Inflationary Fixed Points in Modal Logic

A. Dawar’*, E. Gridel?, and S. Kreutzer?

! University of Cambridge Computer Laboratory, Cambridge CB2 3QG, UK.
anuj.dawar@cl.cam.ac.uk
2 Mathematische Grundlagen der Informatik, RWTH Aachen, D-52065 Aachen.
{graedel ,kreutzer}Q@informatik.rwth-aachen.de,
WWW: http://www-mgi.informatik.rwth-aachen.de

Abstract. We consider an extension of modal logic with an operator
for constructing inflationary fixed points, just as the modal p-calculus
extends basic modal logic with an operator for least fixed points. Least
and inflationary fixed point operators have been studied and compared
in other contexts, particularly in finite model theory, where it is known
that the logics IFP and LFP that result from adding such fixed point
operators to first order logic have equal expressive power. As we show,
the situation in modal logic is quite different, as the modal iteration
calculus (MIC) we introduce has much greater expressive power than
the p-calculus. Greater expressive power comes at a cost: the calculus is
algorithmically much less manageable.

1 Introduction

The modal p-calculus L, is an extension of multi-modal logic with an operator
for forming least fixed points. This logic has been extensively studied, having
acquired importance for a number of reasons. In terms of expressive power, it
subsumes a variety of modal and temporal logics used in verification, in particular
LTL, CTL, CTL*, PDL and also many logics used in other areas of computer
science, for instance description logics. On the other hand, L, has a rich theory,
and is well-behaved in model-theoretic and algorithmic terms.

The logic L, is only one instance of a logic with an explicit operator for form-
ing least fixed points. Indeed, in recent years, a number of fixed point extensions
of first order logic have been studied in the context of finite model theory. It may
be argued that fixed point logics play a central role in finite model theory, more
important than first order logic itself. The best known of these fixed point logics
is LFP, which extends first order logic with an operator for forming the least fixed
points of positive formulae, defining monotone operators. In this sense, it relates
to first order logic in much the same way as L, relates to propositional modal
logic. However, a number of other fixed point operators have been extensively
studied in finite model theory, including inflationary, partial, nondeterministic
and alternating fixed points. All of these have in common that they allow the
construction of fixed points of operators that are not necessarily monotone.

* Research supported by EPSRC grants GR/L69596 and GR/N23028.

Furthermore, a variety of fragments of the fixed point logics formed have been
studied, such as existential and stratified fragments, bounded fixed point logics,
transitive closure logic and varieties of Datalog. Thus, there is a rich theory
of the structure and expressive power of fixed point logics on finite relational
structures and, to a lesser extent, on infinite structures.

In the present paper, we take a first step in the study of extensions of propo-
sitional modal logic by operators that allow us to form fixed points of non-
monotone formulae. We focus on the simplest of these, that is the inflationary
fixed point (also sometimes called the iterative fixed point). Though the inflation-
ary fixed point extension of first order logic (IFP) is often used interchangeably
with LFP, as the two have the same expressive power on finite structures, we
show that in the context of modal logic, the inflationary fixed point behaves
quite differently from the least fixed point.

Least and Inflationary Inductions. We begin by reviewing the known results on
the logics LFP and IFP.

(1) On finite structures, LFP and IFP have the same expressive power [12].

(2) It is conjectured that IFP is strictly more expressive than LFP on infinite
structures, but only partial results are known. On many interesting infinite
structures, for instance in arithmetic (w, +, -), LFP and IFP are known
to be equally expressive, but the translation of IFP into LFP can make
the formulae much more complicated [6].

(3) On ordered finite structures, LFP and IFP express precisely the properties
that are decidable in polynomial time.

(4) Simultaneous least or inflationary inductions do not provide more expres-
sive power than simple inductions.

(5) The complexity of evaluating a formula ¢ in LFP or IFP on a given finite
structure 2 is polynomial in the size of the structure, but exponential in
the length of the formula. For formulae with a bounded number k of vari-
ables, the evaluation problem is PSPACE-complete [9], even for k£ = 2 and
on fixed (and very small) structures. If, in addition to bounding the num-
ber of variables one also forbids parameters in fixed point formulae, the
evaluation problem for LFP is computationally equivalent to the model
checking problem for L, [11,17] which is known to be in NP N co-NP,
in fact in UP N co-UP [14], and hard for PTIME. It is an open prob-
lem whether this problem can be solved in polynomial time. The model
checking problem for bounded variable IFP does not appear to have been
studied previously.

