
Non-Regular Fixed-Point Logics and Games

Stephan Kreutzer1

Martin Lange2

1 Oxford University Computing Laboratory,
Wolfson Building,
Parks Road,
Oxford, OX1 3QD,
England.

2 Institut für Informatik,
Ludwig-Maximilians-Universität München,
Oettingenstr. 67,
80538 München,
Germany.

kreutzer@comlab.ox.ac.uk, martin.lange@ifi.lmu.de

1 Introduction

Modal and temporal logics. The most commonly used specification
logics in the theory of computer aided verification are based on proposi-
tional modal logic augmented by temporal operators. Among those one can
broadly distinguish between linear and branching time logics, depending
on how they treat the temporal development of processes. The modal µ-
calculus, Lµ for short, provides a common generalization of most temporal
logics. It is defined as the extension of basic propositional modal logic by
rules to form the least and the greatest fixed point of definable monotone
operators.

Lµ is a regular logic in the sense that it can be translated into monadic
second order logic (MSO) and therefore can only define regular classes
of trees and their representations as transition systems. It is even equi-
expressive to the bisimulation-invariant fragment of MSO over trees or
graphs [9] and can therefore be seen as the regular branching time tem-
poral logic.

Temporal logics such as LTL, CTL or CTL∗ are all embeddable into
Lµ. They can express important properties – such as reachability, safety,
liveness, fairness, etc. – and specifications in these languages can be verified
automatically and in many cases also efficiently in process models. How-
ever, a number of natural properties of processes are no longer regular and
therefore cannot be expressed in any of these logics. For instance, one can-
not express that a specific event occurs in all possible execution traces at

2

the same time [7], that every transmission is acknowledged, or that there
are no more returns than calls.

To express these properties in a logic, the logic needs to be able to count
to some extent, at least to compare cardinalities, i.e. it needs to incorporate
non-regular properties. There are various potential ways of defining logics
with non-regular features.

One option is to add a bisimulation preserving form of counting explic-
itly, i.e. to consider a modal analogue to first-order plus counting. Similarly,
one could add specific operators for the tasks at hand, an operator to com-
pare cardinalities, for instance. In this way, logics tailored towards specific
tasks can be obtained.

Another possibility is to enrich the models over which a regular logic
is interpreted with some extra information and let the operators of the
logic make use of this. This has been done in the linear time temporal logic
CaRet for example [1]. It is interpreted in an LTL-like fashion over infinite
words that represent runs of recursive processes, i.e. positions in these words
are marked with call and return symbols. CaRet then extends LTL by
allowing its operators to access return positions that match the previous call

position in the sense that in between the calls and returns form a balanced
Dyck-language. This way, non-regularity is added into the meta-logic rather
than the logic itself.

A different approach is to consider general purpose logics employing
more expressive fixed-point constructs than least fixed points of monotone
operators. This is the trait we follow in this paper. There are (at least) two
ways in which the modal µ-calculus can be extended in this way: one can
relax the restriction to monotone operators or one can stick to monotone
operators but allow fixed-point inductions of higher order. We consider
these options and introduce two modal fixed-point logics: (1) the Modal
Iteration Calculus (MIC) which replaces least and greatest fixed points in
Lµ by inflationary and deflationary ones; and (2) Fixed-Point Logic with
Chop (FLC) which extends Lµ with an operator for sequential composition.
This necessitates a higher-order semantics.

Non-regular properties. We illustrate these logics by a set of examples
of non-regular properties, i.e. properties that cannot be expressed in Lµ.

The most obvious choices come from formal language theory. The first
hurdle to take for a logic that wants to be able to express non-regular prop-
erties is the standard example of a context-free and non-regular language,
i.e. L = {anbn | n ≥ 1}. Note that MIC and FLC are branching time logics,
and hence, we will look for formulas that are satisfied by a state if, and only
if, it has a maximal outgoing path whose labels form a word in L. While
this is a toy example, there are also formal languages which give rise to
interesting program correctness properties. Let Σ = {a, b} and consider the

Non-Regular Fixed-Point Logics and Games 3

language L consisting of all words that do not have a prefix in which there
are more b’s than a’s. It is easily seen to be non-regular but context-free,
and it is the formal language basis of the aforementioned property about
calls and returns. A suitable reformulation of this language in a formula
of MIC or FLC would show that these logics can express properties of re-
cursive processes like “no process is ended unless it has been started” etc.
Note that this is also the same as absence of underflows in FIFO or LIFO
buffers of unbounded size.

Non-regularity, however, need not be rooted in the theory of formal word
languages. Branching time logics whose expressive power exceeds that of
Lµ may also be able to express properties that are unrelated to context-free
languages. For example, the aforementioned uniform inevitability property
– some event occurs in all executions at the same time – cannot be expressed
by a finite tree automaton. As we will see, it can be expressed in both MIC
and FLC. Note that this is a generalization of the property of being bisimilar
to a balanced tree – the globally occurring event is just a deadlock in this
case.

Games. Closely related to modal logics are games since model check-
ing problems for modal logics often have game-theoretic characterizations.
Games in this context are played by two players who push a token along
a path through the game arena formed by some product of the underlying
structure and the syntax tree of the formula at hand. The logic influences
the type of winning condition.

Modal logic for instance induces simple reachability games, while the
fixed-point recursion mechanism in the modal µ-calculus requires games
with winning conditions on infinite plays, namely parity games [18].

There is often a reverse connection between games and modal logics as
well. Game graphs can be seen as labeled transition systems again, and it is
reasonable to ask whether the winning regions – the parts from which one
of the players has a winning strategy – can in turn be defined by a formula
of that logic. This is the case for the modal µ-calculus and parity games.

As the logics considered here are proper extensions of Lµ, this gives an
intuitive explanation of why simple parity games do not suffice to charac-
terize their model checking problems. Instead, an interesting game model
for the logics presented here is that of stair parity games which are played
on the configuration graph of a visibly pushdown system [15]. The name is
due to the fact that the parity condition is not evaluated on the whole of a
play but only on that part that looks like stairs w.r.t. the stacks involved
in these games. We show how the model checking problems for both MIC
and FLC can be characterized by stair parity games.

Outline. The paper is organized as follows. Sec. 2 contains preliminary
definitions about transition systems and recalls some necessary fixed-point

4

theory and the modal µ-calculus. In Sec. 3 we then introduce MIC and
FLC formally and give examples of formulas defining non-regular properties
in these logics. At the end of this section we compare the two logics by
giving an overview of the known complexity and expressivity results about
them. Sec. 4 then defines stair parity games and shows how to characterize
MIC’s and FLC’s model checking problems by them. We also introduce
backtracking games, which are non-regular games extending ordinary parity
games in a different way. They were originally introduced as game model
for inflationary fixed-point logics. Finally, Sec. 5 concludes the paper with
some remarks about further research.

2 Preliminaries

Labeled transition systems. For the remainder of this paper we fix a
finite non-empty set A of actions and P of proposition symbols.

A labeled transition system is a structure T := (S, { a−→ : a ∈ A}, L),
where S is a finite non-empty set of states, a−→ is a binary relation on states
for each a ∈ A, and L : S → 2P is a function labeling each state s with the
set of propositions true at s.

Fixed-point theory. Let A be a set and F : 2A → 2A be a function. F
is called monotone if F (X) ⊆ F (Y) for all X ⊆ Y ⊆ A. A fixed point of F
is any set P ⊆ A such that F (P) = P . A least fixed point of F is a fixed
point that is contained in any other fixed point of F .

It is a consequence of the Knaster-Tarski theorem [19] that every mono-
tone function F : 2A → 2A has a least and a greatest fixed point, written
as lfp(F) and gfp(F), which can be defined as

lfp(F) :=
⋂

{X ⊆ A : F (X) = X} =
⋂

{X ⊆ A : F (X) ⊆ X},

and

gfp(F) :=
⋃

{X ⊆ A : F (X) = X} =
⋃

{X ⊆ A : F (X) ⊇ X}.

Least fixed points of monotone operators can also be obtained inductively
by the ordinal-indexed sequence Xα of subsets of A defined as

X0 := ∅ , Xα+1 := F (Xα) , Xκ :=
⋃

α<κ

Xα

where κ is a limit ordinal. As F is monotone, this sequence of sets is
increasing, i.e. for all α, β: if α < β then Xα ⊆ Xβ, and therefore reaches
a fixed point X∞, with X∞ := Xα for the least ordinal α such that Xα =
Xα+1. The fixed point X∞ is called the inductive fixed point of F . Again it
follows from Knaster and Tarski’s theorem that for every monotone operator
F : 2A → 2A, the least and the inductive fixed point coincide.

Non-Regular Fixed-Point Logics and Games 5

Similarly, the greatest fixed point of a monotone operator can also be
defined inductively by the following sequence of sets:

X0 := A , Xα+1 := F (Xα) , Xκ :=
⋂

α<κ

Xα

where, again, κ is a limit ordinal.
Least and greatest fixed points are dual to each other. For every operator

F define the dual operator F d : X 7→ (F (Xc))c where Xc := A \X . If F is
monotone, then F d is also monotone and we have that

lfp(F) = (gfp(F d))c and gfp(F) = (lfp(F d))c.

The modal µ-calculus. We briefly recall the definition of Lµ. Let V be
a countable infinite set of variables. The formulas of Lµ are given by the
following grammar.

ϕ ::= q | ¬q | X | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | [a]ϕ | 〈a〉ϕ | µX.ϕ | νX.ϕ

where q ∈ P , a ∈ A, and X ∈ V . The semantics of Lµ is that of basic modal
logic where in addition formulas µX.ϕ and νX.ϕ are interpreted as follows.
On any labeled transition system T with state set S, an Lµ-formula ϕ(X)
with free variable X ∈ V induces an operator Fϕ : 2S → 2S which takes a
set U of states to the set [[ϕ]]TX 7→U . Here, we write [[ϕ]]TX 7→U for the set of
states from T at which the formula ϕ holds under the interpretation that
interprets the variable X by the set U . As, by definition, X occurs only
positively in ϕ, this operator is monotone. We define [[µX.ϕ]]T := lfp(Fϕ)
and [[νX.ϕ]]T := gfp(Fϕ).

