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Abstract

Brambles were introduced as the dual notion to
treewidth, one of the most central concepts of the graph
minor theory of Robertson and Seymour. Recently,
Grohe and Marx showed that there are graphs G, in
which every bramble of order larger than the square
root of the treewidth is of exponential size in |G|. On
the positive side, they show the existence of polynomial-
sized brambles of the order of the square root of the
treewidth, up to log factors. We provide the first poly-
nomial time algorithm to construct a bramble in general
graphs and achieve this bound, up to log-factors. We
use this algorithm to construct grid-like minors, a re-
placement structure for grid-minors recently introduced
by Reed and Wood, in polynomial time. Using the grid-
like minors, we introduce the notion of a perfect bram-
ble and an algorithm to find one in polynomial time.
Perfect brambles are brambles with a particularly sim-
ple structure and they also provide us with a subgraph
that has bounded degree and still large treewidth; we
use them to obtain a meta-theorem on deciding cer-
tain parameterized subgraph-closed problems on gen-
eral graphs in time singly exponential in the parameter;
the only other result with a similar flavor that is known
to us is due to Demaine and Hajiaghayi and obtains a
doubly-exponential bound on the parameter (albeit, for
a more general class of parameterized problems).

The second part of our work deals with providing
a lower bound to Courcelle’s famous theorem from al-
most two decades ago, stating that every graph prop-
erty that can be expressed by a sentence in monadic
second-order logic (MSO), can be decided by a lin-
ear time algorithm on classes of graphs of bounded
treewidth. Whereas much work has been done on de-
signing, improving, and applying algorithms on graphs
of bounded treewidth, not much is known on the side of
lower bounds: what bound on the treewidth of a class
of graphs ”forbids” polynomial-time parameterized al-
gorithms to decide MSO-sentences? This question has
only recently received attention with the first system-
atic study appearing in [Kreutzer 2009]. Using our re-

sults from the first part of our work we can improve on
it significantly and establish a strong lower bound for
Courcelle’s theorem on classes of colored graphs.

1 Introduction

One of the deepest and most far-reaching theories of the
recent 20 years in the realm of discrete mathematics
and theoretical computer science is the graph minor
theory of Robertson and Seymour. Over a course of
over 20 papers, they prove the seminal graph minor
theorem but perhaps even more importantly, develop
a powerful and vast toolkit of concepts and ideas to
handle graphs and understand their structure; indeed, a
huge body of work has evolved that applies and extends
these ideas in various fields of discrete mathematics and
computer science. One of the most central concepts,
introduced early on, is the notion of treewidth1 [37].
Treewidth has obtained immense attention ever since,
especially because many NP-hard problems can be
handled efficiently on graphs of bounded treewidth (e.g.
all problems that can be defined in monadic second-
order logic [7]).

The dual notion to treewidth is the concept of
a bramble [40, 33]; a bramble of large order is a
witness for large treewidth. It turns out that so far,
brambles have received far less attention than tree
decompositions; perhaps the reason is that brambles
can look quite complex and do not necessarily have a
“nice” structure to be dealt with reasonably. Indeed,
Robertson and Seymour figured out that there are
certain brambles with “very nice” structure that are
much more useful than general brambles: namely, a
grid-minor of large order. In fact, Robertson and
Seymour show that a graph has bounded treewidth if
and only if it excludes a fixed grid as a minor [36]. A
grid is a canonical planar graph and the existence of
large grids has various algorithmic and non-algorithmic
applications and implications, e.g. [38, 15, 22, 10, 23, 5,
26]. However, the best known bounds relating treewidth

1see the next section for definitions.



and grid-minors are the following:

Theorem 1.1. (Robertson et al. [35]) Every graph with
treewidth at least 202`5 contains an `×`-grid as a minor.
There are graphs of treewidth `2 log ` that do not contain
an `× `-grid as a minor.

So, there is a huge gap between the known lower and
upper bounds of this theorem; Robertson and Seymour
conjecture that the true value should be closer to the
lower bound, i.e. that every graph should have a grid
of order polynomial in the treewidth. Recently, Reed
and Wood [34] attacked this problem by loosening the
requirement for the bramble to be a grid; instead, they
define a structure that they call a grid-like minor, as a
replacement structure for a grid-minor, and prove that
every graph does indeed contain a grid-like minor of
order polynomial in the treewidth.

All of the results regarding brambles, grid-minors,
and grid-like minors mentioned above are existential ;
to the best of our knowledge, it is not known so far
how to efficiently construct any bramble of large order
even when a tree decomposition of optimal width is
given. It was not even studied up until recently, how
large a bramble of the order of the treewidth can be;
Grohe and Marx [25] showed that there exist brambles
of size polynomial in the size of the graph whose order
is roughly the square root of the treewidth (up to log-
factors); but they also show that there exist graphs, so
that any bramble of order larger than the square root
of the treewidth has size exponential in the size of the
graph.
Constructing Brambles. We provide the first
polynomial-time algorithm to compute a bramble that
is guaranteed to have the order of the square-root of
the treewidth, up to log-factors, hence almost matching
the best possible theoretical bound for polynomial-sized
brambles. Our approach is based on the proof given
in [25] but additionally, involves the approximation al-
gorithms for treewidth, balanced separators, and sparse
separators, which in turn are based on linear and semi-
definite programming methods to obtain low-distortion
metric embeddings of graphs [28, 2, 17]. Even though
we do not need to get into all of these topics in this work,
it is interesting to note that it is a combination of all of
these that finally gives rise to our algorithm. We also
obtain an alternative (simpler) algorithm to construct
a bramble of smaller size but lower order; in order to
do so, we introduce the notion of a k-web, a structure
that is similar to what Diestel et al. [13] denote by a
k-mesh, and show that it can be computed by a poly-
nomial time algorithm. Recently, Chapelle et al. [6]
presented an algorithm that computes a bramble of the
order of the treewidth in time O(nk+4), where n is the

