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Abstract

By Robertson and Seymour’s graph minor theorem, ev-
ery minor ideal can be characterised by a finite family
of excluded minors. (A minor ideal is a class of graphs
closed under taking minors.) We study algorithms for
computing excluded minor characterisations of minor
ideals. We propose a general method for obtaining such
algorithms, which is based on definability in monadic
second-order logic and the decidability of the monadic
second-order theory of trees. A straightforward applica-
tion of our method yields algorithms that, for a given k,
compute excluded minor characterisations for the minor
ideal Tk of all graphs of tree width at most k, the minor
ideal Bk of all graphs of branch width at most k, and
the minor ideal Gk of all graphs of genus at most k.

Our main results are concerned with constructions
of new minor ideals from given ones. Answering a
question that goes back to Fellows and Langston [11],
we prove that there is an algorithm that, given excluded
minor characterisations of two minor ideals C and D,
computes such a characterisation for the ideal C ∪ D.
Furthermore, we obtain an algorithm for computing an
excluded minor characterisation for the class of all apex
graphs over a minor ideal C, given an excluded minor
characterisation for C. (An apex graph over C is a graph
G from which one vertex can be removed to obtain a
graph in C.) A corollary of this result is a uniform ftp-
algorithm for the “distance k from planarity” problem.

1 Introduction

One of the most stunning consequences of Robertson
and Seymour’s graph minor theory is the algorithmic
result stating that every minor ideal has a cubic time
membership test. Here a minor ideal is a class of graphs
closed under taking minors. A puzzling feature of this
result is that it merely states the existence of an algo-
rithm deciding membership in a minor ideal, without
giving an explicit algorithm. For example, the class of
all graphs that can knotlessly1 be embedded into 3-space

1A knotless embedding of a graph into 3-space is an embedding

where no cycle of the graph is non-trivially knotted. The class

is a minor ideal and hence has a cubic time membership
test by Robertson and Seymour’s theorem, but to the
best of our knowledge still no explicit membership test
for this minor ideal is known. Let us analyse how this
comes about. The cubic time membership test for mi-
nor ideals is the direct consequence of two other results
due to Robertson and Seymour. The first is the well-
known graph minor theorem [22], stating that every mi-
nor ideal is characterised by a finite family of excluded
minors, that is, for every minor ideal C there are an
n ≥ 1 and graphs H1, . . . , Hn such that a graph G be-
longs to C if and only if none of the graphsH1, . . . , Hn is
a minor of G. We call {H1, . . . , Hn} an excluded minor
characterisation of C.2 The second result states that for
every graph H there is a cubic time algorithm deciding
whether a given graph G has H as a minor [21]. Let us
call such an algorithm an H-minor test. The algorith-
mic result is perfectly constructive; for everyH , Robert-
son and Seymour construct an explicit cubic H-minor
test. However, the graph minor theorem is not con-
structive; in general, we do not know how to obtain an
excluded minor characterisation of a given minor ideal.
For example, we do not know such a characterisation
for the minor ideal of knotlessly embeddable graphs.
Fellows and Langston [12] observed that there is no al-
gorithm that, given a Turing machine which is a mem-
bership test for a minor ideal, computes an excluded
minor characterisation of the ideal. Later, Courcelle et
al. [5] showed that there is no algorithm that, given a
sentence of monadic second-order logic which defines a
minor ideal, computes an excluded minor characterisa-
tion of the ideal.

Fellows and Langston [9, 10, 11, 12] were the first
to study these algorithmic issues related to the graph
minor theorem (also see [15, 6]). They devised sev-
eral strategies to overcome the “non-constructiveness”
of algorithms based on the minor theorem. The most
obvious, of course, is to compute excluded minor char-

of knotlessly embeddable graphs only serves as examples in this

introduction and will play no further role in the paper.
2Instead of excluded minor characterisation, the term obstruc-

tion set is often used in the literature.



acterisations of the classes in question. In [11], Fellows
and Langston proposed a general method for comput-
ing excluded minor characterisations. It is based on a
generalisation of the Myhill-Nerode theorem of formal
language theory to certain “graph languages”. Here,
we propose a similar method that, instead of on Myhill-
Nerode congruences, is based on definability in monadic
second order logic and generalisations of the Büchi-
Elgot-Trakhtenbrot theorem to graphs [4, 23]. Using our
method, we can easily show that there are algorithms
that, for a given k, compute excluded minor charac-
terisations of the minor ideal Tk of all graphs of tree
width at most k, the minor ideal Bk of all graphs of
branch width at most k, and the minor ideal Gk of all
graphs of genus at most k. These results are not new:
The computability of excluded minor characterisations
of the families Tk of bounded tree width follows easily
from [16], and for the families Bk of bounded branch
width it follows from [13] (and is also mentioned, with-
out proof, in [2]). For the families Gk of bounded genus,
it follows from [24] or a combination of [11] and [25]
(cf. [18], p.222).

Our main results are concerned with constructions
of new minor ideals from given ones. Answering a
question that goes back to Fellows and Langston [11]
(and later was also asked by Courcelle et al. [5]), we
prove that there is an algorithm that, given excluded
minor characterisations for two minor ideals C and D,
computes an excluded minor characterisation of the
minor ideal C∪D. (Note that it is trivial to obtain such a
characterisation for the minor ideal C ∩D.) Fellows and
Langston [11] observed that an algorithm computing an
excluded minor characterisation of C ∪ D exists if an
effective bound on the tree width of the excluded minors
for C ∪ D could be obtained, but left open the problem
of obtaining such a bound. Using a deep result due to
Robertson and Seymour [21, 19], we give such a bound.
Cattell et al. [3] had earlier established the special case
of our result where one of the ideals C,D is of bounded
pathwidth.