We also note that even though IFP does not provide more expressive power
than LFP on finite structures, it is often more convenient to use inflationary
inductions in explicit constructions. The advantage of using IFP is that one is
not restricted to inductions over positive formulae. A non-trivial case in point
is the formula defining an order on the k-variable types in a finite structure, an
essential ingredient of the proof of the Abiteboul-Vianu Theorem, saying that
least and partial fixed point logics coincide if and only if PTIME = PSPACE (see

[4,8,10]). Furthermore, IFP is more robust, in the sense that inflationary fixed
points are well-defined, even when other, non-monotone, operators are added to
the language (see, for instance, [7]).

Inflationary Inductions in Modal Logic. Given the close relationship between
LFP and IFP on finite structures, and the importance of the p-calculus, it is
natural to study also the properties and expressive power of inflationary fixed
points in modal logic. In this paper, we undertake a study of an analogue of IFP
for modal logic. We define a modal iteration calculus, MIC, by extending ba-
sic multi-modal logic with simultaneous inflationary inductions. While deferring
formal definitions until Section 2, we begin with an informal explanation.

In L,, we can write formulae pX.p, which are true in state s of a transition
system K if, and only if, s is in the least set X satisfying X <> ¢ in K. We can do
this, provided that the variable X appears only positively in ¢. This guarantees
that ¢ defines a monotone operator and has a least fixed point. Moreover, the
fixed point can be obtained by an iterative process. Starting with the empty set,
if we repeatedly apply the operator defined by ¢ (possibly through a transfinite
series of stages), we obtain an increasing sequence of sets, which converges to
the desired least fixed point. If, on the other hand, ¢ is not positive in X, we
can still define an increasing sequence of sets, by starting with the empty set,
and iteratively taking the union of the current set X with the set of states
satisfying ¢(X), and this sequence must eventually converge to a fixed point
(not necessarily of ¢, but of the operator that maps X to X V ¢(X)). More
generally, we allow formulae ifp X; : [X1 + ¢1,..., Xk «] that construct
sets by a simultaneous inflationary induction. At each stage a, we have a tuple
of sets X, ..., X', Substituting these into the formulae ¢1,..., ¢, we obtain a
new tuple of sets, which we add to the existing sets X{,..., X7, to obtain the
next stage.

It is clear that MIC is a modal logic in the sense that it is invariant under
bisimulation. In fact, on every class of bounded cardinality, inflationary fixed
points can be unwound to obtain equivalent infinitary modal formulae. As a
consequence, MIC has the tree model property. It is also clear that MIC is at
least as expressive as L,. The following natural questions now arise.

(1) Is MIC more expressive than L,?

(2) Does MIC have the finite model property?

(3) What are the algorithmic properties of MIC? Is the satisfiability problem
decidable? Can model checking be performed efficiently (as efficiently as
for L,)?

(4) Can we eliminate, as in the p-calculus and as in IFP, simultaneous induc-
tions without losing expressive power?

(5) What is the relationship of MIC with monadic second-order logic and
with finite automata? Or more generally, what are the ‘right’ automata
for MIC?

(6) Is MIC the bisimulation-invariant fragment of any natural logic (as L, is
the bisimulation-invariant fragment of MSO [13])?

We provide answers to most of these questions. From an algorithmic point of
view, most of the answers are negative. From the point of view of expressiveness,
we can say that in the context of modal logic, inflationary fixed points provide
much more expressive power than least fixed points, and MIC has very different
structural properties to L,. In particular, we establish the following results:

(1) There exist MIC-definable languages that are not regular. Hence MIC is
more expressive than the p-calculus, and does not translate to monadic
second-order logic.

(2) MIC does not have the finite model property.

(3) The satisfiability problem for MIC is undecidable. In fact, it is not even
in the arithmetic hierarchy.

(4) The model checking problem for MIC is PSPACE-complete.

(5) Simultaneous inflationary inductions do provide more expressive power
than simple inflationary inductions. Nevertheless the algorithmic intrac-
tability results for MIC apply also to MIC without simultaneous induc-
tions.

(6) There are bisimulation-invariant polynomial time properties that are not
expressible in MIC.

(7) All languages in DTIME(O(n)) are MIC-definable.

No doubt, these properties exclude MIC as a candidate logic for hardware
verification. On the other hand, the present study is an investigation into the
structure of the inflationary fixed point operator and may suggest tractable
fragments of the logic MIC, which involve crucial use of an inflationary operator,
just as logics like CTL and alternation-free L, carve out efficiently tractable
fragments of L,. In any case, it delineates the differences between inflationary
and least fixed point constructs in the context of modal logic

In the rest of this paper, we begin in Section 2 by giving the necessary back-
ground on modal logic and fixed points, and giving the definition of MIC, along
with an example that illustrates how this calculus has higher expressive power
than L,. Section 3 establishes that MIC fails to have the finite model property
and that the satisfiability problem is highly undecidable. This is established sep-
arately for MIC, and 1MIC, its fragment without simultaneous inductions. We
also show that MIC is more expressive than 1MIC. In Section 5 we investigate
questions of the computational complexity of MIC in the context of finite tran-
sitions systems. We show that the model checking problem is PSPACE-complete,
that the class of models of any MIC formula is decidable in both polynomial
time and linear space, and that there are polynomial time bisimulation-invariant
properties that are not expressible in MIC. Finally, Section 6 investigates the
expressive power of MIC on finite words, establishing that there are languages
definable in MIC that are not context-free, and that every linear time decidable
language is expressible in MIC.

