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Abstract. We show that the homomorphism preservation theorem failcFe,
both in general and in restriction to finite structures. Tibathere is a formula of
LFP that is preserved under homomorphisms (in the finitejsnot equivalent
(in the finite) to a Datalog program. This resolves a quesfiosed by Atse-
rias. The results are established by two different meth@ddsa method of diag-
onalisation that works only in the presence of infinite suues, but establishes
a stronger result showing a hierarchy of homomorphismepuesl problems in
LFP; and (2) a method based on a pumping lemma for Datalog @édrati,
Cosmadakis and Yannakakis which establishes the resudisinigtion to finite
structures. We refine the pumping lemma of Afrati et al. atatedt to the power
of Monadic Second-Order Logic on tree decompositions ofcstires.

1 Introduction

Among the important classical results of model theory,tiedpsyntactic to semantic
properties of first-order logic, are the preservation thew. For instance, the Los-
Tarski theorem tells us that a sentence of first-order Iggemuivalent to aexistential
sentencdf, and only if, the class of its models is closed under extemsand Lyndon’s
theorem states that a sentence is monotone in a rel&tihand only if, it is equivalent
to one that is positive iR (see [12]). The study of preservation theorems has played
an important role in the development of finite model theorighwnany early results
demonstrating that such results fail when we restrict @rsition to finite structures
(see, for instance, [8]).

One important exception to the general failure of pres@mdheorems in the finite
is Rossman'’s proof of the homomorphism preservation the¢t&]. This shows that
on the class of finite structures, just as on the class ofraitstres (finite or infinite) a
sentence of first-order logic is equivalent toexistential positivesentence if, and only
if, it is preserved under homomorphisms. The homomorphissegyvation property in
finite structures has aroused much interest in theoretarapaiter science through its
connections with questions in database theory and the studgnstraint satisfaction
problems (CSPs).

Each of the preservation theorems mentioned has two dire;tone of which is
generally quite easy to establish: namely that the symtaesitriction (such as the re-
striction to existential positive sentences) implies thmantic restriction (being pre-
served under homomorphisms). Moreover, this directiod$igenerally on any class of
structure<. The other direction, sometimes knownexpressive completenessates
that any sentence that satisfies the semantic restrictieguisalent to one of the sim-
ple syntactic form. When we restrict this statement to asalgsve weaken both the



hypothesis and the conclusion of the statement. Thus, erasidsse€ andC’ where

C C (', itis impossible to deduce either the validity or the fa#lwf a preservation
theorem orC from the statement faf’. In particular, the statements for the class of all
structures and for the class of finite structures alone aite mdependent statements.
Recently, there has been a growing interest in investigatie status of preservation
theorems for class&smore restrictive than the class of all finite structures 5, 6

Atserias [3] (see [1, Question 4.3]) asked whether the hoarphism preservation
theorem holds foLFP—the extension of first-order logic with an operator for defin
ing least fixed points of monotone formulas. Fixed-pointdsghave arguably played
a more important role in finite model theory than first-ordmgi¢. In particular, it is
known thatLFP expresses all polynomial time computable properties ofefiardered
structures [13, 18]. Thus, the question of whether a homphism preservation theo-
rem can be established for this logic arises naturally. #hguage formed by extending
existential positive formulas by means of a least fixed-poperator is Datalog and it
has been extensively studied as a database query langtiags.dlso received atten-
tion in the study of constraint satisfaction problems agavjges a general means of
classifying many CSPs as tractable. It is easily seen thagaery defined in Datalog is
preserved under homomorphisms. Thus, Atserias’ questiks \@hether it is the case
that every sentence afPp that is preserved under homomorphisms is equivalent to a
Datalog program. We show in this paper that this is not the,caither on the class of
all (finite or infinite) structures or in restriction to theask of finite structures.

The homomorphism preservation question for extensionssttdrder logic was
also studied by Feder and Vardi [10]. They showed that orefstituctures, the homo-
morphism preservation property holds for a numbeexétentialinfinitary and fixed-
point logics. In particular, they established that any gudafinable in Datalog-, #)
that is closed under homomorphisms is already definable tal@@ The former lan-
guage is the extension of Datalog with inequality and negatih EDB predicates. Just
as Datalog can be seen as the existential positive fragnierppDatalod—, #) is its
existential fragment. Thus, our results show that the #@arf Feder and Vardi cannot
be extended from Datal¢g, #) to LFP.