We say that a graph G is an apex graph over a class
C of graphs if there is a vertex v ∈ V (G) such that the
graph G \ {v} obtained from G by deleting v belongs
to C. Let us denote the class of all apex graphs over C
by Capex. Observe that if C is a minor ideal then so is
Capex. We show that there is an algorithm that, given
an excluded minor characterisation of a minor ideal C,
computes an excluded minor characterisation of Capex.
Iterating the algorithm, of course we can also compute
excluded minor characterisations of the classes of all
graphs from which we can delete a fixed number k of
vertices to obtain a graph in C.

As a corollary, we obtain a uniform fixed-parameter

tractable algorithm for the problem of deciding whether
a graph has “distance k” from the class of planar graphs
or from any other minor ideal. More precisely, for every
minor ideal C we obtain an algorithm that, given a graph
G and a nonnegative integer k, decides in time f(k) ·n3

if there is a set X of at most k vertices of G such that
G \X ∈ C. Here f is some computable function on the
integers. Note that it is an immediate consequence of
the graph minor theorem that for every fixed k there is
a cubic time algorithm that decides if a given graph has
distance at most k from planarity; the point here is the
uniformity, which means that we have one algorithm
which works for all k. As was pointed out to us by Mike
Fellows, the result can also be derived by a technique
from [12] called effectivization by self reduction (cf. [6],
Sec. 7.9.1). For planar graphs, it has independently
been obtained by Marx and Schlotter [17].

2 Preliminaries

In this section we briefly recall basic notions from graph
minors and logic and prove some basic lemmas.

2.1 Graphs, Minors, and Minor Ideals Graphs
in this paper are finite, simple, and undirected. We
denote the vertex set of a graph G by V (G) and its edge
set by E(G). We always assume that V (G)∩E(G) = ∅.
The degree of a vertex v in a graph G is denoted by
degG(v), and the maximum degree of G is denoted by
∆(G).

A tree decomposition of a graph G is a pair T :=
(T,B), where T is a tree and B is a mapping that
associates with every node t ∈ V (T ) a set Bt ⊆ V (G)
such that G =

⋃

t∈V (T )G[Bt], and for every v ∈ V (G)

the set B−1(v) = {t ∈ V (T ) : v ∈ B(t)} is connected
in T . Here, G[Bt] denotes the subgraph of G induced
by Bt. The sets Bt, for t ∈ V (T ), are called the bags
of the decomposition T . The width width(D) of a tree
decomposition D is defined as max{|Bt|−1 : t ∈ V (T )}
and the tree width tw(G) of a graph G is defined as
min{width(T ) : T tree decomposition of G}. Finally, a
class C of graphs has bounded tree width, if there is a
constant k ∈ N such that tw(G) ≤ k for all G ∈ C. We
denote the class of graphs of tree width ≤ k by Tk.

For the rest of this paper we assume that the tree T
underlying a tree decomposition (T,D) is sub-cubic, i.e.
a tree of maximum degree at most 3. This is w.l.o.g. as
any tree decomposition can easily be converted into one
where the underlying tree is sub-cubic.

A graph H is a minor of G, in terms H 4 G,
if for each v ∈ V (H) there is a non-empty connected
subgraph Tv ⊆ G such that for all u, v ∈ V (H), if
u 6= v then V (Tv) ∩ V (Tu) = ∅ and if there is an
edge e ∈ E(H) between u and v then there is an edge



ie ∈ E(G) with one endpoint in Tu and one endpoint
in Tv. The subgraph

⋃

v∈V (H) Tv ∪
⋃

e∈E(H) ie of G
is called a model of H in G and the function taking
v ∈ V (H) to Tv and e ∈ E(H) to ie ∈ E(G) is called
the corresponding minor map. By a minimal model of
H in G we mean a model where all Tv are trees with
degH(v) many leaves. Clearly, if H 4 G, then there is
a minimal model of H in G.

A minor ideal is a class C of graphs that is down-
ward closed under the minor relation 4, that is, if G ∈ C
and H 4 G, then H ∈ C.

Definition 2.1. Let C be a minor ideal. A set F of
finite graphs is a set of excluded minors for C if

• H 64 G for all G ∈ C and H ∈ F

• for every G 6∈ C there is a H ∈ F with H 4 G

We define an ordering ≤C among the sets of ex-
cluded minors for C where F1 := {F1, . . . , Fk} ≤C

F2 := {H1, . . . , Hl} if either f1 :=
∑k

i=1 |V (Fi)| <

f2 :=
∑l

i=1 |V (Hi)| or f1 = f2 and
∑k

i=1 |E(Fi)| <
∑l

i=1 |E(Hi)|.
A set F of excluded minors for C is minimal, if it

is minimal with respect to ≤C.

Theorem 2.1. (Graph Minor Theorem [22])
Every minor ideal has a finite set of excluded minors.

Lemma 2.1. Up to isomorphism, there is only one
minimal set of excluded minors for any minor ideal C.

We omit the straightforward proof.
For a minor ideal C we denote the minimal set of

excluded minors by F(C).

Lemma 2.2. Let k > 0, and let H 4 G with |V (H)| =
k. Then any minimal model G′ of H in G has tw(G′) ≤
k2 + 1.

We omit the straightforward proof.

Corollary 2.2. For all graphs H,G, if H 4 G then
there is a subgraph G′ of G with H 4 G′ satisfying
tw(G′) ≤ |V (H)|

2
+ 1.

