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Abstract. We consider graph searching games on directed graphs and corre-
sponding digraph decompositions. In particular we show that two important vari-
ants of these games – underlying DAG- and Kelly-decompositions – are non-
monotone.
Furthermore, we explore the limits of algorithmic applicability of digraph de-
compositions and show that various natural candidates for problems, which po-
tentially could benefit from digraphs having small “directed width”, remain NP-
complete even on almost acyclic graphs.

1 Introduction

The seminal work of Robertson and Seymour in their graph minor project has focused
much attention on graph decompositions and associated measures of graph connectivity
such as tree- or path-width. Aside from the interest in graphstructure theory, these
notions have also proved fruitful in the development of algorithms.

Intuitively, tree-width measures the similarity of a graphto a tree. Thus trees have
tree-width one and graphs of small tree-width can be decomposed into parts with at most
tree-width (plus one) vertices in a tree-like manner. Similarly to trees, tree-decompositi-
ons allow for recursive algorithms, whose running time is linear in the size of the un-
derlying graph – but exponential in its width. Together withlinear time parameterized
algorithms for constructing tree-decompositions, this implies that a huge number of
NP-complete problems become tractable on graph classes of bounded tree-width (see
[8,7] for a survey on tree-width).

Graph Searching Games.Closely related to tree-width (and path-width) are so called
graph searching games. Graph searching games are played by two players, the searcher
and the fugitive, that simultaneously place tokens on the vertices of a graph. Whereas
the fugitive has only one token and is restricted to move along paths in the graph that
are not occupied by a searcher, the searcher controls an arbitrary amount of tokens and
is free to move them anywhere on the graph. The aim of the searcher is to capture the
fugitive, i.e. to force him into a position where he is not able to move any more. The
minimum number of tokens needed by the searcher to capture the fugitive defines a
natural graph invariant.

Within this general framework, there exist a range of variants defined by differ-
ent abilities for both players. In particular one distinguishes between thevisible and
invisible variant. In the visible case, the searchers can see the fugitive and can adapt
their strategy accordingly. In the invisible case, the fugitive’s position is hidden from



the searcher. Concerning the abilities of the fugitive one distinguishes between the so
called inert variant, where the fugitive is only allowed to move if a searcher is placed
on his current position, and thedynamicvariant, where the fugitive can move in any
step of the play. Combining this yields four main variants ofwhich only three will be
considered in this paper: visible and dynamic (vis), invisible and inert (inert), and invis-
ible and dynamic (invis). The forth variant, visible and inert has recently been studied
by Richerby and Thilikos [24].

An important concept in the theory of graph searching games is monotonicity. A
game ismonotone, if wheneverk searchers can catch a fugitive on a graph they can
do so without allowing the fugitive to re-occupy vertices. In general, restricting the
searchers to monotone strategies may require additional searchers. LaPaugh [18] gave
a first proof of monotonicity for a graph searching game. Since then, monotonicity has
been intensely studied and a large number of monotonicity results have been estab-
lished. See e.g. [18,6,9,3,12,13,19,27] or the survey [2] and references therein.

The importance of monotonicity in the context of graph decompositions results from
the observation that many decompositions, like tree- and path-decompositions, can be
defined in terms of monotone winning strategies for the searcher. Monotonicity for a
game is often established through duality theorems for the underlying decomposition.
Strategies for the fugitive provide the dual notion for the existence of a decomposition
and yield natural obstructions for graphs having small decompositions. For example,
the notion of abrambleis a natural formalisation of a winning strategy for the fugitive
and provides an important obstruction for small tree-width(see [11,20]).

Despite the considerable interest and the large number of results in this field, two
cases have so far resisted any attempts to solve the monotonicity problem – the graph
searching game with a visible, dynamic fugitive and the gamewith an invisible, inert
fugitive, both played on digraphs. It is these games that areclosely related to DAG- and
Kelly-decompositions [4,15]. In this paper,we solve the problems by showing that both
games are non-monotone.

