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Abstract. We study graph searching games where a number of cops try to cap-
ture a robber that is hiding in a system of tunnels modelled as a graph. Wile th
current position of the robber is unknown to the cops, each cop cae ceain
radiusd around his position. For the cade= 1 these games have been studied
by Fomin, Kratsch and Mler [7] under the name domination games.

We are primarily interested in questions concerning the complexity and-mono
tonicity of these games. We show that dominating games are computationally
much harder than standard graph searching games where the ¢pps@itheir

own vertex and establish strong non-monotonicity results for variousnmsotid
monotonicity which arise naturally in the context of domination games. Anrswe
ing a question of [7], we show that there exists graphs for which thetestor
winning strategy for a minimal number of cops must necessarily bepiiren-

tial length. On the positive side, we establish tractability results for graphedas

of bounded degree.

1 Introduction

Graph searching games are a form of two-player games playgthphs. A wide range
of such games have been studied in the literature but thepate the common scheme
that a number of cops tries to catch a robber who is hidingengttaph. The problem
is to guide a party of as few cops as possible so that the rabligraranteed to be
captured regardless of his moves. In the model of graph lsegrgames known as
node searching, the cops and the robber occupy verticeg @fréph. At each step of
the play, the player controlling the cops can lift some of ¢bps from the graph and
place them somewhere else. While they are in transit, theerakdn move in the graph
following any path from his current to his new position asg@s this path does not go
through a vertex occupied or “blocked” by a remaining copwhich case the robber
would be have been captured).

Variants of this game are obtained by varying the abilitiethe cops, for instance,
whether or not they know the current position of the robled, lay the precise definition
of “blocking”. The minimal number of cops needed to catchlaber on a graph yields
an interesting graph invariant related to the global cotivigcof the graph. See [6] for
a recent survey on the subject.

Graph searching games have found a wide range of applisatiocdomputer Sci-
ence in seemingly unrelated areas: there is a strong reapogbf graph searching
games to pebble games modelling sequential computatioaszsided in [10]. In [8],
graph searching games have been employed as a model forypirveistributed sys-
tems, where the cops model eavesdroppers or intrudersioriet. Furthermore, appli-
cations of graph searching games can be found in VLSI desigineagame theoretical



approach to important graph layout parameters providingatde tools for the de-
sign of efficient algorithms. Of particular importance ig ttonnection between graph
searching games and well-known graph parameters sucheawitléh and path-width
(see e.g. [3,4,5]). For instance, Seymour and Thomas [Ethclkerised the tree-width
of a graph in terms of a variant of graph searching games wthereobber is visible
and hides on vertices of the graph.

An important concept in the theory of graph searching gasiaminotonicity. Intu-
itively, a strategy for the cops is monotone if they can céterobber without allowing
him to revisit vertices from which he has previously beerpedsd. Monotonicity has
featured highly in research on graph searching games fonmdeuof reasons. For in-
stance, monotone strategies correspond directly to grapbnapositions such as tree-
or path-decompositions. Also, for many game variants, imgstrategies for the rob-
ber can often be characterised by simple combinatoriatisires, such alsramblesfor
the case of games corresponding to tree-width, and henga&proatural and intuitive
obstructions for tree-width and similar measures. Howetiese structures usually pro-
vide a winning strategy even against cops following a nomobtone strategy. Hence,
showing for a game variant that the number of cops neededricagainst a robber
is always the same as the number of cops needed for a mondtategyg brings all
these concepts together and establishes a smooth theoeg@hgositions and games
in terms of min-max or duality theorems.

From an algorithmic perspective, an important property ohotone strategies is
that their length is usually linearly bounded in the ordeths# graph, whereas non-
monotone strategies can have up to exponential lengtloathalmost no game variant
actually requires such long strategies. Hence, monotaategtes often provide poly-
nomial certificates and thereby yield NP-algorithms foridieg the number of cops
needed to catch a robber.

Originally, graph searching games were introduced to mitethivvy for a robber
that is hiding in a system of tunnels. While the cops do not kti@\current position of
the robber they do have knowledge of the graph modellingytsem of tunnels. In this
paper we follow this idea of catching an invisible robber doisider games, which we
call d-domination gamesvhere the cops do not only see their current vertex but have a
radiusd of visibility. That is, a cop placed on a vertexcan see any other vertex within
distanced of v and if this vertex is occupied by the robber then the cop cantlse
robber and capture him. We are primarily interested in cexipl and monotonicity
questions related to these games.

