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ABSTRACT
We consider piecewise linear embeddings of graphs in 3-
space R

3. Such an embbeding is linkless if every pair of
disjoint cycles forms a trivial link (in the sense of knot the-
ory). Robertson, Seymour and Thomas [47] showed that a
graph has a linkless embedding in R

3 if, and only if, it does
not contain as a minor any of seven graphs in Petersen’s
family (graphs obtained from K6 by a series of Y∆ and ∆Y
operations). They also showed that a graph is linklessly em-
beddable in R

3 if, and only if, it admits a flat embedding
into R

3, i.e. an embedding such that for every cycle C of G
there exists a closed 2-disk D ⊆ R

3 with D ∩ G = ∂D = C.
Clearly, every flat embeddings is linkless, but the converse is
not true. We first consider the following algorithmic prob-
lem associated with embeddings in R

3:

Flat Embedding: For a given graph G, either detect one
of Petersen’s family graphs as a minor in G or return a flat
(and hence linkless) embedding in R

3.

The first outcome is a certificate that G has no linkless
and no flat embeddings. Our first main result is to give an
O(n2) algorithm for this problem. While there is a known
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polynomial-time algorithm for constructing linkless embed-
dings [20], this is the first polynomial time algorithm for
constructing flat embeddings in 3-space and we thereby set-
tle a problem proposed by Lovász [29]. We also consider the
following classical problem in topology.

The Unknot Problem: Decide if a given knot is trivial or
not.

This is a fundamental problem in knot theory and low di-
mensional topology, whose time complexity is unresolved.
It has been extensively studied by researchers working in
computational geometry. A related problem is:

The Link Problem: Decide if two given knots form a link.

Hass, Lagarias and Pippenger [16] observed that a polyno-
mial time algorithm for the link problem yields a polynomial
time algorithm for the unknot problem. We relate the link
problem to the following problem that was proposed inde-
pendently by Lovász and by Robertson et al.

Conjecture. (Lovász [29]; Robertson, Seymour and Thomas
[48]) There is a polynomial time algorithm to decide whether
a given embedding of a graph in the 3-space is linkless.

Affirming this conjecture would clearly yield a polynomial-
time solution for the link problem. We prove that the con-
verse is also true by providing a polynomial-time solution
for the above conjecture, if we are given a polynomial time
oracle for the link problem.

General Terms
Algorithm, Theory

Categories and Subject Descriptors
G.2 [Discrete Math]: Combinatorics; G.2.2 [Graph The-
ory]: Combinatorics—Graph algorithms,Computations on
discrete structures

Keywords
Linkless embedding, knot, unknot, flat embedding.



1. INTRODUCTION

1.1 Embedding graphs in 3-space
A seminal result of Hopcroft and Tarjan [19] from 1974 is

that there is a linear time algorithm for testing planarity of
graphs. This is just one of a host of results on embedding
graphs in surfaces. These problems are of both practical and
theoretical interest. The practical issues arise, for instance,
in problems concerning VLSI, and also in several other ap-
plications of “nearly” planar networks, as planar graphs and
graphs embedded in low genus surfaces can be handled more
easily. Theoretical interest comes from the importance of the
genus parameter of graphs and from the fact that graphs
of bounded genus naturally generalize the family of planar
graphs and share many important properties with them. Re-
cently, some apparently new and nontrivial linear time algo-
rithms concerning graph embeddings have appeared [21, 22].
In addition, Mohar [33, 34] gave a linear time algorithm for
testing embeddability of graphs in an arbitrary surface and
constructing an embedding, if one exists. This is one of the
deepest results in this area, and it generalizes linear time
algorithms for testing planarity and constructing a planar
embedding if one exists [5, 19, 54]. This algorithm is further
simplified in [23].

In [41], Robertson and Seymour proved that for any fixed
graph H there is a cubic-time algorithm for testing whether
H is a minor of a given graph G. This implies that there is
an O(n3) algorithm for deciding membership in any minor-
closed family of graphs, because by their seminal result in
[42], such a family can be characterized by a finite collection
of excluded minors. However, this theorem is not explicit.
More precisely, the graph minor theorem is not constructive;
in general, we do not know how to obtain an excluded minor
characterization of a given minor-closed family of graphs.
In addition, Robertson and Seymour’s algorithm solves the
decision problem but it is not apparent how to construct,
e.g., an embedding from their algorithm.

In this paper, we consider embeddings of graphs in R
3,

where all embeddings are piecewise linear. There are many
minor-closed families of graphs that arise in the study of
topological problems. An illustrative example is the class of
linklessly embeddable graphs. We call a pair of vertex dis-
joint cycles drawn in R

3 un-linked if there is a 2-dimensional
disk1 in R

3 that contains the first cycle and is disjoint from
the other one. Otherwise, the two cycles are linked . Intu-
itively, if two cycles in R

3 are linked, we can not contract one
into a single point without cutting the other. By a linkless
embedding we mean an embedding of a graph in R

3 in such
a way that no two vertex-disjoint cycles are linked. Linkless
embeddings were first studied by Conway and Gordon [9].
An algorithmic problem concerning linkless embeddings is
studied by Motwani, Raghunathan and Saran [36], who gave
a partial result for linkless embeddings and its algorithmic
applications.

Robertson, Seymour and Thomas [47] proved that G is
linklessly embeddable in the 3-space if, and only if, G does
not have any graph in the Petersen family as a minor. By the
Petersen family we mean the graphs that can be obtained
from K6 by a series of Y∆ and ∆Y operations. See Figure 1
for drawings of these graphs on the projective plane; note

1In this paper, by a 2-dimensional disk we always mean a
2-dimensional topological disk.

that the third one, K4,4 − e, cannot be embedded in the
projective plane. In the same paper [47] it is shown that a
graph is linklessly embeddable in R

3 if, and only if, it admits
a flat embedding in R

3, i.e. an embedding such that for every
cycle C of G, there exists a closed 2-dimensional disk D ⊆ R

3

with D ∩ G = ∂D = C. Clearly, every flat embedding is
linkless, but the converse is not true. In many ways flat
embeddings are nicer to work with and in this paper we will
work with flat rather than linkless embeddings.