Digraph decompositions.In recent years, attempts have been made to generalise the
notion of tree-decompositions and their algorithmic applications to directed graphs.
Clearly, we can define the tree-width of a directed graph as the tree-width of the undi-
rected graph we get by ignoring the direction of edges, a process which leads to some
loss of information. This loss may be significant, if the algorithmic problems we are in-
terested in are inherently directed. A good example is the problem of detecting Hamil-
tonian cycles. While we know that this can be solved easily ongraphs with small tree-
width, there are directed graphs with very simple connectivity structure which have
large tree-width. Therefore, several proposals have been made to extend the notions of
tree-decompositions and tree-width to directed graphs (see [23,16,3,5,25,15]). In par-
ticular, Reed [23] and Johnson, Robertson, Seymour, and Thomas [16] introduce the
notion ofdirected tree-widthand they show that Hamiltonicity can be solved for graphs
of bounded directed tree-width in polynomial time.

Following this initial paper, several alternative definitions of directed graph decom-
positions have been proposed, with the aim of overcoming some shortcomings of the
original definition. Berwanger, Dawar, Hunter and Kreutzer[4] and Obdržàlek [22] in-
troduce the notion of DAG-width and Hunter and Kreutzer [15]introduce the notion of
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Kelly-width. All three proposals are supported by algorithmic applications and various
equivalent characterisations in terms of obstructions, elimination orderings, and, in par-
ticular, variants of graph searching games on directed graphs. However, so far the algo-
rithmic applications are restricted to few classes of problems, in particular the problem
of finding disjoint paths, Hamiltonian-cycles and similar linkage problems, and certain
problems in relation to combinatorial games (parity games)played on graphs moti-
vated by the theory of computer-aided verification. Whereasthe tree-width of undi-
rected graphs has been employed to solve a huge number of problems on graphs of
small tree-width, the algorithmic theory of directed graphdecompositions is not nearly
as rich.

It is an obvious question whether this is due to the fact that digraph decompositions
are a relatively new field of research, where the fundamentalmachinery first needs to
be developed, or whether this is due to a general limitation of this approach to algo-
rithms on digraphs. In this paper we systematically explorethe range of algorithmic
applicability of digraph decompositions. For this, we lookat typical NP-hard problems
on graphs – as they can be found in [14], for instance – and identify those that are
“suitable” for this approach, where by “suitable” we mean that the problems should be
NP-hard in general but tractable on acyclic digraphs. The reason for the latter is that all
digraph decompositions proposed so far measure in some way the similarity of a graph
to being acyclic. In particular, acyclic graphs have small width in all of these measures.
Hence, if a problem is already hard on acyclic digraphs, there is no point in studying the
effect of digraph decompositions on this problem. We then identify representatives for
the various types of “suitable” problems and ask whether they can be solved in polyno-
mial time on graphs of small directed tree-, Kelly- or DAG-width or of small directed
path-width.

The results we present in Section 4 show that the border for algorithmic applicabil-
ity of digraph decompositions is rather tight. Essentially, as far as classical graph theo-
retical problems are concerned, disjoint paths and Hamiltonian-cycles can be detected
efficiently on graphs of small directed tree-width, but all other problems we considered
such as Minimum Equivalent Subgraph, Feedback Vertex Set (FVS), Feedback Arc Set,
Graph Grundy Numbering, and several others are NP-completeeven on graphs with a
very low global connectivity and thus very low directed pathor tree-width.

Organisation. The paper is organised as follows. In Section 2 we briefly recall basic
notions from graph and game theory needed later. In Section 3we give a formal de-
scription of graph searching games and present the first mainresult of this paper, the
non-monotonicity of the two types of games mentioned above.In Section 4 we explore
the algorithmic boundaries of the digraph decompositions known so far by showing
NP-completeness for a number of problems on digraphs with bounded “width”. We
conclude and state some open problems in Section 5.

2 Preliminaries

We use standard notation from graph theory as can be found in,e.g., [10]. All graphs
and directed graphs in this paper are finite and simple.

3



Let G be a (directed) graph. We denote the vertex set ofG by V (G) and the edge
set ofG by E(G). ForX ⊆ V (G) we denote byG[X ] the subgraph ofG induced by
X and byG \X the subgraph ofG induced byV (G) \X . Similarly forY ⊆ E(G) we
setG \ Y to be the subgraph ofG obtained by deleting all edges inY .

Finally, if X is a set andk ∈ N, we denote by[X ]≤k the set of all subsets ofX of
cardinality≤ k.