Notation 2.1. Sometimes we want to speak about transitions labeled with
any action, and therefore use the abbreviations 3ϕ :=

∨

a∈A〈a〉ϕ, and
2ϕ :=

∧

a∈A[a]ϕ. We will also use terms tt := q ∨ ¬q, ff := q ∧ ¬q for
some q ∈ P .

3 Non-Regular Logics

In this section we introduce two extensions of the modal µ-calculus by non-
regular constructs. We first recall the Modal Iteration Calculus, introduced
in [4] which incorporates inflationary fixed points into Lµ. In Sec. 3.2 we
then introduce the Fixed-Point Logic with Chop, introduced in [16], based
on extending Lµ by sequential composition. To illustrate the logics and to
help comparing them, we exhibit a set of examples and give formalizations
for them in both logics.

3.1 The Modal Iteration Calculus

Informally, MIC is propositional modal logic ML, augmented with simulta-
neous inflationary fixed points.

6

3.1.1 Syntax and Semantics

Definition 3.1. Let V be a countable infinite set of variables. The formulas
of the Modal Iteration Calculus (MIC) are given by the following grammar.

ϕ ::= q | X | ¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | [a]ϕ | 〈a〉ϕ | ifpX.S | dfpX.S

where X ∈ V , q ∈ P , a ∈ A, and

S :=







X1 ← ϕ1

...
Xk ← ϕk

is a system of rules with ϕj ∈ MIC and Xi ∈ V for 1 ≤ i ≤ k. If S consists
of a single rule X ← ϕ we simplify the notation and write ifpX.ϕ instead
of ifp X.{X ← ϕ}.

We define Sub(ϕ) as the set of subformulas of ϕ as usual. In particular,
the variables Xi occurring on the left-hand side of rules in a system S as
above count as subformulas. The semantics of the various operators are
as in propositional modal logic with the semantics of ifp and dfp being as
follows. On every transition system T := (S, { a−→ : a ∈ A}, L), the system
S defines, for each ordinal α, a tuple X̄α = (Xα

1 , . . . , X
α
k) of sets of states,

via the following inflationary induction:

X0
i := ∅,

Xα+1
i := Xα

i ∪ [[ϕi]]
T
X̄ 7→X̄α

,

Xκ
i :=

⋃

α<κ

Xα
i

where κ is a limit ordinal. We call (Xα
1 , . . . , X

α
k) the α-th stage of the

inflationary induction of S on T . As the stages are increasing (i.e. Xα
i ⊆ X

β
i

for any α < β), this induction reaches a fixed point (X∞
1 , . . . , X∞

k). Now
we put [[(ifp Xi : S)]]T := X∞

i .

The semantics of the deflationary fixed-point operator is defined analo-
gously as the i-th component of the deflationary fixed point (X∞

1 , . . . , X∞
k)

obtained from the sequence X0
i := S, Xα+1

i := Xα
i ∩ [[ϕi]]

T
X̄ 7→X̄α

, and
Xκ

i :=
⋂

α<κ

Xα
i .

3.1.2 Properties Expressible in MIC

We demonstrate the Modal Iteration Calculus by some examples. It is
immediately clear from the definition that every Lµ-formula is equivalent
to a MIC-formula (by replacing every µ-operator by ifp and ν-operator by
dfp). We will therefore use least fixed points as well as inflationary fixed
points in the examples below.

Non-Regular Fixed-Point Logics and Games 7

Example 3.2. Let us first consider the language {anbn | n ≥ 1} mentioned
above. We model a finite word by a transition system consisting of a simple
path whose edges are labeled by the letters in the word. For example, the

word aabb ∈ L is modeled by the system • a−→• a−→• b−→• b−→•. 1

Using this encoding of words, the language L can be defined as follows.
The formula ϕ := 〈a〉tt∧EF(〈b〉tt)∧¬EF(〈b〉〈a〉tt) defines all words starting
with an a, containing at least one b, and where all b’s come after all a’s,
i.e. the language a+b+. Here, EF(ϑ) is the Lµ formula µR.(ϑ ∨3R) saying
that a state satisfying ϕ is reachable. Within a+b+ the language L can then
be defined by the formula

¬
(

ifpZ.







X ← 〈b〉(2ff ∨X)

Y ← 〈a〉
(
¬〈a〉tt ∧ 〈b〉tt

)
∨ 〈a〉Y

Z ←
(
〈a〉Y ∧ ¬EF(〈a〉〈b〉¬X)

)
∨

(
¬〈a〉Y ∧ EF(〈a〉〈b〉X)

)

)

.

We demonstrate the evaluation of the fixed points by the following two
words w1 ∈ L and w2 6∈ L.

w1 := 1 a−→ 2 a−→ 3 b−→ 4 b−→ 5 w2 := 1 a−→ 2 a−→ 3 a−→ 4 b−→ 5 b−→ 6

X1 := {4}
Y 1 := {2}
Z1 := ∅

X1 := {5}
Y 1 := {3}
Z1 := ∅

X2 := {3, 4}
Y 2 := {1, 2}
Z2 := ∅

X2 := {4, 5}
Y 2 := {2, 3}
Z2 := {1}

. . .
Hence, w1 satisfies the formula whereas w2 does not. The idea is that

at stage i of the fixed-point induction, X i contains all states from which
a b-labeled path of length i leads to a leaf. To define the induction on Y ,
let u be a state in T which has an incoming a-transition but only outgoing
b-transitions, i.e.

. . . • a−→u
b−→• . . .

Note that for words in a+b+ this state is unique. The state u is “in the
middle” of the word. Then Y i contains all states from which there is a path
to u of length i labeled by a’s.

Finally, a state occurs in Z if at some stage i its a-successor is in Y i but
the b-successor of u is not in X i or vice versa. Hence, the root occurs in Z

1 There are two common ways of modeling a word by a transition system: labeling edges
by letters, as we do it here, or labeling states by the corresponding letters. For MIC,
the latter is often more convenient and helps to simplify formulas. For the logic FLC,
which we will consider below, the formalization used here is preferable. To unify the
examples for MIC and FLC we prefer to use the edge labeling model for both logics.

8

if the labels of the path leading from the root to the leaf is not a word in
anbn. ⊣

The example demonstrates a general technique of how counting can be
implemented in MIC: we let an induction on a variable X start at a leaf
and in each iteration proceed to a predecessor of a state already contained
in X . At each stage i, X i contains the states of distance at most i from a
leaf. We can then use a formula ¬X ∧ 2X to define the states of distance
exactly i from a leaf. This techniques is employed in various proofs showing
expressibility and complexity results for MIC. We demonstrate it in the
following example, where we define the class of transition systems bisimilar
to a well-founded tree of finite height. Here the height of a leaf is 0 and the
height of an inner node is the maximum height of its successors plus 1.

Example 3.3. Let T := (S, { a−→ : a ∈ A}, L) be a transition system and
s ∈ S. Then s ∈ [[µX.2X]]T if, and only if, there is no infinite path emerging
from s, i.e. (T , s) is bisimilar to a well-founded tree – disregarding labels.

Using a similar trick as in the previous example, we can define all nodes
of infinite height in a well-founded tree. For this, consider the formula

ϕ := ifp Z.







X ← 2X

Y ← X

Z ←
(
2X ∧3¬Y

)
∨ 2ff

After α < ω iterations, the stageXα contains all nodes of height< α and Y α

contains all nodes of height< α−1. Hence, every node of finite height will at
some point have all its successors in X but at least one successor outside of
Y (except for the leaves which are included into Z by the disjunct 2ff) and
therefore after ω iterations Z contains all nodes of finite height. However,
as Xω = Y ω a node r of height exactly ω will never occur in Z. Hence, a
tree has finite height if, and only if, its root satisfies µX.2X ∧ ¬EF(¬ϕ). ⊣

The next example shows how to define the class of transition systems
bisimilar to balanced trees of finite height.2

Example 3.4. All that remains is to define in the class of trees of finite
height the class of balanced trees. This is done by the formula

¬
(

ifp Y.

{

X ← 2X

Y ← 3X ∧3¬X

)

.

Again, for i > 0, the i-th stage X i contains all states from which no path
of length ≥ i emerges. Hence, a state occurs in Y if it has two successors
of different length. ⊣

2 Note that all we can hope for is to define trees of finite height, as finiteness itself is
not preserved under bisimulation and hence not definable in any modal logic.

Non-Regular Fixed-Point Logics and Games 9

Finally, we give an example showing that the class of all transition sys-
tems which are bisimilar to a word of finite length is is MIC-definable.

Example 3.5. We have already seen in the previous examples that we can
axiomatize transition systems bisimilar to balanced trees of finite height.
So all that is left to do is to give a formula that defines in such trees that
all paths carry the same labels. This is easily expressed by the formula

¬
(

ifp Y.







X ← 2X

Y ←
∧

a∈A

(EF(¬X ∧ 2X ∧ 〈a〉X) ∧

EF(¬X ∧ 2X ∧
∨

b∈A,a6=b

〈b〉X)

)
)

.

⊣

Using similar tricks we can express buffer underflow in finite words,
i.e. the context-free language

L := {w ∈ {a, b}∗ | ∀u, v : w = uv ⇒ |u|b ≤ |u|a}.

Here, |u|b denotes the number of b’s in the word u and likewise for |u|a. It is
not known, however, whether the “buffer underflow” and “bisimilarity-to-
a-word” formulas can be amended for infinite words as well. The problem
is that there no longer is a natural starting point for fixed-point inductions.

3.2 Fixed-Point Logic with Chop

We proceed by introducing a different extension of the modal µ-calculus. It
differs from MIC in that we again consider monotone inductions only, but
the individual fixed-point stages are no longer sets of states but monotone
functions from the complete lattice of all monotone operators over the state
space.

