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t. We 
onsider an extension of modal logi
 with an operatorfor 
onstru
ting in
ationary �xed points, just as the modal �-
al
ulusextends basi
 modal logi
 with an operator for least �xed points. Leastand in
ationary �xed point operators have been studied and 
omparedin other 
ontexts, parti
ularly in �nite model theory, where it is knownthat the logi
s IFP and LFP that result from adding su
h �xed pointoperators to �rst order logi
 have equal expressive power. As we show,the situation in modal logi
 is quite di�erent, as the modal iteration
al
ulus (MIC) we introdu
e has mu
h greater expressive power thanthe �-
al
ulus. Greater expressive power 
omes at a 
ost: the 
al
ulus isalgorithmi
ally mu
h less manageable.1 Introdu
tionThe modal �-
al
ulus L� is an extension of multi-modal logi
 with an operatorfor forming least �xed points. This logi
 has been extensively studied, havinga
quired importan
e for a number of reasons. In terms of expressive power, itsubsumes a variety of modal and temporal logi
s used in veri�
ation, in parti
ularLTL, CTL, CTL�, PDL and also many logi
s used in other areas of 
omputers
ien
e, for instan
e des
ription logi
s. On the other hand, L� has a ri
h theory,and is well-behaved in model-theoreti
 and algorithmi
 terms.The logi
 L� is only one instan
e of a logi
 with an expli
it operator for form-ing least �xed points. Indeed, in re
ent years, a number of �xed point extensionsof �rst order logi
 have been studied in the 
ontext of �nite model theory. It maybe argued that �xed point logi
s play a 
entral role in �nite model theory, moreimportant than �rst order logi
 itself. The best known of these �xed point logi
sis LFP, whi
h extends �rst order logi
 with an operator for forming the least �xedpoints of positive formulae, de�ning monotone operators. In this sense, it relatesto �rst order logi
 in mu
h the same way as L� relates to propositional modallogi
. However, a number of other �xed point operators have been extensivelystudied in �nite model theory, in
luding in
ationary, partial, nondeterministi
and alternating �xed points. All of these have in 
ommon that they allow the
onstru
tion of �xed points of operators that are not ne
essarily monotone.? Resear
h supported by EPSRC grants GR/L69596 and GR/N23028.



Furthermore, a variety of fragments of the �xed point logi
s formed have beenstudied, su
h as existential and strati�ed fragments, bounded �xed point logi
s,transitive 
losure logi
 and varieties of Datalog. Thus, there is a ri
h theoryof the stru
ture and expressive power of �xed point logi
s on �nite relationalstru
tures and, to a lesser extent, on in�nite stru
tures.In the present paper, we take a �rst step in the study of extensions of propo-sitional modal logi
 by operators that allow us to form �xed points of non-monotone formulae. We fo
us on the simplest of these, that is the in
ationary�xed point (also sometimes 
alled the iterative �xed point). Though the in
ation-ary �xed point extension of �rst order logi
 (IFP) is often used inter
hangeablywith LFP, as the two have the same expressive power on �nite stru
tures, weshow that in the 
ontext of modal logi
, the in
ationary �xed point behavesquite di�erently from the least �xed point.Least and In
ationary Indu
tions. We begin by reviewing the known results onthe logi
s LFP and IFP.(1) On �nite stru
tures, LFP and IFP have the same expressive power [12℄.(2) It is 
onje
tured that IFP is stri
tly more expressive than LFP on in�nitestru
tures, but only partial results are known. On many interesting in�nitestru
tures, for instan
e in arithmeti
 (!;+; � ), LFP and IFP are knownto be equally expressive, but the translation of IFP into LFP 
an makethe formulae mu
h more 
ompli
ated [6℄.(3) On ordered �nite stru
tures, LFP and IFP express pre
isely the propertiesthat are de
idable in polynomial time.(4) Simultaneous least or in
ationary indu
tions do not provide more expres-sive power than simple indu
tions.(5) The 
omplexity of evaluating a formula  in LFP or IFP on a given �nitestru
ture A is polynomial in the size of the stru
ture, but exponential inthe length of the formula. For formulae with a bounded number k of vari-ables, the evaluation problem is Pspa
e-
omplete [9℄, even for k = 2 andon �xed (and very small) stru
tures. If, in addition to bounding the num-ber of variables one also forbids parameters in �xed point formulae, theevaluation problem for LFP is 
omputationally equivalent to the model
he
king problem for L� [11, 17℄ whi
h is known to be in NP \ 
o-NP,in fa
t in UP \ 
o-UP [14℄, and hard for Ptime. It is an open prob-lem whether this problem 
an be solved in polynomial time. The model
he
king problem for bounded variable IFP does not appear to have beenstudied previously.We also note that even though IFP does not provide more expressive powerthan LFP on �nite stru
tures, it is often more 
onvenient to use in
ationaryindu
tions in expli
it 
onstru
tions. The advantage of using IFP is that one isnot restri
ted to indu
tions over positive formulae. A non-trivial 
ase in pointis the formula de�ning an order on the k-variable types in a �nite stru
ture, anessential ingredient of the proof of the Abiteboul-Vianu Theorem, saying thatleast and partial �xed point logi
s 
oin
ide if and only if Ptime = Pspa
e (see2