The two examples we construct separatirgfrom Datalog bear some similarity to
each other in that they are defined in terms of graphs havithg@agths in some sét.
In addition, to guarantee that the classes we consider@sedunder homomorphisms,
we take the union with the class of all graphs containing decyihe main differences
in the two results are in the choice of the Seéind in the method used to prove that the
resulting class of graphs is not definable in Datalog. In #eeavhere we allow infinite
structures, the proof is somewhat simpler as we can constisetS that is undefinable
in Datalog (over the natural numbers) using standard dialgation arguments and
then obtain the result by means of a reduction of the graphl@no to this set. This
actually establishes something stronger. It shows thagvery k, there are formulas
of LFP that are preserved under homomorphisms but not definableftayraula with
only k nested alternations of the fixed-point operator with negatl hese results are
established in Section 4.

When we restrict ourselves to finite structures, such diatigation methods are un-
available and we adapt a pumping lemma due to Afrati et afo2pur purpose. Afrati



et al. use their pumping lemma to demonstrate polynontia¢-tnonotone properties
that are not definable in Datalog. In order to adapt it toLfredefinable properties we
are interested in, we need to show that it works on a classyofiagraphs. What we es-
tablish is that ifr is a Datalog program which accepts a directed acyclic gt&hls, ¢)

if, and only if, G contains a path from to ¢ of lengthp for somep in a given setS,
thenS cannot grow too fast (the precise statement is given in LeBm2)a This suffices
to establish the result we seek. An apparently stronger jngipmma (saying tha$
cannot grow faster than linearly) is stated in [2], but withthe restriction to acyclic
graphs. In the absence of this restriction, we cannot usdéiema directly and it is not
clear from their description of the proof that it can be addpT his is explained in more
detail in Section 5. One virtue of our proof of this pumpinmiea is that it connects it
with other recent innovations in the analysis of Datalogrepse namely their relation-
ship with tree decompositions and with the power of monaeliwad-order logic over
these. This new insight into Datalog may be of independdatést.

One source of interest in the relationship betweemand Datalog is research on
the classification of tractable constraint satisfactioobpgms. We can associate with
any structureB, the decision problerasRB) of determining for a given structur&
whether there is a homomorphissn— B. This is theconstraint satisfaction problem
associated witB (see [9]). Much research work has been devoted to clasgithinse
structuresB for which this problem is decidable in polynomial time. Itimmediate
from the above definition that the complementasfiB) is closed under homomor-
phisms. If we could find dinite structureB for which the complement ofSAB) is
definable inLFP but not in Datalog, this would resolve certain conjectunethe classi-
fication of tractable CSPs (see [4] for a discussion). We hete that our example of a
homomorphism closed class separatifrg from Datalog on finite structures is not the
complement oEsAB) for any finiteB, but is of this form for annfinite structureB.

We begin in Section 2 with definitions, including thoseLeP and Datalog as well
as first-order and monadic second-order logic. We also Iréealdefinitions of tree
decompositions of structures and relate them to Datalograros.

2 Preliminaries
We briefly introduce the fundamental concepts and notatiemeed in later sections.

Homomorphisms and Preservatiohet o be a finite signature. We use boldface let-
ters for structures\, B, ... and corresponding Roman letteds B, ... to denote their
universe. We also write for a tupleas, ..., ag.

Definition 2.1. Let o be a relational signature possibly with constant symbotklan
A, B beo-structures. Anomomorphisnfrom A to B is a functionh : A — B such
that for everyk-ary relation symboR € ¢ and everyk-tuplea € A* if a € R then
(h(a1),...,h(ar)) € RB and for every constant symboek o, h(c*) = ¢B. We write
A — B to denote that there is a homomorphism framo B.

Definition 2.2. Let C be a class of structures. A subcld3sC C is closed under ho-
momorphismsf wheneverA, B € C so thatA € D and there is a homomorphism



h: A — BthenB € D. We are particularly interested in model classes of seetenc
If ¢ is a sentence of a logic, we sayis preserved under homomorphisms®it the
classModc(p) := {A € C: A = ¢} is closed under homomorphisms.

