
Partial Fixed-Point Logi on In�nite StruturesStephan KreutzerLuFG Mathematishe Grundlagen der InformatikRWTH Aahenkreutzer�informatik.rwth-aahen.deAbstrat. We onsider an alternative semantis for partial �xed-pointlogi (PFP). To de�ne the �xed point of a formula in this semantis, thesequene of stages indued by the formula is onsidered. As soon as thissequene beomes yli, the set of elements ontained in every stage ofthe yle is taken as the �xed point. It is shown that on �nite stru-tures, this �xed-point semantis and the standard semantis for PFP asonsidered in �nite model theory are equivalent, although arguably theformalisation of properties might even beome simpler and more intu-itive. Contrary to the standard PFP semantis whih is only de�ned on�nite strutures the new semantis generalises easily to in�nite struturesand trans�nite indutions. In this generality we ompare - in terms ofexpressive power - partial with other known �xed-point logis. The mainresult of the paper is that on arbitrary strutures, PFP is stritly moreexpressive than inationary �xed-point logi (IFP). A separation of theselogis on �nite strutures would prove Ptime di�erent from Pspae.1 IntrodutionLogis extending �rst-order logi by �xed-point onstruts are well studied in�nite model theory. Introdued in the early eighties, it soon beame lear thatthere are tight onnetions between the various forms of �xed-point logis andsuh important omplexity lasses as polynomial time and spae. This relation-ship is made preise in the results by Immerman [Imm86℄ and Vardi [Var82℄that, on �nite ordered strutures, least �xed-point logi (LFP) provides a logi-al haraterisation of polynomial time omputations in the sense that a lassof �nite ordered strutures is deidable in polynomial time if, and only if, it isde�nable in LFP. Other omplexity lasses suh as polynomial or logarithmispae an also be haraterised in this way, using di�erent �xed-point logis.Sine the disovery of these results, �xed-point logis play a fundamental role in�nite model theory, arguably even more important than �rst-order logi itself.We give preise de�nitions of these logis in Setion 2. See [EF99℄ for an ex-tensive study of �xed-point logis on �nite strutures. A survey that also treatsin�nite strutures an be found in [DG02℄.The best known of these logis is least �xed-point logi (LFP), whih ex-tends �rst-order logi (FO) by an operator to form least �xed-points of positiveformulae (whih de�ne monotone operators.) But there are other �xed-point



logis. Besides fragments of LFP, suh as transitive losure logi and existentialor strati�ed �xed-point logi, whih all have in ommon that they form �xedpoints of monotone operators, there are also �xed-point logis that allow theuse of non-monotone operators. One suh logi is the inationary �xed-pointlogi (IFP), whih allows the de�nition of inationary �xed points of arbitraryformulae. It is the simplest logi allowing non-monotone operators, as it is stillequivalent to LFP (see [GS86,Kre02℄.)As mentioned above, on �nite ordered strutures, LFP and IFP apturePtime. To haraterise omplexity lasses above Ptime, like Pspae for in-stane, a more liberal notion of �xed points has to be used. One suh logi thatis likely to be more expressive than IFP is partial �xed-point logi, where thereare no restritions on the formulae used within the �xed point operator. Thus itis no longer guaranteed that the sequene of stages indued by suh a formulareahes a �xed point. However, if it does, this �xed point is taken as the seman-tis of the formula. Otherwise, i.e. if the sequene does not beome stationary,the result is de�ned as being empty.It has been shown by Abiteboul and Vianu [AV91a℄ that partial �xed-pointlogi provides a preise haraterisation of Pspae on �nite ordered strutures.Thus, showing that there are properties of �nite ordered strutures de�nable inPFP but not in IFP would yield a separation of polynomial time and spae. How-ever, on unordered strutures, neither IFP nor PFP an express all of Ptime.For instane, it is easy to see that it annot be deided in PFP whether a �-nite set is of even ardinality, a problem that from a omplexity point of viewis extremely simple. It is therefore remarkable that a separation of Ptime andPspae follows even from a separation of IFP and PFP on arbitrary �nite stru-tures, not neessarily being ordered. This result is due to Abiteboul and Vianu[AV91b℄. See also [Daw93℄.Theorem. Ptime = Pspae if, and only if, IFP = PFP.There are also �xed-point logis apturing the omplexity lasses NP andExptime, namely non-deterministi and