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Abstract. We study graph searching games where a number of cops try to cap-
ture a robber that is hiding in a system of tunnels modelled as a graph. While the
current position of the robber is unknown to the cops, each cop can seea certain
radiusd around his position. For the cased = 1 these games have been studied
by Fomin, Kratsch and M̈uller [7] under the name domination games.
We are primarily interested in questions concerning the complexity and mono-
tonicity of these games. We show that dominating games are computationally
much harder than standard graph searching games where the cops only see their
own vertex and establish strong non-monotonicity results for various notions of
monotonicity which arise naturally in the context of domination games. Answer-
ing a question of [7], we show that there exists graphs for which the shortest
winning strategy for a minimal number of cops must necessarily be of exponen-
tial length. On the positive side, we establish tractability results for graph classes
of bounded degree.

1 Introduction

Graph searching games are a form of two-player games played on graphs. A wide range
of such games have been studied in the literature but they allshare the common scheme
that a number of cops tries to catch a robber who is hiding in the graph. The problem
is to guide a party of as few cops as possible so that the robberis guaranteed to be
captured regardless of his moves. In the model of graph searching games known as
node searching, the cops and the robber occupy vertices of the graph. At each step of
the play, the player controlling the cops can lift some of thecops from the graph and
place them somewhere else. While they are in transit, the robber can move in the graph
following any path from his current to his new position as long as this path does not go
through a vertex occupied or “blocked” by a remaining cop (inwhich case the robber
would be have been captured).

Variants of this game are obtained by varying the abilities of the cops, for instance,
whether or not they know the current position of the robber, and by the precise definition
of “blocking”. The minimal number of cops needed to catch a robber on a graph yields
an interesting graph invariant related to the global connectivity of the graph. See [6] for
a recent survey on the subject.

Graph searching games have found a wide range of applications in Computer Sci-
ence in seemingly unrelated areas: there is a strong resemblance of graph searching
games to pebble games modelling sequential computation as described in [10]. In [8],
graph searching games have been employed as a model for privacy in distributed sys-
tems, where the cops model eavesdroppers or intruders in networks. Furthermore, appli-
cations of graph searching games can be found in VLSI design as the game theoretical



approach to important graph layout parameters providing valuable tools for the de-
sign of efficient algorithms. Of particular importance is the connection between graph
searching games and well-known graph parameters such as tree-width and path-width
(see e.g. [3,4,5]). For instance, Seymour and Thomas [12] characterised the tree-width
of a graph in terms of a variant of graph searching games wherethe robber is visible
and hides on vertices of the graph.

An important concept in the theory of graph searching games is monotonicity. Intu-
itively, a strategy for the cops is monotone if they can catchthe robber without allowing
him to revisit vertices from which he has previously been exspelled. Monotonicity has
featured highly in research on graph searching games for a number of reasons. For in-
stance, monotone strategies correspond directly to graph decompositions such as tree-
or path-decompositions. Also, for many game variants, winning strategies for the rob-
ber can often be characterised by simple combinatorial structures, such asbramblesfor
the case of games corresponding to tree-width, and hence provide natural and intuitive
obstructions for tree-width and similar measures. However, these structures usually pro-
vide a winning strategy even against cops following a non-monotone strategy. Hence,
showing for a game variant that the number of cops needed to win against a robber
is always the same as the number of cops needed for a monotone strategy brings all
these concepts together and establishes a smooth theory of decompositions and games
in terms of min-max or duality theorems.

From an algorithmic perspective, an important property of monotone strategies is
that their length is usually linearly bounded in the order ofthe graph, whereas non-
monotone strategies can have up to exponential length, although almost no game variant
actually requires such long strategies. Hence, monotone strategies often provide poly-
nomial certificates and thereby yield NP-algorithms for deciding the number of cops
needed to catch a robber.

