Digraph Decompositions and Monotonicity in Digraph
Searching

Stephan Kreutzer and Sebastian Ordyniak

Oxford University Computing Laboratordkreutzer,ordyniak@comlab.ox.ac.uk

Abstract. We consider graph searching games on directed graphs aret cor
sponding digraph decompositions. In particular we showttha important vari-
ants of these games — underlying DAG- and Kelly-decompmssti- are non-
monotone.

Furthermore, we explore the limits of algorithmic applitiép of digraph de-
compositions and show that various natural candidatesrtdylgms, which po-
tentially could benefit from digraphs having small “direttgidth”, remain NP-
complete even on almost acyclic graphs.

1 Introduction

The seminal work of Robertson and Seymour in their graph npnoject has focused
much attention on graph decompositions and associatedinesasf graph connectivity
such as tree- or path-width. Aside from the interest in grsipbicture theory, these
notions have also proved fruitful in the development of alhons.

Intuitively, tree-width measures the similarity of a grapla tree. Thus trees have
tree-width one and graphs of small tree-width can be decsetbimto parts with at most
tree-width (plus one) vertices in a tree-like manner. Sinhyjito trees, tree-decompositi-
ons allow for recursive algorithms, whose running time rieér in the size of the un-
derlying graph — but exponential in its width. Together wittear time parameterized
algorithms for constructing tree-decompositions, thipliss that a huge number of
NP-complete problems become tractable on graph classesuofled tree-width (see
[8,7] for a survey on tree-width).

Graph Searching Game<Closely related to tree-width (and path-width) are so challe
graph searching games. Graph searching games are played piaers, the searcher
and the fugitive, that simultaneously place tokens on thigoes of a graph. Whereas
the fugitive has only one token and is restricted to move@leeths in the graph that
are not occupied by a searcher, the searcher controls araaylamount of tokens and
is free to move them anywhere on the graph. The aim of the Iseais to capture the
fugitive, i.e. to force him into a position where he is noteald move any more. The
minimum number of tokens needed by the searcher to captartutitive defines a
natural graph invariant.

Within this general framework, there exist a range of vasatefined by differ-
ent abilities for both players. In particular one distinghes between theisible and
invisible variant. In the visible case, the searchers can see thevieigitd can adapt
their strategy accordingly. In the invisible case, the fiugis position is hidden from



the searcher. Concerning the abilities of the fugitive oiséirlguishes between the so
calledinert variant, where the fugitive is only allowed to move if a séwrcis placed
on his current position, and ttaynamicvariant, where the fugitive can move in any
step of the play. Combining this yields four main variantsuiich only three will be
considered in this paper: visible and dynamvis), invisible and inertifiert), and invis-
ible and dynamicifwvis). The forth variant, visible and inert has recently beemlisi
by Richerby and Thilikos [24].

An important concept in the theory of graph searching gamesadnotonicity. A
game ismonotoneif wheneverk searchers can catch a fugitive on a graph they can
do so without allowing the fugitive to re-occupy vertices.deneral, restricting the
searchers to monotone strategies may require additioaedtsers. LaPaugh [18] gave
a first proof of monotonicity for a graph searching game. 8ithen, monotonicity has
been intensely studied and a large number of monotonic#yli® have been estab-
lished. See e.g. [18,6,9,3,12,13,19,27] or the surveyrjd]raferences therein.

The importance of monotonicity in the context of graph depositions results from
the observation that many decompositions, like tree- atid-gacompositions, can be
defined in terms of monotone winning strategies for the $eardvionotonicity for a
game is often established through duality theorems for titeedying decomposition.
Strategies for the fugitive provide the dual notion for thkésteence of a decomposition
and yield natural obstructions for graphs having small dgmasitions. For example,
the notion of abrambleis a natural formalisation of a winning strategy for the fiugi
and provides an important obstruction for small tree-wigée [11,20]).