alternating non-inationary �xed-pointlogi (see [AVV97℄.) For these logis, similar theorems as above have been shown.Thus, the most important questions in omplexity theory, the separation of om-plexity lasses, have diret analogues in logi, namely in the omparison of theexpressive power of various �xed-point logis. A profound understanding of thenature and limits of the various kinds of �xed-point operators is therefore impor-tant and neessary. In this line of researh, the main ontribution of this paperis to introdue a semantis for partial �xed-point logi that is equivalent to thestandard semantis on �nite strutures, but ontrary to the standard semantis,is also well de�ned on in�nite strutures. On in�nite strutures, we will then beable to ompare partial and inationary �xed-point logi and show that thereare properties de�nable in PFP whih are not de�nable in IFP. Thus, IFP isstritly ontained in PFP. We also argue that the alternative semantis for PFPallows a more intuitive formulation of queries than the standard semantis.2



2 PreliminariesIn this setion we present the basi de�nitions for the explorations in the latersetions. Let � be a signature and A := (A; �) be a � -struture with universeA. Let '(R; x) be a �rst-order formula with free variables x and a free relationsymbol R not ourring in � . The formula ' de�nes an operatorF' : P(A) �! P(A)R 7�! fa : (A; R) j= '[a℄g:A �xed point of the operator F' is any set R suh that F'(R) = R. Clearly,as ' is arbitrary, the orresponding operator F' need not to have any �xedpoints at all. For instane, the formula '(R; x) := :8y Ry de�nes the operatorF' mapping any set R $ Ak to Ak and the set Ak itself to the empty set. ThusF' has no �xed points. However, if the lass of admissible formulae is restrited,the existene of �xed points an be guaranteed. One suh restrition is to requirethat the formulae are positive in the �xed-point variable. As positiveness impliesmonotoniity, an operator F' de�ned by a positive formula ' always has �xedpoints, in fat even a least �xed point lfp(F') := TfP : F'(P ) = Pg. Thisforms the basis of the most ommon �xed-point logi, the least �xed-point logi.To obtain more general logis, i.e. logis allowing non-monotone operatorsalso, one has to onsider suitable semantis to guarantee the existene of mean-ingful �xed-points. The simplest suh logi is the inationary �xed-point logi.De�nition 2.1 (Inationary Fixed-Point Logi). Inationary �xed-pointlogi (IFP) is de�ned as the extension of �rst-order logi by the following formulabuilding rule. If '(R; x) is a formula with free �rst-order variables x := x1; : : : ; xkand a free seond-order variable R of arity k, then := [ifpR;x '℄(t)is also a formula, where t is a tuple of terms of the same length as x. The freevariables of  are the variables ourring in t and the free variables of ' otherthan x.Let A be a struture with universe A providing an interpretation of the freevariables of ' other than x. Consider the following sequene of sets indued by' on A. R0 := ;R�+1 := R� [ F'(R�)R� := [�<� R� for limit ordinals �:The sets R� are alled the stages of the indution on ' and A. Clearly thesequene of stages is inreasing and thus leads to a �xed point R1. For anytuple a 2 A, A j= [ifpR;x '℄(a) if, and only if, a 2 R1.3



As usual, we also allow simultaneous �xed-point formulae, i.e. formulae ofthe form  (x) := [ifp Ri : S℄(x), whereS := 8><>:R1x1  '1(R1; : : : ; Rk; x1)...Rkxk  'k(R1; : : : ; Rk; xk)is a system of formulae. Eah formula 'i in S indues an operator F'i : Pow(A)r1�� � � � Pow(A)rk ! Pow(A)ri , taking sets R1; : : : ; Rk of appropriate arity to theset fa : (A; R1; : : : ; Rk) j= 'i[a℄g, where the ri denote the arities of the relationsRi. The stages of an indution on suh a system S of formulae are now k-tuplesof sets de�ned by R0i := ;R�+1i := R�i [ F'i(R�1 ; : : : ; R�k )R�i := [�<� R�i for limit ordinals �:The formula  is true for a tuple a of elements interpreting the variables x if,and only if, a 2 R1i , where R1i denotes the i-th omponent of the simultaneous�xed point of the system S. Simultaneous indutions an easily be eliminatedin favour of simple indutions by inreasing the arity of the involved �xed-pointvariables (See [EF99℄.)Proposition 2.2. Any formula in IFP with simultaneous indutions is equiva-lent to a formula without simultaneous indutions.Nevertheless, formulae making use of simultaneous indutions are often muhsimpler to read than the equivalent simple formulae and we will extensively usesimultaneous indutions in the sequel.3 Partial Fixed-Point LogiIn this setion we