[4, 8, 10℄). Furthermore, IFP is more robust, in the sense that in
ationary �xedpoints are well-de�ned, even when other, non-monotone, operators are added tothe language (see, for instan
e, [7℄).In
ationary Indu
tions in Modal Logi
. Given the 
lose relationship betweenLFP and IFP on �nite stru
tures, and the importan
e of the �-
al
ulus, it isnatural to study also the properties and expressive power of in
ationary �xedpoints in modal logi
. In this paper, we undertake a study of an analogue of IFPfor modal logi
. We de�ne a modal iteration 
al
ulus, MIC, by extending ba-si
 multi-modal logi
 with simultaneous in
ationary indu
tions. While deferringformal de�nitions until Se
tion 2, we begin with an informal explanation.In L�, we 
an write formulae �X:', whi
h are true in state s of a transitionsystem K if, and only if, s is in the least set X satisfying X $ ' in K. We 
an dothis, provided that the variable X appears only positively in '. This guaranteesthat ' de�nes a monotone operator and has a least �xed point. Moreover, the�xed point 
an be obtained by an iterative pro
ess. Starting with the empty set,if we repeatedly apply the operator de�ned by ' (possibly through a trans�niteseries of stages), we obtain an in
reasing sequen
e of sets, whi
h 
onverges tothe desired least �xed point. If, on the other hand, ' is not positive in X , we
an still de�ne an in
reasing sequen
e of sets, by starting with the empty set,and iteratively taking the union of the 
urrent set X with the set of statessatisfying '(X), and this sequen
e must eventually 
onverge to a �xed point(not ne
essarily of ', but of the operator that maps X to X _ '(X)). Moregenerally, we allow formulae ifp Xi : [X1  '1; : : : ; Xk  'k℄ that 
onstru
tsets by a simultaneous in
ationary indu
tion. At ea
h stage �, we have a tupleof sets X�1 ; : : : ; X�k . Substituting these into the formulae '1; : : : ; 'k we obtain anew tuple of sets, whi
h we add to the existing sets X�1 ; : : : ; X�k , to obtain thenext stage.It is 
lear that MIC is a modal logi
 in the sense that it is invariant underbisimulation. In fa
t, on every 
lass of bounded 
ardinality, in
ationary �xedpoints 
an be unwound to obtain equivalent in�nitary modal formulae. As a
onsequen
e, MIC has the tree model property. It is also 
lear that MIC is atleast as expressive as L�. The following natural questions now arise.(1) Is MIC more expressive than L�?(2) Does MIC have the �nite model property?(3) What are the algorithmi
 properties of MIC? Is the satis�ability problemde
idable? Can model 
he
king be performed eÆ
iently (as eÆ
iently asfor L�)?(4) Can we eliminate, as in the �-
al
ulus and as in IFP, simultaneous indu
-tions without losing expressive power?(5) What is the relationship of MIC with monadi
 se
ond-order logi
 andwith �nite automata? Or more generally, what are the `right' automatafor MIC?(6) Is MIC the bisimulation-invariant fragment of any natural logi
 (as L� isthe bisimulation-invariant fragment of MSO [13℄)?3



We provide answers to most of these questions. From an algorithmi
 point ofview, most of the answers are negative. From the point of view of expressiveness,we 
an say that in the 
ontext of modal logi
, in
ationary �xed points providemu
h more expressive power than least �xed points, and MIC has very di�erentstru
tural properties to L�. In parti
ular, we establish the following results:(1) There exist MIC-de�nable languages that are not regular. Hen
e MIC ismore expressive than the �-
al
ulus, and does not translate to monadi
se
ond-order logi
.(2) MIC does not have the �nite model property.(3) The satis�ability problem for MIC is unde
idable. In fa
t, it is not evenin the arithmeti
 hierar
hy.(4) The model 
he
king problem for MIC is Pspa
e-
omplete.(5) Simultaneous in
ationary indu
tions do provide more expressive powerthan simple in
ationary indu
tions. Nevertheless the algorithmi
 intra
-tability results for MIC apply also to MIC without simultaneous indu
-tions.(6) There are bisimulation-invariant polynomial time properties that are notexpressible in MIC.(7) All languages in Dtime(O(n)) are MIC-de�nable.No doubt, these properties ex
lude MIC as a 
andidate logi
 for hardwareveri�
ation. On the other hand, the present study is an investigation into thestru
ture of the in
ationary �xed point operator and may suggest tra
tablefragments of the logi
 MIC, whi
h involve 
ru
ial use of an in
ationary operator,just as logi
s like CTL and alternation-free L� 
arve out eÆ
iently tra
tablefragments of L�. In any 
ase, it delineates the di�eren
es between in
ationaryand least �xed point 
onstru
ts in the 
ontext of modal logi
In the rest of this paper, we begin in Se
tion 2 by giving the ne
essary ba
k-ground on modal logi
 and �xed points, and giving the de�nition of MIC, alongwith an example that illustrates how this 
al
ulus has higher expressive powerthan L�. Se
tion 3 establishes that MIC fails to have the �nite model propertyand that the satis�ability problem is highly unde
idable. This is established sep-arately for MIC, and 1MIC, its fragment without simultaneous indu
tions. Wealso show that MIC is more expressive than 1MIC. In Se
tion 5 we investigatequestions of the 
omputational 
omplexity of MIC in the 
ontext of �nite tran-sitions systems. We show that the model 
he
king problem is Pspa
e-
omplete,that the 
lass of models of any MIC formula is de
idable in both polynomialtime and linear spa
e, and that there are polynomial time bisimulation-invariantproperties that are not expressible in MIC. Finally, Se
tion 6 investigates theexpressive power of MIC on �nite words, establishing that there are languagesde�nable in MIC that are not 
ontext-free, and that every linear time de
idablelanguage is expressible in MIC.Due to spa
e limitations we only sket
h the proofs of some results and deferthe details to the full version of the paper [5℄.4