3.2.1 Syntax and Semantics

Let P and A be as before, and V be a countable infinite set of variable
names. Formulas of Fixed-Point Logic with Chop (FLC) over P , A and V
are given by the following grammar.

ϕ ::= q | ¬q | X | τ | 〈a〉 | [a] | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ;ϕ) | µX.ϕ | νX.ϕ

where q ∈ P , a ∈ A, and X ∈ V . We will write σ for either µ or ν. In the
following, we will also omit parentheses and introduce the convention that
“;” binds stronger than the Boolean operators which, in turn, bind stronger
than fixed-point quantifiers.

The set of subformulas Sub(ϕ) of an FLC formula ϕ is defined as usual,
for example Sub(σX.ϕ) = {σX.ϕ} ∪ Sub(ϕ), etc. Also, we assume that

10

variables are quantified at most once in each formula. Hence, each ϕ comes
with a function fpϕ which associates to each variableX in Sub(ϕ) its defining
fixed-point function σX.ψ.

FLC extends the modal µ-calculus Lµ with the sequential composition
(“chop”) operator ; . Remember that variables in Lµ formulas can only
occur in rightmost positions within Boolean formulas, possibly prefixed by
modal operators. This gives an intuitive explanation of the fact that the
expressive power of Lµ is restricted to regular languages of infinite words
or trees – formulas of Lµ resemble (alternating) right-linear grammars with
modal operators as terminal symbols.

Variables in FLC formulas, however, can also be suffixed with modal
operators through the use of sequential composition, e.g. 〈a〉;X ; 〈b〉. Since
this is supposed to generalize the restricted composition of modal operators
with formulas on the right, there is no need to include formulas of the form
〈a〉ϕ in FLC. Instead, this is supposed to be simulated by 〈a〉;ϕ, and this
is why modal operators are chosen as atomic formulas in FLC.

The semantics of the modal µ-calculus cannot simply be extended by
clauses for the additional operators in FLC, in particular not for sequential
composition. Remember that the semantics of Lµ assigns to each formula
and environment interpreting its free variables a set of states of the under-
lying LTS. In other words, the semantics of a Lµ formula is a predicate.

In order to interpret sequential composition naturally, the semantics of
FLC lifts the Lµ semantics to the space of monotone functions of type
2S → 2S , where S is the state space of an LTS. Hence, FLC formulas get
interpreted by predicate transformers. This allows sequential composition
to be interpreted naturally using function composition.

Let T = (S, { a−→ | a ∈ A}, L) be an LTS, and

2S ֌ 2S := {f : 2S → 2S | ∀S, T ⊆ S : if S ⊆ T then f(S) ⊆ f(T)}

be the set of all monotone predicate transformers over T . This can be
ordered partially by the well-known pointwise order

f ⊑ g iff ∀T ⊆ S : f(T) ⊆ g(T)

In fact, (2S ֌ 2S ,⊑) forms a complete lattice with top and bottom elements
⊤ = λT.S, ⊥ = λT.∅, as well as meets and joins

d
,

⊔
. The following is

easily verified. Let fi ∈ 2S ֌ 2S , i ∈ I for some set of indices I. Then

l

i∈I

fi := λT.
⋂

i∈I

fi(T)
⊔

i∈I

fi := λT.
⋃

i∈I

fi(T)

are monotone too, and form the infimum, resp. supremum of {fi | i ∈ I} in
2S ֌ 2S .

Non-Regular Fixed-Point Logics and Games 11

This function space will now act as the domain of interpretation for
FLC formulas. A formula ϕ(X) with a free variable X gives rise to a
second-order function Fϕ : (2S ֌ 2S) → (2S ֌ 2S) which is monotone
itself w.r.t. the partial order ⊑. According to the Knaster-Tarski Theorem,
least and greatest fixed points of such second-order functions exist uniquely
in 2S ֌ 2S and can be used to give meaning to formulas with fixed-point
quantifiers just as it is done in the modal µ-calculus and first-order functions.

Let ρ : V → (2S ֌ 2S) be an environment interpreting (free) variables
by monotone predicate transformers. As usual, we write ρ[X 7→ f] to
denote the environment that maps X to f and agrees with ρ on all other
arguments. The semantics of an FLC formula w.r.t. an underlying LTS and
the environment ρ is defined inductively as follows.

[[q]]Tρ := λT.{s ∈ S | q ∈ L(s)}

[[¬q]]Tρ := λT.{s ∈ S | q 6∈ L(s)}

[[X]]Tρ := ρ(X)

[[τ]]Tρ := λT.T

[[〈a〉]]Tρ := λT.{s ∈ S | ∃t ∈ S, s.t. s a−→ t and t ∈ T }

[[[a]]]Tρ := λT.{s ∈ S | ∀t ∈ S : if s a−→ t then t ∈ T }

[[ϕ ∨ ψ]]Tρ := [[ϕ]]Tρ ⊔ [[ψ]]Tρ

[[ϕ ∧ ψ]]Tρ := [[ϕ]]Tρ ⊓ [[ψ]]Tρ

[[ϕ;ψ]]Tρ := λT.[[ϕ]]Tρ
(
[[ψ]]Tρ (T)

)

[[µX.ϕ]]Tρ :=
l
{f ∈ 2S ֌ 2S | [[ϕ]]Tρ[X 7→f] ⊑ f}

[[νX.ϕ]]Tρ :=
⊔

{f ∈ 2S ֌ 2S | f ⊑ [[ϕ]]Tρ[X 7→f]}

Thus, the operators of FLC are simply translated into related operators on
the lattice structure of the function space 2S ֌ 2S with τ being the identity
function as the neutral element of the sequential composition operator.

Since FLC is supposed to be a program logic, it is necessary to explain
when a single state satisfies a (closed) formula of FLC. Note that in the
case of the modal µ-calculus this is simply done using the element relation
on the semantics of the formula. This is clearly not possible if the semantics
is a function. The usual models-relation is therefore – by arbitrary choice –
defined as follows. Let T be an LTS with state set S and s ∈ S.

T , s |=ρ ϕ iff s ∈ [[ϕ]]Tρ (S)

This gives rise to two different equivalence relations in FLC: two formulas
ϕ and ψ are strongly equivalent if they have the same semantics.

ϕ ≡ ψ iff for all LTS T and all ρ : V → (2S ֌ 2S) : [[ϕ]]Tρ = [[ψ]]Tρ

12

On the other hand, they are weakly equivalent if they are satisfied by the
same set of states in any LTS.

ϕ ≈ ψ iff for all LTS T with state set S and all ρ : V → (2S ֌ 2S) :

[[ϕ]]Tρ (S) = [[ψ]]Tρ (S)

Clearly, strong equivalence is at least as strong as weak equivalence: ≡⊆≈
– two functions that agree on all arguments certainly agree on a particular
one. Here we are mainly interested in weak equivalence because it formalizes
“expressing the same property”, and it is therefore the right notion for
comparing FLC to other logics like MIC w.r.t. expressive power.

3.2.2 Properties Expressible in FLC

In the following we want to exemplify the use of FLC by formalizing a few
non-regular properties.

Example 3.6. Consider the language L = {anbn | n ≥ 1} again. It is
generated by the context-free grammar with productions

S → ab | aSb

FLC can express the property “there is a maximal path whose label forms
a word in L”.

(µX.〈a〉; 〈b〉 ∨ 〈a〉;X ; 〈b〉); 2; ff

Notice the apparent similarity to the grammar above.
To illustrate the semantics of FLC formulas, we give the first few stages

X i of the fixed-point iteration for the subformula µX.〈a〉; 〈b〉 ∨ 〈a〉;X ; 〈b〉.

X0 := λT.∅

X1 := λT.[[〈a〉]]([[〈b〉]](T)) ∪ [[〈a〉]](X0([[〈b〉]](T))) = λT.[[〈a〉]]([[〈b〉]](T))
X2 := λT.[[〈a〉]]([[〈b〉]](T)) ∪ [[〈a〉]](X1([[〈b〉]](T)))

= λT.[[〈a〉]]([[〈b〉]](T)) ∪ [[〈a〉]]([[〈a〉]]([[〈b〉]]([[〈b〉]](T))))
...

In general, X i is the function taking any set T to the set of states from which
there is a path to a state in T under any of the words {ab, aabb, . . . , aibi}.
Hence, [[(µX.〈a〉; 〈b〉 ∨ 〈a〉;X ; 〈b〉); 2; ff]] takes any set T to the set of nodes
from which a node without successors can be reached by some anbn-path.

⊣

Example 3.7. FLC can, like MIC, axiomatize the tree of height (at least) ω
upto bisimulation. Again, we first say that there is no infinite path utilizing
the Lµ formula µX.2X .

ϕfin := µX.2;X

Non-Regular Fixed-Point Logics and Games 13

Then we need to say that there are paths of unbounded length.

ϕunb := (νX.τ ∧X ; 3); tt

Note that, by unfolding, this is equivalent to
∧

n∈N
3

n; tt.
The following then expresses that a transition system is bisimilar to a

tree of height exactly ω.

ϕfin ∧ ϕunb ∧2ϕunb

where the latter is supposed to express the complement of the respective
unboundedness property. It can be obtained straight-forwardly as ϕunb :=
(µX.τ ∨X ; 2); ff. ⊣

Recall that MIC can express bisimilarity to a finite word but possibly
not to an infinite one. In FLC it does not seem to be possible to express
either of these, and the problem is not to do with (in-)finiteness. For FLC
the difficulty is to speak about two different paths. Note that an LTS T
with starting state s is not bisimilar to any linear model if, and only if,
there are two different actions a and b and a natural number n ≥ 0, s.t.

T , s |= 3 . . .3
︸ ︷︷ ︸

ntimes

〈a〉tt ∧3 . . .3
︸ ︷︷ ︸

ntimes

〈b〉tt

The model checking games for FLC presented below will give an idea of
why the existence of such an n cannot be expressed in FLC. Essentially,
non-bisimilarity could be decided using two stacks of formulas which would
be used by one player to build the two conjuncts while the other player then
decides which formula to prove in a given model. The FLC model checking
games, however, only provide a single stack.

