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Furthermore, a variety of fragments of the �xed point logis formed have beenstudied, suh as existential and strati�ed fragments, bounded �xed point logis,transitive losure logi and varieties of Datalog. Thus, there is a rih theoryof the struture and expressive power of �xed point logis on �nite relationalstrutures and, to a lesser extent, on in�nite strutures.In the present paper, we take a �rst step in the study of extensions of propo-sitional modal logi by operators that allow us to form �xed points of non-monotone formulae. We fous on the simplest of these, that is the inationary�xed point (also sometimes alled the iterative �xed point). Though the ination-ary �xed point extension of �rst order logi (IFP) is often used interhangeablywith LFP, as the two have the same expressive power on �nite strutures, weshow that in the ontext of modal logi, the inationary �xed point behavesquite di�erently from the least �xed point.Least and Inationary Indutions. We begin by reviewing the known results onthe logis LFP and IFP.(1) On �nite strutures, LFP and IFP have the same expressive power [12℄.(2) It is onjetured that IFP is stritly more expressive than LFP on in�nitestrutures, but only partial results are known. On many interesting in�nitestrutures, for instane in arithmeti (!;+; � ), LFP and IFP are knownto be equally expressive, but the translation of IFP into LFP an makethe formulae muh more ompliated [6℄.(3) On ordered �nite strutures, LFP and IFP express preisely the propertiesthat are deidable in polynomial time.(4) Simultaneous least or inationary indutions do not provide more expres-sive power than simple indutions.(5) The omplexity of evaluating a formula  in LFP or IFP on a given �nitestruture A is polynomial in the size of the struture, but exponential inthe length of the formula. For formulae with a bounded number k of vari-ables, the evaluation problem is Pspae-omplete [9℄, even for k = 2 andon �xed (and very small) strutures. If, in addition to bounding the num-ber of variables one also forbids parameters in �xed point formulae, theevaluation problem for LFP is omputationally equivalent to the modelheking problem for L� [11, 17℄ whih is known to be in NP \ o-NP,in fat in UP \ o-UP [14℄, and hard for Ptime. It is an open prob-lem whether this problem an be solved in polynomial time. The modelheking problem for bounded variable IFP does not appear to have beenstudied previously.We also note that even though IFP does not provide more expressive powerthan LFP on �nite strutures, it is often more onvenient to use inationaryindutions in expliit onstrutions. The advantage of using IFP is that one isnot restrited to indutions over positive formulae. A non-trivial ase in pointis the formula de�ning an order on the k-variable types in a �nite struture, anessential ingredient of the proof of the Abiteboul-Vianu Theorem, saying thatleast and partial �xed point logis oinide if and only if Ptime = Pspae (see2



[4, 8, 10℄). Furthermore, IFP is more robust, in the sense that inationary �xedpoints are well-de�ned, even when other, non-monotone, operators are added tothe language (see, for instane, [7℄).Inationary Indutions in Modal Logi. Given the lose relationship betweenLFP and IFP on �nite strutures, and the importane of the �-alulus, it isnatural to study also the properties and expressive power of inationary �xedpoints in modal logi. In this paper, we undertake a study of an analogue of IFPfor modal logi. We de�ne a modal iteration alulus, MIC, by extending ba-si multi-modal logi with simultaneous inationary indutions. While deferringformal de�nitions until Setion 2, we begin with an informal explanation.In L�, we an write formulae �X:', whih are true in state s of a transitionsystem K if, and only if, s is in the least set X satisfying X $ ' in K. We an dothis, provided that the variable X appears only positively in '. This guaranteesthat ' de�nes a monotone operator and has a least �xed point. Moreover, the�xed point an be obtained by an iterative proess. Starting with the empty set,if we repeatedly apply the operator de�ned by ' (possibly through a