Despite the considerable interest and the large numbeisaftsen this field, two
cases have so far resisted any attempts to solve the moaitygarioblem — the graph
searching game with a visible, dynamic fugitive and the garitle an invisible, inert
fugitive, both played on digraphs. It is these games thatlasely related to DAG- and
Kelly-decompositions [4,15]. In this paper,we solve thelpems by showing that both
games are non-monotone.

he

—

Digraph decompositionsln recent years, attempts have been made to generalise
notion of tree-decompositions and their algorithmic aggtions to directed graphs.
Clearly, we can define the tree-width of a directed graph egrée-width of the undi-
rected graph we get by ignoring the direction of edges, ageg®uvhich leads to some
loss of information. This loss may be significant, if the altfonic problems we are in-
terested in are inherently directed. A good example is tbhblpm of detecting Hamil-
tonian cycles. While we know that this can be solved easilgm@phs with small tree-
width, there are directed graphs with very simple connégtistructure which have
large tree-width. Therefore, several proposals have beaterto extend the notions of
tree-decompositions and tree-width to directed graphs [ 16,3,5,25,15]). In par-
ticular, Reed [23] and Johnson, Robertson, Seymour, anth@kd16] introduce the
notion ofdirected tree-widttand they show that Hamiltonicity can be solved for graphs
of bounded directed tree-width in polynomial time.

Following this initial paper, several alternative defioits of directed graph decom-
positions have been proposed, with the aim of overcomingessimortcomings of the
original definition. Berwanger, Dawar, Hunter and KreutzZdrand Obdrzalek [22] in-
troduce the notion of DAG-width and Hunter and Kreutzer [ithjoduce the notion of



Kelly-width. All three proposals are supported by algarith applications and various
equivalent characterisations in terms of obstructionsyieation orderings, and, in par-
ticular, variants of graph searching games on directedgrafowever, so far the algo-
rithmic applications are restricted to few classes of pgotd, in particular the problem
of finding disjoint paths, Hamiltonian-cycles and similakiage problems, and certain
problems in relation to combinatorial games (parity ganmayed on graphs moti-
vated by the theory of computer-aided verification. Whettbastree-width of undi-
rected graphs has been employed to solve a huge number démpr®bn graphs of
small tree-width, the algorithmic theory of directed grajgtompositions is not nearly
as rich.

Itis an obvious question whether this is due to the fact tigagghh decompositions
are a relatively new field of research, where the fundamenmtahinery first needs to
be developed, or whether this is due to a general limitatiotihis approach to algo-
rithms on digraphs. In this paper we systematically exptbeerange of algorithmic
applicability of digraph decompositions. For this, we laikypical NP-hard problems
on graphs — as they can be found in [14], for instance — andifgighose that are
“suitable” for this approach, where by “suitable” we meaattthe problems should be
NP-hard in general but tractable on acyclic digraphs. Theae for the latter is that all
digraph decompositions proposed so far measure in somehgagimilarity of a graph
to being acyclic. In particular, acyclic graphs have smadittvin all of these measures.
Hence, if a problem is already hard on acyclic digraphsgtigeno point in studying the
effect of digraph decompositions on this problem. We themidly representatives for
the various types of “suitable” problems and ask whethey ta@ be solved in polyno-
mial time on graphs of small directed tree-, Kelly- or DAGé#i or of small directed
path-width.

The results we present in Section 4 show that the borderdorihmic applicabil-
ity of digraph decompositions is rather tight. Essentjallyfar as classical graph theo-
retical problems are concerned, disjoint paths and Hanmétecycles can be detected
efficiently on graphs of small directed tree-width, but @alier problems we considered
such as Minimum Equivalent Subgraph, Feedback Vertex S&)F-eedback Arc Set,
Graph Grundy Numbering, and several others are NP-comglete on graphs with a
very low global connectivity and thus very low directed pattiree-width.

Organisation. The paper is organised as follows. In Section 2 we brieflylt&eeic
notions from graph and game theory needed later. In Sectioa give a formal de-
scription of graph searching games and present the first reainit of this paper, the
non-monotonicity of the two types of games mentioned ablov8ection 4 we explore
the algorithmic boundaries of the digraph decompositiomsnkn so far by showing
NP-completeness for a number of problems on digraphs witmtbed “width”. We
conclude and state some open problems in Section 5.