size of the graph and k the treewidth; hence, they ob-
tain brambles of optimal order but naturally, they need
exponential time in order to do so. We would also like
to mention a result by Bodlaender et al. [3] that pro-
vide a polynomial-time heuristic to compute brambles
in graphs; they use their algorithm for some computa-
tional experiments but do not prove any bounds on the
order of the bramble they obtain.
Constructing Grid-Like Minors. Afterwards, we
turn our attention to grid-like minors and present the
first polynomial-time algorithm to construct a grid-like
minor of large order in general graphs. Again, our
method is based on the original existence proof of [34]
but involves a number of new ideas and techniques,
most notably the following: first, we make use of k-
webs instead of brambles, and second, we apply the very
recent result of Moser and Tardos [30, 31] that provides
an algorithmic version of the Lovász Local Lemma.
These two ideas make it possible that the algorithmic
bound that we obtain (i.e. the order of the grid-like
minor that we construct), is very close to the existential
bound proved by Reed and Wood; if we would “just”
use our bramble algorithm and proceed as in the original
proof, the exponents would have about tripled.
Perfect Brambles. As a first application of our
results, we define the notion of a perfect bramble as
a perhaps somewhat more “handy” replacement for
grid-minors. Most notably, a perfect bramble defines
a subgraph that has bounded degree, large treewidth,
and has the property that every vertex appears in at
most 2 bramble elements. We show that every graph
contains a perfect bramble of order polynomial in the
treewidth and that such a bramble can be computed in
polynomial time. This shows that if the upper bound
in Theorem 1.1 is to be improved to a polynomial, it is
sufficient to prove it for perfect brambles.
A Meta-Theorem. Moreover, we present a meta
theorem on perfect brambles: we show that essentially
any graph parameter that is subgraph monotone and
is large on a perfect bramble, can be decided in time
O(2poly(k) poly(n)) and that a witness can be provided
in the same time bound; here n is the size of the input
and k is the size of the parameter. In the language of
parameterized complexity theory, our result states that
such parameters are fixed-parameter tractable (fpt) by a
singly exponential fpt-algorithm.

One of the most important consequences of the
graph minor theorem of Robertson and Seymour [38,
39, 18] is the following: for a given graph G and
parameter π(G) that is minor monotone, one can decide
if π(G) ≤ k, in O(f(k)n3)-fpt time, for some function
f . This is, of course, a very general and very powerful
theorem but there is a price to be paid: (i) for any



such parameter, an algorithm is known to exist, but
the algorithm itself can not be known in general; (ii)
the theorem gives a non-uniform algorithm, meaning
there is a different algorithm for every value of k;
(iii) the function f(k) is, in general, not computable
and can be arbitrarily large. Frick and Grohe [21]
proved explicit bounds for certain graph classes and
parameters that are definable in first-order logic, though
the bounds were still non-elementary. Demaine and
Hajiaghayi [11] proved a bound of O(22poly(k)

poly(n))
for general graphs, when the considered parameter
fulfills a few additional constraints. They use the
grid-minor theorem for general graphs, together with
ideas from the bidimensionality theory [10], to obtain
this bound. By using a perfect bramble instead of a
grid-minor, we can improve this bound to be singly-
exponential in k, although the additional constraints
that we require are somewhat stronger than the ones
in [11]; still, our technique can be applied to many
problems, for which their technique also applies.

On Monadic Second Order Logic. Another very
well known meta-theorem, this time from logic, is Cour-
celle’s famous result that every graph property definable
in monadic second-order logic with quantification over
sets of vertices and sets of edges (MSO2) can be de-
cided in linear time on any class of graphs of bounded
treewidth [7]. This immediately implies linear time
algorithms for a wide range of problems from decid-
ing whether a graph has a Hamiltonian cycle to 3-
Colorability to parameterized algorithms for problems
such as Dominating Set and most other covering prob-
lems. Following Courcelle’s theorem, a range of other
algorithmic meta-theorems have been obtained for more
general classes of graphs, e.g. [19, 21, 9, 8]. See also re-
cent surveys [24, 26] on the topic. More recently, the
search for strong algorithmic meta-theorems based on
logic has inspired work on parameterized graph algo-
rithms, for instance in the work on meta-kernelization
[1].

Courcelle’s theorem provides an easy way of proving
that a problem can be solved efficiently on graph classes
of bounded treewidth and has been used intensively in
the literature. An obvious question is whether it is
tight or can be extended to graph classes of unbounded
treewidth, a natural choice being for instance the class
C of graphs G with treewidth tw(G) ≤ log |G|. We say
that the treewidth of C is bounded by log n or, more
generally, by logc n if G ∈ C implies tw(G) ≤ logc n,
where c is a constant.

The first systematic study of this question ap-
pears in [26] where classes of graphs are studied whose
treewidth is not bounded poly-logarithmically, or more
precisely, not bounded by logc n, for some small con-

stant c. The main result in [26] essentially says that
if C is a class of colored graphs whose treewidth is
not bounded by logc n, then Courcelle’s theorem does
not extend to C (see Section 6 for details). However,
[26] only refers to classes which are called constructible,
which essentially says that in graphs G ∈ C grid-like
minors can be computed in polynomial time. The re-
sults of Section 4 remove this condition and establish a
very strong lower bound for the complexity of monadic
second-order logic. We show that, with respect to col-
ored graphs, Courcelle’s theorem is rather tight and
can not be extended to classes of graphs of treewidth
bounded by logc n for c > 24.
Organization. We start by stating some preliminary
notions and proceed with the above mentioned topics,
one by one. We refer the interested reader to the
journal version for full proofs of this extended abstract
(a preliminary version has been made available at [27]).