For the casel = 1 these games correspond domination gamess introduced
by Fomin, Kratsch and Miler [7]. This variant is related to the notion of “see-d#tc
games studied in Computational Geometry and Roboticsh&tance motivated by ap-
plications in robotics such as surveillance with a mobileateequipped with a camera.
In their paper, the authors develop the fundamental thebdomination games and
establish a relationship between domination games andzeeofa minimum domi-
nating set of a graph and an interesting connection betwessetgames and a graph
parameter calledomination target numbentroduced in [11]. The focus of [7] is on
establishing bounds on the domination search number — themali number of cops
that are required to guarantee capture of the robber — fusclasses of graphs such



ask-dimensional cubessteroidal-triple freggraphsclaw-freegraphs, and graphs with
certain types of spanning trees and caterpillars. Theyexhihit an example showing
that domination games are hon-monotone.

In this paper we studg-domination games with a focus on complexity and mono-
tonicity. Following the initial results on monotonicity gfaph searching games men-
tioned above, monotonicity proofs for a large number of graparching games and
also non-monotonicity proofs for some games have beenrdutgsee e.g. [6]). Most
variants of graph searching games are either monotone oo} ifat least a bound on
the difference between the number of cops needed for anpitranonotone strategies
can be established. As it turns odtdomination games exhibit a completely different
behaviour in this respect.

Organisation and results. In Section 4, we establish very strong non-monotonicity
results by exhibiting classes of graphs on which two copsaiaron any graph in this
class but the number of cops required for monotone winniregegies is unbounded.
Hence, domination games are one of only very few types of gdorewhich such a
difference has been proved.

In [7, Problem 7], Fomin et al. raise the question whether polynomial bound
could be proved for the length of winning strategies in dation games. We give a
negative answer to this question by exhibiting a class gblyggavhere two cops have
a winning strategy but only with an exponential number opsteTo the best of our
knowledge, this is the first type of graph search games fochvbluch a lower bound
has been proved.

In terms of complexity, domination games are also much hattlen standard
cops and robber games. In particular, we show that deciditvgpi cops have a (hon-
monotone) winning strategy isSPACEcomplete. Again, to the best of our knowledge,
this is the first type of graph searching games exhibiting tbrst-case complexity.
This result is in sharp contrast to other variants of grapindeng games on undirected
graphs, which often are in polynomial time for a fixed numblecaps and often even
fixed-parameter tractable with the numbers of cops being&nameter. For monotone
strategies we also prove that it is NP-hard to decide whethercops have a mono-
tone winning strategy in domination games. The complexésults are the focus of
Section 5.

Finally, we establish a relation between domination gamesRobber and Marshal
games played on hypergraphs. Robber and Marshal games nterduiced in [9] to
provide a game theoretical characterisation of hypentrieih. In particular, we show
that every Robber and Marshal game on a hypergraph can tstetieshinto a domina-
tion game on an undirected graph and derive interestingecprences from this fact.

2 Preliminaries

We use standard notation from graph theory as can be fourdgn,[5]. In particular,
we write V(G) for the vertex set of a grapfi and E(G) for its edge set. All graphs
in this paper are simple and undirected and all graphs andrbsgphs are finite. Let
G be a graph and > 1. The (open)i-neighbourhood of a vertexin G is Nf(”) =
{u : 0 < distg(u,v) < d}, where dis(u, v) is the distance betweeanandv in G.



The closedi-neighbourhood of is N$ [v] := N§(v) U {v}. If X is a set, we define
NF[X] :=U,ex N§[v]. Forthe caséd = 1, we omit the indexi and e.g. writeV (v)
for N&(v). Also, we omit the indexi’ whenevelG is clear from the context.

The notions of tree-width and path-width were introducedRmpertson and Sey-
mour as part of their work on graph minors. We refer to [3, 5]definitions and further
information. We writepw(G) for the path-width of a grapt andtw(G) for its tree-
width.

3 d-Domination Games

In this section we introducé-domination gameand present basic results.