2 Preliminaries

We use standard notation from graph theory as can be fourgdgn,[10]. All graphs
and directed graphs in this paper are finite and simple.



Let G be a (directed) graph. We denote the vertex set &y 1 (G) and the edge
set of G by E(G). ForX C V(G) we denote byG[X] the subgraph of7 induced by
X and byG \ X the subgraph off induced by’ (G) \ X. Similarly forY C E(G) we
setG \ Y to be the subgraph @¥ obtained by deleting all edges n.

Finally, if X is a set and: € N, we denote by X]<* the set of all subsets of of
cardinality< k.

3 Graph Searching Games

In this section we show non-monotonicity of two importantigats of graph searching
on directed graphs, namely the variants underlying DAG-Kelty-decompositions.

Graph searching games are played by two players — the seamti¢he fugitive —
placing tokens on the vertices of a graph. Whereas the Yeditas only one token and
can only move along paths in the graph that are not blockeddmaecher, the searcher
controls an arbitrary amount of tokens and is free to moventaeywhere on the graph.
That is, in any step of the play, the searchers can place nemsoor remove existing
tokens from the board. A play begins with the fugitive chagdhis initial position. In
each step, the searchers first announce their intended Mioedugitive can then react
to this by choosing his new position, as long as there is afpath his current to the
new position that does not contain a vertex occupied by ackearemaining on the
board.

The aim of the searcher is to capture the fugitive, i.e. taddrim into a position
where he is not able to move any more. The minimum number en®keeded by the
searcher to capture the fugitive defines the graph invatti@tve are interested in.

More formally, letG be an undirected graph. A position in the game is a (&ir-),
with X C V(G) andr € V(G), and a play is a sequence of positiqii&;, ), . . .,
(Xn, 7)), such thatX; = () and a move from one position to another is legal, if there
is a path fromr; to ;.1 in G\ (X; N X,11). A play is winning for the searcher if
rn € X,, otherwise it is winning for the fugitive.

Within this general framework, there exist a range of vasgatefined by differ-
ent abilities for both players. In particular one distirghgs between theisible and
invisible variant. In the visible case, the searchers can see theviigitd can adapt
their strategy accordingly. In the invisible case, the fiugis position is hidden from
the searcher. Concerning the abilities of the fugitive oisérjuishes between the so
calledinert variant, where the fugitive is only allowed to move if a séwrcis placed
on his current position, and ttdynamicvariant, where the fugitive can move in any
step of the play. Combining these variants yields four maiiants of which only three
will be considered in this paper: visible and dynamits), invisible and inertifert),
and invisible and dynamidr{vis).

We are mainly interested in the typesifategieghe searcher can employ. One can
easily verify that strategies in these games only depentemcdrrent position in the
game, i.e. are deterministic and positional. Basicallgrétexist two types of strategies
for the searcher, depending on whether or not the fugitivésible. In the visible case,
the searcher can take the position of the fugitive into antand thus a strategy is a
functionf : (X,r) — X’ assigning a new positioR’ to the searcher depending on the



current position( X, ) in the game. In the invisible case, a strategy can simply ée se
as a sequence of positions for the searcher. A strategydadarcher isvinningif all
plays consistent with this strategy are, i.e. plays whegesdarcher always chooses the
move defined by the strategy.

Let P = ((X1,71), -+, (Xn,mn)) be a play. We define thsearch-widthof P,
denoted by s\WP), to be sWP) := max<;<,|X;|. Similarly, we define the search-
width of a strategy to be the maximum search-width of all plagnsistent with that
strategy and the search-width of a gr&pto be swWG) := min{sw(f) : f is a winning
strategy orG}. Thus the search-width of a graph defines the graph invathanhtve are
interested in.

We are now ready to define two important properties of a graainching game
namely fugitive- and searcher-monotonicity. We say a pédygitive-monotond the
fugitive is not able to reach a vertex from which he has presiypbeen expelled. Thus
in a fugitive-monotone play the set of vertices that the tiugican reach is not in-
creasing. A play isearcher-monoton# the searcher never reoccupies a previously
vacated vertex. On undirected graphs, both notions arelgloslated: every searcher-
monotone play that is winning for the searcher is also fugithonotone and for every
fugitive-monotone play that is winning for the searcher¢his a searcher-monotone
play that uses the same amount of searchers. It is thus nayslmecessary to distin-
guish between both notions and we say a plagnanotondf it is both fugitive- and
searcher-monotone.