Figure 1: Petersen’s family

Linkless embeddings have drawn attention of many re-
searchers. Besides those working on knot theory, many re-
searchers working in discrete mathematics are also inter-
ested in this topic. For example, Lovász and Schrijver [30,
31] proved that two well-known invariants given by Colin de
Verdière [6, 7, 8] are closely related to linklessly embeddable
graphs. The invariants are based on spectral properties of
matrices associated with a graph G.

Flat embeddings in the 3-space are a generalization of em-
beddings in the plane. These two embedding problems share
an interesting property. The famous theorem by Whitney
which says that every 3-connected planar graph has a unique
planar embedding, can be generalized to the flat embedding
case, i.e., every flatly embeddable 4-connected graph G has
an “essentially unique” flat embedding in R

3, see [47]. Here,
“essentially unique” means embeddings up to ambient iso-
topy, which we define later. In [29], Lovász conjectured that
there is a polynomial time algorithm for the following prob-
lem:

Flat and Linkless Embedding
Input: A graph G.
Output: Either (1) detect one of Petersen’s family

graphs as a minor in G or (2) return a flat
(and hence linkless) embedding of G in R

3.

Let us observe that if the output is (1), then we have one of
the excluded minors for linklessly embeddable graphs and
hence this is a certificate that G has no linkless (and no
flat) embeddings. As mentioned above, by Robertson and
Seymour’s results [41], we can test whether or not an input
graph has one of Petersen’s family graphs as a minor, but
if it does not contain any of them, that algorithm does not
give the second conclusion. In [20], van der Holst gives the
first polynomial-time algorithm for deciding whether a given
graph has a linkless embedding. In this paper we give a dif-
ferent algorithm for computing linkless embeddings which
runs in quadratic time. Furthermore, our algorithm not
only computes linkless embeddings but flat embeddings of
linklessly embeddable graphs. As far as we are aware, no
polynomial-time algorithm for constructing flat embeddings



was known prior to our work. See below for a more detailed
comparison of our algorithm and van der Holst’s.

1.2 Testing linklessness of an embedding
We also consider some classical problems in knot theory

and low dimensional topology, specifically the topology of
1-dimensional curves in the 3-space, with the objective of
determining their computational complexity. Historically,
determining whether a given knot is trivial or not is one
of the central questions in low dimensional topology. The
problem of finding an algorithm to decide about triviality
of a knot was posed already by Dehn [11]. Let us formulate
the problem in the following way:

The unknot problem
Input: A cycle C of order n and an embedding of C

in R
3.

Output: Decide whether or not C is knotted.

This problem has been extensively studied by researchers
working on computational geometry as well. Let us observe
that topologists study this problem at several levels, with
varying meanings given to the terms embedded and deformed.
The level that is most appropriate for studying computa-
tional questions is that of piecewise-linear embeddings. At
this level, a closed curve is embedded in R

3 as a simple
non-self-intersecting polygonal curve, which is composed of
finitely many straight line segments.

The first algorithm for the unknot problem was given by
Haken [17]. But as observed by Hass, Lagarias and Pip-
penger [16], the algorithm clearly does not run in polyno-
mial time. In fact, the question of how easy or difficult it
might be to recognize the unknot was in the air immediately
following Haken’s 1954 announcement that the problem was
decidable (the paper was published in 1961, see [17]). It is
stated explicitly as an open question by Welsh in [53]. He
actually traces the general idea of looking for efficient pro-
cedure for solving this problem back farther than Haken, to
Tait.

As mentioned above, Hass, Lagarias and Pippenger [16]

observed that Haken’s algorithm runs in time 2O(n2). They
also proved that the unknot problem is in co-NP, and con-
jectured that it is in NP ∩ co-NP. Some recent progress was
made in [1, 18]. In particular, the result in [18] predicts that
the unknot problem would be in P.

We now consider the following problem:

The link problem
Input: Two cycles C1, C2 of order n and

an embedding of C1 ∪ C2 in R
3.

Output: Decide whether or not C1 ∪ C2 forms a link
in R

3.

Hass, Lagarias and Pippenger [16] observed that a polyno-
mial time algorithm for the link problem yields a polynomial
time algorithm for the unknot problem.

More than 15 years ago, the following conjecture was made
independently by Lovász [29], and Robertson, Seymour and
Thomas [48].

Conjecture 1.1. There is a polynomial time algorithm
to decide for a given graph G and its embedding in the 3-
space, whether or not this embedding is linkesss.

Let us observe that Conjecture 1.1 clearly implies a poly-
nomial time solution for the link problem. As pointed out

by Robertson, Seymour and Thomas, there is an algorithm
to test whether or not a given embedding of a graph G is
linkless, using the results in [47, 49], but this does not give
a polynomial time algorithm.

In this paper, we shall prove that Conjecture 1.1 is ac-
tually equivalent to polynomial-time solvability of the link
problem, see Theorem 1.3 below.

1.3 Our results
Our first contribution in this paper is to give a polynomial-

time algorithm for the flat and linkless embedding problem,
which proves the conjecture by Lovász [29] mentioned above.

Theorem 1.2. There is an O(n2)-time algorithm for the
flat and linkless embedding problem.