Observe that by the graph minor theorem and
Corollary 2.2, for every minor ideal C there is a k such
that every graph G 6∈ C has a subgraph G′ ⊆ G such
that G′ 6∈ C and tw(G′) ≤ k.

Definition 2.2. Let C be a minor ideal. The least k
such that for all G 6∈ C there is a G′ ⊆ G with G′ 6∈ C
and tw(G′) ≤ k is called the width of C and denoted by
width(C).

Although every minor ideal has bounded width, it is
not clear how to compute an upper bound for the width
of a class. An upper bound follows from Lemma 2.2 if we
are given the excluded minors. Otherwise, it is far from
clear how to compute the width and indeed much of the
present paper will be spent on proving upper bounds for
the width of various minor ideals.

2.2 Monadic Second-Order Logic We briefly re-
call monadic second-order logic (see e.g. [7]). A signa-
ture is a finite set τ := {R1, . . . , Rk} of relation symbols
Ri, each equipped with an arity ar(Ri). A τ -structure
is tuple A := (U, (R)A

R∈τ ) consisting of a finite uni-

verse U and for each R ∈ τ a relation RA ⊆ Uar(R).
With every graph G we associate a relational structure
G := (V (G) ∪̇ E(G), V G, EG, IG), over the signature
τgraph := {V,E, I}, where V G := V (G), EG := E(G),
and IG := {(v, e) : e ∈ E(G), v ∈ e ∩ V (G)}. In the se-
quel, we do not distinguish notationally between a graph
and the associated relational structure.

Monadic Second-Order Logic (MSO) is the exten-
sion of first-order logic by quantification over sets.
E.g. formulas of MSO over τgraph are built up induc-
tively from atoms x ∈ V, e ∈ E, and (x, e) ∈ I us-
ing Boolean connectives, first-order quantifiers ∃x, ∀x
and second-order quantifiers ∃X, ∀X . Here, x, y, e, ...
are first-order variables interpreted by single elements
form V (G) ∪ E(G) and X,Y, ... are second-order vari-
ables interpreted by sets of elements. As the universe
of structures G considered here contains edges and ver-
tices, we can use set quantification over sets of edges
and sets of vertices. We illustrate the definition by an
example.

Example. Let H be a finite graph with
V (H) := {v1, . . . , vk}. Let ϕH be the MSO-sentence
∃X1 . . .∃Xkψ where ψ is defined as









∧

i6=j Xi ∩Xj = ∅ ∧
∧

i(∅ ( Xi ⊆ V ∧

”Xi is connected”) ∧
∧

{vi,vj}∈E(H) ∃xi ∈ Xi∃xj ∈ Xj∃z((xi, z) ∈ I ∧

(xj , z) ∈ I),









where “Xi is connected” can easily be expressed in MSO.
The formula is true in a graph G if there is a minor map
ϕ fromH into G, where the setsXi represent the images
ϕ(vi).

Hence, for every graph G, G |= ϕH if, and only
if, H 4 G. If H is a finite set of graphs then ϕH :=
∨

H∈H ϕH is true in a graph G if, and only if, at least
one graph of H is a minor of G. Hence, ¬ϕH defines the
minor ideal F(H).



Theorem 2.3. (Seese [23]) For each k ∈ N, it is
decidable for a given MSO-formula whether it is true
in a graph of tree width at most k.

2.3 Extending Structures by Tree Decomposi-

tions To define certain properties of graphs in MSO, it
is sometimes more convenient if the MSO-formulas can
explicitly refer to tree decompositions of graphs. We
will therefore equip graphs with a tree decomposition,
i.e. consider structures consisting of a graph and a tree
decomposition of the graph. Recall that we only con-
sider tree decompositions in this paper where the un-
derlying graph is sub-cubic.

Definition 2.3. (Tree-Dec Expansions) Let G be
a graph and T := (T,B) be a tree decomposition of G.
Let τex := {V,E, I, T, ET , IT , B}, where V,E, T,ET are
unary relation symbols and I, IT , B are binary.

The tree-dec expansion TreeExp(G, T ) of G and T
is the τex-structure

(V (G) ∪̇ E(G) ∪̇ V (T )∪̇ E(T ),

V G, EG, IG, TG, EG

T , I
G

T , B
G),

where V G, EG, IG are as above and TG := V (T ), EG

T :=
E(T ), IG

T := {(t, e) : e ∈ E(T ), t ∈ e ∩ V (T )} and
BG := {(t, u) : t ∈ V (T ), u ∈ Bt ∩ V (G)}.

Intuitively, we think of tree-dec expansions G as of
two-sorted structures consisting of the graph G and the
tree decomposition T . The proof of the following lemma
is straightforward.

Lemma 2.3. (i) If G is a graph and T a tree decom-
position of G of width k, then the tree width of
TreeExp(G, T ) is at most k + 2.

(ii) There is an MSO-sentence ϕex so that for any τex-
structure G, G |= ϕex if, and only if, G is a Tree-
Dec Expansion of a graph G.

We denote the class of structures TreeExp(G, T ),
for G ∈ Tk and T a tree decomposition of G of width
at most k, by TreeExp(Tk). It follows from Lemma 2.3
that TreeExp(Tk) is a class of structures of tree width
at most k + 2.

Corollary 2.4. For all k ∈ N, it is decidable
whether a given MSO-formula is satisfied in some G ∈
TreeExp(Tk).