2 The Modal Iteration Cal
ulusBefore we de�ne the modal iteration 
al
ulus, we brie
y re
all the de�nitions ofpropositional modal logi
 ML and the �-
al
ulus L�.2.1 Propositional Modal Logi
.Transition Systems. Modal logi
s are interpreted on transition systems (also
alled Kripke stru
tures). Fix a set A of a
tions and a set V of atomi
 proposi-tions. A transition system for A and V is a stru
ture K with universe V (whoseelements are 
alled states) binary relations Ea � V � V for ea
h a 2 A andmonadi
 relations p � V for ea
h atomi
 proposition p 2 V (we do not distin-guish notationally between atomi
 propositions and their interpretations.)Syntax of ML. For a set A of a
tions and a set V of proposition variables, theformulae of ML are built from false , true and the variables p 2 V by means ofBoolean 
onne
tives ^, _, : and modal operators hai and [a℄. That is, if  is aformula of ML and a 2 A is an a
tion, then hai and [a℄ are also formulae ofML. If there is only one a
tion in A, one simply writes 2 and 3 for [a℄ and hai,respe
tively.Semanti
s of ML. The formulae of ML are evaluated on transition systems at aparti
ular state. Given a formula  and a transition system K with state v, wewrite K; v j=  to denote that the formula  holds in K at state v. We also write[[ ℄℄K to denote the set of states v, su
h that K; v j=  . In the 
ase of atomi
propositions,  = p, we have [[p℄℄K = p. Boolean 
onne
tives are treated in thenatural way. Finally for the semanti
s of the modal operators we put[[hai ℄℄K := fv : there exists a state w su
h that (v; w) 2 Ea and w 2 [[ ℄℄Kg[[[a℄ ℄℄K := fv : for all w su
h that (v; w) 2 Ea, we have w 2 [[ ℄℄Kg:Hen
e hai and [a℄ 
an be viewed as existential and universal quanti�ers `alonga-transitions'.2.2 The �-
al
ulus L�.Syntax of L�. The �-
al
ulus extends propositional modal logi
 ML by the fol-lowing rule for building �xed point formulae: if  is a formula in L� and X isa propositional variable that o

urs only positively in  , then �X: and �X: are L� formulae.Semanti
s of L�. A formula  (X) with a propositional variable X de�nes onevery transition system K (with state set V , and with interpretations for freevariables other than X o

urring in  ) an operator  K : P(V )! P(V ) assigningto every set X � V the set  K(X) := [[ ℄℄K;X = fv 2 V : (K; X); v j=  g:As X o

urs only positively in  , the operator  K is monotone for everyK, and therefore, by a well-known theorem due to Knaster and Tarski, has5



a least �xed point lfp( K) and a greatest �xed point gfp( K). Now we put[[�X: ℄℄K := lfp( K) and [[�X: ℄℄K := gfp( K):Least (and greatest) �xed points 
an also be 
onstru
ted indu
tively. Givena formula �X: (X), we de�ne for ea
h ordinal �, the stage X� of the lfp-indu
tion of  K by X0 := ;, X�+1 := [[ ℄℄(K;X�), and X� := S�<�X� if � is alimit ordinal.By monotoni
ity, the stages of the lfp-indu
tion in
rease until a �xed pointis rea
hed. The �rst ordinal at whi
h this happens is 
alled the 
losure ordinalof the indu
tion. By ordinal indu
tion, one easily proves that this indu
tively
onstru
ted �xed point 
oin
ides with the least �xed point. The 
ardinality of a
losure ordinal 
annot be larger than the 
ardinality of K.For any formula ', the formula �X:' is equivalent to :�X::'(:X), where'(:X) denotes the formula obtained from ' by repla
ing all o

urren
es of Xwith :X .Simultaneous Fixed Points. There is a variant of L� that admits systems of si-multaneous �xed points. Here one asso
iates with any tuple  = ( 1; : : : ;  k) offormulae  i(X) =  i(X1; : : : ; Xk), in whi
h all o