3 Graph Searching Games

In this section we show non-monotonicity of two important variants of graph searching
on directed graphs, namely the variants underlying DAG- andKelly-decompositions.

Graph searching games are played by two players – the searcher and the fugitive –
placing tokens on the vertices of a graph. Whereas the fugitive has only one token and
can only move along paths in the graph that are not blocked by asearcher, the searcher
controls an arbitrary amount of tokens and is free to move them anywhere on the graph.
That is, in any step of the play, the searchers can place new tokens or remove existing
tokens from the board. A play begins with the fugitive choosing his initial position. In
each step, the searchers first announce their intended move.The fugitive can then react
to this by choosing his new position, as long as there is a pathfrom his current to the
new position that does not contain a vertex occupied by a searcher remaining on the
board.

The aim of the searcher is to capture the fugitive, i.e. to force him into a position
where he is not able to move any more. The minimum number of tokens needed by the
searcher to capture the fugitive defines the graph invariantthat we are interested in.

More formally, letG be an undirected graph. A position in the game is a pair(X, r),
with X ⊆ V (G) andr ∈ V (G), and a play is a sequence of positions((X1, r1), . . . ,
(Xn, rn)), such thatX1 = ∅ and a move from one position to another is legal, if there
is a path fromri to ri+1 in G \ (Xi ∩ Xi+1). A play is winning for the searcher if
rn ∈ Xn, otherwise it is winning for the fugitive.

Within this general framework, there exist a range of variants defined by differ-
ent abilities for both players. In particular one distinguishes between thevisible and
invisible variant. In the visible case, the searchers can see the fugitive and can adapt
their strategy accordingly. In the invisible case, the fugitive’s position is hidden from
the searcher. Concerning the abilities of the fugitive one distinguishes between the so
called inert variant, where the fugitive is only allowed to move if a searcher is placed
on his current position, and thedynamicvariant, where the fugitive can move in any
step of the play. Combining these variants yields four main variants of which only three
will be considered in this paper: visible and dynamic (vis), invisible and inert (inert),
and invisible and dynamic (invis).

We are mainly interested in the type ofstrategiesthe searcher can employ. One can
easily verify that strategies in these games only depend on the current position in the
game, i.e. are deterministic and positional. Basically, there exist two types of strategies
for the searcher, depending on whether or not the fugitive isvisible. In the visible case,
the searcher can take the position of the fugitive into account and thus a strategy is a
functionf : (X, r) → X ′ assigning a new positionX ′ to the searcher depending on the
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current position(X, r) in the game. In the invisible case, a strategy can simply be seen
as a sequence of positions for the searcher. A strategy for the searcher iswinning if all
plays consistent with this strategy are, i.e. plays where the searcher always chooses the
move defined by the strategy.

Let P = ((X1, r1), · · · , (Xn, rn)) be a play. We define thesearch-widthof P ,
denoted by sw(P ), to be sw(P ) := max1≤i≤n|Xi|. Similarly, we define the search-
width of a strategy to be the maximum search-width of all plays consistent with that
strategy and the search-width of a graphG, to be sw(G) := min{sw(f) : f is a winning
strategy onG}. Thus the search-width of a graph defines the graph invariantthat we are
interested in.

We are now ready to define two important properties of a graph searching game
namely fugitive- and searcher-monotonicity. We say a play is fugitive-monotoneif the
fugitive is not able to reach a vertex from which he has previously been expelled. Thus
in a fugitive-monotone play the set of vertices that the fugitive can reach is not in-
creasing. A play issearcher-monotoneif the searcher never reoccupies a previously
vacated vertex. On undirected graphs, both notions are closely related: every searcher-
monotone play that is winning for the searcher is also fugitive-monotone and for every
fugitive-monotone play that is winning for the searcher there is a searcher-monotone
play that uses the same amount of searchers. It is thus not always necessary to distin-
guish between both notions and we say a play ismonotoneif it is both fugitive- and
searcher-monotone.

The notion of monotonicity directly applies to strategies for the searcher, so we
say that a strategy is fugitive-monotone, searcher-monotone or just monotone, if all
plays consistent with that strategy are. LetG be a graph. We define mon-sw(G) :=
min{sw(f) : f is monotone and winning onG} and say that a game ismonotone, if
mon-sw(G) := sw(G) for all graphsG.