Due to space limitations we only sketch the proofs of some results and defer
the details to the full version of the paper [5].

2 The Modal Iteration Calculus

Before we define the modal iteration calculus, we briefly recall the definitions of
propositional modal logic ML and the p-calculus L.

2.1 Propositional Modal Logic.

Transition Systems. Modal logics are interpreted on transition systems (also
called Kripke structures). Fix a set A of actions and a set V of atomic proposi-
tions. A transition system for A and V is a structure K with universe V' (whose
elements are called states) binary relations E, C V x V for each a € A and
monadic relations p C V for each atomic proposition p € V (we do not distin-
guish notationally between atomic propositions and their interpretations.)

Syntax of ML. For a set A of actions and a set V of proposition variables, the
formulae of ML are built from false, true and the variables p € V by means of
Boolean connectives A, V, = and modal operators (a) and [a]. That is, if ¢ is a
formula of ML and a € A is an action, then (a)ty and [a]y are also formulae of
ML. If there is only one action in A, one simply writes O and < for [a] and (a),
respectively.

Semantics of ML.. The formulae of ML are evaluated on transition systems at a
particular state. Given a formula ¢ and a transition system K with state v, we
write K, v |= 9 to denote that the formula ¢ holds in K at state v. We also write
[¢]* to denote the set of states v, such that K,v = 1. In the case of atomic
propositions, ¢ = p, we have [p]* = p. Boolean connectives are treated in the
natural way. Finally for the semantics of the modal operators we put

[(a)¥]* := {v : there exists a state w such that (v,w) € E, and w € [¢]*}
[[a]¢]* := {v : for all w such that (v,w) € E,, we have w € [¢]*}.

Hence (a) and [a] can be viewed as existential and universal quantifiers ‘along
a-transitions’.

2.2 The p-calculus L.

Syntax of L,. The p-calculus extends propositional modal logic ML by the fol-
lowing rule for building fixed point formulae: if 1 is a formula in L, and X is
a propositional variable that occurs only positively in v, then pX.¢) and vX.¢)
are L, formulae.

Semantics of L,. A formula ¢(X) with a propositional variable X defines on
every transition system K (with state set V, and with interpretations for free
variables other than X occurring in 1) an operator /X : P(V) — P (V) assigning
to every set X C V the set X (X) := []*X = {v e V: (K, X),v E ¢}

As X occurs only positively in ¢, the operator)X is monotone for every
K, and therefore, by a well-known theorem due to Knaster and Tarski, has

a least fixed point 1fp(1)*) and a greatest fixed point gfp(1)*). Now we put
[uX 1% = Up()*) and [vX.P]* = gfp(").

Least (and greatest) fixed points can also be constructed inductively. Given
a formula puX.1p(X), we define for each ordinal «, the stage X¢ of the lfp-
induction of % by X°:= @, Xo+! := []*¥), and X :=Jz_, XP if aisa
limit ordinal.

By monotonicity, the stages of the lfp-induction increase until a fixed point
is reached. The first ordinal at which this happens is called the closure ordinal
of the induction. By ordinal induction, one easily proves that this inductively
constructed fixed point coincides with the least fixed point. The cardinality of a
closure ordinal cannot be larger than the cardinality of K.

For any formula ¢, the formula vX.p is equivalent to —uX.—p(=X), where
p(—X) denotes the formula obtained from ¢ by replacing all occurrences of X
with = X.

Simultaneous Fized Points. There is a variant of L, that admits systems of si-
multaneous fixed points. Here one associates with any tuple ¢ = (¢1,...,9) of
formulae 1;(X) = 1;(X1,...,X), in which all occurrences of all X; are posi-
tive, a new formula ¢ = pX .2). The semantics of ¢ is induced by the least fixed
point of the monotone operator ¢/ mapping X to X where X! = fvev:
(K,X),v |=1;}. More precisely, K,v = ¢ iff v is an element of the first compo-
nent of the least fixed point of the above operator. Although these systems are
computationally beneficial and sometimes also allow for more straightforward
formalisations, they do not increase the expressive power. It is known that si-
multaneous least fixed points can be eliminated in favour of nested individual
fixed points (see e.g. [1, page 27]). Indeed, pXY .[¢(X,Y), o(X,Y)] is equiva-
lent to uX. (X, uY.(X,Y)), and this equivalence generalises to larger systems
in the obvious way.