A d-domination gamen a graphG is played between two players, the cop and the
robber, where the goal of the cops is to capture the robbeeadh step of the play,
the robber occupies a vertex of the graph and the cop playgrate a finite number of
cops each occupying vertices. A play starts by the robbessihg an initial position. In
each step of the game, the cop either places a new cop on R @ereanoves an already
placed cop from the graph. SuppaXeis the set of vertices currently occupied by the
cops and they want to place a new cop on vettekhey first have to announce this to
the robber. The robber can then run away, but is not alloweditéhrough a vertex that
is in thed-neighbourhood of a vertex occupied by a cop, i.e. he cangiww position
u anywhere on the graph as long as there is a path from his ¢yrosition tou that
contains no vertex iV, [ X].

After the robber has chosen his new position, the new copaisepl onv and the
play continues. The cops win a play if they can capture thbegh.e. if they can place
a cop occupying or dominating the vertex occupied by the @olkb that the robber is
not able to escape. If the robber can escape forever, he wins.

d-domination games are a variant of the well-known cops abéengames used
to characterise graph parameters such as tree-width owpdth (see e.g. [12]). The
difference is that in a cops and robber game, a cop only oesugs current position
but does not block thé-neighbourhood of this position.

We will distinguish between two variants dfdomination games, i.e. the visible
and invisible variant. In theisiblecase, the cops can see the robber and can adapt their
strategy accordingly. In theavisiblecase, the cops do not see the robber and hence have
to search the graph independently of the robbers curreiitigrodn this case, we are
essentially dealing with a one player game and in descritiiaggame, we can discard
the robber positions. In both cases, the aim of the cop pliay&r capture the robber
using as few cops as possible. In this paper we primarily idenghe invisible case
and will therefore present the relevant notation and déjimétin terms of the invisible
domination game. We briefly comment on the visible case ini@e6.

In the invisible domination game, the cops have to captueerdbber without be-
ing able to see him — and hence without being able to reacts@dttions. We can
therefore represent any cop strategy on a gi@ph the invisibled-domination game
by a sequenc& := (Si,...,S5,), where, forl < i < n, S; C V(G) is the cop
position after step. With any strategyS := (5i,...,5,) we associate the corre-
sponding sequencR, . .., R,, of robber spacess follows: R, := V(G) and for all



i >0, R; :={v € V(G)\ Nyg[S;] : there isu € R;_; and a path fromu to v in
G\ Ng[S;—1 N'S;]}, where we take5, := (). Hence,R; is the set of vertices available
to the robber aftei steps of the play. Vertices ¥i(G) \ R; are callecclear at stage.

Definition 3.1. LetS := (954,...,5,) be a strategy andRy, ..., R,,) be the corre-

sponding robber spaces.
1. Sis awinning strategyf it is finite and R,, = 0.

2. Thewidth w(S) of S is defined asv(S) := max{|S;| : 1 <1i <n}.

3. Thed-domination search numbeis;(G) := min{w(S) : S is a winning strat-
egy onG} of G is the minimal number of cops required to win the invisidle
domination game of.

Clearly, every graph of ordet can be searched by cops. Hencals;(G) is well-
defined. We next introduce a general construction that willised frequently through-
out the paper. As a first application of this we show that qoestabout complexity and
monotonicity ofd-domination games fo# > 1 can be reduced to the corresponding
questions for the case df= 1.

Fork > 0, let K, be thek-clique, i.e. the complete graph énvertices. Further, if
X is a set, we writd{[ X] for the complete graph with vertex s&t For eacht > 0 and
d > 0, we defineS¢ as the graph (up to isomorphism) obtained frmnby subdividing
each edged times, i.e. replacing each edge by a path of lerigth- 1. We call S¢ a
d-subdividedk-clique Note thatS§ contains more thah vertices but in the rest of the
paper the vertices in the paths replacing edges will usuaityplay a role. We say that
S is thed-subdivided cliqueovera setX if .S is obtained fromi’[X] by subdividing
each edg@d times. We writeS?[X] for this graph and calX the original verticesof
S?[X]. As before, we omit the indices in cage= 1. The following lemma, whose
proof is straightforward, will be used frequently in the sely

Lemma 3.2. Forall k > 0 andd > 0, ds;(S{) = k.

For a graphG, k > 0 and a functionf : V(G) — 2Y(%) we define thesubdivided
k-clique graphof G, denoted bySC(G, k, f), to be the graph obtained fro@ by

1) replacing each vertex € V(G) by a disjoint copy ofS}, denotedSC(v), and 2)
replacing each edge:, v} € F(G) by a perfect matching between the original vertices
in SC(u) and the original vertices iIfC(v) and 3) for eachv € V(G) we add a new
vertex denoted(v) so that{c(v) : v € V(G)} induces a clique i C(G, k, f) and

for eachv € V(G), SC(G, k, f) contains edges betwee(v) and all vertices in every
SC(u) foru € f(v).