On undirected graphs all three variants we consider in this paper are monotone and
satisfy:

1. vis-sw(G) = inert-sw(G) = tw(G) + 1, for every graphG, where tw(G) denotes
the tree-width ofG (see [11] and [9]).

2. invis-sw(G) = pw(G)+1, for every graphG, where pw(G) denotes the path-width
of G (see [6]).

Depending on how one translates the notion of an undirected path to the directed set-
ting, i.e. whether one regards it as a directed path from source to destination or as two
directed paths, one in each direction, there are two naturalvariants of this game on di-
rected graphs. We refer to the first variant, where the fugitive is allowed to move along
(searcher-free) directed paths, asreachabilityvariant (reach), and to the second one,
where the fugitive is only allowed to move when there exist a path in each direction, as
strongly connected component(scc) variant, as in this case the fugitive is only allowed
to move in strongly connected components.

Combining these two ways of defined games on directed graphs with the variants
discussed for the undirected setting yields a number of interesting games on directed
graphs of which the following have been discussed in literature: strongly connected
component, visible and dynamic (scc-vis); reachability, visible and dynamic (reach-
vis); reachability, invisible and dynamic (reach-invis); and reachability, invisible and
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inert (reach-inert). We briefly relate these games to the corresponding digraphdecom-
positions and recall what is known about monotonicity.

scc, visible, and dynamic. This variant is closely related to directed tree-width as it
is known that scc-vis-sw(D) − 1 ≤ dtw(D) ≤ 3 · scc-vis-sw(D) + 5, for every
digraphD, where dtw(D) is the directed tree-width as defined in [16]. It has been
shown to be neither fugitive- nor searcher-monotone [1,16]. However, although not
explicitly stated, [16] gives an upper bound for the monotonicity costs with respect
to fugitive-monotonicity. It remains an interesting open question whether this holds
for the searcher-monotone variant as well.

reachability, invisible, and dynamic. This variant defines directed path-width and has
been shown to be monotone in [3].

reachability, visible, and dynamic. The monotone version of this variant defines DAG-
width [4,22]. We therefore refer to these games asDAG-gamesand write dag-sw(D)
and mon-dag-sw(D) for the non-monotone and monotone search-width of a graph
D, with respect to this variant.

reachability, invisible, and inert. The monotone version of this variant defines Kelly-
width [15]. We therefore refer to these games asKelly-gamesand write kelly-sw(D)
and mon-kelly-sw(D) for the non-monotone and monotone search-width of a graph
D, with respect to this variant.

We are now ready to state our main results of this section, proving that DAG- and
Kelly-Games are non-monotone.

3.1 Non-Monotonicity of DAG-Games

C
1

1

C2

C
2

1

C0

Fig. 1. The graphDp with dag-sw(Dp) 6= mon-dag-sw(Dp).

Theorem 31 For everyp ≥ 2 there exists a digraphDp with mon-dag-sw(Dp) =
4p − 2 anddag-sw(Dp) = 3p − 1.

Proof. A schematic overview ofDp is given in Figure1. The graph consists of three
main parts with2p− 1 vertices each.C0 andC2 are cliques on2p− 1 vertices,C2

1 is a
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clique onp − 1 vertices andC1
1 forms an independent set havingp vertices. A directed

edge between two partsA andB means that there are edges from every vertex inA to
every vertex inB. Undirected edges mean that there are edges betweenA andB in both
directions. Thus there are edges in both directions betweenC1

1 andC2
1 , and betweenC0

andC1
1 ∪ C2

1 . Furthermore there are edges fromC0 to C2, and edges fromC2 to C1
1 .

It is easy to see that dag-sw(Dp) ≥ 3p−1 since the vertices inC0∪C2
1 together with

a vertex ofC1
1 form a clique of size3p−1. To show that dag-sw(Dp) ≤ 3p−1 consider

the following strategy for3p−1 searchers onDp. In the first move the searchers occupy
C0 ∪ C1

1 . If the fugitive plays toC2 the searchers capture him by playing onC1
1 ∪ C2.