introdue partial �xed-point logi, whih in some sense is themost general �xed-point extension of �rst-order logi. We �rst de�ne the syntax,whih is the same as for IFP, exept that we write pfp for the �xed-pointoperator.De�nition 3.1 (Partial Fixed-Point Logi - Syntax). Partial �xed-pointlogi (PFP) is de�ned as the extension of �rst-order logi by the following for-mula building rule. If '(R; x) is a formula with free �rst-order variables x :=x1; : : : ; xk and a free seond-order variable R of arity k, then := [pfpR;x '℄(t)is also a formula, where t is a tuple of terms of the same length as x. The freevariables of  are the variables ourring in t and the free variables of ' otherthan x. 4



Having de�ned the syntax, we now turn to the de�nition of the semantis. We�rst present the standard de�nition of partial �xed-point semantis as ommonin �nite model theory.De�nition 3.2 (Finite Model Semantis). Let  := [pfpR;x '℄(t) be a for-mula and let A be a �nite struture with universe A providing an interpretationof the free variables of ' other than x. Consider the following sequene of stagesindued by ' on A. R0 := ;R�+1 := F'(R�)As there are no restritions on ', this sequene need not reah a �xed point.In this ase,  is equivalent on A to false. Otherwise, if the sequene beomesstationary and reahes a �xed point R1, then for any tuple a 2 A,A j= [pfpR;x '℄(a) if, and only if, a 2 R1:Again we allow simultaneous indutions and as with IFP these an always beeliminated in favour of simple indutions. This semantis for PFP is standard in�nite model theory and the basis of the results mentioned in the introdution.However, atually writing a formula in this logi is sometimes unneessarilyompliated. This is demonstrated by an example for modal partial �xed-pointlogi. The example is taken from [DK℄ where also more on modal partial �xed-point logi an be found.We briey reall the de�nition of modal logi and its extension by partial�xed-point operators. Modal logis are interpreted on transition systems, alsoalled Kripke strutures, whih are edge and node labelled graphs. The labels ofthe edges ome from a set A of ations, whereas the nodes are labelled by setsof propositions from a set P .Modal logi (ML) is built up from atomi propositions p 2 P using booleanonnetives ^, _, and : and the so-alled next-modalities hai, [a℄ for eah a 2 A.Formulae ' 2 ML are evaluated at a partiular node in a transition system.We write K; v j= ' if ' holds at the node v in the transition system K :=(V; (Ea)a2A; (p)p2P). The semantis of ML-formulae is as usual with K; v j= p,for p 2 P , if v 2 pK, K; v j= hai' if there is an a-suessor u of v suh thatK; u j= ' and, dually, K; v j= [a℄' if for all a-suessors u of v, K; u j= '.Now modal partial �xed-point logi (MPC) is de�ned analogously to PFP, i.e.formulae  := [pfp P : '(P )℄ are allowed de�ning the set of elements in thepartial �xed point of '.Consider the following problem, known as the unary trae- or language equiv-alene problem. It is de�ned as the problem of deiding whether two given �niteautomata over an unary alphabet aept the same language. This is formalisedas follows. The input is a direted, rooted graph. The root is labelled by w andis not reahable from any other node in the graph. Further, there are disjointsubgraphs rooted at suessors of the root. In eah subgraph some nodes aremarked as �nal states, e.g. oloured by a olour f , whereas the other nodes are5



not oloured at all. Two subgraphs rooted at suessors of the root are traeequivalent, if for eah n < !, whenever in one of the graphs there is a path oflength n from the root to a �nal state suh a path also exists in the other.We aim at de�ning in MPC the lass C of strutures as above suh that allsubgraphs rooted at suessors of the root are trae equivalent. A simple idea toformalise this is the following. Consider the formula  de�ned as := [pfp Z : X  (f ^ :Y ) _ �XY  fZ  (w ^ �X ^ �:X) _ Z ℄In the �rst stage, X ontains all �nal states, i.e. those labelled by f . In thesuessive stages, those elements are seleted, whih have a suessor in X .Thus, the stage Xn ontains exatly those elements from whih there is a pathof length n � 1 to a node labelled by f . The variable Y is only used to ensurethat the nodes labelled by f are added to X only one at the beginning, so thatthe indution is not started over and over again. Now, the root of the strutureis added to Z if, for some n, in one subgraph there is a path of length n from itsroot to a �nal state but not in the other. Obviously, one the root is added toZ, it stays in forever. Thus,  is