Bisimulations and Tree Model Property. Bisimulation is a notion of behavioural
equivalence for transition systems. No reasonable modal logic can distinguish
between two systems that are bisimulation equivalent. Formally, given two tran-
sition systems K and K', with distinguished states v and v’ respectively, we say
that K, v is bisimulation equivalent to X', v’, written K,v ~ K', v’ if there is a
relation R C V' x V' between the states of K and the states of K' such that: (1)
(v,v") € R; (2) for each atomic proposition p € V and each (u,u') € R, u € [p]*
if, and only if, u’ € [p]*'; (3) for each (u,u') € R, and each t € V such that
(u,t) € E,, there is a t' € V' with (uv,t') € E! and (¢,t') € R; and (4) for
each (u,u’) € R, and each ¢’ € V' such that (u',t') € El, there is a t € V with
(u,t) € E, and (t,t) € R.

Bisimulation equivalence corresponds to equivalence in an infinitary modal
logic ML® [2]. This logic is the closure of ML under disjunctions and conjunc-
tions taken over arbitrary sets of formulae. Thus, if S is any set (possibly infinite)
of formulae, then A S and \/ S are also formulae of ML. It can be shown that for
any transition systems K and K', K,v ~ K',v" if, and only if, K, v makes true

exactly the same formulae of ML™ as K',v'.

A transition system is called a tree, if for every state v, there is at most one
state u, and at most one action a such that (u,v) € E, and there is exactly
one state r, called the root of the tree, for which there is no state having a
transition to r, and if every state is reachable from the root. It is known that
for every transition system K, and any state v, there is a tree 7 with root r
such that K,v ~ T,r. One consequence of this is that any logic that respects
bisimulation has the tree model property. For instance, for any formula ¢ of L,
if o is satisfiable, then there is a tree T such that 7,7 |= ¢.

2.3 The Modal Iteration Calculus.

We are now ready to introduce MIC. Informally, MIC is propositional modal
logic ML, augmented with simultaneous inflationary fixed points.

Definition 2.1 (Syntax and semantics of MIC). MIC extends propositional
multi-modal logic by the following rule: if v1,..., ¢ are formulae of MIC, and

X1,..., X} are propositional variables, then
X1 — Y1

S =
Xk + o

is a system of rules, and (ifp X; : S) is a formula of MIC. If S consists of a
single rule X < ¢ we simplify the notation and write (ifp X <) instead of
(ifp X : X < ¢).

Semantics: On every Kripke structure KC, the system S defines, for each ordinal
a, a tuple X* = (X7, ..., X)) of sets of states, via the following inflationary
induction (fori=1,...,k).

XD =0,
XeH = X2 U] X0,

X = U Xf if « is a limit ordinal.
B<a

We call (X7,...,X}) the stage o of the inflationary induction of S on K. As

the stages are increasing (i.e. X C Xf for any a < B), this induction reaches
a fized point (X7°,...,X°). Now we put [(ifp X; : S)]* := X2°.

See Section 2.4 and 3 for examples of such formulae.

Lemma 2.2. L, C MIC. Further, on every class of structures of bounded car-
dinality MIC C ML,

Proof. Clearly, if X occurs only positively in 1), then uX.i) = ifp X < 9. Hence
L, C MIC.

Now, let S be a system of rules X; < ;(X1,...,X). It is clear that for
each ordinal « there exist formulae ¢, ..., p% € ML*™ defining, over any Kripke
structure, the stage « of the induction by S. As closure ordinals are bounded on
structures of bounded cardinality, the second claim follows. O

Corollary 2.3. MIC is invariant under bisimulation and has the tree model
property.

Note that on structures of unbounded cardinality, L, and MIC are not con-
tained in ML®. For instance, well-foundedness is expressed by the L,-formula
uX.0X, but is known not to be expressible in ML,

2.4 Non-Regular Languages

We now demonstrate that MIC is strictly more expressive than L,. Recall that
every formula of L, can be translated into a formula of monadic second order
logic (MSO). Moreover, it is known [3] that the only sets of finite words that are
expressible in MSO are the regular languages. For our purposes, a finite word
is a transition system with only one kind of action, which is a finite tree, and
where every state has at most one successor.

Proposition 2.4. There is a language that is expressible in MIC but not in

MSO.

Proof. The language L := {a"b™ : n < m} is not regular, hence not definable in
monadic second-order logic, but it is definable in MIC. To see this, we consider
first the formula 7(X) = (ifp ¥ < ¢(bA-X)V OG(aA X AY)) which (since
the rule is positive in Y') is in fact equivalent to a L,-formula. On every word
w=wqy- wp_1 € {a,b}* and X C {0,...,n— 1}, the formula is true if w starts
with a (possibly empty) a-sequence inside X followed by a b outside X. Now the
formula (ifp X < (a A7w(X)) V (bAOX)) defines (inside a*b*) the language L.
Note that the language a*b* is definable in L, so we can conjoin this definition
to the above formula to obtain a definition of L which works on all words in

{av b}* O

The observation in Proposition 2.4 was pointed out to us in discussion by Martin
Otto, and was the starting point of the investigation reported here.