Otherwise, if the fugitive plays toC2
1 the searchers move toC0 ∪ C2

1 . Now the fugitive
has to be on a vertexv ∈ C1

1 . Since the vertices inC1
1 form an independent set the

fugitive is now captured by playing to{v} ∪ C2
1 ∪ C0.

It remains to show that mon-dag-sw(Dp) = 4p − 2. It is easy to see that4p − 2
searchers can capture the fugitive onDp by playingC0∪C2 and thenC0∪C1

1 ∪C2
1 . To

show that mon-dag-sw(Dp) ≥ 4p− 2 we give a strategy for the fugitive against4p− 3
searchers playing monotonously onDp.

First the fugitive stays inC0 until the searchers occupy all vertices ofC0. There are
two cases to consider.

1. The searchers occupy (at least)C0 ∪ C1
1 . In this case there is a vertexv ∈ C2

1

which is not occupied by a searcher and which the fugitive canreach from his
current position inC0. Since everyv ∈ C2

1 has an edge to every other vertex in
C0 ∪C1

1 ∪C2
1 the searcher cannot capture the fugitive monotonously withless than

4p − 2 searchers.
2. The searchers occupy ( at least )C0 and there is at least one vertex inC1

1 which is
not occupied by a searcher. Then there exists a vertexv ∈ C2 which is not occupied
by a searcher and which the fugitive can reach from his current position inC0. Since
from every vertex inC2 there is a path to every other vertex in the graph (as long as
there is at least one vertex inC1

1 not occupied by a searcher) the fugitive can stay
in C2 until the searchers occupy all vertices inC1

1 . And if they do the fugitive can
move to a vertex inC2

1 and play as in the first case. ⊓⊔

3.2 Non-Monotonicity of Kelly-Games

We now consider Kelly-games. Recall that in a Kelly-game, the fugitive is invisible.
Hence, a strategy must be independent of the current position of the fugitive. We can
therefore represent a searcher-strategy in a digraphD by a sequence(X1, . . . , Xn) of
searcher-positions. Furthermore fugitive-monotone strategies can simply be given by a
sequence of vertices(v1, . . . , v|D|), reflecting the order in which the vertices become
cleared by the searcher. Note also that since Kelly-games are also inert, the notion of
searcher-monotonicity cannot be applied.

Theorem 32 For everyp ≥ 2 there exists a digraphDp with kelly-sw(Dp) = 6p and
mon-kelly-sw(Dp) = 7p.

Proof. A schematic overview ofDp is given in Figure2. The graph consists of five
cliques with|C0| = p, |C2| = |C1| = |X1| = 2p, |X2| = 3p. An edge between two
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X

C1 C0 X1 X2
C2

C

Fig. 2.The graphDp with kelly-sw(Dp) 6= mon-kelly-sw(Dp).

partsA andB means that there are edges from every vertex inA to every vertex inB,
where again an undirected edge betweenA andB means that there are edges inDp in
both directions.

The following strategies show that mon-kelly-sw(Dp) ≤ 7p and kelly-sw(Dp) ≤
6p. For the monotone game we use the strategy(X ∪ C0, X2 ∪ C0 ∪ C1, X1 ∪ C0 ∪
C1, X1∪C), i.e. the searchers first occupy all ofX andC0, then proceed toX2∪C0∪C1,
andX1 ∪ C0 ∪ C1 and finally move toX1 ∪ C. For the non-monotone case we use
(X ∪ C0, X2 ∪ C0 ∪ C1, X1 ∪ C1, X1 ∪ C1 ∪ C2, X, X ∪ C0).

To see that kelly-sw(Dp) ≥ 6p note thatC0 ∪ X is a clique of size6p. It re-
mains to show that mon-kelly-sw(Dp) ≥ 7p. Suppose mon-kelly-sw(Dp) < 7p and
let S = (v1, · · · , v|V (Dp)|) be a searcher-strategy witnessing this. For each partY ∈
{C0, C1, C2, X1, X2, C, X} of Dp let I(Y ) be the greatest index of a vertex inY ,
i.e.vI(Y ) is the last vertex ofY which is searched byS. Then the following statements
hold:

1. I(X) < I(C1) andI(X) < I(C2). For the sake of contradiction, supposeI(X) >

I(C1) and letv = vI(X). Hence, when the searchers clearv, they have already
cleared all vertices inX other thanv and all vertices inC1. Asv has edges to every
other vertex inC1 ∪ X , the searchers need to occupy all of(C1 ∪ X) \ {v} before
they can place a token onv. But this requires7p searchers.
The case ofI(X) < I(C2) is analogous.