trans�niteseries of stages), we obtain an inreasing sequene of sets, whih onverges tothe desired least �xed point. If, on the other hand, ' is not positive in X , wean still de�ne an inreasing sequene of sets, by starting with the empty set,and iteratively taking the union of the urrent set X with the set of statessatisfying '(X), and this sequene must eventually onverge to a �xed point(not neessarily of ', but of the operator that maps X to X _ '(X)). Moregenerally, we allow formulae ifp Xi : [X1  '1; : : : ; Xk  'k℄ that onstrutsets by a simultaneous inationary indution. At eah stage �, we have a tupleof sets X�1 ; : : : ; X�k . Substituting these into the formulae '1; : : : ; 'k we obtain anew tuple of sets, whih we add to the existing sets X�1 ; : : : ; X�k , to obtain thenext stage.It is lear that MIC is a modal logi in the sense that it is invariant underbisimulation. In fat, on every lass of bounded ardinality, inationary �xedpoints an be unwound to obtain equivalent in�nitary modal formulae. As aonsequene, MIC has the tree model property. It is also lear that MIC is atleast as expressive as L�. The following natural questions now arise.(1) Is MIC more expressive than L�?(2) Does MIC have the �nite model property?(3) What are the algorithmi properties of MIC? Is the satis�ability problemdeidable? Can model heking be performed eÆiently (as eÆiently asfor L�)?(4) Can we eliminate, as in the �-alulus and as in IFP, simultaneous indu-tions without losing expressive power?(5) What is the relationship of MIC with monadi seond-order logi andwith �nite automata? Or more generally, what are the `right' automatafor MIC?(6) Is MIC the bisimulation-invariant fragment of any natural logi (as L� isthe bisimulation-invariant fragment of MSO [13℄)?3



We provide answers to most of these questions. From an algorithmi point ofview, most of the answers are negative. From the point of view of expressiveness,we an say that in the ontext of modal logi, inationary �xed points providemuh more expressive power than least �xed points, and MIC has very di�erentstrutural properties to L�. In partiular, we establish the following results:(1) There exist MIC-de�nable languages that are not regular. Hene MIC ismore expressive than the �-alulus, and does not translate to monadiseond-order logi.(2) MIC does not have the �nite model property.(3) The satis�ability problem for MIC is undeidable. In fat, it is not evenin the arithmeti hierarhy.(4) The model heking problem for MIC is Pspae-omplete.(5) Simultaneous inationary indutions do provide more expressive powerthan simple inationary indutions. Nevertheless the algorithmi intra-tability results for MIC apply also to MIC without simultaneous indu-tions.(6) There are bisimulation-invariant polynomial time properties that are notexpressible in MIC.(7) All languages in Dtime(O(n)) are MIC-de�nable.No doubt, these properties exlude MIC as a andidate logi for hardwareveri�ation. On the other hand, the present study is an investigation into thestruture of the inationary �xed point operator and may suggest tratablefragments of the logi MIC, whih involve ruial use of an inationary operator,just as logis like CTL and alternation-free L� arve out eÆiently tratablefragments of L�. In any ase, it delineates the di�erenes between inationaryand least �xed point onstruts in the ontext of modal logiIn the rest of this paper, we begin in Setion 2 by giving the neessary bak-ground on modal logi and �xed points, and giving the de�nition of MIC, alongwith an example that illustrates how this alulus has higher expressive powerthan L�. Setion 3 establishes that MIC fails to have the �nite model propertyand that the satis�ability problem is highly undeidable. This is established sep-arately for MIC, and 1MIC, its fragment without simultaneous indutions. Wealso show that MIC is more expressive than 1MIC. In Setion 5 we investigatequestions of the omputational omplexity of MIC in the ontext of �nite tran-sitions systems. We show that the model heking problem is Pspae-omplete,that the lass of models of any MIC formula is deidable in both polynomialtime and linear spae, and that there are polynomial time bisimulation-invariantproperties that are not expressible in MIC. Finally, Setion 6 investigates theexpressive power of MIC on �nite words, establishing that there are languagesde�nable in MIC that are not ontext-free, and that every linear time deidablelanguage is expressible in MIC.Due to spae limitations we only sketh the proofs of some results and deferthe details to the full version of the paper [5℄.4