urren
es of all Xi are posi-tive, a new formula ' = �X: . The semanti
s of ' is indu
ed by the least �xedpoint of the monotone operator  K mapping X to X 0 where X 0i = �v 2 V :(K; X); v j=  ig. More pre
isely, K; v j= ' i� v is an element of the �rst 
ompo-nent of the least �xed point of the above operator. Although these systems are
omputationally bene�
ial and sometimes also allow for more straightforwardformalisations, they do not in
rease the expressive power. It is known that si-multaneous least �xed points 
an be eliminated in favour of nested individual�xed points (see e.g. [1, page 27℄). Indeed, �XY : [ (X;Y ); '(X;Y )℄ is equiva-lent to �X: (X;�Y:'(X;Y )), and this equivalen
e generalises to larger systemsin the obvious way.Bisimulations and Tree Model Property. Bisimulation is a notion of behaviouralequivalen
e for transition systems. No reasonable modal logi
 
an distinguishbetween two systems that are bisimulation equivalent. Formally, given two tran-sition systems K and K0, with distinguished states v and v0 respe
tively, we saythat K; v is bisimulation equivalent to K0; v0, written K; v � K0; v0 if there is arelation R � V � V 0 between the states of K and the states of K0 su
h that: (1)(v; v0) 2 R; (2) for ea
h atomi
 proposition p 2 V and ea
h (u; u0) 2 R, u 2 [[p℄℄Kif, and only if, u0 2 [[p℄℄K0 ; (3) for ea
h (u; u0) 2 R, and ea
h t 2 V su
h that(u; t) 2 Ea, there is a t0 2 V 0 with (u0; t0) 2 E0a and (t; t0) 2 R; and (4) forea
h (u; u0) 2 R, and ea
h t0 2 V 0 su
h that (u0; t0) 2 E0a, there is a t 2 V with(u; t) 2 Ea and (t; t) 2 R.Bisimulation equivalen
e 
orresponds to equivalen
e in an in�nitary modallogi
 ML1 [2℄. This logi
 is the 
losure of ML under disjun
tions and 
onjun
-tions taken over arbitrary sets of formulae. Thus, if S is any set (possibly in�nite)of formulae, then VS and WS are also formulae of ML. It 
an be shown that forany transition systems K and K0, K; v � K0; v0 if, and only if, K; v makes trueexa
tly the same formulae of ML1 as K0; v0.6



A transition system is 
alled a tree, if for every state v, there is at most onestate u, and at most one a
tion a su
h that (u; v) 2 Ea and there is exa
tlyone state r, 
alled the root of the tree, for whi
h there is no state having atransition to r, and if every state is rea
hable from the root. It is known thatfor every transition system K, and any state v, there is a tree T with root rsu
h that K; v � T ; r. One 
onsequen
e of this is that any logi
 that respe
tsbisimulation has the tree model property. For instan
e, for any formula ' of L�,if ' is satis�able, then there is a tree T su
h that T ; r j= '.2.3 The Modal Iteration Cal
ulus.We are now ready to introdu
e MIC. Informally, MIC is propositional modallogi
 ML, augmented with simultaneous in
ationary �xed points.De�nition 2.1 (Syntax and semanti
s of MIC). MIC extends propositionalmulti-modal logi
 by the following rule: if '1; : : : ; 'k are formulae of MIC, andX1; : : : ; Xk are propositional variables, thenS := 8><>:X1  '1...Xk  'kis a system of rules, and (ifp Xi : S) is a formula of MIC. If S 
onsists of asingle rule X  ' we simplify the notation and write (ifp X  ') instead of(ifp X : X  ').Semanti
s: On every Kripke stru
ture K, the system S de�nes, for ea
h ordinal�, a tuple X� = (X�1 ; : : : ; X�k ) of sets of states, via the following in
ationaryindu
tion (for i = 1; : : : ; k).X0i := ;;X�+1i := X�i [ [['i℄℄(K;X�);X�i := [�<�X�i if � is a limit ordinal.We 
all (X�1 ; : : : ; X�k ) the stage � of the in
ationary indu
tion of S on K. Asthe stages are in
reasing (i.e. X�i � X�i for any � < �), this indu
tion rea
hesa �xed point (X11 ; : : : ; X1k ). Now we put [[(ifp Xi : S)℄℄K := X1i :See Se
tion 2.4 and 3 for examples of su
h formulae.Lemma 2.2. L� � MIC. Further, on every 
lass of stru
tures of bounded 
ar-dinality MIC � ML1.Proof. Clearly, if X o