The notion of monotonicity directly applies to strategies the searcher, so we
say that a strategy is fugitive-monotone, searcher-mamotw just monotone, if all
plays consistent with that strategy are. l(étbe a graph. We define mon-&&) :=
min{sw(f) : f is monotone and winning o'} and say that a game isonotoneif
mon-swWG) := sw(G) for all graphsG.

On undirected graphs all three variants we consider in tuiepare monotone and
satisfy:

1. vis-sWG) = inert-swG) = tw(G) + 1, for every graphG, where twG) denotes
the tree-width of7 (see [11] and [9]).

2. invis-swWG) = pw(G)+1, for every grapliz, where pwG) denotes the path-width
of G (see [6]).

Depending on how one translates the notion of an undirec#dtp the directed set-
ting, i.e. whether one regards it as a directed path fromcsotar destination or as two
directed paths, one in each direction, there are two natarants of this game on di-
rected graphs. We refer to the first variant, where the fugis allowed to move along
(searcher-free) directed paths, raachabilityvariant feach, and to the second one,
where the fugitive is only allowed to move when there exisathpn each direction, as
strongly connected compongstq variant, as in this case the fugitive is only allowed
to move in strongly connected components.

Combining these two ways of defined games on directed grajihghe variants
discussed for the undirected setting yields a number ofésteng games on directed
graphs of which the following have been discussed in litesatstrongly connected
component, visible and dynamisdc-vig; reachability, visible and dynamiagach-
vis); reachability, invisible and dynamicgach-invig; and reachability, invisible and



inert (reach-iner). We briefly relate these games to the corresponding digiapbm-
positions and recall what is known about monotonicity.

scc, visible, and dynamic. This variant is closely related to directed tree-width as it
is known that scc-vis-s(D) — 1 < dtw(D) < 3 - scc-vis-swWD) + 5, for every
digraphD, where dtw D) is the directed tree-width as defined in [16]. It has been
shown to be neither fugitive- nor searcher-monotone [1 H6}vever, although not
explicitly stated, [16] gives an upper bound for the monatibycosts with respect
to fugitive-monotonicity. It remains an interesting operegtion whether this holds
for the searcher-monotone variant as well.

reachability, invisible, and dynamic. This variant defines directed path-width and has
been shown to be monotone in [3].

reachability, visible, and dynamic. The monotone version of this variant defines DAG-
width [4,22]. We therefore refer to these gamePAS-gamesnd write dag-syD)
and mon-dag-siD) for the non-monotone and monotone search-width of a graph
D, with respect to this variant.

reachability, invisible, and inert. The monotone version of this variant defines Kelly-
width [15]. We therefore refer to these game&aby-gamesand write kelly-swD)
and mon-kelly-swWD) for the non-monotone and monotone search-width of a graph
D, with respect to this variant.

We are now ready to state our main results of this sectionjipgadhat DAG- and
Kelly-Games are non-monotone.

3.1 Non-Monotonicity of DAG-Games

C2 CO

Fig. 1. The graphD,, with dag-swD,) # mon-dag-swD,,).

Theorem 31 For everyp > 2 there exists a digraptD,, with mon-dag-swWD,) =
4p — 2 anddag-swD,) = 3p — 1.

Proof. A schematic overview oD, is given in Figurel. The graph consists of three
main parts wit2p — 1 vertices eachCy andC, are cliques or2p — 1 vertices,C? is a



clique onp — 1 vertices and”} forms an independent set havipgertices. A directed
edge between two parts and B means that there are edges from every vertes to
every vertex inB. Undirected edges mean that there are edges betweed B in both
directions. Thus there are edges in both directions betwgemdC?, and betweely
andC} U C2. Furthermore there are edges framto Cs, and edges from; to C1.