true at the root if, and only if, the subgraphsrooted at its suessors are not trae equivalent. However, if at least one of thesub-strutures is yli, the indution on X never beomes stationary and thus,by de�nition, the �xed point is empty. To resue the formula, we have to thinkabout some way to guarantee that the indution proess beomes stationaryalthough the only information we are interested in, namely whether the rooteventually ours in Z, is independent of this.This suggest a di�erent way to de�ne partial �xed-point indutions. Considerthe sequene of indution stages de�ned by  . Obviously, this sequene musteventually beome yli. Now onsider the set of elements that our in allstages of this yle and take this as the de�ned �xed point1. Applying this ideato the example above, we get that the �xed point of X beomes empty (unlessthere are self loops), the �xed point of Y ontains all �nal states, and the �xedpoint of Z ontains the root just in ase there are two suessors of it whihare not trae equivalent. Thus, : is true in K; v if, and only if, K; v 2 C. Thismotivates an alternative semantis for partial �xed-point logi based on theseideas.Besides this problem of formalising properties, the standard semantis forPFP has the disadvantage that it does not generalise to in�nite strutures. Forinstane, as the sequene of stages indued by PFP-formulae is not neessarilyinreasing, it makes no sense to de�ne limit stages as the union of the previ-ous stages as in IFP. Therefore, so far partial �xed-point logi has only beenonsidered on �nite strutures.The drawbak of this is that it also restrits the possibilities to study PFPand its properties and to ompare it to other logis to �nite strutures. As1 Note that this set does not neessarily has to be a �xed point. Nevertheless we usethis name to keep onsistent with the other �xed-point logis.6



mentioned in the introdution, the relationship between the various �xed-pointlogis is losely related to important omplexity theoretial questions and thusa profound understanding of what the logis an and an not do is neessaryand important. To ahieve a better understanding of the logis, their propertieson in�nite strutures might prove useful for the study on �nite strutures also.This is the seond motivation for onsidering an alternative semantis for PFP,namely to give a semantis that generalises to in�nite strutures and trans�niteindutions.We are now ready to formally de�ne a general semantis for partial �xed-point logi.De�nition 3.3 (General Semantis). Let  := [pfpR;x '℄(t) be a formulaand let A be a struture with universe A providing an interpretation of the freevariables of ' other than x. Consider the following sequene of stages induedby ' on A. R0 := ;R�+1 := F'(R�)R� := �nal((R�)�<�) for limit ordinals �;where �nal((R�)�<�) denotes the set of elements a suh that there is a � < �and for all � <  < �, a 2 R.Obviously, the sequene (R�)�2Ord must eventually beome yli. Let �1 <�2 be minimal suh that R�1 = R�2 . Then, for any tuple a 2 A,A j= [pfpR;x '℄(a) if, and only if, a 2 R for all �1 �  < �2.We also allow simultaneous indutions and again the proof that this does notinrease the expressive power is straight forward.Theorem 3.4. Any formula in PFP under the general semantis with simulta-neous indutions is equivalent to a formula without simultaneous indutions.Aording to the de�nition, the �xed point of a formula ' is de�ned as theset of elements whih our in every stage of the �rst yle in the sequene ofstages indued by '. Note that this is not equivalent to saying that the �xedpoint onsists of those elements a suh that there is a stage � and a ours inall stages greater than �. For instane, onsider a struture A := (f0; 1; 2; 3g)and the formula de�ning an operator taking ; 7! f0; 1g, f0; 1g 7! f0; 2g andf0; 2g 7! f0; 1g. Further, it takes f0g 7! f2g and f2g to itself. Now onsider theindution stages (R�)�2Ord indued by this operator. Clearly, for all 0 < n < !,Rn = f0; 1g if n is odd and Rn = f0; 2g if n is even. Thus, the partial �xed pointas de�ned above is f0g. However, R! = f0g and for all � > !, R� = f2g. Thus,de�ning the �xed point as the set of elements whih are ontained in all stagesgreater than some � yields a di�erent set than the partial �xed point as de�nedabove.We now prove that in the restrition to �nite strutures both semantis, i.e.the semantis in De�nition 3.2 and 3.3 are equivalent.7