2 The Modal Iteration CalulusBefore we de�ne the modal iteration alulus, we briey reall the de�nitions ofpropositional modal logi ML and the �-alulus L�.2.1 Propositional Modal Logi.Transition Systems. Modal logis are interpreted on transition systems (alsoalled Kripke strutures). Fix a set A of ations and a set V of atomi proposi-tions. A transition system for A and V is a struture K with universe V (whoseelements are alled states) binary relations Ea � V � V for eah a 2 A andmonadi relations p � V for eah atomi proposition p 2 V (we do not distin-guish notationally between atomi propositions and their interpretations.)Syntax of ML. For a set A of ations and a set V of proposition variables, theformulae of ML are built from false , true and the variables p 2 V by means ofBoolean onnetives ^, _, : and modal operators hai and [a℄. That is, if  is aformula of ML and a 2 A is an ation, then hai and [a℄ are also formulae ofML. If there is only one ation in A, one simply writes 2 and 3 for [a℄ and hai,respetively.Semantis of ML. The formulae of ML are evaluated on transition systems at apartiular state. Given a formula  and a transition system K with state v, wewrite K; v j=  to denote that the formula  holds in K at state v. We also write[[ ℄℄K to denote the set of states v, suh that K; v j=  . In the ase of atomipropositions,  = p, we have [[p℄℄K = p. Boolean onnetives are treated in thenatural way. Finally for the semantis of the modal operators we put[[hai ℄℄K := fv : there exists a state w suh that (v; w) 2 Ea and w 2 [[ ℄℄Kg[[[a℄ ℄℄K := fv : for all w suh that (v; w) 2 Ea, we have w 2 [[ ℄℄Kg:Hene hai and [a℄ an be viewed as existential and universal quanti�ers `alonga-transitions'.2.2 The �-alulus L�.Syntax of L�. The �-alulus extends propositional modal logi ML by the fol-lowing rule for building �xed point formulae: if  is a formula in L� and X isa propositional variable that ours only positively in  , then �X: and �X: are L� formulae.Semantis of L�. A formula  (X) with a propositional variable X de�nes onevery transition system K (with state set V , and with interpretations for freevariables other than X ourring in  ) an operator  K : P(V )! P(V ) assigningto every set X � V the set  K(X) := [[ ℄℄K;X = fv 2 V : (K; X); v j=  g:As X ours only positively in  , the operator  K is monotone for everyK, and therefore, by a well-known theorem due to Knaster and Tarski, has5



a least �xed point lfp( K) and a greatest �xed point gfp( K). Now we put[[�X: ℄℄K := lfp( K) and [[�X: ℄℄K := gfp( K):Least (and greatest) �xed points an also be onstruted indutively. Givena formula �X: (X), we de�ne for eah ordinal �, the stage X� of the lfp-indution of  K by X0 := ;, X�+1 := [[ ℄℄(K;X�), and X� := S�<�X� if � is alimit ordinal.By monotoniity, the stages of the lfp-indution inrease until a �xed pointis reahed. The �rst ordinal at whih this happens is alled the losure ordinalof the indution. By ordinal indution, one easily proves that this indutivelyonstruted �xed point oinides with the least �xed point. The ardinality of alosure ordinal annot be larger than the ardinality of K.For any formula ', the formula �X:' is equivalent to :�X::'(:X), where'(:X) denotes the formula obtained from ' by replaing all ourrenes of Xwith :X .Simultaneous Fixed Points. There is a variant of L� that admits systems of si-multaneous �xed points. Here one assoiates with any tuple  = ( 1; : : : ;  k) offormulae  i(X) =  i(X1; : : : ; Xk), in whih all ourrenes of all Xi are posi-tive, a new formula ' = �X: . The semantis of ' is indued by the least �xedpoint of the monotone operator  K mapping X to X 0 where X 0i = �v 2 V :(K; X); v j=  ig. More preisely, K; v j= ' i� v is an element of the �rst ompo-nent of the least �xed point