urs only positively in  , then �X: � ifp X   . Hen
eL� � MIC. 7



Now, let S be a system of rules Xi  'i(X1; : : : ; Xk). It is 
lear that forea
h ordinal � there exist formulae '�1 ; : : : ; '�k 2 ML1 de�ning, over any Kripkestru
ture, the stage � of the indu
tion by S. As 
losure ordinals are bounded onstru
tures of bounded 
ardinality, the se
ond 
laim follows. utCorollary 2.3. MIC is invariant under bisimulation and has the tree modelproperty.Note that on stru
tures of unbounded 
ardinality, L� and MIC are not 
on-tained in ML1. For instan
e, well-foundedness is expressed by the L�-formula�X:2X , but is known not to be expressible in ML1.2.4 Non-Regular LanguagesWe now demonstrate that MIC is stri
tly more expressive than L�. Re
all thatevery formula of L� 
an be translated into a formula of monadi
 se
ond orderlogi
 (MSO). Moreover, it is known [3℄ that the only sets of �nite words that areexpressible in MSO are the regular languages. For our purposes, a �nite wordis a transition system with only one kind of a
tion, whi
h is a �nite tree, andwhere every state has at most one su

essor.Proposition 2.4. There is a language that is expressible in MIC but not inMSO.Proof. The language L := fanbm : n � mg is not regular, hen
e not de�nable inmonadi
 se
ond-order logi
, but it is de�nable in MIC. To see this, we 
onsider�rst the formula �(X) = (ifp Y  3(b ^ :X) _ 3(a ^ X ^ Y )) whi
h (sin
ethe rule is positive in Y ) is in fa
t equivalent to a L�-formula. On every wordw = w0 � � �wn�1 2 fa; bg� and X � f0; : : : ; n�1g, the formula is true if w startswith a (possibly empty) a-sequen
e inside X followed by a b outside X . Now theformula (ifp X  (a ^ �(X)) _ (b ^ 2X)) de�nes (inside a�b�) the language L.Note that the language a�b� is de�nable in L�, so we 
an 
onjoin this de�nitionto the above formula to obtain a de�nition of L whi
h works on all words infa; bg� utThe observation in Proposition 2.4 was pointed out to us in dis
ussion by MartinOtto, and was the starting point of the investigation reported here.3 Interpreting Arithmeti
 in MICIn this se
tion we prove that the satis�ability problem of MIC is unde
idablein a very strong sense. Given that MIC is invariant under bisimulation, we 
anrestri
t attention to trees. In fa
t we will only 
onsider well-founded trees (i.e.trees satisfying the formula ifp X  2X). The height h(v) of a node v in awell-founded tree T is an ordinal, namely the least upper bound of the heightsof its 
hildren. For any node v in a tree T , we write T (v) for the subtree of Twith root v. We �rst show that the nodes of �nite height and the nodes of height! are de�nable in MIC. 8



Lemma 3.1. Let S be the systemX  2false _ (2X ^3:Y )Y  X:Then, on every tree T , [[ifp X : S℄℄T = [[ifp Y : S℄℄T = fv : h(v) < !g.Proof. By indu
tion we see that for ea
h i < !, X i = fv : h(v) < ig andY i = X i�1 = fv : h(v) < i� 1g. As a 
onsequen
e X! = Y ! = fv : h(v) < !g.One further iteration shows that X!+1 = Y !+1 = X!. utWith the system S exhibited in Lemma 3.1 we obtain the formulae �nite-height := (ifp X : S) and !-height := :(ifp X : S)^2(ifp X : S) whi
h de�ne,respe
tively, the nodes of �nite height and the nodes of height !. Note that!-height is a satis�able formula all of whose models are in�nite.Proposition 3.2. MIC does not have the �nite model property.We show that the satis�ability problem of MIC is unde
idable. In fa
t MICinterprets full arithmeti
 on the heights of nodes. To prove this we �rst de�nesome auxiliary formulae that will be used frequently throughout the paper. Wealways assume that the underlying stru
ture is a well-founded tree.{ The formula nonempty(') := (ifp X  ' _ 3X) expresses that ' holdssomewhere in the subtree of the 
urrent node: T ; v j= nonempty(') i� [['℄℄T \T (v) 6= ;.{ Dually all(') := (ifp X  ' ^ 2X) says that ' holds at all nodes of thesubtree T (v).{ We say that a setX (in a tree T ) en
odes the ordinal � ifX = fv : h(v) < �g.Let ordinal(X) be the 
onjun
tion of the formula all(X ! 2X) with:(ifp Z : Y  2YZ  nonempty(:Y ^2Y ^X) ^ nonempty(:Y ^ 2Y ^ :X)):It expresses that X en
odes some ordinal. Indeed all(X ! 2X) says thatwith ea
h node v 2 X , the entire subtree rooted at v is 
ontained in X .The se
ond 
onjun
t performs an in
ationary indu
tion in
orporating intoY at ea
h stage � + 1 all nodes of height � (whi
h satisfy :Y ^ 2Y ) andin
orporates the root of the tree into Z if both X and its 
omplement 
ontainnodes of height �. Hen
e, at the end of the indu
tion the root of the treewill not be 
ontained in Z if, and only if, X does not distinguish betweennodes of the same height. Together the two 
onjun
ts imply that X 
ontainsall nodes up to some height.{ The formula number(X) = ordinal(X) ^ nonempty(�nite-height ^ :X) saysthat X en
odes a natural number n (inside a tree of height > n).Lemma 3.3. Let T be a well-founded tree of height !. There exist formulaeplus(S; T ) and times(S; T ) of MIC su
h that, whenever the sets S and T en
odein the tree T the natural numbers s and t, then [[plus(S; T )℄℄T en
odes s+ t, and[[times(S; T )℄℄T en
odes st. 9