Now it is easily seen that cops have a winning strategy in tiedomination game
on G if, and only if, £ cops have a winning strategy in tHedomination game on
SC(G, k,N§[]), where in addition they only play on the new extra verticgs), for
v € V(G). The same holds for monotone winning strategies as defin€ddtion 4
below. Here,N§'[] denotes the functiorf(v) := N§[v]. By settingk := |V (G)| we
obtain the following corollary.

Corollary 3.3. Fix d > 0. There is a polynomial time algorithm which constructs for
each graphG a graphG’ such that for allk > 0, k& cops win thei-domination game
ond if, and only if,k cops win thel-domination game o6’. The analogous statement
holds for monotone winning strategies.



The converse direction is also true. By subdividing eacheedigtimes, we can con-
struct for each graptiy a graphGG’ so thatk cops win thel-domination game of if,
and only if,k cops win thel-domination game on?’. This construction follows essen-
tially from [7] and also shows that the cops and robber gantkerdying tree-width can
be reduced to thé-domination game. It follows that all questions concernmngno-
tonicity and complexity about-domination games can be reduced to the cage-ofl.
We will therefore only consider this case in the sequel. Ascdbed in the introduc-
tion, this case was already studied under the name of doimingames by Fomin et
al. [7]. We will therefore follow their terminology and reféo these games as dom-
ination games and writds(G) for the minimal number of cops required to win the
domination game on a grah.

4 Monotonicity of Domination Games

In this section we study monotone strategies of invisiblethation games. In particu-
lar, we establish strong non-monotonicity results for cammotions of monotonicity

— cop-androbber-monotonicity- in showing that in general more cops are needed to
catch a robber with a monotone strategy than with an uncéstiistrategy and that the
ratio between the monotone and the non-monotone case isindéd. We then con-
sider a third type of monotonicity specific to domination gam

Definition 4.1. LetS := (54,...,5,) be a strategy andRy, ..., R,,) be the corre-
sponding robber spaces (see Section 3).

1. Sisrobber-monotonef R; O R; forall i < j.

2. Siscop-monotondf forall i < j < landallv € V(G), ifv € 5;\ 5, thenv ¢ 5.

3. Thecop-monotone domination search numisefefined as c-d§7) := min{w(S) :
S is a cop-monotone winning strategy 6#}. Therobber-monotone domination
search numbards(G) is defined analogously.

In a non-monotone strategy, a vertex R; \ R;, for j > i, is calledrecontaminated

Note that, unlike cops and robber games, in domination gao@snonotone strategies
might not be robber-monotone and vice versa. In [7], StefabrBv exhibited an exam-

ple where three cops can win the domination game but four amaeeded to search
the graph using a monotone strategy. We now strengthendhigtrconsiderably by

showing that the ratio between the (robber- or cop-) moretord the non-monotone
search numbers is unbounded.

Lemma 4.2. For everyk > 2, there is a graplGGy, such thatd&Gy) = 2 butr-d§Gy) =
c-dqGy) = k.

Proof. Fork € N we defineGy, as follows. LetU := {us,...,u;} be a set of sizé.
For all permutation of (1,...,%) and alll < i < k, let P’ be a subdivided clique
on k vertices and lef, be the graph obtained from the disjoint un@ng of these
subdivided cliques by adding edges forming a perfect matcbf the original vertices
in P’ and P?.,, for 1 < i < k. ThenG, is defined ask'[X] UUPHP augmented



by edges{{v;,v} : v € P[f(i),l < ¢ < k andp is a permutation of1,...,k)}.
The construction is illustrated in Figurea). Here, dashed lines represent edges from
a vertexu; to all vertices in a subdivided clique whereas solid lingzresent actual

edges.

B R s
[d1 [ 41 3 [T
DENDE] DEEDPEE
Vo ¢/ Vo o\

a) GraphGy, from Lemma4.2.  b) Graptyy, from Lemma 4.3.

Fig. 1. Examples for non-monotonicity in domination games.

It is easily seen that two cops can seaf¢h as follows: for each permutatiom
of (1,...,k) they pIaySp = ({up(l), up(g)}, {up(2), up(3)}, ceey {up(k,l), up(k)}),
i.e. they search the “path?, by going throughu,, ... , u; using the ordering given by
p- As the only connection betwedifi, and H, is through the vertices ity and these
form a clique, they can search tig, independently.