First-Order Logic, Monadic Second-Order Logic and Typést o be a signature. We
assume that the reader is familiar with first-order logic. Weée FO(c) for the class
of all first-order formulas over the signatureMonadic Second-Order Logi®1S0) is
the extension of first-order logic by quantification oveisset elements, i.e. there are
quantifiersd X, VX, whereX is a unary relation variable, and a formd& ¢ is true in

a structureA, written A = 3X ¢, if there is a sefX C A such thatA, X) = ¢. The
semantics of X ¢ is defined analogously. See e.g. [8] for morevso.

The quantifier rankqr(y) of a formulayp (of FO or MS0) is the maximal depth of
nesting of quantifiers ip. Note that up to logical equivalence there are only finitely
manymso-formulas of quantifier rank at mogtin a finite signaturer. We writeMSO,
for the class ofuso-formulas of quantifier rank at mogt We write A =? B to denote
that two structureg. andB cannot be distinguished nso,.

A typeis a maximally consistent class of formulas. For a structirandg € N,
the MsO,-type of A is the class oMsO-sentences of quantifier rank at maqstvhich
are true inA and ifa € A*, then themso,-type ofa in A is the class of alMsO,-
formulasy(x) such thatA = ¢(a). As, for eachy € N, MSo, only contains finitely
many formulas up to equivalence, thso,-type of a tuple or a structure can com-
pletely be described by a single formulantso, (see [8]). We will use the following
decomposition theorem fasso. See e.g. [15] or [11].

Lemma 2.3. Let A andB be structures and led be a tuple listing the vertices in the
intersection ofA and B. ThemMso,-type ofu in A U B is uniquely determined by the
MSO,-types ofu in A and inB.

In particular, if A, B; andB are structures such thatn B; = AN By =: w and the
MSO,-types ofu in B; andB; are the same, theA UB; =? A U B..

Least Fixed-Point LogicWe first present a brief introduction to least fixed-pointiéog
For a detailed exposition see [8]. Letbe a signature and lei(R, x) be a formula
of signatures which is positivein the k-ary relation variableR, i.e. every atom of the
form Rt in ¢ occurs within the scope of aevennumber of negation symbols. For
everyo-structureA, ¢ defines a monotone operatdta ,, : Pow(A*) — Pow(A*) via
Fa ,(P):={a € A¥ : (A, P) = p[a]}, for everyP C A*. Atheorem due to Knaster
and Tarski shows that on every structukeevery monotone operatdfa ,, has a least
fixed point which we denote bifp(F'a ).

The logicLFP(c) is the extension ofO(c) by least fixed-point operators. To be
preciseLFP(o) containg=O(c) and is closed under Boolean connectives and first-order
quantification; and ifp(R, x, z, Q) is anLFP(o)-formula which is positive in thé:-
ary relation variable? then for everyk-tuplet of termslfpy ., ¢|(t) is anLFP()-
formula such that for everg/ou {z, Q})—structureA and every tuple € A* we have
A | [ifpg, ¢l(a) if,and only if, a € Ifp(Fa ).

3 An operatorF : Pow(M) — Pow(M) is monotondff F(A) C F(B) forall AC B C M.



The alternation depthof an LFP formula ¢ is defined as the maximal number of
alternations between fixed-point operators and negatiwidé . We write LFP* for
the class of Fp formulas of alternation depth at mdst
Datalog. Datalog is a database query language which could be defirtad asllection
of formulas ofLFP which do not use negation or universal quantification. Hevethe
usual presentation of the language is in terms of functree-Horn clauses, and we
follow this presentation below as the structure of the paiogin terms of rules is useful
for our proof of the pumping lemma in Section 5.