3 Interpreting Arithmetic in MIC

In this section we prove that the satisfiability problem of MIC is undecidable
in a very strong sense. Given that MIC is invariant under bisimulation, we can
restrict attention to trees. In fact we will only consider well-founded trees (i.e.
trees satisfying the formula ifp X « OX). The height h(v) of a node v in a
well-founded tree 7 is an ordinal, namely the least upper bound of the heights
of its children. For any node v in a tree 7, we write T (v) for the subtree of T
with root v. We first show that the nodes of finite height and the nodes of height
w are definable in MIC.

Lemma 3.1. Let S be the system

X « Ofalse v (OX A ORY)
Y « X.

Then, on every tree T, [ifp X : S]7 =[ifp Y : S]7 = {v: h(v) < w}.

Proof. By induction we see that for each i < w, X! = {v : h(v) < i} and
Vi=X"1={v:h(v) <i-—1}. As a consequence X* = Y* = {v : h(v) < w}.
One further iteration shows that X« = Yv+l = X«, O

With the system S exhibited in Lemma 3.1 we obtain the formulae finite-
height := (ifp X : S) and w-height := = (ifp X : S)AQ(ifp X : S) which define,
respectively, the nodes of finite height and the nodes of height w. Note that
w-height is a satisfiable formula all of whose models are infinite.

Proposition 3.2. MIC does not have the finite model property.

We show that the satisfiability problem of MIC is undecidable. In fact MIC
interprets full arithmetic on the heights of nodes. To prove this we first define
some auxiliary formulae that will be used frequently throughout the paper. We
always assume that the underlying structure is a well-founded tree.

— The formula nonempty(y) = (ifp X < ¢V OX) expresses that ¢ holds
somewhere in the subtree of the current node: 7, v = nonempty (¢) iff [] 7 N
T (v) # 0.

— Dually all(p) := (ifp X < ¢ A OX) says that ¢ holds at all nodes of the
subtree T (v).

— We say that a set X (in a tree T') encodes the ordinal a if X = {v : h(v) < a}.
Let ordinal(X) be the conjunction of the formula all(X — OX) with

-(ifp Z:Y « 0OY
Z + nonempty (=Y A OY A X) A nonempty(—=Y A OY A =X)).

It expresses that X encodes some ordinal. Indeed all(X — OX) says that
with each node v € X, the entire subtree rooted at v is contained in X.
The second conjunct performs an inflationary induction incorporating into
Y at each stage # + 1 all nodes of height § (which satisfy =Y A OY") and
incorporates the root of the tree into Z if both X and its complement contain
nodes of height 3. Hence, at the end of the induction the root of the tree
will not be contained in Z if, and only if, X does not distinguish between
nodes of the same height. Together the two conjuncts imply that X contains
all nodes up to some height.

— The formula number(X) = ordinal(X) A nonempty(finite-height A = X') says
that X encodes a natural number n (inside a tree of height > n).

Lemma 3.3. Let T be a well-founded tree of height w. There exist formulae
plus(S,T) and times(S,T) of MIC such that, whenever the sets S and T encode
in the tree T the natural numbers s and t, then [plus(S,T)]” encodes s +t, and
[times(S,T)]7 encodes st.

Proof. Let

plus(S,T) :=ifp YV : X « OX
Y + SV (OY A nonempty(X) A all(X — T)).

Obviously at each stage n, we have X" = {v : h(v) < n}. We claim that for
each n, Y"1 = {v : h(v) < s + min(n,t)}. For n = 0 this is clear (note that
for the case s = 0 this is true because the conjunct nonempty(X) prevents the
Y -rule from being active at stage 1). For n > 0 the inclusion X" C T is true iff
n < t. Hence we have Y™ = {v : h(v) < s+ n} in the case that n < ¢ and
Y+l = Y” = ... = Y otherwise. To express multiplication we define

times(S,T) :=ifp YV : X «+ OX
Y « plus(Y,S) Aall(OX — T).

We claim that Y = {v: h(v) < s-min(n,t)}. This is trivially true for n = 0.
If it is true for n < ¢, then Y™ = {v: h(v) < sn+ s} = {v : h(v) < s(n+ 1)}.
Finally for n > t, the extension of OX"™ is {v : h(v) < n + 1} which is not
contained in T = {v : h(v) < t}, hence Y"1 =y" = ... = Y1, O

Corollary 3.4. For every polynomial f(x1,...,x,) with coefficients in the nat-

ural numbers there exists a formula ¥ (X1,...,X,) € MIC such that for every

3

tree T of height w and all sets Sy,...,S, encoding numbers sy,...,5, € w

3

[(St,.. ., S)]T = {v:h(v) < f(s1,---,5)}
Proof. By induction on f.