2. I(C0) < I(C1). Again, assume the contrary, i.e.I(C0) > I(C1). Hence, when
clearingvI(C1) there is a free vertexv ∈ C0 through which the fugitive can reach all
of X . AsI(X) < I(C1), the searchers needs to occupy at least(X∪C1)\{vI(C1)}
before clearingvI(C1), which yields the contradiction.

3. I(C1) < I(C2). With a similar reasoning as before we obtain that otherwisethe
searchers have to occupyX ∪ C2 when searchingvI(C2), using7p searchers.

The statements(1)-(3) imply I(X) < I(C0) < I(C1) < I(C2) but now the searcher
needs to occupy|C2 ∪C1∪C0∪X1| = 7p vertices in order to searchvI(C2). SoS uses
at least7p searchers. ⊓⊔
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4 Limits of Algorithmic Applications

In [16] it has been shown that thek-disjoint path problem as well as related problems,
including the Hamiltonian-path problem, are solvable in polynomial time on graphs of
bounded directed tree-width. However, up to now only few other problems are known
to be solvable with the help of digraph decompositions, a further example being par-
ity games, which are tractable on graphs of bounded DAG- and Kelly-width [4,15].
As directed tree-width is the most general of these width-measures, tractability results
for directed tree-width directly extend to all other measures. The converse is not true,
for example it is not known whether parity games are tractable on graphs of bounded
directed tree-width.

In this section we explore the algorithmic boundaries of thedigraph measures in-
troduced so far. In our analysis we focus on NP-complete problems that are explicitly
directed. All analysed problems are solvable in polynomialtime on digraphs whose
underlying undirected graph has bounded tree-width – but asmentioned in the intro-
duction, tree-width is not a good measure for the global connectivity of a digraph. Fur-
thermore, we discard problems that are not tractable on acyclic graphs, as all measures
defined so far are bounded on acyclic graphs. As representatives for various types of the
remaining problems, we have considered the following problems: Minimum Equivalent
Subgraph, Directed Feedback Vertex / Arc Set, Graph Grundy Numbering, and Kernel.

It turns out that all of these problems remain NP-complete even on digraphs that
have very low global connectivity, i.e. digraphs that can bedecomposed into com-
ponents of constant size just by removing a small number of vertices. In particular,
these graphs have low width with respect to all digraph decompositions defined so far,
i.e. small directed path width, small DAG-, Kelly-, and directed tree-width, small En-
tanglement and D-width. In order to state the proofs in theirmost general way we define
the classCONN j

i as follows:

Definition 41 Let i andj be integers. We defineCONN j
i to be the class of digraphs,

such that for every digraphD ∈ CONN j
i there exists a vertex setX ⊆ V (D) with

|X | ≤ j, such that every component inD \ X has at mosti vertices.

As mentioned above it is easy to see that:

Proposition 42 For all i and j the classCONN j
i has bounded directed path-width,

directed tree-width, D-width, DAG-width, Kelly-width andEntanglement1.

4.1 Minimum Equivalent Subgraph

The Minimum Equivalent Subgraph (MES)-problem is the problem to compute in a
given digraphD an edge-minimal subgraphD′ ⊆ D that preserves reachability inD.

Definition 43 Let D be a digraph andk ∈ N. MES is the problem to decide, if there
exists a setE′ ⊆ E(D) with |E′| ≤ k, such that the digraphD′ = (V (D), E′) contains
a path between two vertices if, and only if, such a path existsin D, i.e.D andD′ have
the same transitive closure.

1 An upper bound for all given width parameters isi + j.
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MES is NP-complete for arbitrary digraphs (see [14]), but isknown to be solvable
in polynomial time for acyclic and undirected graphs. In [21] it is also shown that it
suffices to consider MES on connected digraphs. There MES is equivalent to a general-
isation of the directed hamiltonian cycle problem, the so-called round-trip-problem, in
which vertices can be used more than once. This is particularly interesting because the
directed hamiltonian cycle problem is a special case of thek-linkage problem, which
can be solved in polynomial time on digraphs of bounded directed tree-width.