Example 3.8. Consider the related but simpler property of bisimilarity to
a balanced tree. While non-bisimilarity to a word can be characterized in
meta-logic using quantification over three different sorts – there are actions
a and b and a natural number n, s.t. there are paths of length n ending in a,
resp. b – describing that an LTS looks like a balanced tree only needs two:
there are n,m ∈ N s.t. n < m and two paths, one of which is maximal and
has length n, the other has length m.

Take the FLC formula
(
µX.τ ∨X ; (3; tt ∧ 2)

)
; 2; ff

Now note that for any FLC formula ϕ we have tt;ϕ ≡ tt. Let Φ :=
µX.τ ∨X ; (3; tt ∧ 2). Unfolding the formula above and rewriting it using
some basic equalities yields:

Φ; 2ff ≡
(
τ ∨ Φ; (3tt ∧ 2)

)
; 2ff

14

≡ 2ff ∨ Φ; (3tt ∧ 2; 2ff)

≡ 2ff ∨
(
τ ∨ Φ; (3tt ∧ 2)

)
; (3tt ∧ 22ff)

≡ 2ff ∨ (3tt ∧22ff) ∨ Φ; (3tt ∧ 23tt ∧ 222ff)

≡ . . .

The i-th unfolding of this formula asserts that there is a path of length i, all
paths of length less than i can be extended by at least one state, but there
is no path of length i+ 1. Hence, the union over all these approximations
defines exactly the class of all balanced trees of finite height. ⊣

There is a straight-forward translation Φ〈·〉 : CFG→ FLC which assigns
to each context-free grammar G an FLC formula Φ〈G〉 s.t.

T , s |= Φ〈G〉 iff there is a t ∈ S and a w ∈ L(G) s.t. s
w−−→ t

where L(G) denotes, as usual, the context-free language generated byG. ΦG

simply is the uniform translation of G which replaces nonterminals in the
grammars with µ-quantified FLC variables, concatenation with sequential
composition, and alternatives between rules with disjunctions [13].

However, there is no translation Φ[·] : CFG → FLC s.t. for all LTS T
with state set S and all s ∈ S we have

T , s |= Φ[G] iff for all t ∈ S and all w ∈ A∗: if s
w−−→ t then w ∈ L(G)

Such a translation would contradict the decidability of FLC’s model check-
ing problem by a simple reduction from the universality problem for context-
free languages.

Example 3.9. Finally, we consider the property of not doing more returns

than calls, i.e. we want to specify a tree (or transition system) in which all
paths, including non-maximal ones, are labeled by a word from the language
L = {w ∈ {a, b}∗ | ∀v � w : |v|b ≤ |v|a} where � denotes the prefix relation
on words, and |v|a stands for the number of occurrences of the letter a in v.

This language is context-free, and for example generated by the grammar
G

S → aTS | ǫ T → b | aTT | ǫ

The specification would be completed if there was a translation Φ[·] as men-
tioned above. Even though this cannot exist, the desired property can still
be specified in FLC. Note that the language L(G) of all non-underflowing
buffer runs is deterministic context-free, and its complement is generated by
the grammar G′ defined as

S → bU | aT bU U → ǫ | aU | bU T → b | aTT

Non-Regular Fixed-Point Logics and Games 15

This can then be transformed into the FLC formula Φ〈G′〉 and consecutively
be complemented to obtain

ϕ := [b]; ff ∧ [a];
(
νT.[b] ∧ [a];T ;T

)
; [b]; ff

which expresses lack of buffer underflows on all runs. ⊣

3.3 Complexity and Expressive Power

First of all, it is not hard to see that both MIC and FLC are genuine
extensions of the modal µ-calculus w.r.t. expressive power.

Proposition 3.10 ([4, 16]). Lµ � MIC, Lµ � FLC.

It is obvious that any Lµ-formula is equivalent to a formula in MIC –
simply replace µ-operators by ifp- and ν- by dfp-operators. Furthermore,
Lµ translates into FLC almost as easily. Simply replace every 〈a〉ϕ by 〈a〉;ϕ,
and every [a]ϕ by [a];ϕ.

The strictness of both inclusions immediately follows from the previous
examples showing how to express certain non-regular properties in these
logics.

Related to this is also the loss of the finite model property compared to
Lµ, as already shown in Ex. 3.3 and 3.7.

Proposition 3.11 ([4, 16]). Both MIC and FLC do not have the finite
model property.

The tree model property, however, can be proved by embedding MIC
and FLC into infinitary modal logic. This is particularly simple for MIC
where it only requires fixed-point elimination.

For every FLC formula ϕ we obtain a formula ϕ′ of infinitary modal
logic s.t. ϕ ≈ ϕ′ by eliminating fixed points first, then followed by the
elimination of sequential composition and the formula τ . This is possible
because ϕ ≈ ϕ; tt, and can easily be done by successively pushing sequential
composition inwards from the right.

Proposition 3.12 ([4, 14]). Both MIC and FLC are invariant under bisim-
ulation and, hence, have the tree-model property.

Not much is known about the expressive power of each of these log-
ics relative to other formalisms like Predicate Logic, or – when restricted
to word models – formal grammars and automata. For MIC, it is known
that it is not the bisimulation-invariant fragment of monadic inflationary
fixed-point logic, which would have been the natural candidate as Lµ is
the bisimulation-invariant fragment of monadic least fixed-point logic. As
to grammars and automata, FLC is slightly easier to compare in this re-
spect because of the similarity between formulas and context-free gram-
mars. Also, the characterisation of least and greatest fixed points by the

16

Knaster-Tarski Theorem gives a straight-forward embedding of FLC into
Third-Order Logic. To gain a good intuition about the expressive power of
temporal logics, however, it is often useful to consider word or well-founded
models.

Proposition 3.13 ([4, 10]). When interpreted over word models only,

i) there is a language that is not context-free but definable in MIC.

ii) FLC is equi-expressive to alternating context-free languages.3

iii) every language in DTime(O(n)) is definable in MIC.

iv) every language definable in MIC or FLC is in DSpace(O(n)), i.e.
deterministic context-sensitive.

As usual, great expressive power also comes at a price. One can show
that arithmetic is expressible in MIC on trees of height ω, i.e. the tree un-
raveling of the ordinal ω. For this, a natural number n ∈ N is identified
with the set of nodes of height at most n. Then, arithmetic on the height
of nodes can be shown to be definable in MIC. By doing so, one can trans-
late any first-order sentence ψ over the arithmetic N := (N, <,+, ·) into a
MIC-formula ψ∗ such that N |= ψ if, and only if, ψ∗ is satisfiable. Here,
ψ∗ enforces its models to be bisimilar to a tree of height ω and encodes the
arithmetical sentence ψ on such trees. This immediately implies undecid-
ability.

Satisfiability in FLC is undecidable as well. This was first shown by
Müller-Olm using a reduction from the simulation equivalence problem for
context-free processes [16]. An embedding of Propositional Dynamic Logic
of Non-Regular Programs, however, yields a quantitatively similar result as
the one for MIC.

Proposition 3.14 ([4, 13]). The satisfiability problem for both MIC and
FLC is undecidable. They are not even in the arithmetical hierarchy.

Concerning the model checking complexity, it is easily seen that a näıve
evaluation of MIC-formulas by iteratively computing the stages of the fixed-
point inductions leads to an algorithm that correctly checks whether a given

3 These are generated by alternating context-free grammars which enrich ordinary
context-free grammars by two types of non-terminals: existential and universal ones.
While the generation of sentential forms and, thus, words for existential non-terminals
is the usual one, universal non-terminals derive a sentential form only if all (rather
than any) of their productions derive it. There are various ways of defining a precise
semantics that captures this idea. Alternating Context-Free Grammars as defined by
the second author [10] are in fact the same as Conjunctive Grammars by Okhotin [17].
There are also presumably non-equivalent models like the grammars by Moriya [8].

Non-Regular Fixed-Point Logics and Games 17

MIC-formula ϕ is true in a given transition system T in time O(|T ||ϕ|) and
space O(|T | · |ϕ|). It is therefore in P whenever the formula is fixed. It is,
however, PSPACE-hard already on a fixed 1-state transition system if the
formula is part of the input.

FLC differs from MIC w.r.t. model checking. First of all, fixed-point
approximations can be exponentially long in the size of the transition sys-
tem [12]. FLC can even express problems which are hard for deterministic
exponential time, namely Walukiewicz’s Pushdown Game problem [21].

An upper bound of deterministic exponential time is not immediately
seen. Note that näıve fixed-point iteration in the function space 2S ֌ 2S

would lead to a doubly exponential procedure. But remember that model
checking in FLC means that the value of a function on a particular argu-
ment, namely S, needs to be computed rather than the entire function itself.
This observation leads – with the aid of stair parity games, see below – to
a singly exponential model checking algorithm.

Proposition 3.15 ([4, 3, 12]). The combined complexity of the model
checking problem for

i) MIC is PSPACE-complete,

ii) FLC is EXPTIME-complete.

Regarding the data complexity, we have the following result.

iii) For every fixed formula the model checking complexity of MIC is in
P.

iv) There are fixed FLC formulas for which the model checking problem
is EXPTIME-hard.

Regarding the expression complexity, we have the following results.

v) Model checking MIC on a fixed transition system is PSPACE-complete.

PSPACE-hardness of the expression complexity is obtained by a reduc-
tion from QBF, the problem to decide if a given quantified boolean formula
is satisfiable. It can easily be reduced to the model checking problem of
MIC on a trivial transition system consisting of one state only.

The only lower bound for the expression complexity of FLC that is
currently known is P-hardness trivially inherited from Lµ [6].

An interesting question for non-regular logics is decidability of the model
checking problem over infinite state systems. The known results there are
negative.

Proposition 3.16 ([16, 14]). The model checking problem for FLC over
the class of normed deterministic BPA processes is undecidable.