— g := false.
— 1 := Ofalse.
- 'QZJX = X.

— Yypyg = plus[S/¢y, T/1),], i.e. the formula obtained by replacing in plus(S, T)
the variables S and T by, respectively, ¢ and v,.

— Yy 1= times[S/Y, T/1),].
O

Theorem 3.5. For every first order sentence ¢ in the vocabulary {+,-,0,1} of
arithmetic, there exists a formula ¢¥* € MIC such that ¢ is true in the standard
model (N, +,-,0,1) of arithmetic if and only if ¥* is satisfiable.

Proof. We have already seen that there exists a MIC-axiom w-height axiomatis-
ing the models that are bisimilar to a tree of height w. Further, we can express
set equalities X =Y by all(X + Y') and we know how to represent polynomials
by MIC-formulae. What remains is to translate quantifiers.

More precisely, we need to show that for each first order formula ¢ (y1, ..., y;)
in the language of arithmetic there exists a MIC-formula ¢*(Y7,...,Y;) such
that on rooted trees T, w of height w and all sets Sy, ...,S, that encode num-
bers s1,...,8, on T we have that (N,+,-,0,1) = ¢(s1,...,s,) iff T,w |
P*(S1,...,Sp).

10

Only the case of formula of the form () := Jzp(z,7) remains to be con-
sidered. By induction hypothesis, we assume that for ¢(z,%) the corresponding
MIC-formula ¢*(X,Y) has already been constructed. Now let

(V) :=ifp Z: X + 0OX
Z + ¢*(X,Y) Anumber(X).
a

Corollary 3.6. The satisfiability problem for MIC is undecidable. In fact, it is
not even in the arithmetical hierarchy.

The proof given above appears to rely crucially on the use of simultaneous
inductions. Indeed, one can show that formulae of MIC involving simultaneous
inductions, in particular the formula constructed in the proof of Lemma 3.1, can-
not be expressed without simultaneous inductions (see Theorem 4.2). However,
it is still the case that first order arithmetic can be reduced to the satisfiability
problem for MIC without simultaneous inductions. (See [5] for details.)

4 Simultaneous vs. Non-Simultaneous Inductions

It is easy to see that the equivalence uXY.(¢), p) = uX (X, uY.p(X,Y)) (some-
times called the Bekic-principle [1]) fails in both directions when we take infla-
tionary instead of least fixed points. However, it still is conceivable that simulta-
neous inductions could be eliminated by more complicated techniques. It follows
from the results below, that this is not the case, i.e. simultaneous inflationary
inductions provide more expressive power than simple ones. Let 1IMIC denote
the fragment of MIC that does not involve simultaneous inductions.

For any ordinal «, let 7, denote the tree with a root v, that has a set
{vg | B < a} of children indexed by ordinals less than «, where each vg is the
root of a subtree isomorphic to 73.

Lemma 4.1. Let p € 1MIC be a formula. If X4, ..., Xy are atomic propositions
on Ty, closed under bisimulations, such that v, ¢ X; (where v, is the root of
To) and Ty, vy = (X1, ..., Xk), then there is a finite N such that for alln > N
and all nodes v, of height n, T,,v, = @(X1 — {vn},..., Xk — {vn}).

It is a straightforward consequence of this lemma that the formula w-height
defined in Sect. 3 is not equivalent to any formula of 1MIC. We hence have
established the following separation result.

Theorem 4.2. MIC is strictly more powerful than 1MIC.

5 The Model Checking Problem for MIC

Recall that the model checking problem for the p-calculus is in UP N co-UP,
and is conjectured by some to be solvable in polynomial time. We now show
that MIC is algorithmically more complicated (unless PSPACE = NP).

11

We first observe that the naive bottom-up evaluation algorithm for MIC-
formulae uses polynomial time with respect to the size of the input structure,
and polynomial space (and exponential time) with respect to the length of the
formula. Let K be a transition system with n nodes and m edges. The size |||
of appropriate encodings of K as an input for a model checking algorithm is
O(n +m). Tt is well known that the extension [¢]* of a basic modal formula ¢
(without fixed points) on a finite transition system K can be computed in time
O(l¢| - |IK]|). Further, any inflationary induction ifp X; : [X1 + ¢1,..., X} <
k] reaches a fixed point on K after at most kn iterations. Hence, the bottom-
up evaluation of a MIC-formula v with d nested simultaneous inflationary fixed
points, each of width k, on K needs at most O((kn)?) basic evaluation steps.
For each fixed point variable occurring in the formula, 2n bits of workspace are
needed to record the current value and the last value of the induction. This gives
the following complexity results.