of the above operator. Although these systems areomputationally bene�ial and sometimes also allow for more straightforwardformalisations, they do not inrease the expressive power. It is known that si-multaneous least �xed points an be eliminated in favour of nested individual�xed points (see e.g. [1, page 27℄). Indeed, �XY : [ (X;Y ); '(X;Y )℄ is equiva-lent to �X: (X;�Y:'(X;Y )), and this equivalene generalises to larger systemsin the obvious way.Bisimulations and Tree Model Property. Bisimulation is a notion of behaviouralequivalene for transition systems. No reasonable modal logi an distinguishbetween two systems that are bisimulation equivalent. Formally, given two tran-sition systems K and K0, with distinguished states v and v0 respetively, we saythat K; v is bisimulation equivalent to K0; v0, written K; v � K0; v0 if there is arelation R � V � V 0 between the states of K and the states of K0 suh that: (1)(v; v0) 2 R; (2) for eah atomi proposition p 2 V and eah (u; u0) 2 R, u 2 [[p℄℄Kif, and only if, u0 2 [[p℄℄K0 ; (3) for eah (u; u0) 2 R, and eah t 2 V suh that(u; t) 2 Ea, there is a t0 2 V 0 with (u0; t0) 2 E0a and (t; t0) 2 R; and (4) foreah (u; u0) 2 R, and eah t0 2 V 0 suh that (u0; t0) 2 E0a, there is a t 2 V with(u; t) 2 Ea and (t; t) 2 R.Bisimulation equivalene orresponds to equivalene in an in�nitary modallogi ML1 [2℄. This logi is the losure of ML under disjuntions and onjun-tions taken over arbitrary sets of formulae. Thus, if S is any set (possibly in�nite)of formulae, then VS and WS are also formulae of ML. It an be shown that forany transition systems K and K0, K; v � K0; v0 if, and only if, K; v makes trueexatly the same formulae of ML1 as K0; v0.6



A transition system is alled a tree, if for every state v, there is at most onestate u, and at most one ation a suh that (u; v) 2 Ea and there is exatlyone state r, alled the root of the tree, for whih there is no state having atransition to r, and if every state is reahable from the root. It is known thatfor every transition system K, and any state v, there is a tree T with root rsuh that K; v � T ; r. One onsequene of this is that any logi that respetsbisimulation has the tree model property. For instane, for any formula ' of L�,if ' is satis�able, then there is a tree T suh that T ; r j= '.2.3 The Modal Iteration Calulus.We are now ready to introdue MIC. Informally, MIC is propositional modallogi ML, augmented with simultaneous inationary �xed points.De�nition 2.1 (Syntax and semantis of MIC). MIC extends propositionalmulti-modal logi by the following rule: if '1; : : : ; 'k are formulae of MIC, andX1; : : : ; Xk are propositional variables, thenS := 8><>:X1  '1...Xk  'kis a system of rules, and (ifp Xi : S) is a formula of MIC. If S onsists of asingle rule X  ' we simplify the notation and write (ifp X  ') instead of(ifp X : X  ').Semantis: On every Kripke struture K, the system S de�nes, for eah ordinal�, a tuple X� = (X�1 ; : : : ; X�k ) of sets of states, via the following inationaryindution (for i = 1; : : : ; k).X0i := ;;X�+1i := X�i [ [['i℄℄(K;X�);X�i := [�<�X�i if � is a limit ordinal.We all (X�1 ; : : : ; X�k ) the stage � of the inationary indution of S on K. Asthe stages are inreasing (i.e. X�i � X�i for any � < �), this indution reahesa �xed point (X11 ; : : : ; X1k ). Now we put [[(ifp Xi : S)℄℄K := X1i :See Setion 2.4 and 3 for examples of suh formulae.Lemma 2.2. L� � MIC. Further, on every lass of strutures of bounded ar-dinality MIC � ML1.Proof. Clearly, if X ours only positively in  , then �X: � ifp X   . HeneL� � MIC. 7