Clearly, every flat embedding is linkless but the converse
is false, as a graph that consists of one vertex with two
loops shows. However, Robertson, Seymour and Thomas
proved that a graph admits a linkless embedding in R

3 if,
and only if, it admits a flat embedding. In [20], van der Holst
gives a polynomial-time algorithm to construct a linkless
embedding if one exists. Our algorithm is different from van
der Holst’s algorithm in several respects:

1. Our algorithm finds a flat embedding in R
3, while the

algorithm from [20] finds linkless embeddings that are
not necessarily flat.

2. We improve on the time complexity as van der Holst’s
algorithm needs at least Ω(n5) steps whereas ours runs
in O(n2).

3. In order to give a polynomial time algorithm for the
linkless embedding problem, [20] uses deep results of
Robertson and Seymour [41] algorithmically, while our
algorithm does not. To be precise, the proof of correct-
ness for our algorithm relies on several results from [41]
(recently, a shorter proof is found in [25]), but the al-
gorithm itself does not use Robertson and Seymour’s
algorithm. So together with the arguments in [25, 41],
our full proof can be given within 50 pages (in con-
trast with this, Robertson and Seymour’s algorithm
needs more than 300 pages for the correctness of the
algorithm).

4. The algorithm and the proof method in [20] are very
algebraic and are completely different from our paper,
which is more combinatorial and geometric.

There are many NP-hard problems which can be solved in
polynomial time (often, even linear time) when considering
planar graphs or “nearly” planar graphs. Even for problems
that remain NP-hard on planar graphs, we often have ef-
ficient approximation algorithms, e.g., Independent Set,
TSP, Weighted TSP, Vertex Cover, Domination Set,
etc. [3, 15, 26, 28]. We expect that most of these fast al-
gorithms for planar graphs can be generalized to linklessly
embeddable graphs as well, using our algorithm in Theorem
1.2 and a flat embedding. In addition, linklessly embeddable
graphs have an interesting property for the well-known feed-
back arc set problem. Seymour [51] proved that the mini-
mum size of a feedback arc set in an eulerian linklessly em-
beddable digraph (i.e, the underlying undirected graph is
linklessly embeddable) is equal to the maximum number of



arc-disjoint directed cycles. This result can be compared to
the well-known result by Lucchesi and Younger [32], who
proved that the same conclusion holds for any directed pla-
nar graph. The proof given in [51] implies that, given a
flat embedding of a given Eulerian digraph G, there is a
polynomial time algorithm to find the minimum size of a
feedback arc set, which gives rise to the maximum number
of arc-disjoint directed cycles. Thus by Theorem 1.2, we can
find such sets in polynomial time for any Eulerian linklessly
embeddable graph.

Our second main result is an oracle algorithm that shows
that Conjecture 1.1 is equivalent to polynomial-time solv-
ability of the unknot problem.

Theorem 1.3. There is an oracle polynomial-time algo-
rithm to decide whether a given embedding of a graph in the
3-space is linkless by using an oracle for the link problem.

1.4 Overview of our algorithms
We first sketch the algorithm for Theorem 1.2. At a high

level of description, our algorithm for Theorem 1.2 proceeds
as follows: the algorithm first iteratively reduces the size of
the input graph until it is 4-connected and reaches a graph of
bounded tree-width. Then the algorithm solves the problem
on this graph of bounded tree-width.

Bounded tree-width case. This second step needs two deep
results in [47]. The first ingredient is that any Kuratowski
graph, i.e, a subdivision of K5 or K3,3, has a unique flat
embedding in the 3-space R

3, where uniqueness means “up
to an ambient isotopy”. The second ingredient is that if G
is 4-connected and has a flat embedding in R

3, then G has a
unique flat embedding. By combining these two results, we
get the following strong fact:

Fix a flat embedding of a Kuratowski subgraph
K of a 4-connected graph G in R

3. Then the rest
of the graph is uniquely attached to K, if G has
a flat embedding.

In general, this fact is not enough to derive a polynomial
time algorithm for constructing flat embeddings. However,
if the tree-width of a 4-connected graph is bounded, we can
construct a flat embedding in polynomial time (even in linear
time) using dynamic programming, whenever one exists.

Reduction step. For the reduction step, the algorithm uses
the excluded grid theorem [13, 37, 39, 44]: if the tree-with
of G is big enough, G contains a huge grid minor. By com-
bining the results in [41] and [24], if an input graph does not
contain a K6-minor, then, after deleting at most one vertex,
we can find a grid minor which is planarly drawn, i.e., up to
3-separations, the grid minor induces a planar embedding.
In fact, if there is a separation (A, B) of order at most three
in this planarly drawn grid, then this gives us a reduction
(for details, we refer to Section 3). Otherwise, this grid mi-
nor induces a 2-cell embedding in a plane (and hence it is a
planar subgraph).

A deep theorem in [41] tells us that every vertex “deep in-
side”this grid minor is irrelevant with respect to all excluded
minors in the Petersen family (A shorter proof of this fact is
given in [25]). In addition we will prove that such a vertex
does not affect our flat embedding in the 3-space. Hence, we
can remove this vertex without affecting flat embeddability
of G. Note that the difficulty here is only in the proof of the
existence of this vertex. Once we have proved that there is

an irrelevant vertex, algorithmically such a vertex can easily
be found in linear time. This concludes the reduction step
for the proof of Theorem 1.2.

We now sketch the proof of Theorem 1.3. Suppose an em-
bedding σ of a given graph G in R

3 is given. In order to
prove Theorem 1.3, we have to deal with the following two
technical difficulties.

(a) We need to test, for any cycle, whether or not the em-
bedding induced by this cycle is unknotted.

(b) We need to test, for any two disjoint cycles, whether
or not the embedding induced by these two disjoint
cycles contains a link.