Itis easy to see that dag-6i,) > 3p— 1 since the vertices iy UC? together with
a vertex ofC form a clique of siz&p — 1. To show that dag-s(,,) < 3p— 1 consider
the following strategy foBp — 1 searchers o, In the first move the searchers occupy
Co U C1. If the fugitive plays toCs the searchers capture him by playing@hu Cs.
Otherwise, if the fugitive plays t6' the searchers move @, U C7. Now the fugitive
has to be on a vertex € C}. Since the vertices i’} form an independent set the
fugitive is now captured by playing tw} U C? U Cp.

It remains to show that mon-dag-6®,) = 4p — 2. It is easy to see thalp — 2
searchers can capture the fugitiveop by playingCo UC> and therCo UCT UCE. To
show that mon-dag-silp,,) > 4p — 2 we give a strategy for the fugitive againigt— 3
searchers playing monotonously 6.

First the fugitive stays i@y until the searchers occupy all vertices(@f. There are
two cases to consider.

1. The searchers occupy (at least) U C1. In this case there is a vertexc C?
which is not occupied by a searcher and which the fugitive reach from his
current position inCy. Since everyy € C? has an edge to every other vertex in
Co UC1 UC? the searcher cannot capture the fugitive monotonouslyledththan
4p — 2 searchers.

2. The searchers occupy ( at leasty)and there is at least one vertexdd which is
not occupied by a searcher. Then there exists a vertex’; which is not occupied
by a searcher and which the fugitive can reach from his ctp@sition inCj. Since
from every vertex irCs there is a path to every other vertex in the graph (as long as
there is at least one vertex (it not occupied by a searcher) the fugitive can stay
in C until the searchers occupy all verticesGt). And if they do the fugitive can
move to a vertex i and play as in the first case. a

3.2 Non-Monotonicity of Kelly-Games

We now consider Kelly-games. Recall that in a Kelly-game, filngitive is invisible.
Hence, a strategy must be independent of the current posifithe fugitive. We can
therefore represent a searcher-strategy in a digiaply a sequencéXy, ..., X,,) of
searcher-positions. Furthermore fugitive-monotondeias can simply be given by a
sequence of vertice®, ..., vp), reflecting the order in which the vertices become
cleared by the searcher. Note also that since Kelly-ganeealao inert, the notion of
searcher-monotonicity cannot be applied.

Theorem 32 For everyp > 2 there exists a digrapt®,, with kelly-sw(D,,) = 6p and
mon-kelly-swD,,) = 7p.

Proof. A schematic overview oD, is given in Figure2. The graph consists of five
cliques with|Cy| = p, |C2| = |C1]| = | X1| = 2p, | X2| = 3p. An edge between two



Fig. 2. The graphD,, with kelly-sw(D,) # mon-kelly-sw(D,,).

partsA and B means that there are edges from every vertex to every vertex inB,
where again an undirected edge betwegeand B means that there are edgesiy in
both directions.

The following strategies show that mon-kelly{§w,) < 7p and kelly-swD,,) <
6p. For the monotone game we use the strate§yJ Cp, Xo U Cyp U C1, X7 U Cp U
Cy, X1UQ), i.e. the searchers first occupy all®fandCy, then proceed t& > UC,UCY,
and X; U Cy U ¢4 and finally move toX; U C. For the non-monotone case we use
(XUCQ,XQ UC(] UCl,Xl UCl,Xl UCl UCQ,X,XUCQ).

To see that kelly-s@D,) > 6p note thatCy U X is a clique of size6p. It re-
mains to show that mon-kelly-gW,,) > 7p. Suppose mon-kelly-siD,)) < 7p and
let S = (v1,---,vv(p,)) be a searcher-strategy witnessing this. For eachpagt
{Co, C1,C4, X1, X,,C, X} of D, let I(Y') be the greatest index of a vertex I,
i.e.vy(y) is the last vertex o¥” which is searched b§. Then the following statements
hold:

1. I(X) < I(Cy) andI(X) < I(C5). For the sake of contradiction, suppd$e&’) >
I(Cy) and letv = v;(x). Hence, when the searchers cleathey have already
cleared all vertices itX other tharv and all vertices irC’;. Asv has edges to every
other vertex inC; U X, the searchers need to occupy al(6% U X) \ {v} before
they can place a token an But this require§p searchers.

