively, givenD andC we pumpD by working bottom-up inD and replacing

recursively for each pair(x, y) ∈ C the tree rooted atx by the tree rooted aty and
repeatn times. Note that ifC is chosen so that for each(x, y) ∈ C, Dx ≡

q Dy, then
we also haveDC

n ≡
q D. In particular,DC

n is an acyclic expansion ofπ. The following
claim is easily established by induction onp.

Claim. Everys-t-path inDC
n is of length at mostnm ·N .

Let b be the maximal branching degree in any decorated expansion of π (note that
this depends only onπ) and chooseN ∈ S with N > bQ·K , whereK := 2k2

· k4.
Let A be an expansion witnessing that a simple path of lengthN is accepted byπ and
D = (T, B, L) be the corresponding decorated expansion. By the choice ofN , every
s-t-pathP in A must containK distinct internal verticesv1, . . . vK such that there is a
chainxP := x1 ≺ · · · ≺ xK in T with Dxi

≡q Dxj
for all i, j andvi ∈ Bxi

. Choose
for eachs-t-path such a chain and letΓ := {xP : P is ans-t-path inA}.

If Bx consists of the elementsa1, . . . , ak in order, we say that a pathP crossesx
at (α, β) (for 1 ≤ α < β ≤ k) if P containsaα andaβ and no intermediate element
of Bx. For a fixedxP , by the choice ofK, we can find a pair(α, β) and a subsequence
x′

P of xP of length at least2k2

· k2 such that for eachx in x′
P , P crossesx at (α, β).

Let Γ ′ be the collection of the pairs(x′
P , (α, β)) for xP ∈ Γ .

Distant: Say a pair(u, v) ⊆ By, for somey ∈ T , is distantif for every pathP from u
to v in A there is some(x, (α, β)) ∈ Γ ′ such thatP crosses eachx ∈ x at (α, β).

By construction,(s, t) is distant. For each(x, (α, β)) ∈ Γ ′ we can choose a pair
x, y ∈ x with (x, a1, . . . , ak) ∈ B and(y, b1, . . . , bk) ∈ B such thaty ≺ x and(ai, aj)

is distant if, and only if,(bi, bj) is distant for alli, j. Indeed, asx has at least2k2

· k2

elements, we have at leastk2 distinct choices forx. This ensures that we can chooseC
to be a collection of such pairs(x, y), including one from each(x, (α, β)) ∈ Γ ′ such
that no two pairs inC share the same first component.

Foru, v ∈ Bx, for somex ∈ T, define thepumping heightof (u, v) to be the length
of the maximal chain (with respect to the order⊏) in C belowx. The following claim
is the key to the pumping argument.

Claim. For allp, n, if the pumping height of(u, v) is at mostp and(u, v) is distant then
the distance ofu andv in Dp

n is at leastn.

In particular, the claim implies that forn ∈ N, everys-t-path inDC
n is of length at

leastn. As C, and hencem, only depend on the initial choice ofD and not onn, we

11

have that everys-t-path inDC
n is of length at mostnm · N . To complete the proof of

Lemma 5.2, takea1 = N + 1 andai+1 = am+1
i . �

To complete the proof of Theorem 5.1, consider the classCS whereS = {22n2

:
n ∈ N} which is clearly decidable in polynomial time. It is easily verified that there is
no sequence(ai)i∈ω that satisfies the conditions of Lemma 5.2 for this set. Finally, we
note also that the restriction of the classCS to finite structures can be characterised as
{A : A finite andA 6→ B} for a fixed infinite structureB. Simply takeB to be the
structure formed from the disjoint union of all finiteA 6∈ CS by identifying all copies
of s andt.

References

1. Open Problems List for the MathsCSP Workshop, Oxford, 2006.
http://www.cs.rhul.ac.uk/home/green/mathscsp/.

2. F. Afrati, S. Cosmadakis, and M. Yannakakis. On Datalog vs. Polynomial Time.Journal of
Computer and System Sciences, 51:177–196, 1995.

3. A. Atserias. The homomorphism preservation property. Talk at International Workshop on
Mathematics of Constraint Satisfaction, Oxford, 2006.

4. A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and counting infinitary
logic. In Proc. 34th International Colloquium on Automata, Languages and Programming,
volume 4596 ofLecture Notes in Computer Science, pages 558–570, 2007.

5. A. Atserias, A. Dawar, and M. Grohe. Preservation under extensions on well-behaved fi-
nite structures. InAutomata, Languages and Programming, 32nd International Colloquium,
ICALP 2005, volume 3580 ofLNCS, pages 1437–1449. Springer, 2005.

6. A. Atserias, A. Dawar, and Ph. G. Kolaitis. On preservation under homomorphisms and
unions of conjunctive queries.Journal of the ACM, 53:208–237, 2006.

7. A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in relational
databases. InProc. 9th ACM Symp. on Theory of Computing, pages 77–90, 1977.

8. H.-D. Ebbinghaus and J. Flum.Finite Model Theory. Springer, 2nd edition, 1999.
9. T. Feder and M.Y. Vardi. Computational structure of monotone monadic SNP and constraint

satisfaction: A study through Datalog and group theory.SIAM Journal of Computing, 28:57–
104, 1998.

10. T. Feder and M.Y. Vardi. Homomorphism closed vs existential positive. InProc. of the 18th
IEEE Symp. on Logic in Computer Science, pages 311–320, 2003.

11. M. Grohe. Logic, graphs, and algorithms. In J. Flum, E. Grädel, and T. Wilke, editors,Logic
and Automata History and Perspectives. Amsterdam University Press, 2007.

12. W. Hodges.Model Theory. Cambridge University Press, 1993.
13. N. Immerman. Relational queries computable in polynomial time. Information and Control,

68:86–104, 1986.
14. Ph. G. Kolaitis and M. Y Vardi. Conjunctive query containment and constraint satisfaction.

Journal of Computer and System Sciences, 61:302–332, 2000.
15. J.A. Makowsky. Algorithmic uses of the Feferman-Vaughttheorem. Annals of Pure and

Applied Logic, 126:159 – 213, 204.
16. Y.N. Moschovakis. Elementary Induction on Abstract Structures. North Holland, 1974.

ISBN 0 7204 2280 9.
17. B. Rossman. Existential positive types and preservation under homomorphisisms. In20th

IEEE Symposium on Logic in Computer Science, pages 467–476, 2005.
18. M. Y. Vardi. The complexity of relational query languages. In Proc. of the 14th ACM

Symp. on the Theory of Computing, pages 137–146, 1982.

12