2 Preliminaries

We usually denote graphs by letters G,H, and refer to
their vertex/edge sets by V (G) and E(G), respectively.
Unless otherwise mentioned, our graphs have n vertices
and m edges. For a subset U ⊆ V (G), we write G[U ]
to denote the subgraph of G induced by U . For an
edge e = uv, we define the operation of contracting e as
identifying u and v and removing all loops and duplicate
edges. A graph H is a minor of G if it can be obtained
from G by a series of vertex and edge deletions and
contractions. A model of H in G is a map that assigns
to every vertex of H, a connected subgraph of G, such
that the images of the vertices of H are all disjoint in
G and there is an edge between them if there is an edge
between the corresponding vertices in H. A graph H is
a minor of G if and only if G contains a model of H.
A subdivision of a graph H is a graph that is obtained
from H by iteratively replacing some edges by paths of
length 2. H is a topological minor of G if a subdivision
ofH is a subgraph of G. A topological minor of G is also
a minor of G but the reverse is not true in general. We
refer the reader to [12] for more background on graph
theory.

A tree decomposition of a graph G is a pair (T,B),
where T is a tree and B = {Bi|i ∈ V (T )} is a family of
subsets of V (G), called bags, such that (i) every vertex
of G appears in some bag of B; (ii) for every edge
e = uv of G, there exists a bag that contains both u
and v; (iii) for every vertex v of G, the set of bags that
contain v form a connected subtree Tv of T . The width
of a tree decomposition is the maximum size of a bag
in B minus 1. The treewidth of a graph G, denoted
by tw(G), is the minimum width over all possible tree
decompositions of G. Let f : N → N be a function and



C be a class of graphs. The treewidth of C is bounded
by f , if tw(G) ≤ f(|G|) for all G ∈ C. C has bounded
treewidth if its treewidth is bounded by a constant.

Definition 2.1. Let G be a graph. Two subgraphs
B,B′ of G touch if they share a vertex or if there is
an edge e ∈ E(G) joining B and B′. A bramble in G is
a set B of connected subgraphs of V (G) such that any
two B,B′ ∈ B touch. The subgraphs in B are called
bramble elements. A set S ⊆ V (G) is a hitting set for
B if it intersects every element of B. The order of B
is the minimum size of a hitting set.

The canonical example of a bramble is the set of
crosses (union of a row and a column) of an `× `-grid.
The following theorem shows the duality of treewidth
and brambles:

Theorem 2.1. (Seymour and Thomas [40]) A graph
G has treewidth at least ` if and only if G contains a
bramble of order at least `+ 1.

For the algorithmic purposes of this work, the
following theorem due to Grohe and Marx is of high
significance; it essentially says that if we are looking for
a polynomial-sized bramble, the best order we can hope
for is about the square-root of the treewidth:

Theorem 2.2. (Grohe and Marx [25])

(i) Every n-vertex graph G of treewidth k has a bramble
of order Ω(

√
k

log2 k
) and size O(k

3
2 · lnn).

(ii) There is a family (Gk)k≥1 of graphs such that:

• |V (Gk)| = O(k) and E(Gk) = O(k) for every
k ≥ 1;

• tw(Gk) ≥ k for every k ≥ 1;

• for every ε > 0 and k ≥ 1, every bramble of Gk

of order at least k
1
2+ε has size at least 2Ω(kε).

We defer the definition of a grid-like minor to
Section 4. Finally, we briefly review some basic notions
of parameterized complexity theory [14, 20]. We use the
term poly(n) to denote some polynomial function in n
(often written as nO(1) in the literature). A parameter
for a problem is a function that assigns a natural number
to every instance of the problem. Unless otherwise
mentioned, we denote the problem size by n and the
parameter value by k. A problem is said to be fixed-
parameter tractable (fpt), if it can be solved by an
algorithm in timeO(f(k) poly(n)), for some computable
function f . The class FPT is the set of all parameterized
problems that are fixed-parameter tractable. The class
XP is the set of all parameterized problems that can

be solved by an algorithm in time O(nf(k)), for a
computable function f . Clearly, FPT ⊆ XP; Downey
and Fellows [14] showed that, in fact, FPT 6= XP. We
say a parameterized problem can be solved by a singly
exponential FPT algorithm if there is an algorithm for
it with running time O(2poly(k) poly(n)).

3 Constructing Brambles and Webs

In this section, we show two different methods to
construct a bramble in a graph. The first one is based
on a randomized construction by Grohe and Marx [25];
it turns out that their proof of the existence of a large
bramble can be made into a polynomial-time algorithm
if one can find a large set whose sparsest cut is “not
sparse”. Our second construction uses a k-web, a
concept that we also introduce in this section, in order
to obtain a bramble whose size does not depend on n.

3.1 Finding A Large Set Lacking Sparse Sep-
arators A separator of a graph G is a partition of its
vertices into three classes (A,B, S), so that there are no
edges between A and B. We allow A or B to be empty
but require S 6= ∅. The size of a separator is the size of
the set S. For a subset W ⊆ V (G), we say that a sep-
arator is γ-balanced or just a γ-separator with respect
to W , if |A ∩W |, |B ∩W | ≤ γ|W |. The treewidth of
a graph is closely related to the existence of balanced
separators:

Lemma 3.1. (Reed [32, 33])

(i) If G has treewidth greater than 3k, then there is
a set W ⊆ V (G) of size exactly 2k + 1 having no
1
2 -balanced separator of size k;

(ii) if G has treewidth at most k, then every W ⊆ V (G)
has a 1

2 -balanced separator of size k + 1.

The sparsity of a separator (A,B, S) with respect
to W is defined as

αW (A,B, S) =
|S|

|(A ∪ S) ∩W | · |(B ∪ S) ∩W |
.