Originally, graph searching games were introduced to modelthe chivvy for a robber
that is hiding in a system of tunnels. While the cops do not knowthe current position of
the robber they do have knowledge of the graph modelling the system of tunnels. In this
paper we follow this idea of catching an invisible robber butconsider games, which we
call d-domination games, where the cops do not only see their current vertex but have a
radiusd of visibility. That is, a cop placed on a vertexv can see any other vertex within
distanced of v and if this vertex is occupied by the robber then the cop can see the
robber and capture him. We are primarily interested in complexity and monotonicity
questions related to these games.

For the cased = 1 these games correspond todomination gamesas introduced
by Fomin, Kratsch and M̈uller [7]. This variant is related to the notion of “see-catch”
games studied in Computational Geometry and Robotics, for instance motivated by ap-
plications in robotics such as surveillance with a mobile robot equipped with a camera.
In their paper, the authors develop the fundamental theory of domination games and
establish a relationship between domination games and the size of a minimum domi-
nating set of a graph and an interesting connection between these games and a graph
parameter calleddomination target numberintroduced in [11]. The focus of [7] is on
establishing bounds on the domination search number – the minimal number of cops
that are required to guarantee capture of the robber – for various classes of graphs such
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ask-dimensional cubes,asteroidal-triple freegraphs,claw-freegraphs, and graphs with
certain types of spanning trees and caterpillars. They alsoexhibit an example showing
that domination games are non-monotone.

In this paper we studyd-domination games with a focus on complexity and mono-
tonicity. Following the initial results on monotonicity ofgraph searching games men-
tioned above, monotonicity proofs for a large number of graph searching games and
also non-monotonicity proofs for some games have been obtained (see e.g. [6]). Most
variants of graph searching games are either monotone or, ifnot, at least a bound on
the difference between the number of cops needed for arbitrary or monotone strategies
can be established. As it turns out,d-domination games exhibit a completely different
behaviour in this respect.

Organisation and results. In Section 4, we establish very strong non-monotonicity
results by exhibiting classes of graphs on which two cops canwin on any graph in this
class but the number of cops required for monotone winning strategies is unbounded.
Hence, domination games are one of only very few types of games for which such a
difference has been proved.

In [7, Problem 7], Fomin et al. raise the question whether anypolynomial bound
could be proved for the length of winning strategies in domination games. We give a
negative answer to this question by exhibiting a class of graphs where two cops have
a winning strategy but only with an exponential number of steps. To the best of our
knowledge, this is the first type of graph search games for which such a lower bound
has been proved.

In terms of complexity, domination games are also much harder than standard
cops and robber games. In particular, we show that deciding if two cops have a (non-
monotone) winning strategy is PSPACE-complete. Again, to the best of our knowledge,
this is the first type of graph searching games exhibiting this worst-case complexity.
This result is in sharp contrast to other variants of graph searching games on undirected
graphs, which often are in polynomial time for a fixed number of cops and often even
fixed-parameter tractable with the numbers of cops being theparameter. For monotone
strategies we also prove that it is NP-hard to decide whethertwo cops have a mono-
tone winning strategy in domination games. The complexity results are the focus of
Section 5.

Finally, we establish a relation between domination games and Robber and Marshal
games played on hypergraphs. Robber and Marshal games were introduced in [9] to
provide a game theoretical characterisation of hypertree-width. In particular, we show
that every Robber and Marshal game on a hypergraph can be translated into a domina-
tion game on an undirected graph and derive interesting consequences from this fact.

2 Preliminaries

We use standard notation from graph theory as can be found in,e.g., [5]. In particular,
we writeV (G) for the vertex set of a graphG andE(G) for its edge set. All graphs
in this paper are simple and undirected and all graphs and hypergraphs are finite. Let
G be a graph andd ≥ 1. The (open)d-neighbourhood of a vertexv in G is NG

d (v) :=
{u : 0 < distG(u, v) ≤ d}, where distG(u, v) is the distance betweenu andv in G.
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The closedd-neighbourhood ofv is NG
d [v] := NG

d (v) ∪ {v}. If X is a set, we define
NG

d [X] :=
⋃

v∈X NG
d [v]. For the cased = 1, we omit the indexd and e.g. writeNG(v)

for NG
1 (v). Also, we omit the indexG wheneverG is clear from the context.