Proof. Letplus(S; T ) := ifp Y : X  2XY  S _ (2Y ^ nonempty(X) ^ all(X ! T )):Obviously at ea
h stage n, we have Xn = fv : h(v) < ng. We 
laim that forea
h n, Y n+1 = fv : h(v) < s + min(n; t)g. For n = 0 this is 
lear (note thatfor the 
ase s = 0 this is true be
ause the 
onjun
t nonempty(X) prevents theY -rule from being a
tive at stage 1). For n > 0 the in
lusion Xn � T is true i�n � t. Hen
e we have Y n+1 = fv : h(v) < s + ng in the 
ase that n � t andY n+1 = Y n = � � � = Y t otherwise. To express multipli
ation we de�netimes(S; T ) := ifp Y : X  2XY  plus(Y; S) ^ all(2X ! T ):We 
laim that Y n = fv : h(v) < s �min(n; t)g. This is trivially true for n = 0.If it is true for n < t, then Y n+1 = fv : h(v) < sn+ sg = fv : h(v) < s(n+ 1)g.Finally for n � t, the extension of 2Xn is fv : h(v) < n + 1g whi
h is not
ontained in T = fv : h(v) < tg, hen
e Y n+1 = Y n = � � � = Y t. utCorollary 3.4. For every polynomial f(x1; : : : ; xr) with 
oeÆ
ients in the nat-ural numbers there exists a formula  f (X1; : : : ; Xr) 2 MIC su
h that for everytree T of height ! and all sets S1; : : : ; Sr en
oding numbers s1; : : : ; sr 2 ![[ f (S1; : : : ; Sr)℄℄T = fv : h(v) < f(s1; : : : ; sr)g:Proof. By indu
tion on f .{  0 := false .{  1 := 2false .{  X := X .{  f+g := plus[S= f ; T= g℄, i.e. the formula obtained by repla
ing in plus(S; T )the variables S and T by, respe
tively,  f and  g.{  f �g := times[S= f ; T= g℄. utTheorem 3.5. For every �rst order senten
e  in the vo
abulary f+; �; 0; 1g ofarithmeti
, there exists a formula  � 2 MIC su
h that  is true in the standardmodel (N;+; �; 0; 1) of arithmeti
 if and only if  � is satis�able.Proof. We have already seen that there exists a MIC-axiom !-height axiomatis-ing the models that are bisimilar to a tree of height !. Further, we 
an expressset equalities X = Y by all(X $ Y ) and we know how to represent polynomialsby MIC-formulae. What remains is to translate quanti�ers.More pre
isely, we need to show that for ea
h �rst order formula  (y1; : : : ; yr)in the language of arithmeti
 there exists a MIC-formula  �(Y1; : : : ; Yr) su
hthat on rooted trees T ; w of height ! and all sets S1; : : : ; Sr that en
ode num-bers s1; : : : ; sr on T we have that (N;+; �; 0; 1) j=  (s1; : : : ; sr) i� T ; w j= �(S1; : : : ; Sr). 10



Only the 
ase of formula of the form  (y) := 9x'(x; y) remains to be 
on-sidered. By indu
tion hypothesis, we assume that for '(x; y) the 
orrespondingMIC-formula '�(X;Y ) has already been 
onstru
ted. Now let �(Y ) := ifp Z : X  2XZ  '�(X;Y ) ^ number(X): utCorollary 3.6. The satis�ability problem for MIC is unde
idable. In fa
t, it isnot even in the arithmeti
al hierar
hy.The proof given above appears to rely 
ru
ially on the use of simultaneousindu
tions. Indeed, one 
an show that formulae of MIC involving simultaneousindu
tions, in parti
ular the formula 
onstru
ted in the proof of Lemma 3.1, 
an-not be expressed without simultaneous indu
tions (see Theorem 4.2). However,it is still the 
ase that �rst order arithmeti
 