Now, let S be a system of rules Xi  'i(X1; : : : ; Xk). It is lear that foreah ordinal � there exist formulae '�1 ; : : : ; '�k 2 ML1 de�ning, over any Kripkestruture, the stage � of the indution by S. As losure ordinals are bounded onstrutures of bounded ardinality, the seond laim follows. utCorollary 2.3. MIC is invariant under bisimulation and has the tree modelproperty.Note that on strutures of unbounded ardinality, L� and MIC are not on-tained in ML1. For instane, well-foundedness is expressed by the L�-formula�X:2X , but is known not to be expressible in ML1.2.4 Non-Regular LanguagesWe now demonstrate that MIC is stritly more expressive than L�. Reall thatevery formula of L� an be translated into a formula of monadi seond orderlogi (MSO). Moreover, it is known [3℄ that the only sets of �nite words that areexpressible in MSO are the regular languages. For our purposes, a �nite wordis a transition system with only one kind of ation, whih is a �nite tree, andwhere every state has at most one suessor.Proposition 2.4. There is a language that is expressible in MIC but not inMSO.Proof. The language L := fanbm : n � mg is not regular, hene not de�nable inmonadi seond-order logi, but it is de�nable in MIC. To see this, we onsider�rst the formula �(X) = (ifp Y  3(b ^ :X) _ 3(a ^ X ^ Y )) whih (sinethe rule is positive in Y ) is in fat equivalent to a L�-formula. On every wordw = w0 � � �wn�1 2 fa; bg� and X � f0; : : : ; n�1g, the formula is true if w startswith a (possibly empty) a-sequene inside X followed by a b outside X . Now theformula (ifp X  (a ^ �(X)) _ (b ^ 2X)) de�nes (inside a�b�) the language L.Note that the language a�b� is de�nable in L�, so we an onjoin this de�nitionto the above formula to obtain a de�nition of L whih works on all words infa; bg� utThe observation in Proposition 2.4 was pointed out to us in disussion by MartinOtto, and was the starting point of the investigation reported here.3 Interpreting Arithmeti in MICIn this setion we prove that the satis�ability problem of MIC is undeidablein a very strong sense. Given that MIC is invariant under bisimulation, we anrestrit attention to trees. In fat we will only onsider well-founded trees (i.e.trees satisfying the formula ifp X  2X). The height h(v) of a node v in awell-founded tree T is an ordinal, namely the least upper bound of the heightsof its hildren. For any node v in a tree T , we write T (v) for the subtree of Twith root v. We �rst show that the nodes of �nite height and the nodes of height! are de�nable in MIC. 8



Lemma 3.1. Let S be the systemX  2false _ (2X ^3:Y )Y  X:Then, on every tree T , [[ifp X : S℄℄T = [[ifp Y : S℄℄T = fv : h(v) < !g.Proof. By indution we see that for eah i < !, X i = fv : h(v) < ig andY i = X i�1 = fv : h(v) < i� 1g. As a onsequene X! = Y ! = fv : h(v) < !g.One further iteration shows that X!+1 = Y !+1 = X!. utWith the system S exhibited in Lemma 3.1 we obtain the formulae �nite-height := (ifp X : S) and !-height := :(ifp X : S)^2(ifp X : S) whih de�ne,respetively, the nodes of �nite height and the nodes of height !. Note that!-height is a satis�able formula all of whose models are in�nite.Proposition 3.2. MIC does not have the �nite model property.We show that the satis�ability problem of MIC is undeidable. In fat MICinterprets full arithmeti on the heights of nodes. To prove this we �rst de�nesome auxiliary formulae that will be used frequently throughout the paper. Wealways assume that the underlying struture is a well-founded tree.{ The formula nonempty(') := (ifp X  ' _ 3X) expresses that ' holdssomewhere in the subtree of the urrent node: T ; v j= nonempty(') i� [['℄℄T \T (v) 6= ;.{ Dually all(') := (ifp X  ' ^ 2X) says that ' holds at all nodes of thesubtree T (v).{ We say that a setX (in a tree T ) enodes the ordinal � ifX = fv : h(v) < �g.Let ordinal(X) be the onjuntion of the formula all(X ! 2X) with:(ifp Z : Y  2YZ  nonempty(:Y ^2Y ^X) ^ nonempty(:Y ^ 2Y ^ :X)):It expresses that X enodes some ordinal. Indeed all(X ! 2X) says thatwith eah node v 2 X , the entire subtree rooted at v is ontained in X .The seond onjunt performs an inationary indution inorporating intoY at eah stage � + 1 all nodes of height � (whih satisfy :Y ^ 2Y ) andinorporates the root of the tree into Z if both X and its omplement ontainnodes of height �. Hene, at the end of the indution the root of the treewill not be ontained in Z if, and only if, X does not distinguish betweennodes of the same height. Together the two onjunts imply that X ontainsall nodes up to some height.{ The formula number(X) = ordinal(X) ^ nonempty(�nite-height ^ :X) saysthat X enodes a natural number n (inside a tree of height > n).Lemma 3.3. Let T be a well-founded tree of height !. There exist formulaeplus(S; T ) and times(S; T ) of MIC suh that, whenever the sets S and T enodein the tree T the natural numbers s and t, then [[plus(S; T )℄℄T enodes s+ t, and[[times(S; T )℄℄T enodes st. 9