The notions of tree-width and path-width were introduced byRobertson and Sey-
mour as part of their work on graph minors. We refer to [3,5] for definitions and further
information. We writepw(G) for the path-width of a graphG andtw(G) for its tree-
width.

3 d-Domination Games

In this section we introduced-domination gamesand present basic results.
A d-domination gameon a graphG is played between two players, the cop and the

robber, where the goal of the cops is to capture the robber. Ateach step of the play,
the robber occupies a vertex of the graph and the cop player controls a finite number of
cops each occupying vertices. A play starts by the robber choosing an initial position. In
each step of the game, the cop either places a new cop on a vertex or removes an already
placed cop from the graph. SupposeX is the set of vertices currently occupied by the
cops and they want to place a new cop on vertexv. They first have to announce this to
the robber. The robber can then run away, but is not allowed torun through a vertex that
is in thed-neighbourhood of a vertex occupied by a cop, i.e. he can picka new position
u anywhere on the graph as long as there is a path from his current position tou that
contains no vertex inNd[X].

After the robber has chosen his new position, the new cop is placed onv and the
play continues. The cops win a play if they can capture the robber, i.e. if they can place
a cop occupying or dominating the vertex occupied by the robber so that the robber is
not able to escape. If the robber can escape forever, he wins.

d-domination games are a variant of the well-known cops and robber games used
to characterise graph parameters such as tree-width or path-width (see e.g. [12]). The
difference is that in a cops and robber game, a cop only occupies his current position
but does not block thed-neighbourhood of this position.

We will distinguish between two variants ofd-domination games, i.e. the visible
and invisible variant. In thevisiblecase, the cops can see the robber and can adapt their
strategy accordingly. In theinvisiblecase, the cops do not see the robber and hence have
to search the graph independently of the robbers current position. In this case, we are
essentially dealing with a one player game and in describingthe game, we can discard
the robber positions. In both cases, the aim of the cop playeris to capture the robber
using as few cops as possible. In this paper we primarily consider the invisible case
and will therefore present the relevant notation and definitions in terms of the invisible
domination game. We briefly comment on the visible case in Section 6.

In the invisible domination game, the cops have to capture the robber without be-
ing able to see him – and hence without being able to react to his actions. We can
therefore represent any cop strategy on a graphG in the invisibled-domination game
by a sequenceS := (S1, . . . , Sn), where, for1 ≤ i ≤ n, Si ⊆ V (G) is the cop
position after stepi. With any strategyS := (S1, . . . , Sn) we associate the corre-
sponding sequenceR0, . . . , Rn of robber spacesas follows:R0 := V (G) and for all
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i > 0, Ri := {v ∈ V (G) \ Nd[Si] : there isu ∈ Ri−1 and a path fromu to v in
G \ Nd[Si−1 ∩ Si]}, where we takeS0 := ∅. Hence,Ri is the set of vertices available
to the robber afteri steps of the play. Vertices inV (G) \ Ri are calledclear at stagei.

Definition 3.1. Let S := (S1, . . . , Sn) be a strategy and(R0, . . . , Rn) be the corre-
sponding robber spaces.
1. S is awinning strategyif it is finite andRn = ∅.
2. Thewidth w(S) of S is defined asw(S) := max{|Si| : 1 ≤ i ≤ n}.
3. Thed-domination search numberdsd(G) := min{w(S) : S is a winning strat-

egy onG} of G is the minimal number of cops required to win the invisibled-
domination game onG.

Clearly, every graph of ordern can be searched byn cops. Hencedsd(G) is well-
defined. We next introduce a general construction that will be used frequently through-
out the paper. As a first application of this we show that questions about complexity and
monotonicity ofd-domination games ford > 1 can be reduced to the corresponding
questions for the case ofd = 1.