We denote by αW (G) the minimum of αW (A,B, S) for
every separator (A,B, S). It is easy to see that for every
connected G and nonempty W , 1

|W |2 ≤ αW (G) ≤ 1
|W | .

We are interested in a set W with no sparse separator,
i.e. where the sparsity of the sparsest vertex cut is close
to the maximum. Grohe and Marx [25] showed that the
non-existence of balanced separators can guarantee the
existence of such a set W :

Lemma 3.2. (Grohe and Marx [25]) If |W | = 2k + 1
and W has no 1

2 -balanced separator of size k in a graph
G, then αW (G) ≥ 1

4k+1 .



The proof of Lemma 3.1 is algorithmic, but the
algorithm is not polynomial-time since deciding if a
(set in a) graph has a balanced separator of size k
is an NP-complete problem. Hence, we have to work
with approximations. On the other hand, Grohe and
Marx note that Lemma 3.2 does not remain true for
larger W by showing an example with |W | = 4k and
αW (G) = O(1/k2); so, if we work with approximations,
we can not use this lemma directly. We show in this
section how to circumvent these problems by presenting
a polynomial-time algorithm to find a large set W
with no sparse separator. Our algorithm follows the
framework of approximating balanced separators by
using sparse separators, as introduced by Leighton and
Rao [28]. Additionally, we make use of the following
two results:

Lemma 3.3. (Feige et al. [17]) Let G be a connected
graph, W ⊆ V (G), and T be the optimal 2

3 -separator
of W in G. There exists a polynomial-time algo-
rithm that computes a separator (A,B, S) of G, so that
αW (A,B, S) ≤ β0α

W (G)
√

log |T |, for some constant
β0.

Lemma 3.4. (adapted from Bodlaender et al. [2]) Let
G be a graph and s ∈ N be given. Suppose that for
any connected subset U of V (G) and given set W ⊆ U
with |W | = 4s, there exists a 3

4 -separator of W in U of
size at most s and that such a separator can be found
in polynomial time. Then the treewidth of G is at most
5s and an according tree decomposition can be found in
polynomial time.

Now we can state our main technical lemma of this
section; the proof is based on a technique from [28]:

Lemma 3.5. Let G be a graph of treewidth k?, U0 a
connected subset of V (G) and W0 ⊆ U0 with |W0| =
4β1k, where β1 is a constant and k a parameter. Then
there exists a polynomial-time algorithm that either
finds a 3

4 -separator of W0 in U0 of size at most β1k;
or determines that k < 4

3k
?
√

log k? and returns a
connected subset U of U0 and a subset W ⊆ U with
|W | ≥ 3β1k, so that αW (U) ≥ 1

β2k? log k? , where β2 is a
constant.

Proof. We denote by |X|W , the number of elements
of W in a set X. In our algorithm, we maintain a
current component U initialized to U0, a current set
W ⊆ U , W ⊆ W0 initialized to W0, and a current
separator S initialized to ∅. We keep the invariant that
|W | ≥ 3

4 |W0| = 3β1k. In each iteration, we do the
following: first, we find a separator (A′, B′, S′) of W in
U as guaranteed by Lemma 3.3. Then, we know that

αW (A′, B′, S′) ≤ β0α
W (U)

√
log |T |, where (AT , BT , T )

is the optimal 2
3 -separator of W in U . Note that T is

at most the size of the optimal 1
2 -separator and hence,

is at most k? + 1, by Lemma 3.1. Now, we have

|S′|
|A′ ∪ S′|W · |B′ ∪ S′|W

≤ β0
|T |

√
log |T |

|AT ∪ T |W · |BT ∪ T |W

≤ β1
k?
√

log k?

|W |2
,

where the first inequality follows from the fact that T is
some separator of W in U and so, not sparser than the
sparsest separator of W in U ; and the second inequality
from |AT ∪ T |W , |BT ∪ T |W ≥ 1

3 |W | by requiring β1 ≥
18β0. It follows that |S′| ≤ β1k

?
√

log k? |B
′∪S′|W
|W | . We

distinguish two cases:
Case 1: |S′| > β1k |B′∪S′|W

|W0| . Then it must be that
k < 4

3k
?
√

log k? and we have

αW (A′, B′, S′) =
|S′|

|A′ ∪ S′|W · |B′ ∪ S′|W

>
β1k

|A′ ∪ S′|W · |W0|
≥ β1k

|W0|2

=
β1k

16β2
1k

2
=

1
16β1k

and hence,

αW (U) ≥ αW (A′, B′, S′)
β0

√
log |T |

≥ 1
22β0β1k?

√
log k?

√
log k? + 1

≥ 1
β2k? log k?

,

for a constant β2 ≥ 44β0β1.
Case 2: |S′| ≤ β1k |B′∪S′|W

|W0| . We update our overall
separator S to be S ∪ S′ and check if there exists a
connected component U ′ of U \ S that still has more
than a 3

4 -fraction of the elements of W0. If so, we set
U = U ′ and W = W0 ∩ U and repeat our algorithm.
Otherwise S is a 3

4 -separator of W0 in U0 and we claim
that |S| ≤ β1k: w.l.o.g we may always assume that
|A′ ∪S′|W ≥ |B′ ∪S′|W and hence, after each iteration,
the set B′ ∪ S′ is discarded. So, the total sum, over
all iterations, of the |B′ ∪ S′|W is at most |W0| and the
claim follows. 2

By setting s = β1k in Lemma 3.4, we obtain a
polynomial-time algorithm that given a graph G and
a parameter k, either finds a tree decomposition of G of
width at most 5β1k or returns sets U and W as specified
in Lemma 3.5. Now, we can apply this algorithm with
parameter k = 2i for i = 0, 1, 2, . . . to find the first i, so



that it still fails on i (meaning that a tree decomposition
is not constructed) but succeeds in returning a tree
decomposition on i+ 1. Hence, we have

Lemma 3.6. There is a polynomial-time algorithm that
given a graph G of treewidth k?, returns a number
k ∈ N, so that k?