A Datalog programis a finite set of rules of the foriy «— T1,..., T, where
eachT; is an atomic formulaTy is called theheadof the rule, while the right-hand
side is called thébody The relation symbols that occur in the heads areiriten-
sional database predicates (IDBs), while all others areetktensionablatabase pred-
icates (EDBs). Note that IDBs may occur in the bodies toos tlauDatalog program
is a recursive specification of the IDBs with semantics olgtdivia least fixed-points
of monotone operators. The collection of EDB predicatesioang in 7 constitute its
signatures, and a Datalog program of signaturds interpreted ins-structures. One
IDB predicate is distinguished as tigeal predicate In general, we will assume that
the goal predicate is @-ary predicate, so that the program defines a Boolean query.
In the interests of space, we will not give a formal definitmfnthe semantics of the
program, which can be found in standard textbooks such asA[&ey parameter in
analysing Datalog programs is the number of variables uAkedwrite k-Datalog for
the collection of all Datalog programs with at mésdistinct variables in total.

A formula of first-order logic is said to be eonjunctive quenyf it is obtained
from atomic formulas using only conjunctions and existuantification. Every fi-
nite structureA with n elements gives rise to@nonical conjunctive query , which
is obtained by first associating a different variablewith every element; of A,

1 < i < n, then forming the conjunction of all atomic facts true Ay and finally
existentially quantifying all variables;, 1 < i < n. In other words, the formulaa is
the existential closure of th@ositive diagranof A (see [12]). The significance of these
gueries lies in the fact (first noted by Chandra and Merlip {[7dt for any structurd,

B E pa if, and only if, there is a homomorphism frof to B.

For every positive integek, let CQF be the collection of conjunctive queries that
have at mosk distinct variables. Note that each variable may be reuseitls sumber
of occurrences may be arbitrarily large. The significandg@f lies in that the number
of variables required to express is closely related to th&ee widthof A. We first
review the definition of tree width and then state its refastoip with CJ .

Let A be ao-structure. Atree-decompositionf A is a pair(T, B) whereT is a
directed tree oriented from the root to the leaves Bnid a labelling that associates to

each node of T a non-empty set of elemeni C A such that
1. for every tuplea in some relation? of A, there is a node € T such thata is

contained inB;; and
2. foreverya € A, the set{t € T : o € B;} forms a connected subtreef

Thewidth of a tree-decomposition is the maximum cardinality of aBgtminus one.
Thetreewidthof A is the smallesk for which A has a tree-decomposition of widkth

The connection between the number of variablesinand the tree width oA can
now be summarised as follows (see [14, 6]).

5



Lemma 2.4. If A has tree width less thah, thenya is equivalent to a formula of
CQF. For any satisfiable formula in CQF, there is a structure with tree width less
thank, such thatp, is logically equivalent ta.

A Datalog programr can beunfoldedinto a conjunctive query, by repeatedly ex-
panding the rules. There are infinitely many such unfoldiiogs recursive program.
We are interested in the structures, cakagansion®f 7, for which these unfoldings
are the canonical conjunctive queries.

Definition 2.5. Given a Datalog program, apatrtial unfoldingof = is any conjunctive
query obtained using the following rules:

— The goal predicaté& of 7 is a partial unfolding ofr;

— If 9 is a partial unfolding ofr; R is an IDB predicate ofr; R(x) is an atomic
formula occurring ind; andR(y) < T1(21), - .., Tm(zm) is a rule ofr, let p(x)
be the formula obtained fromz (T (z1) A - -+ A T (zm)) (Wherez includes all
variables occurring in the rule except for thoseyjrby replacing the variables i
by x. Then, the formula¥ obtained from¢ by replacing the occurrendg(z) by
(x) is also a partial unfolding of.

An unfoldingof = is a partial unfolding in which no IDB predicate occurs.

It is not difficult to see that any unfolding of a Datalog pragris a conjunctive query,
and more particularly, ifr is ak-Datalog program, then any unfolding ofis in CQ.

It is also easily established that a structxés in the query defined by if, and only
if, there is some unfolding of = such thatA = 4.

Definition 2.6. An expansiorof a k-Datalog programr is a structureA of tree width
less thark such that the canonical conjunctive query is logically equivalent to an
unfolding of .

Now, it is clear, by Lemma 2.4, th@ = ~ if, and only if, A — B for some ex-
pansionA of w. Indeed, the models of are generated from expansions whose tree
decompositions are given by the unfoldingrof

Definition 2.7. A decorated expansioof the k-Datalog programr is a tree decompo-
sition (T, B) of an expansiomA of = along with a labellingL that associates to each
nodet of T a pair(r, p) wherer is either a rule ofr or an atomic formulaz(x) (for an
EDB predicateR); andp is an injective mapping from the variablesiofo B;.