Definition 44 Let D be a connected digraph. A round-tripR = (v1, · · · , vk, v1) is a
sequence ofk + 1 vertices ofD, such that(vi, vi+1) ∈ E(D) andR visits every vertex
of D at least once. The size ofR equals the number of distinct edges used byR.

Lemma 45 [21] Let D be a connected digraph andk a natural number. ThenD has a
MES of size less than k if, and only if,D has a round-trip of size less than k.

The NP-completeness of MES for digraphs inCONN 1
3 follows from a reduction

of 3-SAT to the problem of finding a minimum round-trip in a connected digraph. Due
to space restrictions the proof is deferred to the appendix.

Theorem 46 The MES-problem is NP-complete even when restricted to digraphs in
CONN 1

3.

4.2 Feedback Vertex Set / Feedback Arc Set

TheFeedback Vertex/Arc Set (FVS/FAS)-problem is the problem to find a minimum set
of vertices (edges) in a digraphD, whose removal leavesD acyclic. Both problems
are known to be NP-complete on arbitrary digraphs (see [17]). Trivially both problems
become efficiently solvable on acyclic graphs.

We prove the NP-completeness of FVS/FAS on digraphs inCONN 1
4 respectively

CONN 2
8 by reducing to it a special variant of 3-SAT namely 3-SAT-2, which we intro-

duce now.

Definition 47 3-SAT-2 is the variant of 3-SAT, so that every literal is usedin at most
two clauses.

3-SAT-2 is NP-complete. As before the proofs can be found in the appendix.

Theorem 48 FVS respectively FAS are NP-complete even when restricted to digraphs
in CONN 1

4 respectivelyCONN 2
8.

4.3 Graph Grundy Numbering and Kernel

Definition 49 Graph Grundy Numberingis the problem to decide for a digraphD, if
there exists a functionf : V (D) → N, such that for allv ∈ V (D), f(v) is the smallest
natural number not contained in{f(u) : u ∈ V (D), (v, u) ∈ E(D)}.

Definition 410 Kernel is the problem to decide in a digraphD, if there existsV ′ ⊆
V (D), such that
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1. there is no edge between two vertices inV ′, i.e.V ′ is an independent set.
2. for everyv ∈ V (D) \ V ′ there exists au ∈ V ′ with (v, u) ∈ E(D).

Observe, that on undirected graphs the maximisation version of Kernel is theInde-
pendent Set-problem, whereas the minimisation version of Graph GrundyNumbering
equals Vertex-Colouring. In contrast to the undirected case, where every graph has an
Independent Set and a Vertex Colouring, not every digraph has a Kernel or a Graph
Grundy Numbering and it is already NP-complete to decide whether a Kernel or a
Graph Grundy Numbering do exist [26]. A simple example of a digraph that neither
has a Graph Grundy Numbering nor a Kernel is the directed cycle with three vertices.
Nevertheless it is easy to see that Kernel and Graph Grundy Numbering are trivially
solvable on acyclic graphs. We are now ready to prove the NP-completeness for Graph
Grundy Numbering on digraphs inCONN 0

4 - again the proofs are deferred to the ap-
pendix.

Theorem 411 Graph Grundy Numbering and Kernel are NP-complete even whenre-
stricted to digraphs inCONN 0

4.

5 Conclusion and Open Problems

In this paper we considered graph searching games on directed graphs and established
non-monotonicity for two important variants of these games. Our examples show that
the monotonicity costs for these games cannot be bounded by an additive term, i.e. for
any k there are digraphs where at leastk additional searchers are required to catch
a robber with a monotone strategy. However, so far there is noupper bound for the
monotonicity costs involved. It is conceivable that there is a constantc ∈ N such that
whenevern searchers suffice to catch a robber on a digraphD in any of the two variants,
thanc · n searchers suffice for a monotone strategy. This, however, isleft as an open
problem.

A different trait we explored in this paper are the limits of an algorithmic theory
based on directed graph decompositions. We showed that while there are interesting
and important examples for natural problems that become tractable on digraphs of small
width, many other natural problems remain NP-complete evenif the digraphs have very
low global connectivity.
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