Assuming the embedding induced by each cycle in G is
unknotted and the embedding induced by any two disjoint
cycles does not contain a link, it is possible to prove that σ
is linkless.

Task (a) can be completed in polynomial time, having a
(polynomial-time) oracle for the unknot problem, which, as
explained above, can be obtained from an oracle for the link
problem (see [16]). Also task (b) can also be completed in
polynomial time, having a (polynomial-time) oracle for the
link problem.

So by considering all the cycles in G, and then testing
(a) and (b) for them, we can figure out whether or not σ
is linkless. But the problem here is that G may contain
exponentially many cycles. So, to obtain a polynomial time
algorithm for Theorem 1.3, we cannot look at all cycles.

In order to overcome this problem, we first test whether
or not G has small tree-width. If G has small tree-width,
it can be shown that we only have to look at polynomially
many disjoint cycles to test (a) and (b) for them.

So, suppose G has large tree-width. Then G contains a
huge grid minor. As described above, after deleting at most
one vertex, we can find a grid minor T which is planarly
drawn, i.e, up to 3-separations, T induces a planar embed-
ding.

We now construct an optimal flat embedding by Theorem
1.2. In this optimal flat embedding, the embedding induced
by T must be an embedding in the sphere. So, our first task
is to figure out whether or not the embedding induced by T
satisfies this property. To do so, we need to figure out all
faces in a planar embedding σ′ of T . As it turns out, to test
whether or not the embedding induced by the grid minor T
is linkless, we only need to test (a) and (b) for all faces of
σ′. Since there are linearly many faces in the graph induced
by T , we can test, in polynomial time, whether or not the
embedding induced by T is linkless.

The following two facts are our key observations:

1. Let G, T be as above, and suppose an embedding of G
in R

3 is given. If the embeddings induced by G − T
and by T are linkless, then there is a polynomial time
algorithm to test whether or not σ is linkless.

2. If one of the embeddings induced by G − T and by T
is not linkless, then σ is not linkless either.

These two observations imply that it remains to look at
the embedding induced by G − T . Thus this allows us to
make a reduction. We just recurse the algorithm to G − T .
Due to space restrictions we refer to the full version of this
paper for a proof of Theorem 1.3.



1.5 Basic definitions
Before proceeding, we review basic definitions. For basic

graph theory notions, we refer the reader to the book by
Diestel [12], for topological graph theory we refer to the
monograph by Mohar and Thomassen [35].

A separation of a graph G is a pair (A, B) of subgraphs of
G with A∪B = G such that there is no edge between A−B
and B − A. The order of the separation is |V (A) ∩ V (B)|.
If (A, B) is a separation of G of order k, we write A+ for
the graph obtained from A by adding edges joining every
pair of nonadjacent vertices in V (A)∩ V (B). We define B+

analogously.
A tree-decomposition of a graph G is a pair (T, B), where

T is a tree and B is a family {Bt | t ∈ V (T )} of vertex sets
Bt ⊆ V (G), such that the following two properties hold:

1.
S

t∈V (T ) Bt = V (G), and every edge of G has both
ends in some Bt.

2. If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between
t and t′′, then Bt ∩ Bt′′ ⊆ Bt′ .

The width of a tree-decomposition (T, B) is max{|Bt| : t ∈
V (T )} − 1. The tree-width of G is defined as the minimum
width taken over all tree-decompositions of G. Let (T, B)
be a tree-decomposition of a graph G. By fixing a root r of
T we give T an orientation. For t ∈ V (T ) we define Tt to be
the subtree of T rooted at t, i.e., the subtree of T induced
by the set of nodes s ∈ V (T ) such that the unique path from
s to r contains t. We define B(Tt) :=

S

s∈V (Tt)
Bs.

One of the most important results about graphs, whose
tree-width is large, is the existence of a large grid minor or,
equivalently, a large wall. Let us recall that an r-wall or a
wall of height r is a graph which is isomorphic to a subdivi-
sion of the graph Wr with vertex set V (Wr) = {(i, j) | 1 ≤
i ≤ r, 1 ≤ j ≤ r} in which two vertices (i, j) and (i′, j′)
are adjacent if, and only if, one of the following possibilities
holds: (1) i′ = i and j′ ∈ {j − 1, j + 1} or (2) j′ = j and
i′ = i+(−1)i+j . We can also define an (a× b)-wall in a nat-
ural way, so that the r-wall is the same as the (r × r)-wall.
It is easy to see that if a graph G contains an (a× b)-wall as
a subgraph, then it has an (⌊ 1

2
a⌋ × b)-grid minor, and con-

versely, if G has an (a × b)-grid minor, then it contains an
(a× b)-wall. Let us recall that the (a× b)-grid is the Carte-
sian product of paths, Pa 2 Pb. An (8 × 5)-wall is shown in
Figure 2.

Figure 2: An (8 × 5)-wall and its outer cycle

Theorem 1.4. There is a computable function f : N → N

such that if a graph G has tree-width at least f(r), then G
contains an r-wall.

The best known upper bound for f(r) is given in [13, 37,

44]. It is 202r5

. The best known lower bound is Θ(r2 log r),
see [44].

2. FLATLY AND LINKLESSLY EMBEDDA-
BLE GRAPHS

In this section we recall some results about linklessly em-
beddable graphs used later on. Due to space restrictions,
we can only state the most relevant results and almost no
background.

2.1 Construction of flat embeddings
Recall that a piecewise-linear embedding of a graph in

the 3-space R
3 is flat if every cycle of the graph bounds a 2-

dimensional disk disjoint from the rest of the graph. If C, C′

are disjoint simple closed curves in R
3, then their linking

number is the number of times (modulo 2) that C crosses C′

in a regular projection of C∪C′ onto some hyperplane. It is
easy to see that the linking number (modulo 2) is the same
for every such projection. Hereafter, all linking numbers
discussed in this paper will be mod 2. The proof of the
following result is easy and the details are left to the reader.