For k > 0, let Kk be thek-clique, i.e. the complete graph onk vertices. Further, if
X is a set, we writeK[X] for the complete graph with vertex setX. For eachk > 0 and
d > 0, we defineSd

k as the graph (up to isomorphism) obtained fromKk by subdividing
each edge2d times, i.e. replacing each edge by a path of length2d + 1. We callSd

k a
d-subdividedk-clique. Note thatSd

k contains more thank vertices but in the rest of the
paper the vertices in the paths replacing edges will usuallynot play a role. We say that
S is thed-subdivided cliqueover a setX if S is obtained fromK[X] by subdividing
each edge2d times. We writeSd[X] for this graph and callX theoriginal verticesof
Sd[X]. As before, we omit the indices in cased = 1. The following lemma, whose
proof is straightforward, will be used frequently in the sequel.

Lemma 3.2. For all k > 0 andd > 0, dsd(Sd
k) = k.

For a graphG, k > 0 and a functionf : V (G) → 2V (G) we define thesubdivided
k-clique graphof G, denoted bySC(G, k, f), to be the graph obtained fromG by
1) replacing each vertexv ∈ V (G) by a disjoint copy ofS1

k, denotedSC(v), and 2)
replacing each edge{u, v} ∈ E(G) by a perfect matching between the original vertices
in SC(u) and the original vertices inSC(v) and 3) for eachv ∈ V (G) we add a new
vertex denotedc(v) so that{c(v) : v ∈ V (G)} induces a clique inSC(G, k, f) and
for eachv ∈ V (G), SC(G, k, f) contains edges betweenc(v) and all vertices in every
SC(u) for u ∈ f(v).

Now it is easily seen thatk cops have a winning strategy in thed-domination game
on G if, and only if, k cops have a winning strategy in the1-domination game on
SC(G, k,NG

d []), where in addition they only play on the new extra verticesc(v), for
v ∈ V (G). The same holds for monotone winning strategies as defined inSection 4
below. Here,NG

d [] denotes the functionf(v) := NG
d [v]. By settingk := |V (G)| we

obtain the following corollary.

Corollary 3.3. Fix d > 0. There is a polynomial time algorithm which constructs for
each graphG a graphG′ such that for allk > 0, k cops win thed-domination game
onG if, and only if,k cops win the1-domination game onG′. The analogous statement
holds for monotone winning strategies.
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The converse direction is also true. By subdividing each edge 2d-times, we can con-
struct for each graphG a graphG′ so thatk cops win the1-domination game onG if,
and only if,k cops win thed-domination game onG′. This construction follows essen-
tially from [7] and also shows that the cops and robber game underlying tree-width can
be reduced to the1-domination game. It follows that all questions concerningmono-
tonicity and complexity aboutd-domination games can be reduced to the case ofd = 1.
We will therefore only consider this case in the sequel. As described in the introduc-
tion, this case was already studied under the name of domination games by Fomin et
al. [7]. We will therefore follow their terminology and refer to these games as dom-
ination games and writeds(G) for the minimal number of cops required to win the
domination game on a graphG.

4 Monotonicity of Domination Games

In this section we study monotone strategies of invisible domination games. In particu-
lar, we establish strong non-monotonicity results for common notions of monotonicity
– cop-androbber-monotonicity– in showing that in general more cops are needed to
catch a robber with a monotone strategy than with an unrestricted strategy and that the
ratio between the monotone and the non-monotone case is unbounded. We then con-
sider a third type of monotonicity specific to domination games.

Definition 4.1. Let S := (S1, . . . , Sn) be a strategy and(R0, . . . , Rn) be the corre-
sponding robber spaces (see Section 3).

1. S is robber-monotone, if Ri ⊇ Rj for all i < j.
2. S is cop-monotoneif for all i < j < l and allv ∈ V (G), if v ∈ Si\Sj thenv 6∈ Sl.
3. Thecop-monotone domination search numberis defined as c-ds(G) := min{w(S) :

S is a cop-monotone winning strategy onG}. The robber-monotone domination
search numberr-ds(G) is defined analogously.