Notation. To distinguish between the two semantis, we denote PFP underthe �nite model semantis as PFP�n and write the operator as pfpf . We writePFPgen and pfpg whenever we speak about the general semantis. Further, if 'is any formula in PFP, we write �n(') to denote the formula under the �nitemodel semantis and gen(') for the general semantis.We �rst prove a tehnial lemma that establishes the main step for the proofof the theorem below.Lemma 3.5. Let '(R; x) be a formula in PFPgen and A be a struture. Thereis a formula �xed-point'(R; x) depending on ' suh that for any stage R� ofthe indution on ' and A and all a 2 A,(A; R�) j= �xed-point'[a℄ i� there are � <  � � suh that (R�)����is a yle, i.e. R� = R, and a 2 '1:Further, if A is �nite and ' 2 PFP�n, then �n(�xed-point') � gen(�xed-point'),i.e. the result of �xed-point' under the �nite model and the general semantisis the same.Proof. Consider the formula �xed-point'(R; x) := [pfp Q2 : S℄(x), where S isde�ned asS := 8>>>>>><>>>>>>:Qx  '(Q; x)Q1x (Q1 = ; ^Q = R ^ Rx) _Q1xQ2x Q2x _ (Q1 6= ; ^Q = R ^[pfp Z 0 : Z  (Z = ; ^ '(R; x)) _ (Z = R ^Rx) _(Z 6= ; ^ Z 6= R ^ '(Z; x))Z 0  (Z 0 = ; ^Q1x) _ (Z 0 6= ; ^ Z 0x ^ Zx) ℄(x))In the ourse of the indution on S, the variable Q runs through the stages of'. The �rst time where Q = R, i.e. the stage R is reahed, Q1 is initialisedto R. If there is another stage in the indution on Q suh that Q = R, i.e. ifthe indution on ' beomes yli the �rst time, Q2 gets all elements whih areontained in all stages between the two ourrenes of R. Thus, the �xed pointQ12 ontains exatly the elements of the �xed point of '. �We are now ready to prove the equivalene of the two partial �xed-pointsemantis de�ned above.Theorem 3.6. On �nite strutures, PFP�n and PFPgen are equivalent, i.e. forevery PFP-formula under the �nite model semantis there is an equivalent PFP-formula under the general semantis and vie versa.Proof. The forth diretion follows easily by indution on the struture of theformula. In the main step, let  := [pfpfR;x '(R; x)℄(t) be a formula in PFP�n.It is equivalent to the formula g := [pfpg Q : Rx  'g(R; x)Qx 8x('g(R; x)$ Rx) ^ Rx: ℄(t)8



where 'g is a PFPgen-formula equivalent to '. By indution, suh a formulaalways exists. Assume �rst that a �xed point of ' is reahed on a struture A. Inthis ase, both semantis are equivalent for trivial reasons and thus  �  g . Nowassume that the �xed point of ' does not exist. Then at no stage 8x('g(R; x)$Rx) beomes true and thus  g de�nes the empty set.The other diretion is also proved by indution on the struture of the for-mulae. In the main step, assume that  := [pfpgR;x '(R; x)℄(t) is a formula underthe general semantis. By indution, ' is equivalent to a formula 'f in PFP�n.Then, [pfpgR;x 'g(R; x)℄t is equivalent to f := [pfpf Q : Rx  'f (R; x)Qx �xed-point('f )(R; x) ℄tBy Lemma 3.5, the formula �xed-point('f )(R) an be hosen from PFP�n. Thus,as 'f 2 PFP�n, we get that  f is itself a formula in PFP�n. The equivalene of f and  is an immediate onsequene of Lemma 3.5. �The theorem allows us to transfer the results on PFP�n mentioned in theintrodution, in partiular the theorems by Abiteboul, Vianu, Immerman, andVardi to PFPgen. Thus, we immediately get the following orollary.Corollary 3.7.(i) PFPgen has Pspae data-omplexity and aptures Pspae on orderedstrutures.(ii) PFPgen = IFP on �nite strutures if, and only if, Ptime = Pspae.(iii) On �nite strutures, every PFPgen formula is equivalent to a formula withonly one appliation of a �xed-point operator.Proof. The orollary follows immediately from the fat that every PFP�n formulais equivalent to one with only one �xed-point operator and that the translationof PFP�n-formulae to PFPgen-formulae as presented in the proof of Theorem 3.6does not inrease the number of �xed-point operators. �Using a diagonalisation argument as in Setion 4 below, it is lear that forany �xed-point logi like LFP; IFP, or PFP, the alternation or the nesting depthhierarhy must be strit on arbitrary strutures, i.e. allowing the nesting of �xed-point operators or the alternation of �xed-point operators and negation muststritly inrease the expressive power. Thus, Part (iii) of the preeding orollaryfails on in�nite strutures. We lose the setion by establishing a negation normalform for PFPgen formulae. Thus, the alternation of �xed points and negation doesnot provide more expressive power than just nesting �xed-points.Theorem 3.8. Every PFPgen formula is equivalent to one where negation o-urs only in front of atoms.Proof. The proof follows easily using the formula de�ned in Lemma 3.5. However,we present a general proof for this that also works for IFP and shows that for9