2.4 Dynamic Programming and MSO-

definability MSO is a powerful logic on graphs
and many interesting properties of graphs can be
expressed naturally in this logic. In fact, for various

problems, their mathematical formalisations only use
set and individual quantification and therefore are al-
ready MSO-definitions. However, sometimes algorithms
for a certain problem on graph classes of bounded tree
width are already known and we don’t want to prove
an equivalent MSO-definition.

In this section we therefore develop a strong rela-
tionship between dynamic programming algorithms as
they are typically employed on graph classes of bounded
tree width and MSO-definability.

A typical linear time dynamic programming algo-
rithm on classes of graphs of bounded tree width, tlp-
algorithm for short, is an algorithm that, given a graph
G and a tree decomposition T of G of width at most
k as input, computes a data record for each node of T ,
starting at the leaves and proceeding bottom up, so that

• whether or not the algorithm accepts G only de-
pends on the record computed for the root of T

• there are only constantly many possible data
records

• the record computed for a leaf t of T only depends
on the isomorphism type of Bt

• the record computed for an inner node t can be
computed in constant time from the isomorphism
type of Bt and the records computed for the
children.

Many algorithms developed for graphs of small tree
width are actually of this form, e.g. standard algorithms
for 3-colourability, dominating set, vertex cover and
many more. For instance, for the 3-colourability prob-
lem, the data record computed for a node t ∈ V (T ) of
a tree decomposition (T,B) of a graph G consists of all
possible 3-colourings of Bt that can be extended to a 3-
colouring of the subgraph of G induced by the vertices
contained in bags in the subtree of T rooted at t. An-
other example is the algorithm given by Bodlaender and
Kloks in [1] which, given a graph G and a tree decom-
position of G of (possibly non-optimal) width w, and a
number k decides whether G has tree width at most k
in time exponential in w and linear in the size of G.

Lemma 2.4. Let A be a tlp-algorithm. There is an MSO

sentence ϕA such that given a structure TreeExp(G, T )
of a graph G and a tree decomposition T of G, G

satisfies ϕA if, and only if, A accepts the pair (G, T ).

Proof. Let C := {C1, . . . , Cl} be the constant set of
possible data records used by A. The sentence ϕA is
defined as ϕA := ∃C1 . . .∃ClψA, where ψA is a first-
order sentence stating that every node of T is contained
in exactly one set Ci and that the colours Ci assigned



to the nodes of T are consistent with the data records
computed by A on T . The latter can be defined in FO,
as the data record, and hence the colour of a node t, only
depends on the isomorphism type of Bt and the data
records/colours of the successors. Hence, this is finite
information that can be coded directly in the first-order
formula. �

Recall from above that the Bodlaender, Kloks algo-
rithm from [1] is a tlp-algorithm. Hence, we immedi-
ately obtain the following corollary.

Corollary 2.5. For every k ∈ N there is an MSO-
sentence ϕk such that a structure TreeExp(G, T ) ∈
TreeExp(Tl), for some l ≥ k, is a model of ϕk if, and
only if, tw(G) = k.

The following strengthening of Seese’s Theorem 2.3
will be useful later on.

Theorem 2.6. For every k it is decidable whether a
given MSO-formula is satisfied by a graph of tree width
exactly k.

Proof. Let ϕ be an MSO-sentence and k ∈ N. To decide
if ϕ has a model of tree width exactly k we test whether
ϕ ∧ ϕex ∧ ϕk is satisfiable in TreeExp(Tk). Here, ϕex is
the MSO-sentence defined in Lemma 2.3 and ϕk is the
sentence defined in Corollary 2.5. By Corollary 2.4, this
is decidable. �

We remark that by the proof of Courcelle’s theorem
(see [4]), every MSO-definable problem can be solved by
a tlp-algorithm on graph classes of bounded tree width.

Corollary 2.7. Let C be a class of bounded tree width.
A problem can be solved by a tlp-algorithm on C if, and
only if, it is MSO-definable on the class TreeExp(C).

3 Computing Excluded Minors

In this section we develop a general machinery for
computing minimal sets of excluded minors that will
be applied to various minor ideals in Sections 4 and 5.

Definition 3.1. A class C of graphs is layerwise MSO-
definable, if for every k ∈ N we can compute an MSO-
formula ϕk defining C ∩ Tk in TreeExp(Tk).

We will show next that if C is a minor ideal that
is layerwise MSO-definable and for which we are given
an upper bound on its width, then we can compute the
minimal set of excluded minors for C. We will state
this result in two equivalent forms, a logical form that
we actually prove (cf. Lemma 3.1) and an equivalent
algorithmic form.

Lemma 3.1. The minimal set of excluded minors is
computable for every layerwise MSO-definable class of
graphs, provided we are given an upper bound on its
width.

Formally, there is an algorithm that, given w ∈ N

and (an algorithm computing) a computable function
g : N → MSO so that there is a minor ideal C with

• for every k ∈ N, ϕk := g(k) defines C ∩ Tk in
TreeExp(Tk) and

• the width of C is at most w,

then the algorithm computes F(C).

Proof. We first show that for any given set F :=
{F1, . . . , Fm} we can decide if F is a set of excluded
minors for C. For this, we show that the following two
statements are decidable.

(1) Is (G ∈ C ∧ ∃ i : Fi 4 G) unsatisfiable?

(2) Is (G /∈ C ∧ ∀ i : Fi 64 G) unsatisfiable?