10β1
≤ k < 4

3k
?
√

log k?, together with
a connected subset U of V (G) and a set W ⊆ U with
3β1k ≤ |W | ≤ 4β1k, so that αW (U) ≥ 1

β2k? log k? , where
β1, β2 are constants.

3.2 Randomized Construction of Brambles
Once we are able to find a set W0 with a sparsest cut
of high sparsity, the rest of the probabilistic proof of
Theorem 2.2 (i) in [25] becomes algorithmic. The ba-
sic ideas are as follows: first, we find a number k and
sets U and W0 as in Lemma 3.6; then we compute a
maximum concurrent vertex flow on W0; this can be
accomplished by linear programming methods in poly-
nomial time [17]; we select an arbitrary set W ⊆ W0

of size k; afterwards, Grohe and Marx define a certain
probability distribution on the paths between the ver-
tices of W0, based on the solution to the flow problem,
and specify how to randomly pick and combine a num-
ber of these paths to construct a certain bramble B.
We refrain from repeating the details here and refer to
the original paper [25] or the full version of this paper.
We obtain

Lemma 3.7. (adapted from Grohe and Marx [25]) With
probability at least 1− 1/k, the set B constructed above
is a bramble. With probability at least 1−1/n, the order
of this bramble is at least k3/2αW0 (U)

β3 ln k ln |W0| , for an absolute
constant β3.

Theorem 3.1. There exists a randomized polynomial
time algorithm, that given a graph G of treewidth k?,
constructs with high probability a bramble in G of size
O(k?3/2

ln k? lnn) and order Ω(
√

k?

ln3 k? ).

Note that a slight modification gives rise to a bramble
of size O(k?3/2

lnn) and order Ω(
√

k?

ln4 k? ).

3.3 Weak k-Webs

Definition 3.1. A weak k-web of order h in a graph
G is a set of h disjoint trees T1, . . . , Th, such that for
all 1 ≤ i < j ≤ h there is a set Pi,j of k disjoint paths
connecting Ti and Tj. If the trees T1, . . . , Th are all
paths, we denote the resulting structure by a weak k-
web of paths of order h.

In [34], it is shown that any bramble of order at least
hk, contains a weak k-web of paths of order h. They use

this structure to show the existence of grid-like minors.
Even though we provide a different proof for grid-like
minors, we still include the following lemma as it might
be of independent interest:

Lemma 3.8. There is a polynomial-time algorithm that
given a bramble B of order at least chk

√
log k in a graph

G, computes a weak k-web of paths of order h in G,
where c is a constant.

Corollary 3.1. For any ε > 0, there is a constant c,
so that if for a graph G, we have tw(G) ≥ ch2+εk2+ε,
then G contains a weak k-web of paths of order h that
can be constructed in randomized polynomial time.

3.4 k-Webs

Definition 3.2. A tree T is sub-cubic if its maximum
degree is at most 3. A set X ⊆ V (T ) is called flat if
every vertex v ∈ X has degree at most 2 in T .

We will need the following lemma, whose simple proof
is left for the reader.

Lemma 3.9. Let T be a sub-cubic tree and X ⊆ V (T )
be a set of 2k` vertices, where k, ` ∈ N. Then there are `
disjoint sub-trees T1, . . . , T` of T such that |X∩V (Ti)| =
k, for all 1 ≤ i ≤ `.

Definition 3.3. A k-web of order h in a graph G is a
collection (T, (Ti)1≤i≤h, (Ai)1≤i≤h, B) of sub-graphs of
G such that

(i) T is a sub-cubic tree and V (B ∩ T ) =⋃
1≤i≤h V (Ai);

(ii) T1, . . . , Th are disjoint subtrees of T and for 1 ≤
i ≤ h, Ai ⊆ Ti is flat in T ;

(iii) for all 1 ≤ i < j ≤ h there is a set Pi,j of k disjoint
paths in B connecting Ai and Aj;

Note that the main restriction of a k-web compared
to a weak k-web is that the paths Pi,j are required to
be disjoint from the trees T1, . . . , Th (except for their
endpoints); on the other hand, the advantage of a weak
k-web of paths is that all its trees are paths. Adapting a
proof by Diestel et al. [13, 12] we show that any graph of
large enough treewidth contains a k-web of large order
that can be computed in polynomial time.

Lemma 3.10. (adapted from Diestel et al. [13]) Let
h, k ≥ 1 be integers. If G has treewidth at least (2·h+1)·
k−1 then G contains a k-web of order h. Furthermore,
there is a polynomial time algorithm which, given G, k, h
either computes a tree decomposition of G of width at
most (2 · h+ 1) · k − 2 or a k-web of order h in G.



Lemma 3.11. Let k ≥ 1. If G contains a (k + 1)-web
of order k + 1 then the treewidth of G is at least k.

Corollary 3.2. There is a polynomial time algorithm
which, given a graph G either computes a (k + 1)-web
of order k + 1 and thereby proves that tw(G) ≥ k or a
tree decomposition of G of width O(k2).

3.5 Constructing a Bramble from a k-Web In
this subsection, we briefly mention an alternative bram-
ble construction that differs from the one in Section 3.2
in that its size does not involve n but instead, its order
is less2.

Lemma 3.12. Given a k2-web of order k, one can
construct a bramble of size k3 and order k.