Proposition 5.1. Any MIC formula 1 of nesting depth d and simultaneous
inductions of width at most k on a transition system K with n nodes can be
evaluated in time O((kn)?y| - ||K||) and space O(|3] - n).

In terms of common complexity classes the results can be stated as follows.

Theorem 5.2. (1) The combined complexity of the model checking problem
for MIC on finite structures is in PSPACE.
(2) For any fized formula » € MIC, the model checking problem for v on
finite structures is solvable in polynomial time and linear space.

We now show that, contrary to the case of the pu-calculus, the complexity
results obtained by this naive algorithm cannot be improved essentially.

Theorem 5.3. There exist transitions systems K, such that the model checking
problem for MIC on K is PSPACE-complete (even for 1IMIC).

The proof is by reduction from QBF (the evaluation problem for quantified
Boolean formulae.) We only sketch the argument here.

Let K be the Kripke-structure consisting of two points 0,1, the atomic
proposition p = {1}, and the complete transition relation {0,1} x {0,1}. Let
a(X) =X A (p —» ©X). Further, let ¢[X/a(X)] denote the formula obtained
from ¢ by replacing every free occurrence of X by «a(X).

We inductively associate with every quantified Boolean formula ¢ a MIC-
formula ¢* as follows. For ¢ := X we set ¢* := (p A X) V (-p A OX). Further,
(—)* := —p* and (¢ o p)* := ¢* o p* for o € {A,V}. Finally, for v := VX ¢ we
put ¢* := O(ifp X + a(X) A ¢*[X/a(X))]).

It can be shown that for any closed QBF-formula 1, we have [4/*]* = {0, 1}
if 1 is true and [¢*]* = @ otherwise. The theorem now follows immediately.

In [15], Otto introduced a higher-dimensional p-calculus, denoted L which
extends basic multi-modal logic with an operator for forming least fixed points

12

of arbitrary arity, rather than just sets. He showed that L} can express every
bisimulation-invariant, polynomial time decidable property of finite structures.
Since we know that any collection of finite structures definable in MIC is both
bisimulation-invariant and polynomial time decidable, it follows that every for-
mula of MIC can be translated to a formula of Ly that is equivalent to it on
finite structures. We now show that the converse fails. In particular, there are
properties of finite trees that are bisimulation-invariant and polynomial time
decidable but cannot be expressed in MIC.

Theorem 5.4. There is a collection F of finite trees in PTIME, closed under
bisimulation, which is not expressible in MIC.

We sketch the proof. Define F to be the collection of all finite trees 7 such
that all children of the root of 7 are bisimilar. As bisimuation equivalence is
decidable in polynomial time, it follows that F is in PTIME. It is also obvious
that F is closed under bisimulation.

Assume, towards a contradiction, that there is a formula ¢ € MIC that
defines F. We use ¢ to define an equivalence relation on trees. Informally 77 ~,
T2 if at all stages of all the ifp-inductions in ¢, the same subformulae of ¢
become true in 7; as in 7>. Now, it can be shown that the index of ~, on trees
of height n is bounded by 2P(") (for some polynomial p(n) depending only on
), whereas the bisimulation-index on trees of height n is not bounded by any
elementary function. Hence there exist 71 ~, T2 with 71 o T5. It is easy to see
that ¢ cannot distinguish between those trees where every child of the root is
the root of a copy of 7; and those trees where one of these copies is replaced by
72. But in the first case the tree is in F, and in the second it is not, yielding a
contradiction.

6 Languages

In this section we investigate the expressive power of MIC on finite strings. In
other words we attempt to determine what languages are definable by formulae
of MIC. For our purposes, a word w of length n, in an alphabet X' is a transition
system with n states v1,...,v,, a single action such that (v;,v;) € E if, and only
if, j =i+ 1 and an atomic proposition s for each s € X', such that for each v;,
there is a unique s with v; € s.

We have already seen in Proposition 2.4, that there are non-regular languages
that are definable in MIC. We begin this section by strengthening this result and

showing that there are languages definable in MIC that are not even context-free.

6.1 Non-CFLs in MIC

Theorem 6.1. There is a language definable in MIC that is not context-free

13

Proof. Consider the language L := {cwdw | w € {a,b}*} over the alphabet
{a,b,e,d}. Tt is easily verified that L is not a context-free language. To see that
it is definable in MIC, first note that the formula

a := ¢ A Oempty(c) A nonempty(d) A all(d — Oempty(d))

defines the set of strings {czdy | z,y € {a,b}*}. Now, the desired formula is the
conjunction of @ with the negation of the formula

p:=ifp X < [-cA (OX VvV Od)] V [c A nonempty (¢)]
where, ¢ is the formula

=X AOX A[(bAnonempty(a ADX A-X))V
(a A nonempty(b A OX A =X))]

ad

We can also add the observation that the formula constructed in the proof of
Theorem 6.1 above does not involve any simultaneous inductions, and therefore
there are non-context-free languages definable in 1MIC.