Towards (1), it suffices to check whether Fi ∈ C
for some 1 ≤ i ≤ m. However, as there are no
assumptions on the membership problems of C, we give
a general method that works for all classes C satisfying
the prerequisites of the lemma. Suppose there is aG ∈ C
with a minor Fi 4 G. By Lemma 2.2, there is G′ ⊆ G
of tree width at most |V (Fi)|

2 + 1 with Fi 4 G′. As
C is closed under taking subgraphs, G′ ∈ C. Hence,
(G ∈ C ∧ ∃i : Fi 4 G) is satisfiable if, and only if, it
is satisfiable by a graph of tree width at most k, where
k := max{|V (Fi)|

2 + 1 : Fi ∈ F}.
By assumption, the class C ∩ Tk is MSO-definable

in TreeExp(Tk) by ϕC := g(k). Let ϕF be the MSO-
sentence from Example 2.2 saying that every model of
ϕF has at least one graph F ∈ F as a minor. Then there
is a G ∈ C with Fi 4 G, for some 1 ≤ i ≤ m if, and only
if, the sentence ϕC ∧ ϕF is satisfiable in TreeExp(Tk) –
which is decidable by Corollary 2.4.

Towards (2), suppose there is a G 6∈ C and Fi 64 G
for all 1 ≤ i ≤ m. As the width of C is bounded by w,
G has a subgraph G′ of tree width tw(G′) ≤ w so that
G 6∈ C. Clearly, Fi 64 G′ for all 1 ≤ i ≤ m.

Let ϕw := g(w) be the MSO-sentence that defines
C ∩ Tw in TreeExp(Tw). Then there is a graph G /∈ C
of tree width at most w with no minor Fi ∈ F if, and
only if, ¬ϕw ∧ ¬ϕF is satisfiable in TreeExp(Tw). This
is decidable by Corollary 2.4.

Hence, we can decide for each finite set F of graphs
if it is a set of excluded minors for C. Enumerating all
finite sets F of graphs in a way respecting the ordering
≤C of Definition 2.1, the first set F of excluded minors
for C will be F(C). �



For the algorithmic variant of the lemma, we say
that a class C of graphs is layerwise decidable, if for every
k ∈ N we can compute a tlp-algorithm that decides for
any graph G of tree width at most k if G ∈ C.

Corollary 3.1. The set F(C) of excluded minors is
computable for every layerwise decidable class C of
graphs given an upper bound w of its width.

Often we can use a slightly simpler form of the
previous lemma and corollary.

Corollary 3.2. There is an algorithm that, given an
MSO-formula ϕ and w ∈ N, so that ϕ defines a minor
ideal C of width at most w, computes the set F(C).

Proof. This follows from Lemma 3.1 by setting g(k) := ϕ
for all k. �

4 Computing Excluded Minors for Specific

Classes of Graphs

In this section we present some immediate applications
of the machinery developed in Section 3 and show that
the set of excluded minors are computable for various
natural families of minor ideals.

4.1 Bounded Tree Width and Branch-Width

As a first and simple example we show that, given
k ∈ N, the set of excluded minors is computable for
the class of graphs of tree width at most k and the class
of graphs of branch-width at most k. The following
theorem is also an immediate consequence of a result
due to Lagergren [16] giving an upper bound on the
size of the excluded minors for the class Tk.

Theorem 4.1. ([16]) There is an algorithm that, given
k > 1, computes F(Tk).

Proof. Let k > 1. Clearly, Tk has width k + 1, as every
graph G of tree width ≥ k + 1 has a subgraph of tree
width k + 1. Furthermore, by Corollary 2.5, for every
l > 1 we can compute an MSO-sentence ϕl defining
Tk∩Tl in TreeExp(Tl). Hence, the theorem follows from
Lemma 3.1. �

Another type of graph decompositions related to
tree width is the notion of branch-decompositions and
the associated width measure branch-width. Whereas
a tree decomposition is a decomposition of the vertex
set of a graph, a branch-decompositions decomposes its
edge set. We refrain from giving details here and refer
the reader to [20]. Let Bk denote the class of graphs of
branch-width at most k.

The branch-width and tree width of a graph are
within a constant factor but clearly the sets of excluded

minors for Tk and Bk differ. In [2], Bodlaender and
Thilikos give for any fixed k ∈ N a linear-time algorithm
for deciding whether a graph has branch-width exactly
k. It follows from their result that there is an tlp-
algorithm to decide the branch width of a graph given a
tree decomposition of potentially non optimal width.
Hence, an analogous reasoning as for Theorem 4.1
establishes the following theorem. The theorem has
already been stated in [2], and it also follows easily from
an upper bound on the size of the excluded minors for
matroids of bounded branch width [13].

Theorem 4.2. ([2, 13]) There is an algorithm that,
given k > 1, computes F(Bk).

4.2 Bounded Genus The (orientable) genus of a
graphG is the minimum genus of an orientable surface S
such that G can be embedded into S. (We only consider
orientable surfaces here, but the same results hold for
nonorientable surfaces as well.) Let Gk be the class of
all graphs of genus at most k.

It is not hard to prove that for every k there is a
sentence ϕk of monadic second-order logic that defines
the class Gk: We construct ϕk inductively. ϕ0 just says
that a graph does not contain K5 or K3,3 as a minor.
In the inductive step, we use the fact that a graph has
genus k + 1 if any only if we can “cut the graph along
some cycle” such that the resulting graph has genus
k. If we choose the shortest such cycle, we can further
assume that this cycle is chordless. In the MSO-sentence
ϕk+1, we existentially guess such a cycle and also which
edges incident with the cycle go on which side of the
cut, and then use ϕk to express that the graph obtained
by cutting along this cycle is in Gk.