Lemma 2.1. Let G be a graph, and σ be an embedding
of G in R

3. Let C1, C2 be disjoint cycles in G, and let P
be a path in G that is disjoint from C1 ∪ C2, except that
its endvertices are in V (C1). Let C′

1, C
′′
1 be the two cycles

in V (C1 ∪ P ) with V (C′
1) ∩ V (C′′

1 ) = V (P ). If the linking
number of C1, C2 is nonzero, then also one of the linking
numbers of C′

1, C2 or C′′
1 , C2 is nonzero.

Let v be a vertex of degree 3 in a graph G, with its three
neighbors v1, v2, v3. Let H be a graph obtained from G − v
by adding three new edges v1v2, v2v3, v3v1. We say that H
is obtained from G by a Y∆ change (at v), and G is obtained
from H by a ∆Y change (at v1, v2, v3). If G′ can be obtained
from G by a series of Y∆ or ∆Y changes, we say that G and
G′ are Y∆-equivalent . The Petersen family is the set of the
seven graphs (up to isomorphism) that are Y∆-equivalent
to K6. One of these is the Petersen graph. The following
result was proved in [47].

Theorem 2.2. Let G be a graph obtained from H by a
∆Y operation. Then G has a flat embedding in R

3 if, and
only if, H has.

It is easy to see that degree 1 vertices can be deleted
and degree 2 vertices can be suppressed without affecting
linkless embeddability. Thus it follows from Theorem 2.2
that we may assume that each vertex has degree at least 4.
Furthermore, concerning vertices of degree 4, we have the
following.

Lemma 2.3. Suppose that a graph G contains an edge uv,
where degG(u) = 4 and degG(v) = 5. Suppose, moreover,
that N(u) = (N(v)∪{v})−{u, a} for some vertex a in N(v).
Then there is a separation (A, B) of order four such that
B −A consists of u and v only, and G has a flat embedding
in R

3 if, and only if, for every vertex b ∈ N(v)−{u, a}, the
graph G′ obtained from G by contracting the edge ub has a
flat embedding.

We sketch the proof of Lemma 2.3. If G′ has a flat em-
bedding in 3-space R

3, then A ∩ B ∪ {v} − {a} is contained
in a disk. Then we can easily put the vertex u back to this
disk so that the resulting embedding of G (that extends the
flat embedding of G′) is still flat.

The following is (6.5) in [47]. Recall from above the def-
inition of the graphs A+, B+ for a separation (A, B) of a
graph G.



Theorem 2.4. Suppose G has a separation (G1, G2) with
|V (G1)∩V (G2)| ≤ 4. Suppose furthermore, G contains both
G+

1 and G+
2 as a minor. Then G has a flat embedding in

3-space R
3 if, and only if, both G+

1 and G+
2 have one.

2.2 Spatial embeddings of4-connected graphs
The aim of this section is to show that 4-connected link-

lessly embeddable graphs essentially have a unique flat em-
bedding in 3-space R

3. The following results are proved in
[47] along with its companion papers [45, 46]. Readers not
familiar with these results may wish to consider the survey
[48] which contains many of the results needed below. We
refer to the graphs K5 and K3,3 as the Kuratowski graphs.
A Kuratowski subgraph of a graph G is a subgraph of G
isomorphic to a subdivision of a Kuratowski graph. For em-
beddings φ1, φ2 of a graph G we write φ1

∼=a.i. φ2 to denote
that they are ambient isotopic. Let us recall that φ1 and φ2

are ambient isotopic, if there exists an orientation preserving
homeomorphism R

3 → R
3 mapping φ1 onto φ2.

Lemma 2.5. 1. Any two flat embeddings of a planar
graph in R

3 are ambient isotopic.

2. The graphs K5 and K3,3 have exactly two non-ambient
isotopic flat embeddings.

3. Let φ1, φ2 be two flat embeddings of a graph G which
are not ambient isotopic. Then there is a Kuratowski
subgraph H of G for which φ1|H and φ2|H are not am-
bient isotopic. Here φi|H denotes the restriction of φi

to H.

We now define a neighbourhood relation between Kura-
towski subgraphs of a graph G. Let H1, H2 ⊆ G be Kura-
towski subgraphs of G such that H1 6= H2. H1 and H2 are
1-adjacent if there exists a path P ⊆ G and an i ∈ {1, 2}
such that P has only its endpoints in common with Hi and
such that H3−i ⊆ Hi ∪ P .

H1 and H2 are 2-adjacent if there are distinct vertices
v1, . . . , v7 ∈ V (G) and pairwise internally vertex disjoint
paths Li,j , for (i, j) ∈ {1, . . . , 4} × {5, 6, 7} ∪ {(3, 4)} link-
ing vi and vj such that H1 =

S

˘

Li,j | (i, j) ∈ {2, 3, 4} ×

{5, 6, 7}
¯

and H2 =
S

˘

Li,j | (i, j) ∈ {1, 3, 4} × {5, 6, 7}
¯

.
The path L3,4 is not used here but is required to exist. Note
that if H1, H2 are 2-adjacent then they are both isomorphic
to subdivisions of K3,3. H1 and H2 are adjacent if they
are 1- or 2-adjacent. Let H, H ′ be Kuratowski subgraphs of
G. We say that H and H ′ communicate if there are Kura-
towski subgraphs H = H1, . . . , Hk = H ′ of G such that Hi

and Hi+1 are adjacent for all 1 ≤ i < k.