It remains to show thak — 1 cops do not have a cop-monotone or a robber-
monotone strategy off;.. We can assume that the cops are only playing on the vertices
inuy,--- ,ux as otherwise they need at leastops to clear a subdividgdclique.

Suppose the cops start by occupying all but one veiter U. Then in eachH ,,
the cquuePFj’(i) is still contaminated. Furthermore, in the next step thesdogve to
remove a cop from a vertex;. But then, there is a permutatignsuch thatp(i) and
p(j) are consecutive numbers and thusHp the subdivided cliqud3§(j) becomes
recontaminated. This shows that the strategy is not rotstmeretone. AsP; ;) can only
be cleared again by playing an the strategy for the cops can not be cop-monotone.
This concludes the proof.

Considering again the example above exhibiting non-margirategies for the
cops, the main source for non-monotonicity appears to bewhde clearing some
parts of the graph, the cops accidentally and unintentipred¢ar other parts of the
graph also — which later on they have to allow to be recontatath For instance, in the
example above, while clearing a sub-grdpjthey also clear parts of other sub-graphs
H, but in the wrong order. If we gave the cops the power to chodgehwertices in
the neighbourhood of a cop they really want to dominate, they could easily search
the graphs7, with a robber- and cop-monotone strategy. We call sieiective mono-
tonicity. It seems conceivable, thus, that sisefectivestrategies are always sufficient,
i.e. whenevelk cops can win in any form, they can do so with a selective mam®to



strategy. Such a result would be extremely interesting amitld imply a linear up-
per bound for the length of minimal winning strategies far top player. This hope is
dashed, though, by the following theorem.

Theorem 4.3. There exists a graphy with d§G) = 2 but 3 cops are needed for any
selective monotone winning strategy.

Proof. The graphG is shown in Figure B). Here, solid lines represent actual edges
whereas a dashed line such as betwseandS; indicates that there is an edge between
3 and every vertex itbs.

Now, ds(G) = 2 as witnessed by the following two strategi€s:= ({3, 2}, {2,1}, {1,0},
{0,1/},{1",2'},{2,3'}) and S, := ({3/,2'},{2',1'},{1",0},{0,1},{1,2},{2,3}).
Note that both strategies are not robber monotone. FornostanS; the vertices in
S, are recontaminated in the step frdiy 1} to {1,0} and similarly in the symmetric
strategyS,. Further, observe that in order for these strategies to yairkach step all
neighbours of every vertex occupied by a cop need to be deesinelence, none of the
two strategies can be turned into a selective monotonegirat

We claim that there is no selective monotone strategy with ttwo cops. For the
sake of contradiction le§ be a selective monotone winning strategy with two cops
using a minimal number of steps. We first show tBatannot use any vertex other than
those inX := {3,2,1,0,1',2',3'}. For, ifv € S; orv € P; is occupied by a cop then
at the first step where this cop is lifted from v will be recontaminated unless it is
dominated by the other cop. Hence, placing a cop @ither can be avoided, asis
dominated anyway, or it leads to non-monotonicity.

Thus, a selective monotone strategy with two cops essinsabrches the path
3,2,1,0,1’,2', 3. However, it is easily seen that a path of lengttan be searched in
only two ways by two cops using a monotone strategy: leftgbtror right to left. If
follows that the only possible strategies &teor S; and neither is selective monotone.
This yields the contradiction.

As argued above, an important aspect of monotonicity forreamtof graph search-
ing games is that in this way a bound on the maximal numberegfssin a strategy
is obtained. As domination games are strongly hon-mongtonesuch bound can be
achieved using this approach. In Corollary 5.3 below we sti@t there exist graphs
such that the number of steps needed by a strategy in the dbamnirgame is exponen-
tial in the size of the graph and thus cannot be bounded balingla polynomial.

5 Complexity of Domination Games

In this section we study the complexity of deciding wheth@ops have a (monotone)
winning strategy in the domination game on a gréghVe measure the complexity of
this problem in different ways — classically and in the cahté parametrised complex-
ity. Let DOMINATION SEARCH be the problem of deciding for a given graphand
k € N whetherk cops have a winning strategy @i In [7], Fomin et al. study this
problem and show that it is NP-hard.

Theorem 5.1 ([7]).DOMINATION SEARCH is NP-hard.