A graph G is critical for Gk if G 6∈ Gk, but G′ ∈ Gk

for every proper subgraph G′ ⊂ G. Thomassen [25]
proved that there is a computable function g such that
every graph G that is critical for Gk has tree width at
most g(k). Now the following theorem is an immediate
consequence of Lemma 3.1. It was observed in [18]
that it can also be derived from Thomassen’s result by
the techniques of [11]. Furthermore, it follows from an
unpublished result due to Seymour [24] giving an upper
bound on the excluded minors for graphs of bounded
genus.

Theorem 4.3. ([11, 18, 24, 25]) There is an algo-
rithm that, given k > 1, computes F(Gk).

5 Constructions

In this section we give the main new applications of
our method for computing excluded minors. Whereas
in the previous section we showed that excluded minors
are computable for specific classes of graphs, we now



study ways to compute the excluded minors for derived
classes of graphs given the excluded minors for the base
classes.

5.1 Apices For any given class C of graphs we can
construct the class of graphs G such that there is a
vertex v ∈ V (G) for which G \ v ∈ C. We call this
vertex an apex of G with respect to C. We denote the
class of graphs having an apex with respect to C by
Capex. The aim of this section is to show the following
theorem.

Theorem 5.1. If C is a minor ideal whose set of
excluded minors is given, then we can compute the
excluded minors of Capex.

By iterating this construction, we can compute for
any k the set of excluded minors for the class of graphs
G for which there are k vertices v1, . . . , vk such that
G \ {v1, . . . , vk} ∈ C.

We now prove Theorem 5.1. Let C be a minor
ideal. As before, we aim at applying Lemma 3.1. Using
Example 2.2, it is easily seen that for each k ∈ N,
Capex ∩ Tk is MSO-definable over TreeExp(Tk). Hence,
it remains to show that Capex has effectively bounded
width. We first need some preparations.

5.1.1 Walls, Layouts, and Linkages An elemen-
tary wall of height h ≥ 1 is a graph defined as in Fig-
ure 1(a). A wall of height h is a subdivision of an el-
ementary wall of height h. The perimeter of a wall is
the boundary cycle. A wall in a graph G is a wall W
that is a subgraph of G. Note that, up to homeomor-
phisms, walls have unique embeddings in the sphere.
For walls of height 1, this is obvious, and for walls of
height h ≥ 2 this follows from a well known theorem due
to Tutte stating that 3-connected graphs have unique
embeddings, because walls of height ≥ 2 are subdivi-
sons of 3-connected graphs.
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Figure 1: Elementary walls of height 2–4

For a subgraph D of a graph G, we let ∂GD be the
set of all vertices of D that are incident with an edge in
E(G) \ E(D).

In the following, let W be a wall of height at least
2 in a graph G, and let P be the perimeter of W . Let
K ′ be the unique connected component of G \ P that
contains W \ P . The graph K = K ′ ∪ P is called the
compass of W in G. A layout of K (with respect to the

wall W in G) is a family (C,D1, . . . , Dm) of connected
subgraphs of K such that:

1. K = C ∪D1 ∪ . . . ∪Dm;

2. W ⊆ C, and there is no separation (X,Y ) of C of
order ≤ 3 with V (W ) ⊆ X and Y \X 6= ∅;

3. ∂GDi ⊆ V (C) for all i ∈ {1, . . . ,m};

4. |∂GDi| ≤ 3 for all i ∈ {1, . . . ,m};

5. ∂GDi 6= ∂GDj for all i 6= j ∈ {1, . . . ,m}.

We let C be the graph obtained from C by adding new
vertices d1, . . . , dm and, for 1 ≤ i ≤ m, edges between di

to the vertices in ∂GDi and edges between all vertices
in ∂GDi. Hence, for each i ∈ {1, . . . ,m} the vertex di

together with the (at most 3) vertices in ∂GDi form a
clique. We call C the core of the layout and D1, . . . , Dm

its extensions. The layout (C,D1, . . . , Dm) is flat if its
core C is planar. Note that this implies that the core has
an embedding in the plane that extends the “standard
planar embedding” of the wallW (as shown in Figure 1),
because the wall W has a unique embedding into the
sphere. We call the wall W flat (in G) if the compass
of W has a flat layout.

The following lemma is (essentially) Lemma (9.8)
of [21]. Concerning the uniformity, see the remarks at
the end of [21] (on page 109).

Trinity Lemma (Robertson and Seymour [21]).
There are computable functions f, g : N2 → N and
an algorithm A that, given a graph G and nonnegative
integers k, h, computes either

1. a tree decomposition of G of width f(k, h), or

2. a Kk-minor of G, or

3. a subset X ⊆ V (G) with |X | <
(

k
2

)

, a wall W of
height h in G\X, and a flat layout (C,D1, . . . , Dm)
of the compass of W in G \ X such that the tree
width of each of the extensions D1, . . . , Dm is at
most f(k, h).

Furthermore, the running time of the algorithm is
bounded by g(k, h) · |V (G)|

2
.

A linkage L in a graph G is a subgraph whose
components are paths. For a set Z ⊆ V (G), the effect
of L on Z is defined as the partition of Z ∩ V (L) where
two vertices belong to the same class if they belong to
the same component of L.



5.1.2 Models in Critical Graphs A graph G is
called critical for Capex, if G 6∈ Capex but G′ ∈ Capex

for every proper subgraph G′ ⊂ G. Let F(C) :=
{H1, . . . , Hm}. To show that Capex has effectively
bounded width we prove that the tree width of its
critical graphs is bounded by f(H1, . . . , Hm) for a
computable function f from finite sets of graphs to
natural numbers.