18

The proof uses the fact that characteristic formulas for simulation (equiv-
alence) of BPA processes can easily be constructed in FLC. It is currently
not known whether or not MIC has a decidable model checking problem
over the class of context-free processes.

Finally, we can use the model checking complexity results to prove an
inexpressibility theorem, and partially separate MIC and FLC in expressive
power.

Theorem 3.17. FLC 6≤ MIC.

Proof. Take an FLC formula ϕ whose set of models is EXPTIME-hard
according to Prop. 3.15 (iv). Suppose FLC ≤ MIC. Then there would
be a MIC formula ϕ′ with the same set of models. However, according to
Prop. 3.15 (iii), this set would also have to be in P, and we would have
P=EXPTIME which is not the case. q.e.d.

It is not yet known whether every MIC-definable property is also FLC
definable or whether the two logics are incomparable w.r.t. expressive power.
We suspect that the latter is the case. The difficulty in establishing this as
a theorem though is the lack of machinery for showing inexpressibility in
FLC.

4 Non-Regular Games

There are many ways of extending ordinary parity games. One option,
which we will consider first, is to introduce the concept of stacks to the
games. Formally, these games are played on configuration graphs of push-
down processes. In this approach we increase the modeling power of the
game arenas while keeping the traditional way of playing games, i.e. the
two players push a token along paths in the game arena and the priorities
of this path determine the winner.

A different approach is to stick to standard parity game arenas but
change the way the games are played. This approach is taken in the concept
of backtracking games, where a play no longer is a path through the arena
but defines a complex subgraph.

4.1 Stair Parity Games

A pushdown alphabet A is a tuple (Ac,Ar,Ai) consisting of three disjoint
finite alphabets, a finite set Ac of calls, a finite set Ar of returns and a finite
set Ai of internal states.

Definition 4.1. Let A := (Ac,Ar,Ai) be a pushdown alphabet. A visibly

pushdown system (VPS) over (Ac,Ar,Ai) is a tuple B = (Q,A,Γ, δ) where
Q is a finite set of states, and Γ is a finite stack alphabet. We simply write

Non-Regular Fixed-Point Logics and Games 19

Γ⊥ for Γ ∪ {⊥} assuming that Γ itself does not contain the special stack
bottom symbol ⊥. Finally, δ = δc ∪ δr ∪ δi is the transition relation with

δc ⊆ Q×Ac ×Q× Γ

δr ⊆ Q×Ar × Γ⊥ ×Q

δi ⊆ Q×Ai ×Q

A transition (q, a, q′, γ), where a ∈ Ac, means that if the system is in
the control state q and reads an a, it can change its state to q′ and push
the symbol γ onto the stack. Similarly, upon a transition (q, a, q′, γ), where
a ∈ Ar, it reads γ from the top of the stack (and pops it unless γ = ⊥)
and changes its state from q to q′. Transitions reading a ∈ Ai are internal

transitions that do not change the stack.
We now turn to defining stair parity games, which are parity games

played on the configuration graph of visibly pushdown systems with a
slightly modified winning condition.

Definition 4.2. A stair parity game (SPG) over a VPS B is a tuple GB =
(V, v0, Q∃, Q∀, E,Ω) such that

• V := Q× Γ∗{⊥} is the set of nodes in this game,

• v0 ∈ V is a designated starting node,

• Q is partitioned into Q∃ and Q∀,

• E ⊆ V × V consists of edges
(
(q, δ), (q′, δ′)

)
s.t.

– there is a (q, a, q′, γ) ∈ δc and δ′ = γδ, or

– there is a (q, a, γ, q′) ∈ δr and δ = γδ′, or

– there is a (q, a, q′) ∈ δi and δ′ = δ.

• Ω : Q→ N assigns to each node a priority.

For simplicity we assume that SPGs always are total, i.e. every node has
an outgoing edge. A play in such a game is, as usual, an infinite sequence
of nodes. It is played starting in v0, and continued by a choice along an
outgoing edge of that player who owns the last visited node. Unlike the
case of parity games, the winner is not determined by the least or greatest
priority occurring infinitely often in a play. Instead, one only considers those
nodes that form stairs, i.e. nodes with a stack that persists for the entire
remainder of the play.

Definition 4.3. Let GB = (V, v0, Q∃, Q∀, E,Ω) be a SPG over a VPS B,
and let π = v0, v1, v2, . . . be an infinite play of this game s.t. vi = (qi, δi) for
all i ∈ N.

20

s ⊢ (ϕ0 ∨ ϕ1) ; δ
s ⊢ ϕi ; δ

∃i ∈ {0, 1}
s ⊢ (ϕ0 ∧ ϕ1) ; δ

s ⊢ ϕi ; δ
∀i ∈ {0, 1}

s ⊢ (σX.ϕ) ; δ
s ⊢ X ; δ

s ⊢ X ; δ
s ⊢ ϕ ; δ

if fp(X) = σX.ϕ
s ⊢ (ϕ;ψ) ; δ
s ⊢ ϕ ; (ψ; δ)

s ⊢ τ ; (ϕ; δ)
s ⊢ ϕ ; δ

s ⊢ 〈a〉 ; (ϕ; δ)
t ⊢ ϕ ; δ

∃s a−→ t
s ⊢ [a] ; (ϕ; δ)
t ⊢ ϕ ; δ

∀s a−→ t

Figure 1. The rules of the FLC model checking games.

Define Steps(π) = {i ∈ N : ∀j ≥ i |δj| ≥ |δi|} where |δ| denotes the
length of the stack δ. Note that |Steps(π)| =∞ whenever π is infinite.

Player ∃ wins the play π if, and only if, max{c : there are infinitely
many qi with i ∈ Steps(π) and Ω(qi) = c} is even. Otherwise, Player ∀ is
the winner of π.

The stair parity game problem is: given a SPG (V, v0, Q∃, Q∀, E,Ω),
decide whether or not Player ∃ has a winning strategy from node v0 in
this game. It can be shown that such games are determined, and that this
problem is decidable. In fact, a reduction to an exponentially large ordinary
parity game yields a moderate upper complexity bound.

Theorem 4.4 ([15]). The stair parity game problem can be decided in
EXPTIME.

4.2 A Game-Theoretic Characterization of FLC

Let T = (S, { a−→ : a ∈ A}, L) be an LTS, s0 ∈ S and Φ be a closed FLC
formula. The model checking game GT (s0,Φ) is played between Players ∃
and Player ∀ in order to establish whether or not T , s0 |= Φ holds. The set of
configurations is C := S×Sub(ϕ)×Sub(ϕ)∗. We usually write configurations
in the form s ⊢ ϕ ; δ where δ = ψ1; . . . ;ψk acts as a stack of FLC formulas
with its top on the left. The formula ϕ will in this case also be called the
principal formula of this configuration.

The intuitive meaning of such a configuration is the following. Player ∃
wants to show that s ∈ [[ϕ; δ]]Tρ (S) holds under a ρ which interprets the free
variables in ϕ; δ by suitable approximants.

The initial configuration is s0 ⊢ Φ ; tt – remember that Φ ≈ Φ; tt. The
rules of the model checking game are shown in Fig. 1.

The idea underlying these games is to defer the examination of ψ in a
formula ϕ;ψ and to first consider whether or not ϕ determines the winner

Non-Regular Fixed-Point Logics and Games 21

already. This is in contrast to the Boolean binary constructs ∧ and ∨ in
which both operands have equal importance. However, this is not the case
for the sequential composition operator. A natural choice would be to let
Player ∃ provide a witness for the chop (a set of states for example) and
then to let Player ∀ respond by choosing either of the composed subformulas.
This is not sound though, as the following example shows.

Example 4.5. Let Φ = νX.µY.X ;Y . The exact meaning of this rather
simple formula is not too difficult to guess. It can also be computed using
fixed-point iteration on an imaginary model with state set S. Remember
that ⊤ and ⊥ are the top- and bottom-elements in the function lattice
2S ֌ 2S . At the beginning, the ν-quantified X gets mapped to ⊤, and in
the inner fixed-point iteration, Y gets mapped to ⊥. We use the symbol ◦
to denote function composition semantically as opposed to the syntactical
operator “;”.

X0 := ⊤

Y 00 := ⊥

Y 01 := X0 ◦ Y 00 = ⊤

Y 02 := X0 ◦ Y 01 = ⊤ = Y 01

X1 := Y 02 = ⊤

Y 10 := ⊥

Y 11 := X1 ◦ Y 10 = ⊤

Y 12 := X1 ◦ Y 11 = ⊤ = Y 11

X2 := Y 12 = ⊤ = X1

Hence, Φ ≡ tt. Now suppose that Player ∀ was given the opportunity
to choose a subformula of a sequential composition. In this case he could
enforce a play which traverses solely through the µ-quantified variable Y
only. Hence, for such games we would have to abolish the correspondence
between infinite unfoldings of fixed points and wins for either of the players
known from parity games. ⊣

This example only explains why the games do a left-depth-first traversal
through formulas w.r.t. sequential compositions. This does not mean though
that parity winning conditions on these games provide a correct character-
ization of FLC’s model checking problem. The next example shows that
parity winning conditions indeed do not suffice.

Example 4.6. Consider the two-state LTS T = ({s, t}, { a−→, b−→}, L) with

L(s) = L(t) = ∅, and s
a−→ t, t

b−→ t. We will evaluate the formula µY.〈b〉 ∨

22

〈a〉; νX.Y ;X on T . Its precise semantics can be computed using fixed-point
iteration again.