No upper bound for the complexity of the problem was given.s&ktle this problem
by giving precise complexity bounds fordMINATION SEARCH.

Theorem 5.2. DOMINATION SEARCH is PsPACEcomplete. More precisely, we show
that even deciding whether two cops have a winning strategg graph isPSPACE
complete.

In [7, Problem 7], Fomin et al. raise the question whetheref@ry graphz there is a
winning strategy of lengti®(n) usingds(G) cops in the invisible domination search
game. As a consequence of the proof of the previous theoreemsger this question
negatively by showing that there exist graphs on which thelyer of steps needed by a
strategy in the domination game is at least exponentialdrstre of the graph and thus
can not be bounded bounded by a polynomial. Clearly, exg@iéength of strategies
is also the worst possible.

Corollary 5.3. There exists a famil¢g of graphs such that two cops have a winning
strategy in the invisible domination game on ed&ghe C but any such strategy is at
least of exponential length, i.e. there is no polynomial) so that the length of these
strategies is bounded Ipf|G|).

We now consider the problem to decide for a given gréptvhetherk cops have a
monotone winning strategy in the invisible domination gamieere we consider cop-
and selective-monotonicity. Clearly, as the length of none strategies is polynomi-
ally bounded in the size of the graph, these problems aressarl in NP. We again
give tight complexity bounds by showing that even decidirfgether two (or three,
respectively) cops have monotone winning strategies isate-

Theorem 5.4. Let G be a graph. Deciding whether two cops have a cop-monotone
winning strategy in the domination search game(dis NP-complete.

Theorem 5.5. Let G be a graph. Deciding whether three cops have a selective mono
tone winning strategy in the domination game@iis NP-complete.

We do not know corresponding results for robber-monotorsesiies and leave this as
an open problem.

The previous results settle the classical complexity ofdbmination game prob-
lem. We now study the parametrised complexity of this pnowbl@he parametrised
domination search problep DOMINATION SEARCH is defined as the problem, given
agraph andk € N as input, to decide & cops have a winning strategy in the invisible
domination game oty. We takek as the parameter. The problem is in the parametrised
complexity class XPif it can be solved in timj&/|/(*) for some computable function
f + N — N. It is fixed-parameter tractableor in FPT, if it can be solved in time
f(k)-|G|¢, for somec € N and computablg : N — N. The following is an immediate
consequence of Theorem 5.2, 5.4 and 5.5.

Corollary 5.6. p-DOMINATION SEARCH s not in XP. This holds true even for the cop-
or selective monotone version of the problem.



The previous results establish fixed-parameter intradafor domination games.
Hence, domination games are considerably more complexstiaalard cops and rob-
ber games, which are NP-complete and fixed-parameter Itact@he latter follows
from the parametrised tractability of tree-width and pailth and the monotonicity of
the games.

We now turn to special cases where tractability can be obdaiA natural choice of
graph classes where the problem might be easier are claslsesraled tree- or path-
width. One is tempted to think that fixed-parameter traditsghbof domination search
on classe§ of graphs of tree-width at mogtcould be established along the following
lines: givenG € C andk € N, we first compute a tree-decomposition@fof width
d and then use dynamic programming to decide whether therevisrang strategy of
width k. This is the approach taken to show that the analogous quedtr cops and
robber games (visible and invisible) can be solved by lirieae parametrised algo-
rithms. Typically, one proceeds bottom-up along the treesthposition and for each
node in the decomposition tree one computes a constanta&aesttucture containing
information about the sub-graph induced by the verticefiénsub-tree rooted at this
node. For domination games, however, this approach faits\&stex in a bag can be
dominated by vertices not contained in this bag. The wayshithvthis happens can
be rather complex and hence a constant size data structmes shfficult to obtain. It
is still possible, though, that domination search is fpt @sses of bounded tree-width
and we leave this for future work.

We are, however, able to obtain parametrised algorithmslémses of graphs of
bounded degree (recall that the problem is already NP-haithe class of graphs of
degree at mosi).

Lemma 5.7. For d > 0letC, be the class of graphs of maximum degree at rdioEhen
the problem, givells € C; andk € N, to decide whethek cops have a cop-monotone
winning strategy ort7 is fixed-parameter tractable with parameté#- k.

Furthermore, ifk cops have a winning strategy on aiye C,, then at mostlk + 1
cops have a cop- and a selective-monotone winning strategy.