Let G be a critical graph for Capex and let c :=
max{|Hi| : 1 ≤ i ≤ m}. We set k := c + 2 and let h
be “large”. We will explain how to choose h as we go
along. For the following arguments, assume that h is
“large enough”.

By the Trinity Lemma, there is a computable
function f(k, h) such that G either has (1) tree width
at most f(k, h), or (2) a Kk-minor, or (3) a subset
X ⊆ V (G) with |X | <

(

k
2

)

, a wall W of height h in
G\X , and a flat layout (C,D1, . . . , Dm) of the compass
of W in G \X such that the tree width of each of the
extensions D1, . . . , Dm is at most f(k, h).

Clearly, Case 2 is impossible, as then G would have
a proper subgraph containing a Kc+1 minor. We show
next that Case 3 is impossible as well and hence the tree
width of G is bounded by f(k, h).

Suppose Case 3 applies. Let P be the perimeter of
the wall W . As G 6∈ Capex, there is a model of some Hi

in G. Let H be a minimal model of Hi in G. We use H
both for the minor map and the model of Hi in G. A
vertex v ∈ V (H)∩C is called important, if it is in C \P
and

1. v has degree at least 3 in H , or

2. v ∈ H(e) for some e ∈ E(Hi), or

3. v has a neighbour in X ∩ V (H), or

4. there is a path in H from v to a vertex u ∈ V (H)
in an extension D, so that the internal vertices of
the path are all contained in D and the degree of u
in H is at least 3, or u ∈ H(e) for some e ∈ E(Hi),
or there is an edge in H from u to a vertex x ∈ X .

From the minimality of the model H of Hi in G and
the fact that each x ∈ X ∩ V (H) can have at most |Hi|
neighbours in V (H), we can infer that the number of
important vertices is bounded by O(|Hi|). Hence, as h
is large, by the pigeonhole principle there is a subwall
W ′ of W whose compass contains no important vertex
(and which is still large enough). It follows that the
intersection of H with the compass of W ′ is a set LH

of paths whose endpoints are outside of W ′. Now we

replace the compass of W ′ in G by its planar core C
′
,

i.e. we contract each extension Di to a new single vertex
di and add edges between any pair of vertices in ∂Di.

Let G′ be the new graph. As |∂Di| ≤ 3 for all Di,
each extension can be traversed by at most one path
in LH . Hence, LH induces a unique linkage L in G′

with the same effect on the set of important vertices. L
is a linkage between important vertices and hence the
number of paths in L is bounded by O(|H |). We show
next that we can find another linkage L′ with the same
effect on the set of important vertices that only uses the
outermost g(|L|) shells of the wall W ′ (cf. Figure 2).
The next lemma follows immediately from 3.1 in [19]
letting Γ := W , K := G \ (W − P ), and choosing Z as
the set of endpoints of L, as any vertex of W not in the
outer g(|L|) circuits is g(|L|)-insulated from K.

Figure 2: The shells of a wall of height 5

Lemma 5.1. There is a computable function g : N → N

such that if W ⊆ G is a wall that is flat in a graph G
and L is a linkage in G whose endpoints are disjoint
from W , then there is a linkage L′ in G with the same
effect on the endpoints as L such that (G \W )∩L′ ⊆ L
and every vertex v ∈ V (W ) ∩ V (L′) is contained in the
outer g(|L|) circuits of W .

The linkage L′ also induces a model H ′ of Hi in G
that has an empty intersection with the inner shells of
W ′. Hence, there is a “large” subwall W ′′ of W ′ that
has an empty intersection with L′ (and H ′).

For any graph G we let the folio of G be the class
of all minors of G. For δ ≥ 0, we say that a graph H
has detail at most δ if |E(H)| ≤ δ and |V (H)| ≤ δ and
define the δ-folio of G to be the class of all minors of G
of detail at most δ.

In the following, we let δ := max{|V (Hi)|, |E(Hi)|}.
The following lemma is an immediate consequence of
(10.3) and the algorithm in (10.4) in [21].

Lemma 5.2. There is a computable function f : N ×
N → N so that if the height of W ′′ is at least f(|X |, δ),
then there is a subwall W ′′′ of W ′′ of which both middle
vertices are irrelevant for the δ-folio of G.

The subwall W ′′′ guaranteed by the previous lemma
is called homogeneous in [21]. We remark that a
homogeneous wall in a graph G remains homogeneous
if we delete a vertex w0 from G that is not contained in
the compass of the wall. This is used below.

Let v0 be one of the middle vertices of W ′′′ and let
G′ := G\v0. AsG is a critical graph,G′ ∈ Capex. Hence,



there is a vertex w0 in V (G′) so that G′ \w0 ∈ C. Recall
that H ′ is a model of Hi in G that does not contain
v0. Hence, H ′ is a model of Hi in G′ and therefore
w0 ∈ V (H ′). Thus, w0 is not in the compass of W ′′′.

Let G′′ := G\w0. As G 6∈ Capex, G′′ 6∈ C. Therefore,
there is a model of some Hi ∈ {H1, . . . , Hm} in G′′. As
w0 is not contained in the compass of W ′′′ in G, W ′′′

is still a flat homogeneous subwall of G′′ and hence the
two middle vertices of W ′′′ are still irrelevant for the δ-
folio of G′′. It follows, that G′′\v0 still contains a model
of Hi and therefore G′′ 6∈ C. But this is a contradiction,
as G′′ \ v0 = G′ \ w0.