an be redu
ed to the satis�abilityproblem for MIC without simultaneous indu
tions. (See [5℄ for details.)4 Simultaneous vs. Non-Simultaneous Indu
tionsIt is easy to see that the equivalen
e �XY:( ; ') � �X: (X;�Y:'(X;Y )) (some-times 
alled the Beki
-prin
iple [1℄) fails in both dire
tions when we take in
a-tionary instead of least �xed points. However, it still is 
on
eivable that simulta-neous indu
tions 
ould be eliminated by more 
ompli
ated te
hniques. It followsfrom the results below, that this is not the 
ase, i.e. simultaneous in
ationaryindu
tions provide more expressive power than simple ones. Let 1MIC denotethe fragment of MIC that does not involve simultaneous indu
tions.For any ordinal �, let T� denote the tree with a root v� that has a setfv� j � < �g of 
hildren indexed by ordinals less than �, where ea
h v� is theroot of a subtree isomorphi
 to T� .Lemma 4.1. Let ' 2 1MIC be a formula. If X1; : : : ; Xk are atomi
 propositionson T!, 
losed under bisimulations, su
h that v! 62 Xi (where v! is the root ofT!) and T!; v! j= '(X1; : : : ; Xk), then there is a �nite N su
h that for all n > Nand all nodes vn of height n, T!; vn j= '(X1 � fvng; : : : ; Xk � fvng):It is a straightforward 
onsequen
e of this lemma that the formula !-heightde�ned in Se
t. 3 is not equivalent to any formula of 1MIC. We hen
e haveestablished the following separation result.Theorem 4.2. MIC is stri
tly more powerful than 1MIC.5 The Model Che
king Problem for MICRe
all that the model 
he
king problem for the �-
al
ulus is in UP \ 
o-UP,and is 
onje
tured by some to be solvable in polynomial time. We now showthat MIC is algorithmi
ally more 
ompli
ated (unless Pspa
e = NP).11



We �rst observe that the naive bottom-up evaluation algorithm for MIC-formulae uses polynomial time with respe
t to the size of the input stru
ture,and polynomial spa
e (and exponential time) with respe
t to the length of theformula. Let K be a transition system with n nodes and m edges. The size jjKjjof appropriate en
odings of K as an input for a model 
he
king algorithm isO(n+m). It is well known that the extension [['℄℄K of a basi
 modal formula '(without �xed points) on a �nite transition system K 
an be 
omputed in timeO(j'j � jjKjj). Further, any in
ationary indu
tion ifp Xi : [X1  '1; : : : ; Xk  'k℄ rea
hes a �xed point on K after at most kn iterations. Hen
e, the bottom-up evaluation of a MIC-formula  with d nested simultaneous in
ationary �xedpoints, ea
h of width k, on K needs at most O((kn)d) basi
 evaluation steps.For ea
h �xed point variable o

urring in the formula, 2n bits of workspa
e areneeded to re
ord the 
urrent value and the last value of the indu
tion. This givesthe following 
omplexity results.Proposition 5.1. Any MIC formula  of nesting depth d and simultaneousindu
tions of width at most k on a transition system K with n nodes 
an beevaluated in time O((kn)dj j � jjKjj) and spa
e O(j j � n).In terms of 
ommon 
omplexity 
lasses the results 
an be stated as follows.Theorem 5.2. (1) The 
ombined 
omplexity of the model 
he
king problemfor MIC on �nite stru
tures is in Pspa
e.(2) For any �xed formula  2 MIC, the model 
he
king problem for  on�nite stru
tures is solvable in polynomial time and linear spa
e.We now show that, 
ontrary to the 
ase of the �-
al
ulus, the 
omplexityresults obtained by this naive algorithm 
annot be improved essentially.Theorem 5.3. There exist transitions systems K, su
h that the model 
he
kingproblem for MIC on K is Pspa
e-
omplete (even for 1MIC).The proof is by redu
tion from QBF (the evaluation problem for quanti�edBoolean formulae.) We only sket
h the argument here.Let K be the Kripke-stru
ture 
onsisting of two points 0; 1, the atomi
proposition p = f1g, and the 
omplete transition relation f0; 1g � f0; 1g. Let�(X) := :X ^ (p! 3X). Further, let '[X=�(X)℄ denote the formula obtainedfrom ' by repla
ing every free o

urren
e of X by �(X).We indu
tively asso
iate with every quanti�ed Boolean formula  a MIC-formula  � as follows. For  := X we set  � := (p ^X) _ (:p ^3X). Further,(: )� := : � and ( Æ ')� :=  � Æ '� for Æ 2 f^;_g. Finally, for  := 8X' weput  � := 2(ifp X  �(X) ^ '�[X=�(X)℄):It 
an be shown that for any 
losed QBF-formula  , we have [[ �℄℄K = f0; 1gif  is true and [[ �℄℄K = ; otherwise. The theorem now follows immediately.In [15℄, Otto introdu
ed a higher-dimensional �-
al
ulus, denoted L!� whi
hextends basi
 multi-modal logi
 with an operator for forming least �xed points12