Y 0 := ⊥

X00 := ⊤

X01 := Y 0 ◦X00 = ⊥ ◦ ⊤ = ⊥

X02 := Y 0 ◦X01 = ⊥ ◦ ⊥ = ⊥ = X01

Y 1 := [[〈b〉]]T ⊔ ([[〈a〉]]T ◦X02) = λT.[[〈b〉]]T (T) ∪ [[〈a〉]]T (∅)

= [[〈b〉]]T (T)

X10 := ⊤

X11 := Y 1 ◦X10 = [[〈b〉]]T ◦ ⊤ = λT.[[〈b〉]]T ({s, t})

= λT.{t}

X12 := Y 1 ◦X11 = [[〈b〉]]T ◦ λT.{t} = λT.[[〈b〉]]T ({t})

= λT.{t} = X11

Y 2 := [[〈b〉]]T ⊔ ([[〈a〉]]T ◦X12) = λT.[[〈b〉]]T (T) ∪ [[〈a〉]]T ({t})

= λT.[[〈b〉]]T (T) ∪ {s}

Even though the fixed point is not found yet, we can deduce – by monotonic-
ity – that T , s |= Φ holds. Note that we will have λT.[[〈b〉]]T (T)∪{s} ⊑ [[Φ]]T

and therefore s ∈ [[Φ]]T ({s, t}).
On the other hand, consider the following infinite play of GT (s,Φ) which

Player ∃ can enforce. It is also not hard to see that all other plays he can
enforce should lead to a win for Player ∀ immediately because they end in
a configuration in which ∃ gets stuck with no transitions to chose.

s ⊢ µY.〈b〉 ∨ 〈a〉; νX.Y ;X ; tt

s ⊢ Y ; tt

s ⊢ 〈b〉 ∨ 〈a〉; νX.Y ;X ; tt

s ⊢ 〈a〉; νX.Y ;X ; tt

s ⊢ 〈a〉 ; (νX.Y ;X); tt
t ⊢ νX.Y ;X ; tt

t ⊢ X ; tt

t ⊢ Y ;X ; tt

t ⊢ Y ; X ; tt
t ⊢ 〈b〉 ∨ 〈a〉; νX.Y ;X ; X ; tt
t ⊢ 〈b〉 ; X ; tt
t ⊢ X ; tt

...

Non-Regular Fixed-Point Logics and Games 23

This play reaches a loop and can therefore be played ad infinitum. Note
that both variables X and Y occur as principle formulas in configurations
on this loop. Hence, if these games are equipped with an ordinary parity
condition on principle formulas then the µ-quantified variable Y determines
– as the outer one of the two – Player ∀ to be the winner of this play. But
then he would have a winning strategy, and the games would not be correct.

The crucial difference between the occurrences of Y and X is that each
Y does not stem from the unfolding of the Y above but from the unfolding
of the inner X . Such a phenomenon does not occur in the parity model
checking games for the modal µ-calculus. ⊣

The question that arises is how to recognize those variables that truly
regenerate themselves when a simple comparison according to the outer-
relation is not possible. The answer is provided by the stacks in those
configuration that have variables as principle formulas. Note that between
each two occurrences of X the stack does not decrease, but between two
occurrences of Y it does. This shows that Y got “fulfilled” and the play
continued with a formula that was on the stack when Y was principle –
intuitively the left-depth-first search has terminated on this branch and
follows a branch to the right of Y . This takes us back to the notion of
Steps(π) for a play π in a stair parity game.

Take the play π above. Then Steps(π) consists of all positions whose
stack contents persist for the rest of the game. Here they are {0, 1, 2, 3, 5, 6, 7,
11, . . .}.

Definition 4.7. If π = C0, C1, . . . is an infinite play of GT (s0,Φ) and Ci =
si ⊢ ϕi ; δi then Steps(π) = {i ∈ N : ∀j ≥ i |δj | ≥ |δi|}. Furthermore, let
π|st denote the restriction of π to Steps(π), i.e.

π|st := Ci0 , Ci1 , Ci2 , . . . iff Steps(π) = {i0, i1, i2, . . .}

with ij < ij′ iff j < j′.

This allows us to define the winning conditions of the FLC games in a
way that correctly characterizes its model checking problem.

Definition 4.8. Let T = (S, { a−→ : a ∈ A}, L) be an LTS, s0 ∈ S, Φ a
closed FLC formula and π = C0, C1, . . . be a play of GT (s0,Φ) with Ci =
si ⊢ ϕi ; δi for all i ∈ N. Player ∃ wins π if, and only if,

1. π is finite and ends in some Cn with

a) Cn = sn ⊢ q ; δ and q ∈ L(s),

b) Cn = sn ⊢ ¬q ; δ and q 6∈ L(s),

c) Cn = sn ⊢ [a] ; δ and there is no t ∈ S s.t. s
a−→ t;

24

2. π is infinite and the outermost variable occurring infinitely often as a
principle formula in π|st is of type ν.

Player ∀ wins π if, and only if,

1. π is finite and ends in some Cn with

a) Cn = sn ⊢ q ; δ and q 6∈ L(s),

b) Cn = sn ⊢ ¬q ; δ and q ∈ L(s),

c) Cn = sn ⊢ 〈a〉 ; δ and there is no t ∈ S s.t. s a−→ t;

2. π is infinite and the outermost variable occurring infinitely often as a
principle formula in π|st is of type µ.

It is then possible to show that each play has a unique winner, that the
games are determined, etc.

Theorem 4.9 ([11]). Player ∃ has a winning strategy for the game GT (s,Φ)
if, and only if, T , s |= Φ.

As a consequence we obtain an upper bound on the complexity of FLC’s
model checking problem.

Corollary 4.10. The model checking problem for FLC can be decided in
EXPTIME.

Proof. Let T = (S, { a−→ : a ∈ A}, L) be an LTS and ϕ0 ∈ FLC. They
induce a VPS BT ,ϕ0

= (Q,A′,Γ, δ) with

• Q = S × Sub(ϕ0),

• A′
c = {chop}, A′

r = {tau,mod}, A′
i = {disj , conj , unf },

• Γ = Sub(ϕ0),

• δ simply translates the rules of Fig. 1 into a transition relation:

δc := {
(
(s, ϕ;ψ), chop, (s, ϕ), ψ

)
: s ∈ S, ϕ;ψ ∈ Sub(ϕ0)}

δr := {
(
(s, τ), tau , ϕ, (s, ϕ)

)
: s ∈ S, ϕ ∈ Sub(ϕ0)}

∪ {
(
(s, ψ),mod , ϕ, (t, ϕ)

)
: ψ ∈ {〈a〉, [a]}, s a−→ t, ϕ ∈ Sub(ϕ0)}

δi := {
(
(s, ϕ1 ∨ ϕ2), disj , (s, ϕi)

)
: s ∈ S, ϕ1 ∨ ϕ2 ∈ Sub(ϕ0), i ∈ {1, 2}}

∪ {
(
(s, ϕ1 ∧ ϕ2), conj , (s, ϕi)

)
: s ∈ S, ϕ1 ∧ ϕ2 ∈ Sub(ϕ0), i ∈ {1, 2}}

∪ {
(
(s, σX.ϕ), unf , (s,X)

)
: s ∈ S, σX.ϕ ∈ Sub(ϕ0)}

∪ {
(
(s,X), unf , (s, ϕ)

)
: s ∈ S, X ∈ Sub(ϕ0), fpX = σX.ϕ}

Non-Regular Fixed-Point Logics and Games 25

A stair parity game is then obtained by simply making states of the form
(s, ϕ0 ∨ ϕ1) choices of Player ∃ etc., and by assigning priorities to nodes
(
(s, ϕ), δ

)
only depending on the principal formula ϕ s.t. all formulas other

than variables have priority 0, µ-bound, resp. ν-bound variables have odd,
resp. even priorities, and outer variables have greater priorities than inner
ones. Correctness of this translation is given by the fact that the winning
conditions of the FLC model checking games can easily be transferred into
stair parity conditions by artificially prolonging finite plays ad infinitum.
The complexity bound then follows from Thm. 4.4. q.e.d.

These games do not only provide a local model checking algorithm for
FLC. They can also be used to show that the fixed-point alternation hi-
erarchy in FLC is strict [11]. The proof proceeds along the same lines as
Arnold’s proof for the alternation hierarchy in the modal µ-calculus [2] by
constructing hard formulas (that define the winning positions for Player ∃
in such a game) and by using Banach’s fixed-point theorem.

4.3 Model-Checking Games for the Modal Iteration Calculus

Stair Parity Games provide an elegant framework of model checking games
for logics such as CaRet and FLC. We give further evidence for the signif-
icance of this concept in relation to fixed-point logics beyond the modal µ-
calculus by showing that model checking games for MIC can also be phrased
in this context. However, the games we present here only work for finite
transition systems. The reason for this will become clear later in the section.

To simplify notation, we will only explain the games for MIC-formulas
without simultaneous inductions. Using similar ideas one can extend the
games to cover simultaneous fixed points also.

Suppose first that we are given a transition system T and a formula
ϕ := ifpX.ψ, where ψ ∈ ML is a modal logic formula in negation normal
form. If Player ∃ wants to show that ϕ holds true at a node s in T , he has
to prove that there is a stage n ∈ N so that s ∈ Xn. Here, choosing n out
of the natural numbers is enough as the fixed point in a finite transition
system is always reached after a finite number of steps. In other words, he
chooses an n ∈ N and then has to show that the n-fold unraveling4 ψn of ψ
holds true at s.

This idea is modeled in a stair parity game as follows. To choose the
stage n ∈ N, we give Player ∃ the option to push as many (finitely many)
symbols X onto the stack as he wishes. This done, the two players continue
by playing the standard modal logic game on the ML-formula ψ, with the
modification that each time the game reaches the propositionX , one symbol

4 The n-fold unravel-ling ψn of ψ is defined as follows: ψ0 := ff and ψn+1 is obtained
from ψ by replacing each occurrence of X by ψn. It is easily seen that s ∈ [[ψn]]T if,
and only if, the state s occurs in stage Xn of the induction on ψ in T .