these logis the onept of negated �xed points does not add anything to theexpressive power.Let  (t) := :[pfpR;x'(R; x)℄(t) be a formula in PFP. Obviously, it is equiv-alent to the formula 0(t) := 9091 [pfp Q : Pxy  y = 1 _ (y = 0 ^ [pfpR;x'℄(x))Qx  P 6= ; ^ :Px0 ℄(t);where 0; 1 are variables not ourring in '. The theorem now follows immediatelyby indution on the struture of the formulae. �As disussed above, this implies that nesting �xed points stritly inreasesthe expressive power, i.e. nested �xed points an not be eliminated in favour ofa single �xed point.4 Separating partial and inationary �xed-point logiIn this setion we prove the main result of this paper, the separation of PFPgenand IFP. As we are not onsidering the �nite model semantis anymore, wesimply write PFP and pfp instead of PFPgen and pfpg .We �rst present a lass of strutures alled aeptable (See [Mos74, Chapter5℄.) These strutures are partiularly well suited to be used with diagonalisationarguments.4.1 Aeptable struturesDe�nition 4.1. Let A be an in�nite set. A oding sheme on A is a triple(N ;�; <>), for some N � A, where the struture (N ;�) is isomorphi to (!;�)and <> is an injetive map of Sn<! An into A.With eah oding sheme we assoiate the following deoding relations andfuntions:(i) seq(x) whih is true for x if, and only if, x is the ode of some sequenex1; : : : ; xn.(ii) lh(x) = n if x is the ode of a sequene of length n and otherwise, i.e. if:seq(x), lh(x) = 0.(iii) q(x; i) = xi if x =< x1; : : : ; xl > and l � i. Otherwise q(x; i) = 0. Wewrite (x)i = a for q(x; i) = a.Here, the numbers 0; 1; : : : refer to the orresponding elements in N .An elementary oding sheme C on a struture A is a oding sheme on itsuniverse where the relations N ;�, seq; lh, and q are elementary, i.e., �rst-orderde�nable.A struture A admitting an elementary oding sheme is alled aeptable.We all A quasi-aeptable if there exists an aeptable expansion A0 of A by a�nite set of PFP-de�nable relations. 10



Observe that quasi-aeptable strutures are those whih admit an PFP-de�nable oding sheme, i.e., one where the relations <, seq, lh, and q are PFP-de�nable. See [Mos74, Chapter 5℄ for more on elementary and indutive odingshemes.4.2 Coding and DiagonalisationWe show now how formulae an be enoded by elements of aeptable stru-tures. For the rest of this setion let A be an aeptable � -struture, where� := �rel _[�onst is the disjoint union of a �nite set �rel := fP1; : : : ; Plg of relationsymbols and a �nite set �onst := f1; : : : ; mg of onstant symbols. W.l.o.g. weassume that no �xed-point variable is bound twie in the same formula and thatthe involved �xed-point variables Ri are numbered from 1 to the number k of�xed-point operators ourring in the formula suh that for no i < j � k, 'i isa sub-formula of 'j , where 'i and 'j are the formulae de�ning the �xed pointindutions on Ri and Rj respetively. Further, we assume that all formulae areof the form [ifpR1;x1 '1℄(x1). We also assume that all �xed-point operators areof the form [ifpR;xRx_'(R; x)℄, i.e. the operators are syntatially made ina-tionary. Finally, we assume that if  := [ifpR;xi1 ;:::;xik '℄ ours as a sub-formulaof a formula �, then the sub-formulae of ' may use atoms in whih R oursonly in the form Rxi1 ; : : : ; xik . It is lear that any IFP-formula an be broughtinto this form.The atual enoding of formulae is based on a funtion jj'jj taking formulaeor terms in IFP[� ℄ to elements of N . The funtion is indutively de�ned asfollows. jjijj := < ; i > i 2 �onstjjxijj := < var; i >jjPiajj := < rel; i; < jjajj >> Pi 2 �Reljj'1 _ '2jj := < or; jj'1jj; jj'2jj >jj:'jj := < neg; jj'jj >jjRiajj := < fp-var; i; < jjajj >> for �xed-point variables Rijj [ifpRi;x '℄(a)jj := < fp-op; i; < jjajj >>;where ;var; : : : denote arbitrary but �xed and distint elements of N . Here< jjajj > is an abbreviation for < jja1jj; : : : ; jjakjj > where k is the arity of a. Inthis enoding of formulae, sub-formulae involving �xed-point variables are onlyoded by the number of the involved �xed-point variable but no ode of theformula de�ning it is stored. The next de�nition deals with this.De�nition 4.2. Let ' be a formula in IFP[� ℄ and let the �xed-point operatorsourring in it be [ifpR1;x1 '1℄, . . . , [ifpRn;xn 'n℄. The formulae 'i, for 1 �i � n, are alled the de�ning formulae of ' and eah individual 'i is alled thede�ning formula of the �xed-point variable Ri.The funtion ode taking formulae to their odes in N is de�ned asode : IFP[� ℄ �! N' 7�! < jj'1jj; : : : ; jj'k jj >;11