The case of (X) < I(C5) is analogous.

2. I1(Cy) < I(C1). Again, assume the contrary, i.B.Cy) > I(Ci). Hence, when
clearingu;(c,) thereis a free vertex € Cy through which the fugitive can reach all
of X. AsI(X) < I(C), the searchers needs to occupy at l€ASt Cy )\ {vr(cy) }
before clearing;(¢, ), which yields the contradiction.

3. I(C1) < I(Cy). With a similar reasoning as before we obtain that otheriise
searchers have to occupyU C, when searching;c,), using7p searchers.

The statementél)-(3) imply I(X) < I(Cp) < I(Cy) < I(Cs) but now the searcher
needs to occupyC> UC; UCy U X, | = 7p vertices in order to searahy ). S0S uses
at least7p searchers. a



4 Limits of Algorithmic Applications

In [16] it has been shown that thiedisjoint path problem as well as related problems,
including the Hamiltonian-path problem, are solvable itypomial time on graphs of
bounded directed tree-width. However, up to now only feweotroblems are known
to be solvable with the help of digraph decompositions, ¢hirrexample being par-
ity games, which are tractable on graphs of bounded DAG- aglty®vidth [4,15].
As directed tree-width is the most general of these widtlasnees, tractability results
for directed tree-width directly extend to all other me&suiThe converse is not true,
for example it is not known whether parity games are traetalol graphs of bounded
directed tree-width.

In this section we explore the algorithmic boundaries ofdiggaph measures in-
troduced so far. In our analysis we focus on NP-completelprod that are explicitly
directed. All analysed problems are solvable in polynortilmke on digraphs whose
underlying undirected graph has bounded tree-width — butexstioned in the intro-
duction, tree-width is not a good measure for the global ectivity of a digraph. Fur-
thermore, we discard problems that are not tractable orliagygaphs, as all measures
defined so far are bounded on acyclic graphs. As represesgtir various types of the
remaining problems, we have considered the following pais: Minimum Equivalent
Subgraph, Directed Feedback Vertex / Arc Set, Graph Grundyidéring, and Kernel.

It turns out that all of these problems remain NP-completnewn digraphs that
have very low global connectivity, i.e. digraphs that candeeomposed into com-
ponents of constant size just by removing a small number dfces. In particular,
these graphs have low width with respect to all digraph dgumitions defined so far,
i.e. small directed path width, small DAG-, Kelly-, and dited tree-width, small En-
tanglement and D-width. In order to state the proofs in threist general way we define
the clas€ ON N as follows:

Definition 41 Let: andj be integers. We defiliéO/\//\/{ to be the class of digraphs,

such that for every digrapl) € CONN? there exists a vertex sé&f C V(D) with
|X| < j, such that every componentin\ X has at most vertices.

As mentioned above it is easy to see that:

Proposition 42 For all i andj the classCONA? has bounded directed path-width,
directed tree-width, D-width, DAG-width, Kelly-width aihtanglement.

4.1 Minimum Equivalent Subgraph

The Minimum Equivalent Subgraph (ME®joblem is the problem to compute in a
given digraphD an edge-minimal subgragh’ C D that preserves reachability iD.

Definition 43 Let D be a digraph and: € N. MES is the problem to decide, if there
existsaseE’ C E(D) with |E’| < k, such thatthe digraph’ = (V (D), E’) contains
a path between two vertices if, and only if, such a path ekists, i.e. D and D’ have
the same transitive closure.

L An upper bound for all given width parameters is ;.



MES is NP-complete for arbitrary digraphs (see [14]), bkriswn to be solvable
in polynomial time for acyclic and undirected graphs. In][R1is also shown that it
suffices to consider MES on connected digraphs. There MEQuisaent to a general-
isation of the directed hamiltonian cycle problem, the attecl round-trip-problem, in
which vertices can be used more than once. This is partigutderesting because the
directed hamiltonian cycle problem is a special case ofttliakage problem, which
can be solved in polynomial time on digraphs of bounded thktree-width.