26

X is popped from the stack and the game continues at ψ again. If the stack
is empty, then Player ∃ has lost as he has failed to show that the starting
state s satisfies ψn. However, there is one problem we need to solve. As ϕ is
a MIC formula, the fixed-point variable X may be used negatively, i.e. the
play on ψ may reach a literal ¬X . In this case, we again pop one symbol
X from the stack, but then the game proceeds to the negation ¬ψ. To keep
track of whether we are currently playing in ψ or the negation thereof, we
rename the fixed-point variable X in ¬ψ to Xc. If the play reaches Xc

and there are no more symbols X left on the stack, then Player ∃ wins.
Otherwise, one symbol is popped and the play continues at ¬ψ again. If,
however, a literal ¬Xc is reached, then one symbol X is popped and the
game proceeds back to the original formula ψ.

It should be clear now that Player ∃ can win this game on a formula
ϕ := ifpX.ψ and a transition system T with initial state s if, and only if,
s ∈ [[ϕ]]T .

To extend this idea to formulas containing nested fixed points, we have
to modify the game slightly. Suppose a variable Y is bound by a fixed-
point operator dfpY.ψ inside the formula ifpX.ϑ which binds an outer
fixed-point variable X . When the game reaches ifpX.ϑ, Player ∃ pushes
as many symbols X onto the stack as he likes. The game continues inside
ϑ and reaches the formula dfpY.ψ at which Player ∀ can push symbols Y
onto the stack. Now, when the game reaches an atom X , then before we can
regenerate the formula ϑ and pop one symbol X from the stack, we have
to pop all Y s first. Other than that, the rules of the game are as described
above.

To present this idea in more detail, let us first fix some notation. Let
ϕ ∈ MIC be a formula in negation normal form and let X1, . . . , Xk be the
fixed-point variables occurring in it. W.l.o.g. we assume that no fixed-point
variable is bound twice in ϕ. Hence, with each Xi we can associate the
unique formula ϑi such that Xi is bound in ϕ by fp Xi.ϑi, where fp is
either ifp or dfp. We also assume that the Xi are numbered such that if
i < j then ϑi is not a subformula of ϑj .

Let ϕ′ be the formula obtained from ¬ϕ by first renaming every fixed-
point variable Xi in ϕ to Xc

i and then bringing the formula into negation
normal form. Let Φ := Sub(ϕ) ∪ Sub(ϕ′).

Let T := (S, { a−→ : a ∈ A}, L) be a finite transition system. The formula
ϕ and the system T induce a visibly pushdown system BT ,ϕ := (Q,A′,Γ, δ)
as follows. The stack alphabet is Γ := {X1, . . . , Xk}.

For each variable Xi or Xc
i we use a gadget clear(Xi) that pops all

symbols Xj from the stack with j > i until the top of the stack contains a
symbol Xj with j ≤ i. As the gadget is deterministic, we can arbitrarily
assign the nodes in it to either player. To simplify the presentation, we will

Non-Regular Fixed-Point Logics and Games 27

treat these gadgets as black boxes, i.e. as single nodes in the game graph.
Now, Q contains all pairs S ×Φ and the nodes of the gadgets clear(Xi)

and clear(Xc
i) for 1 ≤ i ≤ k. (Recall that Φ := Sub(ϕ) ∪ Sub(ϕ′).)

We let A′ := Ac ∪ Ar ∪ Ai where Ac := {push}, Ar := {pop}, and
Ai := {int}.

δc :=
{(

(s, ifpX.ϑ), push, (s, ifpX.ϑ), X
)

: s ∈ S, ifpX.ϑ ∈ Φ
}

∪
{(

(s,dfpX.ϑ), push, (s, ifpX.ϑ), X
)

: s ∈ S,dfpX.ϑ ∈ Φ
}

δr :=
{(

(s, clear(Xi)), pop, Xi, (s, ϑi)
)

: 1 ≤ i ≤ k, s ∈ S
}

∪
{(

(s, clear(Xc
i)), pop, Xi, (s, ϑ

c
i)

)
: 1 ≤ i ≤ k, s ∈ S

}

δi :=
{(

(s, ifpX.ϑ), int, (s, ϑ)
)

: s ∈ S, ifpX.ϑ ∈ Φ
}

∪
{(

(s,dfpX.ϑ), int, (s, ϑ)
)

: s ∈ S,dfpX.ϑ ∈ Φ
}

∪
{(

(s, ϕ1 ∨ ϕ2), int, (s, ϕi)
)

: s ∈ S, ϕ1 ∨ ϕ2 ∈ Φ, i ∈ {1, 2}
}

∪
{(

(s, ϕ1 ∧ ϕ2), int, (s, ϕi)
)

: s ∈ S, ϕ1 ∨ ϕ2 ∈ Φ, i ∈ {1, 2}
}

∪
{(

(s, 〈a〉ψ), int, (t, ψ)
)

: s ∈ S, t ∈ S, s a−→ t, 〈a〉ψ ∈ Φ
}

∪
{(

(s, [a]ψ), int, (t, ψ)
)

: s ∈ S, t ∈ S, s a−→ t, [a]ψ ∈ Φ
}

∪
{(

(s,Xi), int, clear(Xi)
)

: s ∈ S, 1 ≤ i ≤ k
}

∪
{(

(s,Xc
i), int, clear(Xc

i)
)

: s ∈ S, 1 ≤ i ≤ k
}

∪
{(

(s,¬Xi), int, clear(Xc
i)

)
: s ∈ S, 1 ≤ i ≤ k

}

∪
{(

(s,¬Xc
i), int, clear(Xi)

)
: s ∈ S, 1 ≤ i ≤ k

}

To turn BT ,ϕ into a visibly pushdown game, we need to assign prior-
ities and the nodes where each of the players moves. Player ∃ moves at
disjunctions, nodes (s, 〈a〉ψ), (s, ifpXi.ϑi), (s,Xi), (s,¬Xc

i), (s, clear(Xi)),
and nodes (s, q), q ∈ P , if q 6∈ L(s). At all other nodes Player ∀ moves. Fi-
nally, nodes (s, ifpXi.ϑi) are assigned the priority 1 and nodes (s,dfpXi.ϑi)
are assigned the priority 0. Note that the priority assignment only needs
to ensure that no player can loop forever on a fixed-point formula fpXi.ϑi

pushing infinitely many variables onto the stack. As there are no infinite
plays unless one of the players keeps pushing symbols onto the stack forever,
the priorities do not influence the winner of “interesting” plays.

Example 4.11. We illustrate the construction by an example. Let T be
the system

and let ϕ := ifp X.
(
p∨ ifp Y.(q ∧3X)

)
. The corresponding game graph is

depicted in Fig. 2, where ϕ2 := (p∨ ifp Y.(q ∧3X)), ϕ3 := ifp Y.(q ∧3X),
and ϕ4 := q ∧ 3X are the non-trivial sub-formulas of ϕ. To simplify the

28

presentation, we have dropped the labels int and annotated the push and
pop labels by the variable being pushed onto the stack. Note that there are
no pop Y or clear(Y) labels, as the variable Y does not occur as an atom
in the formula.

Figure 2. Visibly Pushdown System for Ex. 4.11.

Clearly, Player ∃ wins the game from position (1, ϕ) by first using the
push transition to push one variable X onto the stack and then continue to
(1, ϕ2). In this way, the play will either terminate in (1, q) or continue along
the node (2, X) to (2, clear(X)) and then along the pop-edge, where the
symbol X will be popped from the stack, to (2, ϕ), and finally to (2, p). In
both cases Player ∀ loses. Note, however, that Player ∃ cannot win without
initially pushing X onto the stack, as the play will then terminate at the
node (2, clear(X)) with the pop-edge no longer available. This corresponds
to the state 1 being in the stage X2 but not in the stage X1. (By pushing
X once onto the stack, Player ∃ enforces the play to go through the inner
formula ϕ2 twice, corresponding to the stage X2.) ⊣

The following theorem can be proved along the same lines as the corre-
sponding proof for backtracking games in [5].

Theorem 4.12. For every ϕ ∈ MIC (without simultaneous fixed points)
and finite transition system T , Player ∃ has a winning strategy from a node
(s, ϕ) in the visibly pushdown game BT ,ϕ if, and only if, T , s |= ϕ.

Clearly, winning regions of general visibly pushdown games are not de-
finable in MIC (as computing them is EXPTIME-hard), presumably not
even if we restrict attention to a fixed number of priorities. However, the
pushdown games constructed above have a rather simple structure. They
only have two priorities but, even more important, the push transitions are

Non-Regular Fixed-Point Logics and Games 29

local, i.e. for each fixed-point operator in ϕ there is one node which has a
self-loop pushing a variable onto the stack. Therefore, there is hope that we
can identify a suitable fragment of visibly pushdown games containing the
games arising from MIC-formulas and whose winning regions can be defined
in MIC, i.e. the winner of games from this fragment are MIC-definable in
the same way as the winner of parity games can be defined in Lµ.

We illustrate this by considering games arising from formulas ifpX.ψ

where ψ ∈ ML. Such a game has a starting node from which a path labeled
by push emerges. To each node v on this path with distance n to the
root there is a copy of the game ψn attached to it, where ψn is the n-fold
unraveling of ψ w.r.t. X . Hence, to define the winner of such games we only
need a formula that checks whether on this push-path emerging from the
root there is a node such that Player ∃ wins the modal logic game attached
to it. The latter is clearly MIC-definable, so the whole formula is easily seen
to be definable in MIC.

It is conceivable that a similar construction using nested fixed points
works for games arising from MIC-formulas with nested fixed points. How-
ever, a formal proof of this results is beyond the scope of this survey and is
left for future work.

4.4 Backtracking Games

We now turn to a different type of non-regular games, the so-called back-

tracking games. The motivation for backtracking games comes from proper-
ties such as the tree is balanced as shown to be expressible in MIC and FLC.
To verify such properties in a game-theoretical setting, the game needs to
be able to inspect all subtrees rooted at successors of the root of a finite
tree. However, linear games such as parity games that construct an infinite
path through a game arena can only visit one subtree, unless we introduce
back-edges towards the root. This motivates a game model where a play
is no longer an infinite path but a more complex subgraph. Backtracking
games were originally introduced as model checking games for inflationary
fixed-point logics such as MIC and the general inflationary fixed-point logic
IFP (see [5]). We first give an informal description.