where '1; : : : ; 'k are the de�ning formulae of '.Below, we will use enodings of formulae to show that there are relations onaeptable strutures whih are PFP but not IFP-de�nable. We �rst �x somenotation that will be used in the sequel.De�nition 4.3. Let '(x) be a formula with free variables x, where x := xi1 ;. . . , xik for some k. The ode a of a sequene mathes ', if lh(a) � maxfij :1 � j � kg.We write a j= ', if a mathes ' and ' is true in A under the variableassignment � : xi 7�! ((a)i for all 1 � i � lh(x)0 otherwise.If  is the ode of ' we also write a j=  for a j= '.We state the following lemma whose proof is tehnial but not very diÆult.Lemma 4.4. There is a PFP-formula formula(x) that is true for all  whihare valid odes of IFP-formulae.4.3 Separating Inationary and Partial Fixed-Point LogiIn this setion we show that partial �xed-point logi is stritly more expressivethan inationary �xed-point logi. The result uses the methods introdued inthe setions above.De�nition 4.5. The relation SatIFP � A2 is de�ned asSatIFP := f(; a) :  is the ode of an IFP[� ℄-formula ' and ' j= g:Clearly, SatIFP is not IFP-de�nable.Lemma 4.6. SatIFP is not de�nable in IFP.Proof. Suppose, SatIFP were de�nable in IFP. Then the relation R(x) :=:Sat(x;< x >) would be de�nable in IFP as well, by a formula '(x) say. Let be the ode of '. Thus, as ' de�nes R, for all x, R(x) () Sat(;< x >)but, by de�nition of R, for all x, R(x) () :Sat(x;< x >). For x =  we geta ontradition. �We show now that SatIFP is de�nable in PFP by indutively de�ning aternary relation R(; i; a) � A3 suh that (; i; a) 2 R if, and only if,  is theode of a formula ' 2 IFP[� ℄ with de�ning formulae '1; : : : ; 'k, i is an element off1; : : : ; kg, and a is the ode of a variable assignment mathing the free variablesin ' suh that (A; stage(; 1); : : : ; stage(; k)); a j= 'i;12



i.e. 'i is true under the variable assignment a if all free �xed-point variablesRj are interpreted by the sets stage(; j) de�ned as stage(; j) := fa : (; j; a) 2R; where a is the ode of ag.This relation will be built up by a partial �xed-point indution suh that thefollowing invariane property is preserved:Invariane Property 4.7.� For all ; i; a, if (; i; a) 2 R then  is the ode of a formula ' 2 IFP[� ℄, withde�ning formulae '1; : : : ; 'k, i is an element of f1; : : : ; kg, and a is the odeof a variable assignment mathing the free variables in ' suh that(A; stage(; 1); : : : ; stage(; k)); a j= 'i;i.e. 'i is true under the variable assignment a where all free �xed-pointvariables Rj are interpreted by the sets stage(; j).� At eah stage � of the indution on R, and all i and  as above, the setstage(; i) ours as a stage of the indution on 'i where all free �xed-pointvariables Rj of 'i are interpreted by stage(; j).Before presenting a formula de�ning R we introdue some auxiliary formulae�rst-order and fpr. The formula �rst-order(R; ; i; a) assumes that the invari-ane property in 4.7 is satis�ed by R. In this ase, it de�nes the set of all (; i; a)suh that a j= 'i, under the assumption that all free �xed-point variables Rj areinterpreted by stage(; j) and for all sub-formulae of 'i of the form [ifpRj ;xj 'j ℄the �xed point de�ned by this formula is stage(; j). Obviously, these assump-tions are too optimisti for all i, as the seond assumption will generally be trueonly for some, but not for all i. This formula will be used in a formula de�ningthe relation R desribed above and there it will be guaranteed that �rst-orderwill only be \alled" for values of i for whih both assumptions are satis�ed.In the following, we treat variables t; t1; : : : as boolean variables, i.e. the onlyvalues they an take are 0 and 1, and we use expressions like t = t1 _ t2 with theobvious semantis. We also use notation like \b='1 _ '2" whih means that is the ode of a formula ' := '1_'2 and 1; 2 are the odes of the sub-formulae.�rst-order(; i; a) :=[pfpQ;;a;t \b=9xj'0" ^ ((9a0Q0a01 ^ 8i ((a)i = (a0)i _ i = j) ^ t = 1) _(8a0 (8i ((a)i = (a0)i _ i = j)! Q0a00) ^ t0 = 0)) _\b='1 _ '2" ^ (9t19t2(Q1at1 ^Q2at2 ^ t = t1 _ t2) _\b=:'0" ^ (9t0Q0at0 ^ t = :t0) _\b=Pixi1 : : : xik" ^ (t$ Pi(a)i1 : : : (a)ik ) _\b=Rix" ^ (t$ Ria) _\b=[ifpRi;x 'i℄" ^ (t$ Ria)℄(i; a; 1)The orretness of the onstrution is proved in the following lemma.Lemma 4.8. Let R be a ternary relation satisfying the invariane property in4.7. Then for all ; i; a, suh that  is the ode of a formula ' with de�ning13