Another measure of the complexity of a language, considered in [16] is au-
tomaticity. Briefly, the automaticity of a language L is the function Ay which
gives for each n the number of states in the smallest deterministic automaton
which accepts a language that agrees with L on all strings of length at most n.
Clearly, every regular language has constant automaticity. Here, we note that it
can be shown that the language used in the proof of Theorem 6.1 has exponential
automaticity, which is worst possible.

Finally, to place the expressive power of MIC in the Chomsky hierarchy, we
note that every language definable in MIC can be defined by a context-sensitive
grammar. This follows from the observation made in Section 5 that any class of
finite structures defined by a formula of MIC is decidable in linear space, and
the result that all languages decidable by nondeterministic linear space machines
are definable by context-sensitive grammars.

6.2 Capturing Linear Time Languages

We have seen in Section 5 that the data complexity of evaluating MIC-formulae
is in polynomial time and linear space. It is also clear that MIC can express
PTiME-complete properties, as this is already the case for the u-calculus.

On words the situation is somewhat different. The u-calculus defines precisely
the regular languages and hence is very far away from expressing PTIME-
complete properties. On the other side we have already seen that there exist
MIC-definable languages that are not even context-free. We will now show that
MIC can in fact define all languages that are decidable in linear time (by a
Turing machine).

An observation that we will use in the proof, but which may well be of
independent interest, is that cardinality comparisons and addition of cardinalities
are expressible in MIC on words (recall that none of these are MSO-definable).

14

Lemma 6.2. There exists a formula o(X,Y) of MIC such that on every word
w, we have w, X, Y E ¢ if and only if | X| = |Y|. Similarly for |X| < |Y| and
X[+ Y] =12].

Theorem 6.3. Every language L € DTIME(O(n)) is MIC-definable.

Note that we cannot expect to extend the result for linear time to quadratic

time or higher. This is because, as we have seen, every language definable in
MIC is decidable in linear space, and it is not expected that quadratic time is
included in linear space.

References

N =

10.
11.

12.

13.

14.

15.

16.

17.

A. Arnold and D. Niwinski. Rudiments of p-calculus, North-Holland, 2001.

J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Napoli, 1983.

J. Biichi. Weak second-order arithmetic and finite automata. Zeitschrift fiir Math-
ematische Logik und Grundlagen der Mathematik, 6:66—-92, 1960.

A. Dawar. Feasible Computation Through Model Theory. PhD thesis, University
of Pennsylvania, 1993.

A. Dawar, E. Gréddel, and S. Kreutzer. Inflationary Fized Points in Modal Logics.
See “http://www.cl.cam.ac.uk/users/ad260/pubs.html” or
“http://www-mgi.informatik.rwth-aachen.de/Publications/”.

A. Dawar and Y. Gurevich. Fixed point logics. In preparation.

A. Dawar and L. Hella. The expressive power of finitely many generalized quanti-
fiers. Information and Computation, 123:172-184, 1995.

A. Dawar, S. Lindell, and S. Weinstein. Infinitary logic and inductive definability
over finite structures. Information and Computation, 119:160-175, 1994.

S. Dziembowski. Bounded-variable fixpoint queries are PSPACE-complete. In 10th
Annual Conference on Computer Science Logic CSL 96. Selected papers, volume
1258 of Lecture Notes in Computer Science, pages 89-105. Springer, 1996.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.
E. Gréadel and M. Otto. On logics with two variables. Theoretical Computer
Science, 224:73-113, 1999.

Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of
Pure and Applied Logic, 32:265-280, 1986.

D. Janin and I. Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In Proceedings of 7th
International Conference on Concurrency Theory CONCUR 96, number 1119 in
Lecture Notes in Computer Science, pages 263—277. Springer-Verlag, 1996.

M. Jurdzinski. Deciding the winner in parity games is in UP N Co-UP. Information
Processing Letters, 68:119-124, 1998.

M. Otto. Bisimulation-invariant Ptime and higher-dimensional mu-calculus. The-
oretical Computer Science, 224:237-265, 1999.

J. Shallit and Y. Breitbart. Automaticity I: Properties of a measure of descriptional
complexity. Journal of Computer and System Sciences, 53:10-25, 1996.

M. Vardi. On the complexity of bounded-variable queries. In Proc. 14th ACM
Symp. on Principles of Database Systems, pages 266-267, 1995.

15