The labellingL. must satisfy the following conditions:

1. If L(t) = (r, p) andr is an atomic formula, thehis a leaf ofT.

2. If L(t) = (r,p) andris aruleR(x) «— T1(z1), ..., Tm(zm), thent has exactlyn
childrenty, ..., t,, where for each, if L(¢;) = (r;, p;) thenr; is either an atomic
formulaT;(y) or a rule whose head 15 (y). Furtherp;(y) = p(z;).

3 LFP Definable Classes Closed Under Homomorphisms

In this section we introduce the classes of structures wiighvill use to separaterp
from Datalog, and show that they arepr definable, though proofs are omitted for lack
of space.



A source-target graphs a (finite or infinite) directed grapfix with two distin-
guished vertices andt, i.e. a structure over the signatyrg, s, t} whereF is a binary
relation symbol and, ¢ are constant symbols. For a source-target graph (G, s, t),
let n* denotesup{p : G contains a simple path of lengthstarting ats}. Note thatn
is either a finite ordinal ow. In the sequel, when we speak about a graph, we mean a
source-target graph.

Fix a setS C w of natural numbers. We define the following classes of graphs

— Cyc —the class of graphs that contain a cycle.

— Unb —the class of graphs for whichn? = w.

— Pg — the class of graphA that contain a path from to ¢ of lengthp for some
pES.

— Cs := PsUCyc.

— Cg° = (Ps NUnb) U Cyc.

Itis the classe€’s andCg° (for suitable choices of the s&) which we show separate
LFPfrom Datalog. Note that all acyclic graphsaig® are infinite, whileC's may contain
finite as well as infinite acyclic graphs. We begin first by ngtthat these classes are
closed under homomorphisms.

Lemma 3.1. The classeg’s andCg° are closed under homomorphisms.

It can be shown that even the clas$&sare closed under homomorphisms. The reason
we work with the classeS's andC'g® is for the sake of definability inFp. It is difficult
to useLFPto determine the lengths of paths in the presence of cycléact, the longest
path problem is NP-complete and hence unlikely to be defniallFpP. By including
all graphs with cycles, we make the problem easier, as theonlyehave to consider
the longest path in acyclic digraphs. We now aim to show thiltei setS is definable
in LFP, in some sense, then the claségsandCg are also definable.

For an ordinak € [0,w], we write(«, sucg to denote the structure whose universe
is {8 : 8 < a} and wheresuccis interpreted as the binary successor relation.

Lemma 3.2. There is a uniformLFp interpretation of(n®, sucg in acyclic source-
target graphsA.

The proof of Lemma 3.2 relies on the usestdige comparison relationsee [16].
We remark that the interpretation in Lemma 3.2 is alreadyndéfe inLFP!, the alter-
nation free fragment afFp.

Lemma 3.3. There is a formulay,np of LFP that defines Unb on acyclic graphs.
This is used to show the definability of the claségsandCg°.

Lemma 3.4. If S C wis definable in the structurev, sucg by a formula ofLFP*, then
the classCg° is defined by a sentencelgfP*+1.

Note that the class of sefsthat are definable byFp formulas in(w, sucg is very
rich. In particular, it includes ali7{-definable sets of numbers.

Lemma 3.5. If the class of finite structureS = {(n,sucq : n € S} is definable in
LFP, thenCy is defined by a sentenceldfr.

Note that{(n,sucg : n € S} is definable inLFp if, and only if, the setS, repre-
sented in unary, is decidable in polynomial time.



4 The Diagonalisation Method

The main result of this section is the following theorem.

Theorem 4.1. There is a sentence oFpP that is preserved under homomorphisms on
the class of all structures but which is not equivalent to Baayalogprogram.