Proof. Letplus(S; T ) := ifp Y : X  2XY  S _ (2Y ^ nonempty(X) ^ all(X ! T )):Obviously at eah stage n, we have Xn = fv : h(v) < ng. We laim that foreah n, Y n+1 = fv : h(v) < s + min(n; t)g. For n = 0 this is lear (note thatfor the ase s = 0 this is true beause the onjunt nonempty(X) prevents theY -rule from being ative at stage 1). For n > 0 the inlusion Xn � T is true i�n � t. Hene we have Y n+1 = fv : h(v) < s + ng in the ase that n � t andY n+1 = Y n = � � � = Y t otherwise. To express multipliation we de�netimes(S; T ) := ifp Y : X  2XY  plus(Y; S) ^ all(2X ! T ):We laim that Y n = fv : h(v) < s �min(n; t)g. This is trivially true for n = 0.If it is true for n < t, then Y n+1 = fv : h(v) < sn+ sg = fv : h(v) < s(n+ 1)g.Finally for n � t, the extension of 2Xn is fv : h(v) < n + 1g whih is notontained in T = fv : h(v) < tg, hene Y n+1 = Y n = � � � = Y t. utCorollary 3.4. For every polynomial f(x1; : : : ; xr) with oeÆients in the nat-ural numbers there exists a formula  f (X1; : : : ; Xr) 2 MIC suh that for everytree T of height ! and all sets S1; : : : ; Sr enoding numbers s1; : : : ; sr 2 ![[ f (S1; : : : ; Sr)℄℄T = fv : h(v) < f(s1; : : : ; sr)g:Proof. By indution on f .{  0 := false .{  1 := 2false .{  X := X .{  f+g := plus[S= f ; T= g℄, i.e. the formula obtained by replaing in plus(S; T )the variables S and T by, respetively,  f and  g.{  f �g := times[S= f ; T= g℄. utTheorem 3.5. For every �rst order sentene  in the voabulary f+; �; 0; 1g ofarithmeti, there exists a formula  � 2 MIC suh that  is true in the standardmodel (N;+; �; 0; 1) of arithmeti if and only if  � is satis�able.Proof. We have already seen that there exists a MIC-axiom !-height axiomatis-ing the models that are bisimilar to a tree of height !. Further, we an expressset equalities X = Y by all(X $ Y ) and we know how to represent polynomialsby MIC-formulae. What remains is to translate quanti�ers.More preisely, we need to show that for eah �rst order formula  (y1; : : : ; yr)in the language of arithmeti there exists a MIC-formula  �(Y1; : : : ; Yr) suhthat on rooted trees T ; w of height ! and all sets S1; : : : ; Sr that enode num-bers s1; : : : ; sr on T we have that (N;+; �; 0; 1) j=  (s1; : : : ; sr) i� T ; w j= �(S1; : : : ; Sr). 10



Only the ase of formula of the form  (y) := 9x'(x; y) remains to be on-sidered. By indution hypothesis, we assume that for '(x; y) the orrespondingMIC-formula '�(X;Y ) has already been onstruted. Now let �(Y ) := ifp Z : X  2XZ  '�(X;Y ) ^ number(X): utCorollary 3.6. The satis�ability problem for MIC is undeidable. In fat, it isnot even in the arithmetial hierarhy.The proof given above appears to rely ruially on the use of simultaneousindutions. Indeed, one an show that formulae of MIC involving simultaneousindutions, in partiular the formula onstruted in the proof of Lemma 3.1, an-not be expressed without simultaneous indutions (see Theorem 4.2). However,it is still the ase that �rst order arithmeti an be redued to the satis�abilityproblem for MIC without simultaneous indutions. (See [5℄ for details.)4 Simultaneous vs. Non-Simultaneous IndutionsIt is easy to see that the equivalene �XY:( ; ') � �X: (X;�Y:'(X;Y )) (some-times alled the Beki-priniple [1℄) fails in both diretions when we take ina-tionary instead of least �xed points. However, it still is oneivable that simulta-neous indutions ould be eliminated by more ompliated tehniques. It followsfrom the results below, that this is not the ase, i.e. simultaneous inationaryindutions provide more expressive power than simple ones. Let 1MIC denotethe fragment of MIC that does not involve simultaneous indutions.For any ordinal �, let T� denote the tree with a root v� that has a setfv� j � < �g of hildren indexed by ordinals less than �, where eah v� is theroot of a subtree isomorphi to T� .Lemma 4.1. Let ' 2 1MIC be a formula. If X1; : : : ; Xk are atomi propositionson T!, losed under bisimulations, suh that v! 62 Xi (where v! is the root ofT!) and T!; v! j= '(X1; : : : ; Xk), then there is a �nite N suh that for all n > Nand all nodes vn of height n, T!; vn j= '(X1 � fvng; : : : ; Xk � fvng):It is a straightforward onsequene of this lemma that the formula !-heightde�ned in Set. 3 is not equivalent to any formula of 1MIC. We hene haveestablished the following separation result.Theorem 4.2. MIC is stritly more powerful than 1MIC.5 The Model Cheking Problem for MICReall that the model heking problem for the �-alulus is in UP \ o-UP,and is onjetured by some to be solvable in polynomial time. We now showthat MIC is algorithmially more ompliated (unless Pspae = NP).11