In a non-monotone strategy, a vertexv ∈ Rj \ Ri, for j > i, is calledrecontaminated.

Note that, unlike cops and robber games, in domination gamescop-monotone strategies
might not be robber-monotone and vice versa. In [7], Stefan Dobrev exhibited an exam-
ple where three cops can win the domination game but four copsare needed to search
the graph using a monotone strategy. We now strengthen this result considerably by
showing that the ratio between the (robber- or cop-) monotone and the non-monotone
search numbers is unbounded.

Lemma 4.2. For everyk > 2, there is a graphGk such that ds(Gk) = 2 but r-ds(Gk) =
c-ds(Gk) = k.

Proof. For k ∈ N we defineGk as follows. LetU := {u1, . . . , uk} be a set of sizek.
For all permutationsρ of (1, . . . , k) and all1 ≤ i ≤ k, let P

ρ
i be a subdivided clique

on k vertices and letHρ be the graph obtained from the disjoint union˙
⋃

iP
ρ
i of these

subdivided cliques by adding edges forming a perfect matching of the original vertices
in P

ρ
i andP

ρ
i+1, for 1 ≤ i < k. ThenGk is defined asK

[

X
]

∪̇ ˙⋃
ρHρ augmented
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by edges{{vi, v} : v ∈ P
ρ

ρ(i), 1 ≤ i ≤ k and ρ is a permutation of(1, . . . , k)}.
The construction is illustrated in Figure 1a). Here, dashed lines represent edges from
a vertexui to all vertices in a subdivided clique whereas solid lines represent actual
edges.

a) GraphGk from Lemma 4.2. b) GraphGk from Lemma 4.3.

Fig. 1. Examples for non-monotonicity in domination games.

It is easily seen that two cops can searchGk as follows: for each permutationρ
of (1, . . . , k) they playSρ := ({uρ(1), uρ(2)}, {uρ(2), uρ(3)}, . . . , {uρ(k−1), uρ(k)}),
i.e. they search the “path”Pρ by going throughu1, . . . , uk using the ordering given by
ρ. As the only connection betweenHρ andHρ′ is through the vertices inU and these
form a clique, they can search theHρ independently.

It remains to show thatk − 1 cops do not have a cop-monotone or a robber-
monotone strategy onGk. We can assume that the cops are only playing on the vertices
in u1, · · · , uk as otherwise they need at leastk cops to clear a subdividedk-clique.

Suppose the cops start by occupying all but one vertexui in U . Then in eachHρ,
the cliqueP

ρ

ρ(i) is still contaminated. Furthermore, in the next step the cops have to
remove a cop from a vertexuj . But then, there is a permutationρ such thatρ(i) and
ρ(j) are consecutive numbers and thus inHρ the subdivided cliqueP ρ

ρ(j) becomes

recontaminated. This shows that the strategy is not robber-monotone. AsP ρ

ρ(j) can only
be cleared again by playing onvj the strategy for the cops can not be cop-monotone.
This concludes the proof.

Considering again the example above exhibiting non-monotone strategies for the
cops, the main source for non-monotonicity appears to be that while clearing some
parts of the graph, the cops accidentally and unintentionally clear other parts of the
graph also – which later on they have to allow to be recontaminated. For instance, in the
example above, while clearing a sub-graphHρ they also clear parts of other sub-graphs
Hρ′ but in the wrong order. If we gave the cops the power to choose which vertices in
the neighbourhood of a cop they really want to dominate, thenthey could easily search
the graphsGk with a robber- and cop-monotone strategy. We call thisselective mono-
tonicity. It seems conceivable, thus, that suchselectivestrategies are always sufficient,
i.e. wheneverk cops can win in any form, they can do so with a selective monotone
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strategy. Such a result would be extremely interesting as itwould imply a linear up-
per bound for the length of minimal winning strategies for the cop player. This hope is
dashed, though, by the following theorem.