Since Datalog is in the negation-free fragmenti#, it is clear that every Datalog
program is equivalent to a formula irFP!. Using diagonalisation methods, one can
show that for eaclk there is a subse$;, C w such thatS, can be defined in the
structure(w, sucg by anLFP*+! formulayy () but not by any formula inFP*, where
succdenotes the successor relationwarSee e.g. [16]. Thus, we can choose assef
natural numbers which is definablelirP on the structuréw, sucg but not in Datalog.
Our aim is to show that the clag&® is not definable in Datalog.

Lemma 4.2. For any setS, if there is aDatalogprogram defining”'g®, thensS'is defin-
able in(w, sucg by aDatalogprogram.

This allows us to prove Theorem 4.1, as we can choose 4 it is definable in
LFP but not inLFP!. Then, Lemma 3.4, 3.1 and 4.2 together imply the theorem. The
proof actually implies a somewhat stronger result.

Corollary 4.3. For everyk, there is anLFP*+2-definable class of structures which is
closed under homomorphisms but which cannot be definegbin

5 The Pumping Method

The resultin the previous section relies crucially on inéirstructures. In particular, the
classCg° restricted to finite structures is just the class of all gsapbntaining a cycle,
and this is definable in Datalog. Moreover, the stronger {tmmo4.3 cannot hold on
finite structures since it is known that every formulap# is equivalent, in the finite, to
a formula ofLFP! (see [13]). Still, in this section we establish that the hamegphism
preservation property fails even when we restrict oursodinite structures.

Theorem 5.1. There is anLFpP sentencer which is preserved under homomorphisms
on the class of all finite structures such that there idaalogprogram equivalent to
 on finite structures.

Specifically, we show that there are sets of numignshich are polynomial-time
decidable when written in unary, such that there is no Dgtplmgram whose finite
models are exactly the onesdr. This is established by showing the following pump-
ing lemma.

Lemma 5.2. Let.S C w be an infinite set of numbers anda Datalogprogram which
accepts a directed acyclic grapl@, s, t) if, and only if, G contains a path frons to

t of lengthp for somep € S. Then, there is a constantand an increasing sequence
(a;)icw Of numbers such that:

1. ajy1 < af forall 4; and



2. SNla;,a,41] # o for all 4.

Before we give a proof, a few remarks are in order. Recalldtiaatalog program
determines a collectio@ of expansions of bounded tree width such that a strudBure
is accepted by if, and only if, A — B, forsomeA € C. If ris asin Lemma 5.2, then
it accepts a structurd@z, s, t) whereG is a simple path of length € S. The expansion
A that maps to this structure must be an acyclic graph in whichaghs froms to ¢
are of lengthp. To prove the lemma, we proceed from a decorated expansioh fo
“pump” a portion of the tree decomposition and obtain a saqaef expansiond;
which are all acyclic and such that the lengths of all path4 jrfrom s to ¢ are in the
interval[a;, a;+1] for a suitably defined sequengg );c.,. This establishes the result.

It should be noted that a similar pumping lemma is stated bwtAét al. [2], and
proved by similar means. Indeed, their statement is appgustronger in that condition
(1) can be replaced by, 11 < ¢+ a;, which is to say that the sequengg);c., can
be chosen to grow linearly inrather than exponentially. However, their statement is
not confined to acyclic graphs, which is an essential restndor our result. It would
suffice for our purposes if, in the proof of the pumping lemmafati et al., it could
be shown that when an acyclic expansion is pumped, we alwaipénoan acyclic ex-
pansion, but we are unable to recover this fact from theiofprdo be precise, they
present the proof in detail only for the case when the expanAi is itself a simple
path. In this case, the proof below can also be used to yigtteard sequencé; );c..
They then state that the general case can be handled symligrthoosing in the dec-
orated expansion oA a collection of pairs of points to pump such that each simple
path crosses exactly one such pair. We are unable to dethmim such a collection
could be chosen and, if the points at which we pump an expamsecrossed by more
than one path, it is quite possible that pumping may creaig@hts. This is the reason
why, in the proof below, we have to pump each pair of pointstiplel times, forcing an
exponential growth in the sequen@g);c.,. However, this is still sufficient to establish
Theorem 5.1, which is our aim here. We now proceed to a probéofma 5.2.