Definition 44 Let D be a connected digraph. A round-trip = (vy,- -+, vg,v1) IS @
sequence af + 1 vertices ofD, such thatv;, v;+1) € E(D) and R visits every vertex
of D at least once. The size & equals the number of distinct edges usediby

Lemma 45 [21] Let D be a connected digraph arkda natural number. The® has a
MES of size less than k if, and onlyi¥, has a round-trip of size less than k.

The NP-completeness of MES for digraphsﬂ@/\f/\fé follows from a reduction
of 3-SAT to the problem of finding a minimum round-trip in a c@cted digraph. Due
to space restrictions the proof is deferred to the appendix.

Theorem 46 The MES-problem is NP-complete even when restricted tagigr in
CONN}.

4.2 Feedback Vertex Set / Feedback Arc Set

TheFeedback Vertex/Arc Set (FVS/FA8Yblem is the problem to find a minimum set
of vertices (edges) in a digraph, whose removal leave® acyclic. Both problems
are known to be NP-complete on arbitrary digraphs (see [TI¥ially both problems
become efficiently solvable on acyclic graphs.

We prove the NP-completeness of FVS/FAS on digrapi& M\ \; respectively
CONN§ by reducing to it a special variant of 3-SAT namely 3-SAT-hjeh we intro-
duce now.

Definition 47 3-SAT-2 is the variant of 3-SAT, so that every literal is uigedt most
two clauses.

3-SAT-2 is NP-complete. As before the proofs can be fountiéneippendix.
Theorem 48 FVS respectively FAS are NP-complete even when restriotdijtaphs

in CON'N] respectivelCONNZ.

4.3 Graph Grundy Numbering and Kernel

Definition 49 Graph Grundy Numbering the problem to decide for a digraph, if
there exists a functiolfi : V(D) — N, such that for alb € V (D), f(v) is the smallest
natural number not contained iff (u) : u € V/(D), (v,u) € E(D)}.

Definition 410 Kernelis the problem to decide in a digraph, if there existsl”’ C
V(D), such that

10



1. there is no edge between two vertice¥ni.e. V' is an independent set.
2. foreveryv € V(D) \ V' there exists a: € V' with (v,u) € E(D).

Observe, that on undirected graphs the maximisation verdi&ernel is thende-
pendent Seproblem, whereas the minimisation version of Graph GruNdynbering
equals Vertex-Colouring. In contrast to the undirecteccadere every graph has an
Independent Set and a Vertex Colouring, not every digrapghahidernel or a Graph
Grundy Numbering and it is already NP-complete to decidethdrea Kernel or a
Graph Grundy Numbering do exist [26]. A simple example of gralph that neither
has a Graph Grundy Numbering nor a Kernel is the directeceayith three vertices.
Nevertheless it is easy to see that Kernel and Graph Grundybiéting are trivially
solvable on acyclic graphs. We are now ready to prove the diffpteteness for Graph
Grundy Numbering on digraphs '(F{DNNZ - again the proofs are deferred to the ap-
pendix.

Theorem 411 Graph Grundy Numbering and Kernel are NP-complete even wden
stricted to digraphs itC ONNY.

5 Conclusion and Open Problems

In this paper we considered graph searching games on dirgraphs and established
non-monotonicity for two important variants of these gant@sr examples show that
the monotonicity costs for these games cannot be bounded agditive term, i.e. for
any k there are digraphs where at ledstadditional searchers are required to catch
a robber with a monotone strategy. However, so far there igpper bound for the
monotonicity costs involved. It is conceivable that thev@iconstant € N such that
wheneven searchers suffice to catch a robber on a digia any of the two variants,
thanc - n searchers suffice for a monotone strategy. This, howevégftias an open
problem.

A different trait we explored in this paper are the limits of @gorithmic theory
based on directed graph decompositions. We showed thag¢ Wigre are interesting
and important examples for natural problems that becomtatoée on digraphs of small
width, many other natural problems remain NP-complete éutae digraphs have very
low global connectivity.
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