Lemma 2.6. 1. Let φ1, φ2 be flat embeddings of G and
let H, H ′ be adjacent Kuratowski subgraphs of G. If
φ1|H

∼=a.i. φ2|H then φ1|H′
∼=a.i. φ2|H′ .

2. If G is 4-connected, then all pairs H, H ′ of Kuratowski
subgraphs of G communicate.

3. If φ, φ′ are flat embeddings of a 4-connected graph G,
then φ ∼=a.i. φ′ or φ ∼=a.i. −φ′.

Note that (iii) follows easily from (i) and (ii) and the
previous lemma. For the purpose of this paper this suggests
the following algorithm for computing a flat embedding of
a graph G. We first choose a Kuratowski subgraph H of

G and compute a flat embedding of H. We then choose
an adjacent Kuratowski subgraph H ′ of G and extend the
flat embedding of H to H ∪ H ′ ∪ L (where L = L3,4 is the
additional path in the case of 2-adjacency, and L = ∅ in case
of 1-adjacency). This is essentially unique. For, suppose
there were two non-ambient-isotopic flat embeddings φ1, φ2

of H∪H ′∪L extending the embedding of H. As φ1, φ2 agree
(up to ambient isotopy) on H, and H and H ′ are adjacent in
H∪H ′∪L, Part 1 of Lemma 2.6 implies that they also agree
on H ′. But then, by Part 3 of Lemma 2.5, as they agree on
all Kuratowski subgraphs, φ1, φ2 agree on H ∪H ′ ∪L. Note
that Part 1 of Lemma 2.6 and Part 3 of Lemma 2.5 do not
require the graph to be 4-connected.

However, if G is 4-connected, then by starting from one
Kuratowski subgraph whose embedding we fix and itera-
tively proceeding to adjacent Kuratowski subgraphs, we can
embed all Kuratowski subgraphs of G. This embedding then
has a unique extension to the complete graph. We will em-
ploy this idea in Section 4 below.

3. BOUNDING THE TREE-WIDTH
In this section we will present the reduction step of the

general algorithm for solving the Linkless Embedding prob-
lem presented in Section 5 below. Let us observe that by
Theorem 2.2 and Lemma 2.3 (and remarks just after Lemma
2.3), we may assume that every vertex in a given graph G
has minimum degree at least 4, and any vertex of degree 4
does not satisfy the assumption of Lemma 2.3.

Let us define that the nails of a wall are the vertices of
degree three within it. The perimeter of a wall W , denoted
per(W ), is the unique face in this embedding which contains
more than 6 nails. The bricks of a wall are the faces contain-
ing 6 nails. As walls are essentially 3-connected, Whitney’s
theorem implies that any wall has a unique planar embed-
ding. For any wall W in H, there is a unique component
U of H − per(W ) containing W − per(W ). The compass of
W , denoted comp(W ), consists of the graph with vertex set
V (U)∪V (per(W )) and edge set E(U)∪E(per(W ))∪{xy|x ∈
V (U), y ∈ V (per(W ))}, where xy ∈ E(G). A subwall W ′ of
a wall W is a wall which is a subgraph of W . A h-subwall of
W is proper if it consists of h consecutive bricks from each
of h consecutive rows of W . The exterior of W ′ is W −W ′.
A proper subwall is dividing if its compass is disjoint from
its exterior. We say a proper subwall W ′ is dividing in a
subgraph H of F if W ′ ⊆ H and the compass of W ′ in H is
disjoint from (W − W ′) ∩ H.

A wall is planarly drawn if its compass does not contain
two vertex disjoint paths connecting the diagonally opposite
corners. Note that if the compass of W has a planar embed-
ding whose infinite face is bounded by the perimeter of W
then W is clearly planarly drawn.

Seymour [50], Thomassen [52], and others have character-
ized that if the wall W is planarly drawn, then its compass
comp(W ) can be embedded into a plane, up to 3-separations,
such that its perimeter per(W ) is the outer face boundary.

It is easy to see that any subwall of a planarly drawn wall
must be both planarly drawn and dividing. Furthermore, if
x and y are two vertices of a planarly drawn wall W and
there is a path between them which is internally disjoint
from W then either x and y are both on per(W ) or some
brick contains both of them. Robertson and Seymour [41]
proved:



Theorem 3.1. For every pair of integers l and t there
exist integers w(l, t) > w′(l, t) > max(l, t) such that the
following holds. Let K be a graph of order t. If the tree-width
of a graph H is at least w(l, t), and H has no K-minor, then
there is a wall W of height w′(l, t), and for some subset X
of less than

`

t

2

´

vertices of H there are t10 disjoint proper
subwalls W ′ (of the wall W ) of height l, which are disjoint
from X and are planarly drawn and dividing in H − X. In
addition, any of these disjoint proper subwalls of height l has
face-distance at least t10 from any other in the wall W .

In fact, we can give the explicit bound for w(l, t). Combin-
ing the best known bound for the grid theorem in [44], the

proof of Theorem 3.1 in [41] implies that w(l, t) ≤ 101010
q

,
where q = lt.

A vertex v in G is called irrelevant with respect to a given
minor M in G if G has an M -minor if, and only if, G − v
has. The following result was proved in [41] (a shorter proof
was given in [25]).

Theorem 3.2. There is a computable function f : N → N

satisfying the following: let l ≥ f(t) and let H, W, X, K, w(l, t),
w′(l, t) be as in Theorem 3.1. Let W ′ be one of the proper
subwalls (of the wall W ) of height l which is disjoint from
X, and is planarly drawn and dividing in H − X. Sup-
pose furthermore that the comp(W ′) has a 2-cell embedding
in a plane with per(W ′) in the outer face boundary. Then
the unique vertex v which has distance exactly l/2 from the
per(W ′) in the wall W ′ is irrelevant with respect to a K-
minor.