Proof of Lemma 5.2L et = be a Datalog-program that accepts a directed acyclic graph
(G, s,t) if, and only if, G contains a path from to ¢ of lengthp for somep € S and
let &k be the number of variables in Then, for any sucliG, s, t), there is an expansion
A of 7 such thatA — (G, s,t), and there is a corresponding decorated expansion
(T, B, L) where(T, B) is a tree decomposition o of width £ — 1. We can assume,
without loss of generality that each,, © € T, has exactlyk elements. It will be
clear how to adapt the construction to the case where thistism SinceA is acyclic
(otherwise there would be no homomorphidm— G), we let< be the (partial) order
on vertices ofA induced by distance from® (where vertices that are not reachable
from s have distancec).
We now represent the decorated expan$BnB, L) as a relational structul® as
follows:
— the universe oD is D := T'UA, the disjoint union ofl” and 4;
— the constants andt are interpreted il by s andt?;
— D has ak + 1-ary relationB such that for eaclh € T there is exactly one tuple
(u,ai,...,ar) € B, and it satisfiesB,, = {a1,...,ar} anda; < az -+ < ag;
and



— for every ruler of = and every mapping from the variables ofr to {1, ..., k},
there is a unary relatioh,. , interpreted inD by {u € T': L(u) = (r, p')}, where
p' is the map that takesto a,(,) where(u, a, ..., ax) € B.

We will not distinguish notationally betwed', B, L) andD in the sequel, as it will
always be clear from the context in which presentation wenily work. It is easily
seen that we can write a formujaof MSO such thatD = ¢ if, and only if, D is

a decorated expansion aefand the underlying expansiof is acyclic. Letg be the
quantifier rank ofp and let@ be the number of distinatso-types of quantifier rank at
mostq. Note that the values af and@ are determined by and do not depend on the
choice of the expansioA.

Forx € T, we write D, for the substructure b induced by the subtree &
rooted atr, and the elements related to nodes of this subtrel.liyote that the only el-
ements thaD,. shares with the rest @ are inB,,. We writeD[z/D’] for the structure
obtained fronD by replacingD, by D’. Thatis, it is the disjoint union of the structure
D\ D,, obtained by removin®,. from D, with the structurdd’ while identifying the
elements inBP’ (wherer is the root ofD’) with BP. It is then an easy consequence of
Lemma 2.3 thaD =? D[z/D’] if D, =% D’. In particular this implies that iD is an
acyclic decorated expansion thBYjz/D’] is also an acyclic expansion. Fery € T,
we writey < z to denote thay is an ancestor of in T.

We begin with an informal account of the proof of Lemma 5.2eTdea is to start
with an acyclic expansio® that maps homomorphically to a simple path of lendth
for some large enougl. This enables us to find a paity € 7" such thaD, =? D,
andy < z. We can therpump i.e. consider the expansiod¥ := D|z/D,] and
D” := DI[z/D;], etc. in order to obtain larger acyclic expansions with lemgt-
paths. IfD itself consisted of a single path,andy could be chosen so that the pumped
expansions themselves consisted of simple paths and welwebthin a set of such
paths growing linearly in length. HoweverJif contains multiple intersecting paths, the
process of pumping may create new paths, including onesesttbenN. Moreover,
in order to ensure thalll paths in the new expansion are affected by pumping, it is
not sufficient to choose one pumping péit y), rather we need pairs intersecting (in a
suitable way) alk-t-paths inD. Unfortunately, these pairs may overlap and we need to
define the process of pumping carefully.