6 Games on Hypergraphs and Visible Robbers

In this section we briefly explore the relation between dation games and Robber
and Marshal games on hypergraphs and comment on dominatinagwith a visible
robber.

Robber and Marshal games, with a visible robber, have bdaerdinced in [9] as
a game-theoretical approach to hypertree-width and haves shen, been studied in-
tensively. Essentially, a Robber and Marshal game is a CogsRabber game on a
hypergraph where the robber occupies a vertex whereas esashah& cop) occupies
a hyperedge and blocks all vertices contained in it.

We will show next that every hypergraph game can be trartslate a domination
game — in the visible and the invisible case. There is a snifédrdnce between the
Robber and Marshal game we use here and the original robtenarshal game in [9].
In the original game the marshalkde along edges in the sense that if a marshal moves
from hyperedge to ¢’ then the vertices ia N ¢’ remain blocked (an equivalent notion

10



for domination games could easily be defined). Here, we densghe variant of Robber
and Marshal games where only the vertices in edges on whichrsha remains are
blocked. It is easy to see that both variants are within ateom$actor of each other.

Lemma 6.1. Let H be a hypergraph anél > 1 be an integer. Then there exists a graph
H{lem, such thatk marshalls have a (marshal-/robber-monotone) winningtstyg in
the (visible) robber and marshals game Bnif and only if,k cops have a (cop-/robber-
monotone) winning strategy in the (visible) domination gamHgi’{l and H;jfj{’ can

be constructed froni/ in polynomial time.

The lemma allows us to translate Robber and Marshal gamesmindtion games. It
follows immediately from Lemma 6.2 below that there is na#iation in the converse
direction.

So far, we have primarily considered domination games witlingisible robber.
Here, we briefly summarise our knowledge of the visible c&early, notions such as
monotonicity and the domination search number translaigyea

In [1], Adler showed that the visible robber and marshall gamentioned above
is not robber-monotone. Together with Lemma 6.1, this iegpthat the visible dom-
ination game is also not robber-monotone. However, the echibnotone and non-
monotone variant of the visible robber and marshall Gamevéten a constant factor
of each other (see [2]). We show next that no such bound cahtbaed for domination
games.

Lemma 6.2. For everyk > 2, there is a graphG) such that2 cops have a non-
monotone buk cops are needed for a robber-monotone winning strategyervisible
domination game ofy.

Finally, we consider the complexity of visible dominatioanges. In terms of classical
complexity, we can show the following.

Theorem 6.3. Let G be a graph. Deciding whether three cops have a selective mono
tone winning strategy in the visible domination gameis NP-complete.

It is easily seen that all visible game variants except fergblective monotone variant
are in XP, as the current cop and robber position completigrchine the current state
of the play and there are onh®*) such positions. We show next that the problem is
not in FPTunless FPT=W[2].

As observed in [7], domination search is closely relatedimithating sets in graphs.
A dominating sebf a graphG is a setX such that for albb € V(G) eitherv € X or
there is au € X such thaf{u,v} € E(G). Thedomination numbeof G, denoted by
~v(G), is the minimal size of a dominating set@f

Lemma 6.4 ([7]).LetG be a graph andd be the graph obtained fro@ by connect-
ing every pair of non-adjacent vertices @i by a path of length three. Thep(G) <
ds(H) < ~(G) + 1.

We establish a similar but exact correspondence using latllidifferent construction.

Theorem 6.5. For all graphsG, there exists a grapty’ such thaty(G) + 1 = ds(G’)
andG’ is constructable in polynomial time.

11



The theorem immediately gives a parametrised reductian fiee dominating set
problem, parametrised by the size of the solution, to theidation search problem,
parametrised by the numbérof cops. The following result follows from the 1&)-
hardness of the dominating set problem, wherl@]%/ a parametrised complexity class
strongly believed to be different from FPT.

Theorem 6.6. The problenp-DOMINATION SEARCH: “given a graphG andk € N,
with parameterk, decide whethek cops have a winning strategy in the (in-)visible
domination game o is W/[2]-hard.

However, Lemma 5.7 also applies to the visible case and #iluslating the visible
domination search number for graphs of bounded degree @ fizeameter tractable.

Acknowledgements. We are grateful to Fedor Fomin for bringing domination games
to our attention and thereby stimulating the research tegan this paper and to Fedor
Fomin, Paul Hunter and Paul Dorbec for valuable discussorthe subject.
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