of arbitrary arity, rather than just sets. He showed that L!� 
an express everybisimulation-invariant, polynomial time de
idable property of �nite stru
tures.Sin
e we know that any 
olle
tion of �nite stru
tures de�nable in MIC is bothbisimulation-invariant and polynomial time de
idable, it follows that every for-mula of MIC 
an be translated to a formula of L!� that is equivalent to it on�nite stru
tures. We now show that the 
onverse fails. In parti
ular, there areproperties of �nite trees that are bisimulation-invariant and polynomial timede
idable but 
annot be expressed in MIC.Theorem 5.4. There is a 
olle
tion F of �nite trees in Ptime, 
losed underbisimulation, whi
h is not expressible in MIC.We sket
h the proof. De�ne F to be the 
olle
tion of all �nite trees T su
hthat all 
hildren of the root of T are bisimilar. As bisimuation equivalen
e isde
idable in polynomial time, it follows that F is in Ptime. It is also obviousthat F is 
losed under bisimulation.Assume, towards a 
ontradi
tion, that there is a formula ' 2 MIC thatde�nes F . We use ' to de�ne an equivalen
e relation on trees. Informally T1 �'T2 if at all stages of all the ifp-indu
tions in ', the same subformulae of 'be
ome true in T1 as in T2. Now, it 
an be shown that the index of �' on treesof height n is bounded by 2p(n) (for some polynomial p(n) depending only on'), whereas the bisimulation-index on trees of height n is not bounded by anyelementary fun
tion. Hen
e there exist T1 �' T2 with T1 6� T2. It is easy to seethat ' 
annot distinguish between those trees where every 
hild of the root isthe root of a 
opy of T1 and those trees where one of these 
opies is repla
ed byT2. But in the �rst 
ase the tree is in F , and in the se
ond it is not, yielding a
ontradi
tion.6 LanguagesIn this se
tion we investigate the expressive power of MIC on �nite strings. Inother words we attempt to determine what languages are de�nable by formulaeof MIC. For our purposes, a word w of length n, in an alphabet � is a transitionsystem with n states v1; : : : ; vn, a single a
tion su
h that (vi; vj) 2 E if, and onlyif, j = i+ 1 and an atomi
 proposition s for ea
h s 2 �, su
h that for ea
h vi,there is a unique s with vi 2 s.We have already seen in Proposition 2.4, that there are non-regular languagesthat are de�nable in MIC. We begin this se
tion by strengthening this result andshowing that there are languages de�nable in MIC that are not even 
ontext-free.6.1 Non-CFLs in MICTheorem 6.1. There is a language de�nable in MIC that is not 
ontext-free13



Proof. Consider the language L := f
wdw j w 2 fa; bg�g over the alphabetfa; b; 
; dg. It is easily veri�ed that L is not a 
ontext-free language. To see thatit is de�nable in MIC, �rst note that the formula� := 
 ^2empty(
) ^ nonempty(d) ^ all(d! 2empty(d))de�nes the set of strings f
xdy j x; y 2 fa; bg�g. Now, the desired formula is the
onjun
tion of � with the negation of the formula' := ifp X  [:
 ^ (2X _ 2d)℄ _ [
 ^ nonempty( )℄where,  is the formula:X ^ 2X ^ [(b ^ nonempty(a ^2X ^ :X))_(a ^ nonempty(b ^2X ^ :X))℄ utWe 
an also add the observation that the formula 
onstru
ted in the proof ofTheorem 6.1 above does not involve any simultaneous indu
tions, and thereforethere are non-
ontext-free languages de�nable in 1MIC.Another measure of the 
omplexity of a language, 
onsidered in [16℄ is au-tomati
ity. Brie
y, the automati
ity of a language L is the fun
tion AL whi
hgives for ea
h n the number of states in the smallest deterministi
 automatonwhi
h a

epts a language that agrees with L on all strings of length at most n.Clearly, every regular language has 
onstant automati
ity. Here, we note that it
an be shown that the language used in the proof of Theorem 6.1 has exponentialautomati
ity, whi
h is worst possible.Finally, to pla
e the expressive power of MIC in the Chomsky hierar
hy, wenote that every language de�nable in MIC 
an be de�ned by a 
ontext-sensitivegrammar. This follows from the observation made in Se
tion 5 that any 
lass of�nite stru
tures de�ned by a formula of MIC is de
idable in linear spa
e, andthe result that all languages de
idable by nondeterministi
 linear spa
e ma
hinesare de�nable by 
ontext-sensitive grammars.6.2 Capturing Linear Time LanguagesWe have seen in Se
tion 5 that the data 
omplexity of evaluating MIC-formulaeis in polynomial time and linear spa
e. It is also 
lear that MIC 
an expressPtime-
omplete properties, as this is already the 
ase for the �-
al
ulus.On words the situation is somewhat di�erent. The �-
al
ulus de�nes pre
iselythe regular languages and hen
e is very far away from expressing PTIME-
omplete properties. On the other side we have already seen that there existMIC-de�nable languages that are not even 
ontext-free. We will now show thatMIC 
an in fa
t de�ne all languages that are de
idable in linear time (by aTuring ma
hine).An observation that we will use in the proof, but whi
h may well be ofindependent interest, is that 
ardinality 
omparisons and addition of 
ardinalitiesare expressible in MIC on words (re
all that none of these are MSO-de�nable).14



Lemma 6.2. There exists a formula '(X;Y ) of MIC su
h that on every wordw, we have w;X; Y j= ' if and only if jX j = jY j. Similarly for jX j < jY j andjX j+ jY j = jZj.Theorem 6.3. Every language L 2 Dtime(O(n)) is MIC-de�nable.Note that we 
annot expe
t to extend the result for linear time to quadrati
time or higher. This is be
ause, as we have seen, every language de�nable inMIC is de
idable in linear spa
e, and it is not expe
ted that quadrati
 time isin
luded in linear spa
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