Proof. Let (T, (Ti)1≤i≤k, (Ai)1≤i≤k, B) be a k2-web of
order k and let Pi,j = {P 1

ij , . . . , P
k2

ij } be the k2 disjoint

paths between Ai and Aj . Let P̂ t
ij be the path P t

ij

without the last edge that connects it to Aj . Define
Bt

i = Ti ∪
⋃k

j=1 P̂
t
ij , for 1 ≤ i ≤ k and 1 ≤ t ≤ k2,

and let B =
⋃

i,tB
t
i . Then B is clearly a bramble of

size k3. Suppose there is a hitting set of B of order less
than k; then there is an i, such that Ti is not covered.
Hence, for 1 ≤ t ≤ k2, Bt

i must be covered using vertices
in

⋃
t,j P̂

t
ij ; but note that any vertex in this union has

degree at most k and so, at least k vertices are needed
to cover all these k2 sets.

Theorem 3.2. There exists a polynomial time algo-
rithm that, given a graph G of treewidth k?, constructs
a bramble in G of size O(k?) and order Ω(( k?

√
log k? )1/3).

4 Constructing Grid-Like Minors

Let P and Q each be a set of disjoint connected
subgraphs of a graph G. We denote by I(P,Q)
the intersection graph of P and Q defined as follows:
I(P,Q) is the bipartite graph that has one vertex for
each element of P and Q and an edge between two
vertices if the corresponding subgraphs intersect.

Definition 4.1. Let P and Q be each a set of disjoint
paths in a graph G. P ∪Q is called a grid-like minor of
order ` in G if I(P,Q) contains the complete graph K`

as a minor. If the K`-minor is, in fact, a topological
minor, we call the structure a topological grid-like
minor of order `.

2The existence of such a bramble is briefly mentioned in [25]
but it is not presented; the authors would like to thank Dániel
Marx for a helpful discussion on this matter.

Theorem 4.1. (Reed and Wood [34]) Every graph with
treewidth at least c`4

√
log ` contains a grid-like minor of

order `, for some constant c. Conversely, every graph
that contains a grid-like minor of order ` has treewidth
at least

⌈
`
2

⌉
− 1.

The proof given in [34] is existential and proceeds
as follows: first, using a large bramble, a weak k-web
of paths is constructed; then for each pair of sets of
disjoint paths in the k-web, it is checked whether their
union contains a grid-like minor of large order; if this is
not true for any pair, one can obtain a grid-like minor
using the Lovász Local Lemma. In this section, we make
their proof algorithmic by showing how the individual
major steps of the proof can be performed in polynomial
time. We show

Theorem 4.2. There are constants c1, c2, c3, c′1, c
′
2, so

that if a graph G has

(i) tw(G) ≥ c1`
5, then G contains either K` as a

minor or a topological grid-like minor of order `;

(ii) tw(G) ≥ c2`
8, G contains either K`2 as a minor

or a c3`6-web of order 4 that contains a topological
grid-like minor of order `;

(iii) tw(G) ≥ c2`
8, G contains a topological grid-like

minor of order `.

Furthermore, the corresponding objects can be con-
structed by a randomized algorithm with expected poly-
nomial running time. If the bounds on the treewidth are
loosened to c′1`

7 and c′2`
12, respectively, then a deter-

ministic algorithm can be used.

The first step of the proof in [34] is to find a weak
k-web of paths; instead, we make use of a k-web as
described in Section 3.4. We proceed with the second
main step of the algorithm.

4.1 Finding Complete Topological Minors Once
we have a k-web, we need to determine if the intersection
graph of any pair of the disjoint paths contains a large
complete graph as a minor. Thomason [41] showed that
if the average degree of a graph is at least cp

√
log p,

then the graph contains Kp as a minor (and that this
bound is tight). His proof is very complicated and it
is not clear if it can be turned into a polynomial-time
algorithm to actually find such a minor. However, if we
are looking for a topological minor, we need an average
degree of at least cp2 and Bollobás and Thomason [4]
show that this bound actually suffices. Furthermore, it
turns out that their proof is, in fact, algorithmic:



Theorem 4.3. (adapted from Bollobás and Thoma-
son [4]) If a graph G has average degree at least cp2,
for a constant c, then G contains Kp as a topological
minor. Furthermore, a model of Kp can be found in G
in polynomial time.

4.2 Algorithmic Application of the Lovász Lo-
cal Lemma Recall that a graph G is called d-
degenerate if every subgraph of G has a vertex of de-
gree at most d and note that Theorem 4.3 implies that
if G does not contain Kp as a topological minor, then
G is cp2-degenerate, for a constant c. Reed and Wood
proved the following lemma, where e denotes the base
of the natural logarithm:

Lemma 4.1. (Reed and Wood [34]) For some r ≥ 2,
let V1, . . . , Vr be the color classes in an r-coloring of a
graph H. Suppose that |Vi| ≥ n := 2e(2r − 3)d for all
1 ≤ i ≤ r and assume H[Vi ∪ Vj ] is d-degenerate for
1 ≤ i < j ≤ r. Then there exists an independent set
{x1, . . . , xr} of H, such that each xi ∈ Vi.

The proof of this lemma in [34] is existential and
uses the Lovász Local Lemma (LLL) [16]. Reed and
Wood note that if n ≥ r(r−1)d+1, a simple minimum-
degree greedy algorithm will find such an independent
set, and pose as an open question if this algorithmic
bound can be improved. Very recently, Moser [30] and
Moser and Tardos [31] proved in their breakthrough
work that the LLL can be actually made algorithmic
by a randomized algorithm with expected polynomial
running time. Hence, we obtain that there exists
such a randomized algorithm with expected polynomial
running time that finds the independent set specified by
Lemma 4.1.