Theorem 4.3. There exists a graphG with ds(G) = 2 but 3 cops are needed for any
selective monotone winning strategy.

Proof. The graphG is shown in Figure 1b). Here, solid lines represent actual edges
whereas a dashed line such as between3 andS3 indicates that there is an edge between
3 and every vertex inS3.

Now,ds(G) = 2 as witnessed by the following two strategies:S1 :=
(

{3, 2}, {2, 1}, {1, 0},

{0, 1′}, {1′, 2′}, {2′, 3′}
)

andS2 :=
(

{3′, 2′}, {2′, 1′}, {1′, 0}, {0, 1}, {1, 2}, {2, 3}
)

.
Note that both strategies are not robber monotone. For instance, inS1 the vertices in
S1 are recontaminated in the step from{2, 1} to {1, 0} and similarly in the symmetric
strategyS2. Further, observe that in order for these strategies to work, at each step all
neighbours of every vertex occupied by a cop need to be dominated. Hence, none of the
two strategies can be turned into a selective monotone strategy.

We claim that there is no selective monotone strategy with only two cops. For the
sake of contradiction letS be a selective monotone winning strategy with two cops
using a minimal number of steps. We first show thatS cannot use any vertex other than
those inX := {3, 2, 1, 0, 1′, 2′, 3′}. For, if v ∈ Si or v ∈ Pi is occupied by a cop then
at the first step where this cop is lifted fromv, v will be recontaminated unless it is
dominated by the other cop. Hence, placing a cop onv either can be avoided, asv is
dominated anyway, or it leads to non-monotonicity.

Thus, a selective monotone strategy with two cops essentially searches the path
3, 2, 1, 0, 1′, 2′, 3′. However, it is easily seen that a path of length7 can be searched in
only two ways by two cops using a monotone strategy: left to right or right to left. If
follows that the only possible strategies areS1 or S2 and neither is selective monotone.
This yields the contradiction.

As argued above, an important aspect of monotonicity for a variant of graph search-
ing games is that in this way a bound on the maximal number of steps in a strategy
is obtained. As domination games are strongly non-monotone, no such bound can be
achieved using this approach. In Corollary 5.3 below we showthat there exist graphs
such that the number of steps needed by a strategy in the domination game is exponen-
tial in the size of the graph and thus cannot be bounded bounded by a polynomial.

5 Complexity of Domination Games

In this section we study the complexity of deciding whetherk cops have a (monotone)
winning strategy in the domination game on a graphG. We measure the complexity of
this problem in different ways – classically and in the context of parametrised complex-
ity. Let DOMINATION SEARCH be the problem of deciding for a given graphG and
k ∈ N whetherk cops have a winning strategy onG. In [7], Fomin et al. study this
problem and show that it is NP-hard.

Theorem 5.1 ( [7]).DOMINATION SEARCH is NP-hard.
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No upper bound for the complexity of the problem was given. Wesettle this problem
by giving precise complexity bounds for DOMINATION SEARCH.

Theorem 5.2. DOMINATION SEARCH is PSPACE-complete. More precisely, we show
that even deciding whether two cops have a winning strategy on a graph isPSPACE-
complete.

In [7, Problem 7], Fomin et al. raise the question whether forevery graphG there is a
winning strategy of lengthO(n) usingds(G) cops in the invisible domination search
game. As a consequence of the proof of the previous theorem weanswer this question
negatively by showing that there exist graphs on which the number of steps needed by a
strategy in the domination game is at least exponential in the size of the graph and thus
can not be bounded bounded by a polynomial. Clearly, exponential length of strategies
is also the worst possible.

Corollary 5.3. There exists a familyC of graphs such that two cops have a winning
strategy in the invisible domination game on eachG ∈ C but any such strategy is at
least of exponential length, i.e. there is no polynomialp(n) so that the length of these
strategies is bounded byp(|G|).