Backtracking games are essentially parity games with the addition that,
under certain conditions, players can jump back to an earlier position in the
play. This kind of move is called backtracking.

A backtracking move from position v to an earlier position u is only
possible if v belongs to a given set B of backtrack positions, if u and v have
the same priority Ω(v) and if no position of higher priority has occurred
between u and v. With such a move, the player who backtracks not only
resets the play back to u, he also commits himself to a backtracking distance
d, which is the number of positions of priority Ω(v) that have been seen
between u and v. After this move, the play ends when d further positions of

30

priority Ω(v) have been seen, unless this priority is “released” by a higher
priority.

For finite plays we have the winning condition that a player wins if
his opponent cannot move. For infinite plays, the winner is determined
according to the parity condition, i.e. Player ∃ wins a play π if the highest
priority seen infinitely often in π is even, otherwise Player ∀ wins.

Definition 4.13. The arena G := (V,E, V∃, V∀, B,Ω) of a backtracking
game is a directed graph (V,E), with a partition V = V∃∪V∀ into positions
of Player ∃ and positions of Player ∀, a subset B ⊆ V of backtrack positions
and a map Ω : V → {0, . . . , k − 1} that assigns to each node a priority.

Proposition 4.14 ([5]). The following basic properties about backtracking
games are known.

1. Backtracking games are determined, i.e. in every backtracking game,
one of the two players has a winning strategy

2. Backtracking games in general do not admit finite memory strategies.

3. Deciding the winner of a backtracking game even with only two pri-
orities is hard for NP and co-NP.

4. Deciding the winner of a backtracking game in general is Pspace-
hard.

However, as yet no upper bound for the complexity of backtracking
games is known.

Backtracking games can be used as model checking games for inflationary
fixed-point logics, e.g. for every MIC-formula ϕ and every transition system
T one can construct in polynomial time a backtracking game that is won by
Player ∃ if, and only if, T |= ϕ. Here, the backtracking distance plays the
role of the stack being used to determine a stage of the fixed-point induction
containing the current state of the transition system. The rule that higher
priorities reset the distance for all lower priorities corresponds to the usual
idea that regenerating an outer fixed point restarts the induction on the
inner fixed points.

Unlike the stair parity games we constructed in Sec. 4.3, it seems unlikely
that the winner of backtracking games is definable in MIC, even for the very
simple fragment of backtracking games that suffice for a game-theoretical
framework for MIC model checking. The reason is that while in a push-
down game, the possible stack contents are represented in the game graph
explicitly, the backtracking distance is an “external” concept and counting
the distance must be done in the logic itself. Therefore it seems unlikely
that MIC suffices for this. In [5], it was shown, however, that the winner
of a restricted class of backtracking games can be defined in inflationary
fixed-point logic.

Non-Regular Fixed-Point Logics and Games 31

5 Outlook

Clearly, MIC and FLC are not the only (modal) fixed-point logics that ex-
tend the modal µ-calculus semantically. Another modal fixed-point logic
of high expressivity is Higher-Order Fixed-Point Logic (HFL) [20]. It in-
corporates into Lµ a simply typed λ-calculus. Its ground type is that of a
predicate and its only type constructor is the function arrow. Syntactically,
HFL extends Lµ by function abstraction (λX.ϕ) and application (ϕ ψ).

Not surprisingly, HFL subsumes FLC. In fact, every (sub-)formula in
FLC is, semantically, a predicate transformer, i.e. an object of a function
type. This way, FLC is embedded into a very low level of HFL, namely
HFL1 – the First-Order Fragment of HFL. Here, first order does not refer
to predicate logic but to the degree of function typing that is allowed in
subformulas of that logic. HFL0, the fragment of HFL restricted to formu-
las in which every subformula is a predicate, is exactly Lµ– syntactically
already.

The type level hierarchy in HFL is strict, and it comes with increas-
ing model checking complexity: it is k-EXPTIME-complete for level k of
that hierarchy [3], and this holds already for the data complexity of each
fragment. Consequently, model checking full HFL is non-elementary.

HFL, and in particular HFL1, is also interesting as a specification lan-
guage for non-regular properties. It can, for instance, define assume-guaran-
tee properties [20]. Furthermore, it can define structural properties that we
are unable to express in FLC or MIC like that of being bisimilar to a (possi-
bly infinite) word model. Even though we have not formally defined HFL1,
we can present the formula for this property because it is very neat, and it
can be read with a little bit of understanding of functional programming.

¬
((

µXPr→Pr→Pr.λAPr.λBPr.(A ∧B) ∨ (X 3A 3B)
)
〈a〉tt 〈b〉tt

)

The superscripts are type annotations. The least fixed-point formula can be
seen as a recursively defined function that takes two predicates and checks
whether or not their conjunction holds. If not, it calls itself recursively with
the two arguments preceeded by 3-operators. Applied to the two initial
arguments, it checks successively, whether there are two paths of length
1, 2, . . . ending in an a-, resp. b-transition.

We have not included a thorough presentation of HFL (or just HFL1)
here, mainly because there is no interesting known game-theoretic charac-
terization of its model checking problem. It can be solved by a reduction
to a reachability game using fixed-point elimination [3], but it is not known
whether or not there is an extension of parity games to capture this. The ex-
ample above suggests that stair parity games do not suffice since two stacks
would be needed to contain the 3-operators for the two different paths.

32

We conclude with a positive remark: while FLC is trivially embeddable
into HFL1, and MIC and FLC seem incomparable, it is reasonable to ask
whether HFL1 is a superlogic of both of them. On finite models, MIC
can indeed be embedded into HFL. This is because the computation of an
inflationary fixed point can be carried out by a function of first-order type.
However, since this is modeled iteratively, this translation fails in stages
beyond ω. Hence, it may not work on infinite models. It remains to be seen
whether MIC can be embedded into HFL over arbitrary models.

References

[1] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested
calls and returns. In Proc. 10th Int. Conf. on Tools and Algorithms for

the Construction and Analysis of Systems, TACAS’04, volume 2988 of
LNCS, pages 467–481. Springer, 2004.

[2] A. Arnold. The modal µ-calculus alternation hierarchy is strict on bi-
nary trees. RAIRO - Theoretical Informatics and Applications, 33:329–
339, 1999.

[3] R. Axelsson, M. Lange, and R. Somla. The complexity of model check-
ing higher-order fixpoint logic. Logical Methods in Computer Science,
3(2:7):1–33, 2007.

[4] A. Dawar, E. Grädel, and S. Kreutzer. Inflationary fixed points in
modal logics. ACM Transactions on Computational Logic, 5(2):282–
315, 2004.

[5] A. Dawar, E. Grädel, and S. Kreutzer. Backtracking games and in-
flationary fixed points. Theoretical Computer Science, 350(2-3), 2006.
ICALP 2004 selected paper issue.

[6] S. Dziembowski, M. Jurdziński, and D. Niwiński. On the expres-
sion complexity of the modal µ-calculus model checking. Unpublished
manuscript, 1996.

[7] E. A. Emerson. Uniform inevitability is tree automaton ineffable. In-

formation Processing Letters, 24(2):77–79, 1987.

[8] O. H. Ibarra, T. Jiang, and H. Wang. A characterization of exponential-
time languages by alternating context-free grammars. TCS, 99(2):301–
315, 1992.

[9] D. Janin and I. Walukiewicz. On the expressive completeness of the
propositional µ-calculus with respect to monadic second order logic. In

Non-Regular Fixed-Point Logics and Games 33

Proc. 7th Conf. on Concurrency Theory, CONCUR’96, volume 1119 of
LNCS, pages 263–277. Springer, 1996.

[10] M. Lange. Alternating context-free languages and linear time µ-
calculus with sequential composition. In Proc. 9th Workshop on Ex-

pressiveness in Concurrency, EXPRESS’02, volume 68.2 of ENTCS,
pages 71–87. Elsevier, 2002.

[11] M. Lange. The alternation hierarchy in fixpoint logic with chop is strict
too. Information and Computation, 204(9):1346–1367, 2006.

[12] M. Lange. Three notes on the complexity of model checking fixpoint
logic with chop. R.A.I.R.O. – Theoretical Informatics and Applica-

tions, 2006. (To appear).

[13] M. Lange and R. Somla. Propositional dynamic logic of context-free
programs and fixpoint logic with chop. Information Processing Letters,
100(2):72–75, 2006.

[14] M. Lange and C. Stirling. Model checking fixed point logic with chop.
In Proc. 5th Conf. on Foundations of Software Science and Computa-

tion Structures, FOSSACS’02, volume 2303 of LNCS, pages 250–263.
Springer, 2002.

[15] Ch. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In
Proc. 24th Int. Conf. on Foundations of Software Technology and The-

oretical Computer Science, FSTTCS’04, volume 3328 of LNCS, pages
408–420. Springer, 2004.

[16] M. Müller-Olm. A modal fixpoint logic with chop. In Proc. 16th Symp.

on Theoretical Aspects of Computer Science, STACS’99, volume 1563
of LNCS, pages 510–520. Springer, 1999.

[17] A. Okhotin. Boolean grammars. Information and Computation,
194(1):19–48, 2004.

[18] C. Stirling. Local model checking games. In Proc. 6th Conf. on

Concurrency Theory, CONCUR’95, volume 962 of LNCS, pages 1–11.
Springer, 1995.

[19] A. Tarski. A lattice-theoretical fixpoint theorem and its application.
Pacific Journal of Mathematics, 5:285–309, 1955.

[20] M. Viswanathan and R. Viswanathan. A higher order modal fixed point
logic. In Proc. 15th Int. Conf. on Concurrency Theory, CONCUR’04,
volume 3170 of LNCS, pages 512–528. Springer, 2004.

34

[21] I. Walukiewicz. Pushdown processes: Games and model-checking. In-

formation and Computation, 164(2):234–263, 2001.