4.3 Putting Things Together Starting with a
(weak) k-web of order h, we consider the disjoint paths
Pi,j between the pairs of trees from the web. For each
pair of these paths, we check if the average degree of
the intersection graph is large; if so, we have found
a topological grid-like minor by Theorem 4.3; other-
wise, we consider the intersection graph of all the

(
h
2

)
sets of paths and invoke Lemma 4.1 with r :=

(
h
2

)
and

d := c1p
2. We obtain

Lemma 4.2. Let G be a graph and let T1, . . . , Th be
given to be the disjoint trees of a (weak) k-web of order
h in G with k ≥ ch2p2, for a constant c. Then there
exists a randomized algorithm with polynomial expected
running time that finds, in G, either a topological grid-
like minor of order p or a set of

(
h
2

)
disjoint paths

Qij , 1 ≤ i < j ≤ h, so that Qij connects Ti to Tj.
If k ≥ c′h4p2, a deterministic algorithm also exists.

By using the k-web of order h that is guaranteed
by Lemma 3.10 and setting k = ch2p2, we immediately
obtain a randomized algorithm that given a graph G
of treewidth at least ch3p2 computes in G either a
model of Kh or a topological grid-like minor of order
p; a deterministic variant is obtained if tw(G) ≥ c′h5p2.
This observation, in turn, easily proves Theorem 4.2; we
only sketch briefly, how claim (iii) is obtained from claim
(ii): consider a graph H that consists of ` “horizontal”
paths and

(
`
2

)
“vertical” edges, one connecting each

pair of the horizontal paths. Then H has less than `2

vertices, has maximum degree 3, and any subdivision of
H is a topological grid-like minor of order `; now, any
graph that has K`2 as a minor, has H as a topological
minor and hence, contains a topological grid-like minor
of order ` (recall that if a graph H has maximum degree
3 and is a minor of a graphG, then it is also a topological
minor of G).

Note that by using the weak k-web of paths that
is given by Corollary 3.1, one can also directly obtain
a topological grid-like minor of order h but the bounds
would be worse than those obtained by Theorem 4.2.

5 Perfect Brambles and a Meta-Theorem

Definition 5.1. A bramble B in a graph G is called
perfect if

1. any two B,B′ ∈ B intersect;

2. for every v ∈ V (G) there are at most two elements
of B that contain v;

3. every vertex has degree at most 4 in
⋃

B.

Perfect brambles have some interesting properties, such
as the ones given below.

Lemma 5.1. Let B = {B1, . . . , Bk} be a perfect bram-
ble and let H =

⋃
B. Then we have

(i) every element B ∈ B has at least k − 1 vertices;

(ii) every element B ∈ B has at least k− 2 edges that
do not appear in any other element of B;

(iii) H has at least k(k−1)
2 vertices and at least k(k−2)

edges;

(iv) the order of B is exactly
⌈

k
2

⌉
and hence, can be

computed in linear time;

(v) the treewidth of H is at least
⌈

k
2

⌉
− 1.

Using Theorems 4.1 and 4.2, we obtain

Theorem 5.1. There are constants c1, c2, c3, such that
for any graph G, we have



(i) if tw(G) ≥ c1k
4
√

log k, then G contains a perfect
bramble of order k;

(ii) if tw(G) ≥ c2k
5, there is randomized algorithm

with expected polynomial running time that finds
a perfect bramble of order k in G;

(iii) if tw(G) ≥ c3k
7, a deterministic algorithm for the

same purpose exists.

Corollary 5.1. For any graph G of treewidth k, there
exists a subgraph H of G with treewidth polynomial
in k and maximum degree 4. Furthermore, H can be
computed in polynomial time.

An interesting consequence of this corollary is that
if the relation between treewidth and grid-minors is
indeed polynomial (see Theorem 1.1), then it suffices
to prove it only for graphs of bounded degree, in fact,
only for perfect brambles. Next, let G denote the set of
all graphs; we obtain the following meta theorem:

Theorem 5.2. Let c, α > 0 be constants, G be a graph,
and π : G → N be a parameter, such that

(i) if H is a subgraph of G, then π(H) ≤ π(G);

(ii) on any graph H =
⋃

B, where B is a perfect
bramble of order `, π(H) ≥ c`α;

(iii) given a tree decomposition of width ` on a graph H,
π(H) can be computed in time O(2poly(`) poly(n));

then there is an algorithm with running time
O(2poly(k) poly(n)) that decides if π(G) ≤ k. Further-
more, if in (i), (ii), and (iii) above, a corresponding
witness can be constructed in time O(2poly(k) poly(n)),
then a witness, proving or disproving π(G) ≤ k, can
also be constructed in the given time.

The basic idea of the proof is as follows: if the
treewidth ofG is large enough, thenG contains a perfect
bramble of large order and hence, π(G) ≥ k; otherwise,
the treewidth of G is bounded by poly(k) and a solution
can directly be computed. Using Lemma 5.1 one can see
that our meta-theorem above can be applied to a variety
of problems, such as vertex cover, edge dominating
set (= minimum maximal matching), feedback vertex
set, longest path, and maximum-leaf spanning tree.
Whereas there already exist better fpt algorithms for
these problems, we do not know of a unifying argument
like in Theorem 5.2 that provides singly-exponential fpt
algorithms for all these problems; also, this technique
might be applicable to other problems, for which singly-
exponential fpt algorithms are not known yet. But the
main significance of the theorem resides in the reasons

discussed in the introduction of this work, regarding
the graph minor theorem. Also, the algorithmic nature
of Theorem 5.1 makes it possible to actually construct
a witness, as specified by Theorem 5.2; this was, in
general, not achieved by previous results.

6 Parameterized Intractability of MSO2 Model
Checking

In this section we use the results established above
to significantly improve on a lower bound on Cour-
celle’s theorem for classes of colored graphs proved in
[26]. We first need some notation. Throughout this
section we will work with colored graphs. Let Σ :=
{B1, . . . , Bk, C1, . . . , Cl} be a set of colors, where the
Bi are colors of edges and the Ci are colors of vertices.
A Σ-colored graph, or simply Σ-graph, is an undirected
graph G where every edge can be colored by colors from
B1, . . . , Bk and every vertex can be colored by colors
from C1, . . . , Ck. In particular, we do not require any
additional conditions such as edges having endpoints
colored in different ways. A class C of Σ-graphs is said
to be closed under Σ-colorings if whenever G ∈ C and
G′ is obtained from G by recoloring, i.e. the underlying
un-colored graphs are isomorphic, then G′ ∈ C.