We now give an algorithmic result of Theorems 3.1 and
3.2 in [41].

Theorem 3.3. Let t, l, f, w′(l, t) be as in Theorem 3.2.
There is an O(m) time algorithm, where m is the number
of edges, which, given H, W, K as in Theorem 3.2 (thus the
wall W is of height w′(t, l)), constructs one of the following.

1. A K-minor in H, or

2. for some subset X of less than
`

t

2

´

vertices of H there

are t10 disjoint proper subwalls W ′ (of the wall W ) of
height l, which are disjoint from X, and are dividing
in H − X. In addition, any of these disjoint proper
subwalls of height l has face-distance at least t10 from
any other in the wall W .

It is easy to see that if G has at least 2t|V (G)| edges, then
one can easily find a Kt-minor in linear time (see [38]). If
we can find a K6-minor in a given graph G in linear time,
we are done. So a flatly embeddable graph G has at most
26|V (G)| edges, which, hereafter, we assume. Thus the time
complexity of Theorem 3.3 can be improved to O(n), where
n is the number of vertices of an input graph.

If K = K6 in Theorem 3.1, then the following stronger
version of Theorem 3.1 is proved in [24].

Theorem 3.4. Let f(t) be as in Theorem 3.2 with t = 6.
For any l ≥ f(6), there are integers w(l) > w′(l) satisfying
the following: If the tree-width of a graph H is at least w(l),
then there is a wall W of height w′(l), and one of the fol-
lowing holds: (1) a K6-minor in H, or (2) for some subset
X of at most one vertex of H, there are at least 10 disjoint
proper subwalls W ′ (of the wall W ) of height l, which are

disjoint from X and dividing in H −X. In addition, any of
these disjoint proper subwalls of height l has face-distance at
least 2 from any other in the wall W . Moreover,

(a) if |X| = 0 and three of the disjoint proper subwalls
of height l are not planarly drawn, then H has a K6-
minor, and

(b) if |X| = 1 and there is a proper subwall of height l that
is not planarly drawn, then H has a K6-minor.

Furthermore, given the wall W , there is a linear time algo-
rithm to compute one of 1 and 2 above.

Note that the last algorithmic conclusion follows from pla-
narity testing [5, 19, 54].

We now prove the following result for the linkless embed-
ding case. Recall from the beginning of this section that we
assume that a graph G has minimum degree at least 4.

Theorem 3.5. There is a constant f satisfying the fol-
lowing: Let G be a given input graph with minimum degree
4, and W, w(l), w′(l) be as in Theorem 3.4 with l ≥ f . Then
one of the following holds:

1. G has a K6-minor, or

2. for some subset X of at most one vertex of G, there
is a proper subwall W ′ (of the wall W ) of height l,
which is disjoint from X and dividing in G − X, and
has a 2-cell embedding with per(W ′) in the outer face
boundary in G − X. Moreover, the unique vertex v
which has distance exactly l/2 from the per(W ′) in the
wall W ′ is irrelevant with respect to a K-minor, where
K is any graph in the Petersen family. Furthermore,
no matter how we give a flat embedding of the graph
G − v in 3-space R

3, the embedding of G − v can be
changed so that, after putting the vertex v back to the
resulting embedding, the resulting embedding of G is
flat, or

3. either there is a reduction as in Lemma 2.3, or there
is a separation (A, B) of order at most three in G−X
such that V (A)∩V (B) only involves the vertices in the
comp(W ) in G−X, and B contains all the vertices of
the per(W ). Moreover, if the second happens, G con-
tains both (A∪X)+ and (B∪X)+ as minors. Hence it
follows that this separation (A∪X, B ∪X) is a reduc-
tion as in Theorem 2.4. Note that it is a separation of
order at most 4 in G.

Due to space restrictions we refer to the full version of this
paper for a proof of Theorem 3.5 and the following main
result of this section.

Theorem 3.6. Let G, W, f, l, w(l), w′(l) be as in Theorem
3.5. Suppose the wall W is given. Then there is an O(n)
time algorithm, where n is the number of vertices of G, to
construct one of the following:

1. one of the graphs in the Petersen family in G as a mi-
nor, or

2. for some subset X of at most one vertex of G there is
a proper subwall W ′ (of the wall W ) of height l, which
is disjoint from X, dividing in G−X, and has a 2-cell
embedding with per(W ′) in the outer face boundary in
G − X. Moreover, we can find an irrelevant vertex as
in the second conclusion of Theorem 3.5, or



3. either there is a reduction as in Lemma 2.3, or there
is a separation (A, B) of order at most three in G−X
such that V (A)∩V (B) only involves the vertices in the
comp(W ) in G−X, and B contains all the vertices of
the per(W ′). Moreover, if the second happens, G con-
tains both (A∪X)+ and (B∪X)+ as minors. Hence it
follows that this separation (A∪X, B ∪X) is a reduc-
tion as in Theorem 2.4. Note that it is a separation of
order at most 4 in G.

4. LINKLESS EMBEDDINGS ON GRAPH
CLASSES OF BOUNDED TREE-WIDTH

In this section we present a linear time algorithm for the
linkless embedding problem on graph classes of bounded
tree-width. The algorithm is based on various results about
flat embeddings presented in Section 2.2. We first consider
the case of 4-connected graphs.

Lemma 4.1. There is an algorithm which for a given 4-
connected graph G either returns a flat embedding of G or
produces a minor H ¹ G of the Petersen family, in time
f(tw(G)) · |G|, for some computable function f : N → N.

Proof. Due to space restrictions we only prove the exis-
tence of an f(tw(G)) · |G|2-algorithm here (which is enough
for the application in Section 5). With some further effort
this can be improved to linear time. Details of the linear
time algorithm can be found in the full version of this pa-
per.