We now consider the problem to decide for a given graphG whetherk cops have a
monotone winning strategy in the invisible domination game, where we consider cop-
and selective-monotonicity. Clearly, as the length of monotone strategies is polynomi-
ally bounded in the size of the graph, these problems are necessarily in NP. We again
give tight complexity bounds by showing that even deciding whether two (or three,
respectively) cops have monotone winning strategies is NP-hard.

Theorem 5.4. Let G be a graph. Deciding whether two cops have a cop-monotone
winning strategy in the domination search game onG is NP-complete.

Theorem 5.5. Let G be a graph. Deciding whether three cops have a selective mono-
tone winning strategy in the domination game onG is NP-complete.

We do not know corresponding results for robber-monotone strategies and leave this as
an open problem.

The previous results settle the classical complexity of thedomination game prob-
lem. We now study the parametrised complexity of this problem. The parametrised
domination search problemp-DOMINATION SEARCH is defined as the problem, given
a graphG andk ∈ N as input, to decide ifk cops have a winning strategy in the invisible
domination game onG. We takek as the parameter. The problem is in the parametrised
complexity class XPif it can be solved in time|G|f(k) for some computable function
f : N → N. It is fixed-parameter tractable, or in FPT, if it can be solved in time
f(k) · |G|c, for somec ∈ N and computablef : N → N. The following is an immediate
consequence of Theorem 5.2, 5.4 and 5.5.

Corollary 5.6. p-DOMINATION SEARCH is not in XP. This holds true even for the cop-
or selective monotone version of the problem.
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The previous results establish fixed-parameter intractability for domination games.
Hence, domination games are considerably more complex thanstandard cops and rob-
ber games, which are NP-complete and fixed-parameter tractable. The latter follows
from the parametrised tractability of tree-width and path-width and the monotonicity of
the games.

We now turn to special cases where tractability can be obtained. A natural choice of
graph classes where the problem might be easier are classes of bounded tree- or path-
width. One is tempted to think that fixed-parameter tractability of domination search
on classesC of graphs of tree-width at mostd could be established along the following
lines: givenG ∈ C andk ∈ N, we first compute a tree-decomposition ofG of width
d and then use dynamic programming to decide whether there is awinning strategy of
width k. This is the approach taken to show that the analogous questions for cops and
robber games (visible and invisible) can be solved by lineartime parametrised algo-
rithms. Typically, one proceeds bottom-up along the tree-decomposition and for each
node in the decomposition tree one computes a constant size data structure containing
information about the sub-graph induced by the vertices in the sub-tree rooted at this
node. For domination games, however, this approach fails asa vertex in a bag can be
dominated by vertices not contained in this bag. The ways in which this happens can
be rather complex and hence a constant size data structure seems difficult to obtain. It
is still possible, though, that domination search is fpt on classes of bounded tree-width
and we leave this for future work.

We are, however, able to obtain parametrised algorithms forclasses of graphs of
bounded degree (recall that the problem is already NP-hard on the class of graphs of
degree at most3).

Lemma 5.7. For d > 0 letCd be the class of graphs of maximum degree at mostd. Then
the problem, givenG ∈ Cd andk ∈ N, to decide whetherk cops have a cop-monotone
winning strategy onG is fixed-parameter tractable with parameterd + k.

Furthermore, ifk cops have a winning strategy on anyG ∈ Cd, then at mostdk + 1
cops have a cop- and a selective-monotone winning strategy.

6 Games on Hypergraphs and Visible Robbers

In this section we briefly explore the relation between domination games and Robber
and Marshal games on hypergraphs and comment on domination games with a visible
robber.

Robber and Marshal games, with a visible robber, have been introduced in [9] as
a game-theoretical approach to hypertree-width and have, since then, been studied in-
tensively. Essentially, a Robber and Marshal game is a Cops and Robber game on a
hypergraph where the robber occupies a vertex whereas each marshal (= cop) occupies
a hyperedge and blocks all vertices contained in it.