We �rst observe that the naive bottom-up evaluation algorithm for MIC-formulae uses polynomial time with respet to the size of the input struture,and polynomial spae (and exponential time) with respet to the length of theformula. Let K be a transition system with n nodes and m edges. The size jjKjjof appropriate enodings of K as an input for a model heking algorithm isO(n+m). It is well known that the extension [['℄℄K of a basi modal formula '(without �xed points) on a �nite transition system K an be omputed in timeO(j'j � jjKjj). Further, any inationary indution ifp Xi : [X1  '1; : : : ; Xk  'k℄ reahes a �xed point on K after at most kn iterations. Hene, the bottom-up evaluation of a MIC-formula  with d nested simultaneous inationary �xedpoints, eah of width k, on K needs at most O((kn)d) basi evaluation steps.For eah �xed point variable ourring in the formula, 2n bits of workspae areneeded to reord the urrent value and the last value of the indution. This givesthe following omplexity results.Proposition 5.1. Any MIC formula  of nesting depth d and simultaneousindutions of width at most k on a transition system K with n nodes an beevaluated in time O((kn)dj j � jjKjj) and spae O(j j � n).In terms of ommon omplexity lasses the results an be stated as follows.Theorem 5.2. (1) The ombined omplexity of the model heking problemfor MIC on �nite strutures is in Pspae.(2) For any �xed formula  2 MIC, the model heking problem for  on�nite strutures is solvable in polynomial time and linear spae.We now show that, ontrary to the ase of the �-alulus, the omplexityresults obtained by this naive algorithm annot be improved essentially.Theorem 5.3. There exist transitions systems K, suh that the model hekingproblem for MIC on K is Pspae-omplete (even for 1MIC).The proof is by redution from QBF (the evaluation problem for quanti�edBoolean formulae.) We only sketh the argument here.Let K be the Kripke-struture onsisting of two points 0; 1, the atomiproposition p = f1g, and the omplete transition relation f0; 1g � f0; 1g. Let�(X) := :X ^ (p! 3X). Further, let '[X=�(X)℄ denote the formula obtainedfrom ' by replaing every free ourrene of X by �(X).We indutively assoiate with every quanti�ed Boolean formula  a MIC-formula  � as follows. For  := X we set  � := (p ^X) _ (:p ^3X). Further,(: )� := : � and ( Æ ')� :=  � Æ '� for Æ 2 f^;_g. Finally, for  := 8X' weput  � := 2(ifp X  �(X) ^ '�[X=�(X)℄):It an be shown that for any losed QBF-formula  , we have [[ �℄℄K = f0; 1gif  is true and [[ �℄℄K = ; otherwise. The theorem now follows immediately.In [15℄, Otto introdued a higher-dimensional �-alulus, denoted L!� whihextends basi multi-modal logi with an operator for forming least �xed points12



of arbitrary arity, rather than just sets. He showed that L!� an express everybisimulation-invariant, polynomial time deidable property of �nite strutures.Sine we know that any olletion of �nite strutures de�nable in MIC is bothbisimulation-invariant and polynomial time deidable, it follows that every for-mula of MIC an be translated to a formula of L!