Given G, we first test in linear time (for instance using
Courcelle’s theorem [10]) if any graph in the Petersen family
is a minor of G. If no such minor is found, we compute a flat
embedding of G. The lemmas outlined in Section 2.2 and the
discussion at the end of that section suggest the following
simple algorithm for constructing a flat embedding of a 4-
connected graph in R

3.

1. If G is planar, compute the unique embedding of G
into R

3. Otherwise, choose a Kuratowski subgraph of
G and embed it flat into R

3.

2. While there is a Kuratowski subgraph K of G that is
not yet embedded, compute two adjacent Kuratowski
subgraphs H, H ′ so that H is already embedded but at
least one edge of H ′ is not yet embedded. As discussed
in Section 2.2, there is a unique way of extending the
embedding of H to an embedding of H ∪H ′ which can
easily be computed.

3. Once all Kuratowski subgraphs are embedded, the rest
of the graph is planar and, by Lemma 3, there is an
essentially unique extension to an embedding of G.

We claim that this algorithm can be implemented to run in
time f(tw(G)) · |G|2, where f is a computable function f :
N → N. Given a 4-connected graph G, first use Bodlaender’s
algorithm [4] to compute an optimal tree-decomposition of G
in time g(tw(G)) · |G|, where g : N → N is some computable
function. Using a planarity algorithm [5, 19, 54], we can find
the Kuratowski subgraph K of G required in step 1 in linear
time or conclude that G is planar, in which case we can
easily compute the unique embedding into R

3. Towards the
second step, note that the while loop can take at most ||G||
iterations as each iteration embeds at least one new vertex or
edge. In each iteration we have to find the two Kuratowski

subgraphs H and H ′. This can easily be done in linear
time, either by dynamic programming or by realizing that
the condition “H, H ′ are Kuratowski subgraphs of which H
is already embedded and H ′ is not” has a straightforward
definition in monadic second-order logic (MSO). It follows
from a result by Arnborg, Lagergren and Seese [2] that given
the MSO-definition, the graphs H, H ′ can be computed in
time h(tw(G)) · ||G||. As for all graphs ||G|| ≤ tw(G) · |G|,
the result follows. ¤

We are now ready to present the complete linear time
algorithm for computing flat embeddings of linklessly em-
beddable graphs of bounded tree-width.

Lemma 4.2. There is an algorithm which, on input G,
solves the Flat and Linkless Embedding problem for G in
time f(tw(G))·|G|, for some computable function f : N → N.

Due to space restrictions, we only sketch the proof here.
A complete proof can be found in the full version of this
paper. Let G be given. Using Bodlaender’s algorithm [4],
we first compute a tree-decomposition of G of width tw(G)
in time g(tw(G)) · |G|. The next step is to test if any graph
of the Petersen family is a minor of G. This can be done
in time g′(tw(G)) · |G|. If G contains a Petersen family mi-
nor, we can conclude that G has no linkless embeddings and
return the minor. Otherwise, we split the graph into its
4-connected components using dynamic programming over
the tree-decomposition. After some preprocessing in which
we use Y ∆-transformations to ensure that 3-separations are
joined at triangles, we then use Lemma 4.1 to find flat em-
beddings of 4-connected components. The individual em-
beddings can then be glued together along the disks bound-
ing 3-separations.

5. ALGORITHM
Finally, we are ready to present the complete algorithm.

Flat and Linkless Embedding

Input: A graph G.

Output: Either detect one of Petersen’s family graphs as a
minor in G or return a flat (and hence also linkless) embed-
ding of G in R

3.

Running time: O(n2).

Description: Initially, we delete all vertices of degree at
most 1. Also, if there is a vertex v of degree 2, then we just
contract vu, where u is one of the two neighbors of v. Thus
we may assume that minimum degree is at least 3.

Step 1. If there is a vertex v of degree 3, then we perform
Y∆ operation at v. We repeat doing this as long as there are
some vertices of degree 3. Hereafter, we may assume that
the minimum degree of the resulting graph G is at least 4.

Step 2. Test if the tree-width of the current graph G is
small or not, say smaller than some value f , where f comes
from Theorem 3.5. This can be done in linear time by the
algorithm of Bodlaender [4]. If the tree-width is at least f ,
then go to Step 3. Otherwise we use the algorithm described
in Lemma 4.2 to compute a flat embedding in linear time or
certify that no such embedding exist by computing a minor
of G in the Petersen family.



Step 3. It is easy to see that if the current graph G has
at least 26|V (G)| edges, then one can easily find a K6-minor
in linear time (see [38]). So we may assume that the current
graph G has at most 26|V (G)| edges.

At this moment, the tree-width of the current graph G is
at least f . Use the algorithm of Bodlaender [4] (or the al-
gorithm of Robertson and Seymour [41]) to construct a wall
W of height at least w′(l), where w′(l) is as in Theorem 3.4.
Perform the algorithm of Theorem 3.6 to find a separation
or reduction as in the third conclusion of Theorem 3.6, or
an irrelevant vertex v, or a minor of a graph in the Petersen
family. If the third outcome occurs, then output the minor.
If the second one happens, then we recurse this algorithm
to G − v. If the first one happens, then we reduce the size
of the the current graph G as in the proof of Theorem 3.6.
This completes the description of the algorithm. ¤

The correctness of Steps 2 and 3 follow from Sections 3 and
4. It is easy to see that degree 1 vertices can be deleted and
degree 2 vertices can be contracted. Thus the correctness of
Step 1 follows.

The time complexity of the algorithm can be estimated
as follows. All individual steps in the above algorithm can
be done in linear time. Applying the recursion results in
another factor of n. Thus the time complexity is O(n2).
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