sub-formulae '1; : : : ; 'k and i 2 f1; : : : ; kg,(A; R) j= �rst-order(; i; a) if, and only if, a j= 'i;where all free �xed-point variables Rj and all sub-formulae of the form [ifpRj ;xj'j ℄are interpreted by the sets stage(R; j).Proof. The lemma is proved by indution on the struture of '. As this is a stan-dard argument, we do not give the full proof here but refer to [Mos74, Chapter5℄ for details. We demonstrate the idea behind the formula by proving the asefor existential quanti�ation. Suppose  is the ode of a formula 9xj'0 and 0is the ode of '0 . Then \b=9xj '0" is satis�ed and the formula heks whetherthere is (the ode a0 of) a variable assignment satisfying '0 , i.e. (0; a0; 1) 2 Q,suh that a and a0 agree on all variables exept xj . By indution, if there is suhan a0, then a0 j= '0 and thus a j= '. In this ase t is required to be 1. Otherwise,i.e. if there is no suh a0, a 6j= ' and thus t = 0.Note also how the truth of sub-formulae involving �xed points is diretlyread from the relation R. �We also need a formula fpr(R; ; i) that is true for  and i if stage(; i) is the�xed point of the indution on 'i where all free �xed-point variables Rj of 'iare interpreted by stage(; j).fpr(R; ; i) := 8a(�rst-order(R; ; i; a)! R(; i; a)):Clearly, under the same assumptions as in Lemma 4.8, (A; R) j= fpr(; i) if,and only if, stage(; i) is the �xed-point of 'i. We are now ready to de�ne themain formula.ompute(; a) :=[pfpR;;i;a (9l 2 f1; : : : ; lh()g 8l < j � k fpr(R; ; j) ^ :fpr(R; ; l)^((i = l ^ �rst-order(; i; a)) _ (i < l ^Riat)) ^ formula()) _(8l 2 f1; : : : ; lh()g fpr(R; ; j)) ^ Ria℄(; 1; a):The formula formula() has been de�ned in Lemma 4.4 above. Reall the wayformulae ' are oded by  :=< jj'1jj; : : : ; jj'k jj >. The formula ompute �rstde�nes the unique l suh that the �xed points of all formulae 'j with j > l arealready omputed in R but the indution on 'l has not yet reahed its �xedpoint. For this l, the formula �rst-order(; l; a) is evaluated, i.e the next stageof the indution on 'j is omputed. Further, all triples (; j; a) suh that j < lare kept in R, i.e. the urrent stages of the indution on 'j with j < l are leftuntouhed. On the other hand, all triples (; j; a) for j > l are removed from R,i.e. the �xed-point indution on the formulae 'j , whih might depend on Rl, areset bak to the empty set.Thus, in the end there will be no suh l as all �xed points are already om-puted. In this ase the relation R is left untouhed and thus the �xed point ofompute has been reahed. This proves the following lemma.14



Lemma 4.9. SatIFP is de�nable in PFP.The proof of the following theorem and its orollary is now immediate.Theorem 4.10. PFP is more expressive than IFP on aeptable strutures.Corollary 4.11. PFP is more expressive than IFP on all strutures in whihan aeptable struture is PFP-interpretable.Among the strutures in whih an aeptable struture is PFP-interpretableare (!;<) and (IR; <;+) and all expansions of it, e.g. the ordered �eld of reals.Examples of strutures not interpretable in an aeptable struture are struturesover the empty signature or a signature ontaining onstant symbols only, butalso the real line (IR; <).Referenes[AV91a℄ S. Abiteboul and V. Vianu. Datalog extensions for database queries andupdates. Journal of Computer and System Sienes, 43:62{124, 1991.[AV91b℄ S. Abiteboul and V. Vianu. Generi omputation and its omplexity. In Pro.of the 23rd ACM Symp. on the Theory of Computing, 1991.[AVV97℄ S. Abiteboul, M. Vardi, and V. Vianu. Fixpoint logis, relational mahines,and omputational omplexity. Journal of the ACM, 44(1):30{56, 1997. Anextended abstrat appeared in the Pro. 7th IEEE Symp. on Struture inComplexity Theory, 1992.[Daw93℄ A. Dawar. Feasible Computation Through Model Theory. PhD thesis, Uni-versity of Pennsylvania, 1993.[DG02℄ A. Dawar and Y. Gurevih. Fixed-point logis. Bulletin of Symboli Logi,8(1):65{88, 2002.[DK℄ A. Dawar and S. Kreutzer. Partial and Alternating Fixed Points in ModalLogi. Unpublished.[EF99℄ H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition,1999.[GS86℄ Y. Gurevih and S. Shelah. Fixed-point extensions of �rst-order logi. Annalsof Pure and Applied Logi, 32:265{280, 1986.[Imm86℄ N. Immerman. Relational queries omputable in polynomial time. Informa-tion and Control, 68:86{104, 1986. Extended abstrat in Pro. 14th ACMLSymp. on Theory of Computing, pages 147-152, 1982.[Kre02℄ S. Kreutzer. Expressive equivalene of least and inationary �xed-point logi.Pro. of the 17th Symp. on Logi in Computer Siene (LICS), 2002.[Mos74℄ Y.N. Moshovakis. Elementary Indution on Abstrat Strutures. North Hol-land, 1974. ISBN 0 7204 2280 9.[Var82℄ M. Vardi. The omplexity of relational query languages. In Proeedings of the14th ACM Symposium on the Theory of Computing, pages 137{146, 1982.
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