The difficult part of the proof is therefore to choose the $giairs(x, y) we want to
use, and to define the process of pumping carefully. In thetecaction outlined below,
we show how such a set of pairs can be found such that afteatingehe pumping
processn times, everys-t-path has length at leastand at most¢, for somec € N
that depends ob but not onn. This is enough to prove the lemma. We begin by giving
a definition of pumping for a sef' of pairs(z, y) which form ananti-chainin D (in
a sense we make precise below). We then use this to indyctiedine the pumped
expansions for more general séts
Pumping at an antichain: LetD = (T, B, L) be a decorated expansion afid- 72 a
set of pairgz, y) suchthay < z andif(z,y), (¢/,y') € Cthenx # 2’ andy £ y'. We
define the expansiold¢ by induction onn: D := D andD¢,, := D[z/(DY), :
(z,y) € C].
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In other wordsD¢ is obtained fronD by pumping each pait, y) in C simultane-
ouslyn times. Since, for distinct pairs;, y) and(2’,y’), y andy’ (and hence alse and
z') are incomparable, this is well-defined. We now use this fmdgumping for sets
of pairsC which are not necessarily incomparable. To be specific,asmthatC’ C T
is a set of pairgz, y) with y < x andxz # 2 for distinct pairs(z, y) and(z’,y’). We
define a partial order ot by letting(z, y) C (z/,y’) justin case/ < y and let htz, y)
denote the length of the maximatchain below the paifz, y). Letm be the maximal
value of h{z, y) among all pairs irC'. Write C? for the sef{ (z,y) € C : ht(z,y) = p}.
Pumping: We define the pumped expansions by inductionpoD? = Dgo and
Drt+l = (D2)C""" Finally, letDC denoteD™™.

Intuitively, givenD andC' we pumpD by working bottom-up inD and replacing
recursively for each paifz,y) € C the tree rooted at by the tree rooted aj and
repeat: times. Note that ilC is chosen so that for eagh, y) € C, D, =? D,, then
we also havdD¢ =7 D. In particular,D¢ is an acyclic expansion of. The following
claim is easily established by induction pn

Claim. Everys-t-path inD¢ is of length at most™ - N.

Let b be the maximal branching degree in any decorated expantiorfrmte that
this depends only om) and chooseV € S with N > b9 K whereK := 28 . k4,
Let A be an expansion witnessing that a simple path of ledgik accepted byt and
D = (T, B, L) be the corresponding decorated expansion. By the choidé elvery
s-t-path P in A must containk distinct internal vertices, ... vx such that there is a
chainzp := x; < --- < zx in T with D,, =9 D, forall 4, j andv; € B,,. Choose
for eachs-t-path such a chain and 1&t:= {xp : P is ans-t-path inA}.

If B, consists of the elements, . .., a; in order, we say that a path crosses:
at(a,f) (for1 < a < g < k) if P containsa, andag and no intermediate element
of B,. For afixede p, by the choice of<, we can find a paifa, 3) and a subsequence
x’» of zp of length at leask*” - k2 such that for eact in x’», P crosses at (a, [3).
Let I'” be the collection of the paifg’s, (o, 3)) forzp € I'.

Distant: Say a paifu, v) C By, for somey € T, is distantif for every pathP from v
towv in A there is soméx, (o, 3)) € I such thatP crosses each € z at(a, ).

By construction(s, t) is distant. For eackw, (o, 5)) € I we can choose a pair
z,y € xWwith (z,a1,...,a;) € Band(y,b1,...,b;) € Bsuchthay < = and(a;, a;)
is distant if, and only if(b;, b;) is distant for all;, j. Indeed, asc has at lease”” - k2
elements, we have at ledst distinct choices for. This ensures that we can cho@se
to be a collection of such pai(s;, y), including one from eacliz, («, 8)) € I such
that no two pairs irC' share the same first component.

Foru,v € B,, forsomezr € T, define thgpumping heightf (u, v) to be the length
of the maximal chain (with respect to the ordgeyin C belowx. The following claim
is the key to the pumping argument.

Claim. For allp, n, if the pumping height ofu, v) is at mosp and(u, v) is distant then
the distance ofi andv in D? is at least.

In particular, the claim implies that for € N, everys-t-path inD¢ is of length at
leastn. As C', and hencen, only depend on the initial choice & and not om, we
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have that everg-t-path inD¢ is of length at mosk™ - N. To complete the proof of
Lemma5.2, take; = N +1anda;; = a" . O

To complete the proof of Theorem 5.1, consider the c@sswhereS = {22"2 :
n € N} which is clearly decidable in polynomial time. It is easilgrified that there is
no sequencéu;);c., that satisfies the conditions of Lemma 5.2 for this set. Rinale
note also that the restriction of the claSg to finite structures can be characterised as
{A : A finite andA - B} for a fixed infinite structurd. Simply takeB to be the
structure formed from the disjoint union of all finite ¢ Cs by identifying all copies
of s andt.
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