This shows that if initially we choose h large enough
so that after applying the various constructions above
the wall W ′′ can be guaranteed to be large enough to
apply Lemma 5.2 for our value of δ, then Case 3 of
the Trinity Lemma is impossible as well. Hence, the
tree width of G is bounded by f(k, h), where f is the
function from the Trinity Lemma. This shows that
critical graphs have bounded tree width and concludes
the proof of Theorem 5.1.

5.2 Excluded Minors for Unions of Classes The
last application of our method we give is to show that we
can compute the set of excluded minors for the union
of two minor ideals, provided that we are given their
excluded minors.

Theorem 5.2. There is an algorithm that, given two
classes C1, C2 of finite graphs represented by their sets of
excluded minors F(C1) := {H1, . . . , Hl} and F(C2) :=
{I1, . . . , Ir}, computes the set of excluded minors for the
union C := C1 ∪ C2.

Proof. We aim at applying Corollary 3.2. Towards this
aim, we first establish an effective bound on the width
of C. Let G 6∈ C. Hence, there are Hi ∈ {H1, . . . , Hl}
and Ij ∈ {I1, . . . , Ir} such that Hi 4 G and Ij 4 G. Let
H and I be models of Hi and Ij in G such that |I ∪H |
is as small as possible. We use H both for the model
mapping and the imageH ⊆ G and likewise for I. It will
always be clear what is meant. Let G′ := H ∪ I ⊆ G.
Further, let k := max{|Hi|, |Ij |} and choose h “large
enough”, where, as in the previous section, the meaning
of large enough will become clear in the course of the
proof.

By the Trinity Lemma, G′ either has a) tree width
bounded by some f(k, h) for some computable function
f , or b) a Kk minor, or c) there is a subset X ⊆ V (G)
with |X | <

(

k
2

)

, a wall W of height h in G \ X , and a
flat layout of the compass of W in G \X .

Suppose Case c) applies. Note that every vertex in
G′ has degree at most 2k. If, initially, we choose h large
enough, we can argue as in the previous section and use

Lemma 5.2 to find a large homogenous subwallW ′ of W
whose compass is disjoint fromX . Again by Lemma 5.2,
the middle vertex v0 of W ′ is irrelevant for the k-folio of
G′ and we can remove it to obtain a graph G′′ := G\ v0
that still has Ij and Hi as a minor, contradicting the
minimality of H and I. Hence, Case 3) is impossible.

For Case b), Lemma 2.2 implies that G′, and hence
G, has a subgraph of tree width at most k2+1 containing
a Kk minor and therefore also an Ij and an Hi minor.

Finally, in Case a) the tree width of G′ is bounded
by a computable function in h and k. In either case, we
have found a uniform upper bound for the tree width of
a subgraph of G containing an Ij and an Hi minor. This
shows that C has effectively bounded with. To conclude
the proof we need to show that C is MSO-definable. But
this follows immediately from Example 2.2. �

6 Conclusion and Open Problems

We have introduced a general method for computing
excluded minors for minor ideals that is based on MSO-
definability on graphs of small tree width and the notion
of the width of a minor ideal. As straightforward
applications of this method we showed that excluded
minors for several natural minor ideals are computable,
in particular for the classes of graphs of tree width at
most k, branch-width at most k, or of bounded genus.

We have also demonstrated the usefullness of our
method by giving far more advanced examples. In
particular, we showed that excluded minors can be
computed for the class of apex graphs over a minor
ideal whose excluded minors we know already, or for
the union of two minor ideals, provided we are given the
excluded minors of the base classes. The latter answers
an open question from [5].

We conclude the paper by stating some open prob-
lems. In [8], Eppstein introduced minor ideals with
the diameter tree width property, which is now more
commonly known as bounded local tree width. We
briefly recall the definition. Let G be a graph. For
every vertex v ∈ V (G) and every r ≥ 1 we define
the r-neighbourhood NG

r (v) of v as the set of vertices
of distance at most r from v. The local tree width of
G is the function ltw(G, · ) defined by ltw(G, r) =
max

{

tw
(

G[NG
r (v)]

)

: v ∈ V (G)
}

. For all nonnega-

tive integers λ, µ we let L(λ) =
{

G : ∀H 4 G ∀r ≥

0 : ltw(H, r) ≤ λ · r
}

, and L(λ, µ) =
{

G : ∃X ⊆

V (G) s. th. |X | ≤ µ and G \X ∈ L(λ)
}

.
Minor ideals of bounded local tree width have many

interesting algorithmic properties. Another reason these
classes are interesting is the fact that for every k ∈ N

there are λ, µ ∈ N such that every graphG with Kk 64 G
has a tree decomposition over L(λ, µ) (see [14]). We do



not currently know how to compute upper bounds wλ

for the width of the classes L(λ). It is, however, easily
seen that they are layerwise MSO definable. Hence, we
obtain the following consequence.

Corollary 6.1. For each λ ∈ N, an upper bound on
the width of L(λ) is computable if, and only if, the set
F(L(λ)) is computable.

Observe that, by the results of Section 5.1, we can
compute F

(

L(λ, µ)
)

given F
(

L(λ)
)

.

Open Problem. Is there a computable function
f : N → N such that f(λ) is an upper bound for the
width of L(λ), for all λ ∈ N?

Another natural open problem concerns the class of
graphs having a tree decomposition over a fixed minor
ideal C. Again the hard part is not to show that this
class is layerwise MSO-definable but to show that we
can uniformly bound its width in terms of the excluded
minors for C.

Open Problem. Let D be the class of graphs having
a tree decomposition over a fixed minor ideal C. Is there
an algorithm computing an upper bound for the width
of D given the set F(C) as input?
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