We will show next that every hypergraph game can be translated into a domination
game – in the visible and the invisible case. There is a small difference between the
Robber and Marshal game we use here and the original robber and marshal game in [9].
In the original game the marshalsslidealong edges in the sense that if a marshal moves
from hyperedgee to e′ then the vertices ine ∩ e′ remain blocked (an equivalent notion

10



for domination games could easily be defined). Here, we consider the variant of Robber
and Marshal games where only the vertices in edges on which a marshal remains are
blocked. It is easy to see that both variants are within a constant factor of each other.

Lemma 6.1. LetH be a hypergraph andk ≥ 1 be an integer. Then there exists a graph
Hdom

k+1 , such thatk marshalls have a (marshal-/robber-monotone) winning strategy in
the (visible) robber and marshals game onH, if and only if,k cops have a (cop-/robber-
monotone) winning strategy in the (visible) domination game onHdom

k+1 andHdom
k+1 can

be constructed fromH in polynomial time.

The lemma allows us to translate Robber and Marshal games to domination games. It
follows immediately from Lemma 6.2 below that there is no translation in the converse
direction.

So far, we have primarily considered domination games with an invisible robber.
Here, we briefly summarise our knowledge of the visible case.Clearly, notions such as
monotonicity and the domination search number translate easily.

In [1], Adler showed that the visible robber and marshall game mentioned above
is not robber-monotone. Together with Lemma 6.1, this implies that the visible dom-
ination game is also not robber-monotone. However, the robber-monotone and non-
monotone variant of the visible robber and marshall Game arewithin a constant factor
of each other (see [2]). We show next that no such bound can be obtained for domination
games.

Lemma 6.2. For everyk > 2, there is a graphGk such that2 cops have a non-
monotone butk cops are needed for a robber-monotone winning strategy in the visible
domination game onGk.

Finally, we consider the complexity of visible domination games. In terms of classical
complexity, we can show the following.

Theorem 6.3. Let G be a graph. Deciding whether three cops have a selective mono-
tone winning strategy in the visible domination game onG is NP-complete.

It is easily seen that all visible game variants except for the selective monotone variant
are in XP, as the current cop and robber position completely determine the current state
of the play and there are onlynO(k) such positions. We show next that the problem is
not in FPTunless FPT=W[2].

As observed in [7], domination search is closely related to dominating sets in graphs.
A dominating setof a graphG is a setX such that for allv ∈ V (G) eitherv ∈ X or
there is au ∈ X such that{u, v} ∈ E(G). Thedomination numberof G, denoted by
γ(G), is the minimal size of a dominating set ofG.

Lemma 6.4 ( [7]).LetG be a graph andH be the graph obtained fromG by connect-
ing every pair of non-adjacent vertices inG by a path of length three. Thenγ(G) ≤
ds(H) ≤ γ(G) + 1.

We establish a similar but exact correspondence using a slightly different construction.

Theorem 6.5. For all graphsG, there exists a graphG′ such thatγ(G) + 1 = ds(G′)
andG′ is constructable in polynomial time.

11



The theorem immediately gives a parametrised reduction from the dominating set
problem, parametrised by the size of the solution, to the domination search problem,
parametrised by the numberk of cops. The following result follows from the W[2]-
hardness of the dominating set problem, where W[2]is a parametrised complexity class
strongly believed to be different from FPT.

Theorem 6.6. The problemp-DOMINATION SEARCH: “given a graphG andk ∈ N,
with parameterk, decide whetherk cops have a winning strategy in the (in-)visible
domination game onG” is W[2]-hard.

However, Lemma 5.7 also applies to the visible case and thus calculating the visible
domination search number for graphs of bounded degree is fixed-parameter tractable.

Acknowledgements. We are grateful to Fedor Fomin for bringing domination games
to our attention and thereby stimulating the research reported in this paper and to Fedor
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