The class of formulas of monadic second-order logic
with edge set quantification on Σ-colored graphs, de-
noted MSO2[Σ], is defined as the extension of first-order
logic by quantification over sets of edges and sets of ver-
tices. That is, in addition to first-order variables there
are variables X,Y, ... ranging over sets of vertices and
variables F, F ′, ... ranging over sets of edges. Formulas
of MSO2[Σ] are then built up inductively by the rules
for first-order logic with the following additional rules:
if X is a second-order variable either ranging over a set
of vertices or a set of edges and φ ∈ MSO2[Σ∪̇{X}],
then ∃Xφ ∈ MSO2[Σ] and ∀Xφ ∈ MSO2[Σ] where, e.g.,
a formula ∃Fφ, F being a variable over sets of edges,
is true in a Σ-graph G if there is a subset F ′ ⊆ E(G)
such that φ is true in G if the variable F is interpreted
by F ′. We write G |= ψ to indicate that a formula ψ is
true in G. See [29] for more on MSO2.

We are primarily interested in the complexity of
checking a fixed formula expressing a graph property in
a given input graph. We therefore study model-checking
problems in the framework of parameterized complexity
(see [20] for background on parameterized complexity).
Let C be a class of Σ-graphs. The parameterized
model-checking problem MC(MSO2, C) for MSO2 on C
is defined as the problem to decide, given G ∈ C and
φ ∈ MSO2[Σ], if G |= φ. The parameter is |φ|.
MC(MSO2, C) is fixed-parameter tractable (fpt), if for
all G ∈ C and φ ∈ MSO2[Σ], G |= φ can be decided
in time f(|φ|) · |G|k, for some computable function f



and k ∈ N. The problem is in the class XP, if it can
be decided in time |G|f(|φ|). As, for instance, the NP-
complete problem 3-Colorability is definable in MSO2,
MC(MSO2,Graphs), the model-checking problem for
MSO2 on the class of all graphs, is not fixed-parameter
tractable unless P = NP. However, Courcelle proved
that if we restrict the class of admissible input graphs,
then we can obtain much better results.

Theorem 6.1. (Courcelle [7]) MC(MSO2, C) is fixed-
parameter tractable on any class C of graphs of treewidth
bounded by a constant.

Courcelle’s theorem gives a sufficient condition for
MC(MSO2, C) to be tractable. We now show that on
colored graphs, Courcelle’s theorem can not be extended
much further. We first need some definitions.

The treewidth of a class C of graphs is strongly
unbounded by a function f : N → N if there is a
polynomial p(x) such that for all n ∈ N

1. there is a graph Gn ∈ C of treewidth between n and
p(n) whose treewidth is not bounded by f(|Gn|)

2. given n, Gn can be constructed in time 2nε

, for
some ε < 1.

The treewidth of C is strongly unbounded poly-
logarithmically if it is strongly unbounded by logc n, for
all c ≥ 1. Essentially, strongly means that a) there
are not too big gaps between the treewidth of graphs
witnessing that the treewidth of C is not bounded by
f(n) and b) we can compute such witnesses efficiently.
This is needed because the proof of the theorem below
relies on a reduction of an NP-complete problem P to
MC(MSO2, C) so that given a word w for which we want
to decide if w ∈ P we construct a graph Gw of treewidth
polynomial in |w| and whose treewidth is > log24 |G|. If
C was not strongly unbounded then there simply would
not be enough graphs of large treewidth in C to define
any reduction.

The following theorem was proved in [26]. Let Γ
be a set of colors with at least one edge and two vertex
colors.

Theorem 6.2. (Kreutzer [26]) Let C be a constructible
class of Γ-colored graphs closed under colorings.

1. If the treewidth of C is strongly unbounded poly-
logarithmically then MC(MSO2, C) is not in XP,
and hence not fpt, unless all problems in NP (in
fact, all problems in the polynomial-time hierarchy)
can be solved in sub-exponential time.

2. If the treewidth of C is strongly unbounded by log16 n
then MC(MSO2, C) is not in XP unless Sat can be
solved in sub-exponential time.

Here, a class C is called constructible if given a graph
G ∈ C of treewidth c · `8 ·

√
log(`2), for some constant

c defined in [26], we can compute in polynomial time
a structure called a colored pseudo-wall of order `. A
colored pseudo-wall of order ` is a variant of a grid-
like minor and can easily be computed from a given
grid-like minor of order `2. Using Theorem 4.2, we can
now compute grid-like minors and hence pseudo-walls
in polynomial time, at the expense that the graphs
in which we compute these structures need to have
treewidth at least c′2`

24 instead of c·`8 ·
√

log(`2). Hence,
we obtain the following result.

Theorem 6.3. Let C be any class of Γ-colored graphs
closed under colorings.

1. If the treewidth of C is strongly unbounded poly-
logarithmically then MC(MSO2, C) is not in XP,
and hence not fpt, unless all problems in NP (in
fact, all problems in the polynomial-time hierarchy)
can be solved in sub-exponential time.

2. If the treewidth of C is strongly unbounded by log48 n
then MC(MSO2, C) is not in XP unless Sat can be
solved in sub-exponential time.

Note that we also obtain a variant of Theorem 6.3(ii),
stating that if the treewidth of C is strongly unbounded
by log20 n then MC(MSO2, C) is not in XP unless Sat
can be solved in expected sub-exponential time by a
randomized algorithm.
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