� that is equivalent to it on�nite strutures. We now show that the onverse fails. In partiular, there areproperties of �nite trees that are bisimulation-invariant and polynomial timedeidable but annot be expressed in MIC.Theorem 5.4. There is a olletion F of �nite trees in Ptime, losed underbisimulation, whih is not expressible in MIC.We sketh the proof. De�ne F to be the olletion of all �nite trees T suhthat all hildren of the root of T are bisimilar. As bisimuation equivalene isdeidable in polynomial time, it follows that F is in Ptime. It is also obviousthat F is losed under bisimulation.Assume, towards a ontradition, that there is a formula ' 2 MIC thatde�nes F . We use ' to de�ne an equivalene relation on trees. Informally T1 �'T2 if at all stages of all the ifp-indutions in ', the same subformulae of 'beome true in T1 as in T2. Now, it an be shown that the index of �' on treesof height n is bounded by 2p(n) (for some polynomial p(n) depending only on'), whereas the bisimulation-index on trees of height n is not bounded by anyelementary funtion. Hene there exist T1 �' T2 with T1 6� T2. It is easy to seethat ' annot distinguish between those trees where every hild of the root isthe root of a opy of T1 and those trees where one of these opies is replaed byT2. But in the �rst ase the tree is in F , and in the seond it is not, yielding aontradition.6 LanguagesIn this setion we investigate the expressive power of MIC on �nite strings. Inother words we attempt to determine what languages are de�nable by formulaeof MIC. For our purposes, a word w of length n, in an alphabet � is a transitionsystem with n states v1; : : : ; vn, a single ation suh that (vi; vj) 2 E if, and onlyif, j = i+ 1 and an atomi proposition s for eah s 2 �, suh that for eah vi,there is a unique s with vi 2 s.We have already seen in Proposition 2.4, that there are non-regular languagesthat are de�nable in MIC. We begin this setion by strengthening this result andshowing that there are languages de�nable in MIC that are not even ontext-free.6.1 Non-CFLs in MICTheorem 6.1. There is a language de�nable in MIC that is not ontext-free13



Proof. Consider the language L := fwdw j w 2 fa; bg�g over the alphabetfa; b; ; dg. It is easily veri�ed that L is not a ontext-free language. To see thatit is de�nable in MIC, �rst note that the formula� :=  ^2empty() ^ nonempty(d) ^ all(d! 2empty(d))de�nes the set of strings fxdy j x; y 2 fa; bg�g. Now, the desired formula is theonjuntion of � with the negation of the formula' := ifp X  [: ^ (2X _ 2d)℄ _ [ ^ nonempty( )℄where,  is the formula:X ^ 2X ^ [(b ^ nonempty(a ^2X ^ :X))_(a ^ nonempty(b ^2X ^ :X))℄ utWe an also add the observation that the formula onstruted in the proof ofTheorem 6.1 above does not involve any simultaneous indutions, and thereforethere are non-ontext-free languages de�nable in 1MIC.Another measure of the omplexity of a language, onsidered in [16℄ is au-tomatiity. Briey, the automatiity of a language L is the funtion AL whihgives for eah n the number of states in the smallest deterministi automatonwhih aepts a language that agrees with L on all strings of length at most n.Clearly, every regular language has onstant automatiity. Here, we note that itan be shown that the language used in the proof of Theorem 6.1 has exponentialautomatiity, whih is worst possible.Finally, to plae the expressive power of MIC in the Chomsky hierarhy, wenote that every language de�nable in MIC an be de�ned by a ontext-sensitivegrammar. This follows from the observation made in Setion 5 that any lass of�nite strutures de�ned by a formula of MIC is deidable in linear spae, andthe result that all languages deidable by nondeterministi linear spae mahinesare de�nable by ontext-sensitive grammars.6.2 Capturing Linear Time LanguagesWe have seen in Setion 5 that the data omplexity of evaluating MIC-formulaeis in polynomial time and linear spae. It is also lear that MIC an expressPtime-omplete properties, as this is already the ase for the �-alulus.On words the situation is somewhat di�erent. The �-alulus de�nes preiselythe regular languages and hene is very far away from expressing PTIME-omplete properties. On the other side we have already seen that there existMIC-de�nable languages that are not even ontext-free. We will now show thatMIC an in fat de�ne all languages that are deidable in linear time (by aTuring mahine).An observation that we will use in the proof, but whih may well be ofindependent interest, is that ardinality omparisons and addition of ardinalitiesare expressible in MIC on words (reall that none of these are MSO-de�nable).14
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