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Abstract. One of Courcelle’s celebrated results states that i§ a class of
graphs of bounded tree-width, then model-checking for rdimmaecond order
logic (Ms0.) is fixed-parameter tractable (fpt) 6hby linear time parameterised
algorithms. An immediate question is whether this is bessjide or whether the
result can be extended to classes of unbounded tree-width.

In this paper we show that in terms of tree-width, the theczamnot be extended
much further. More specifically, we show thatdfis a class of graphs which is
closed under colourings and satisfies certain constrlittibonditions such that
the tree-width ofC is not bounded byog'® n thenmMso,-model checking is not
fpt unless 371 can be solved in sub-exponential time. If the tree-widtf &f not
poly-log. bounded, themsos-model checking is not fpt unless all problems in
the polynomial-time hierarchy can be solved in sub-exptaktime.

1 Introduction

In 1990, Courcelle proved a fundamental result stating ¢waty property of graphs
definable inmonadic second-order logic with edge set quantificati@so,) can be
decided in linear time on any classof graphs of bounded tree-width. Courcelle’s
theorem has important consequences both in logic and imitdgotheory. In the design
of efficient algorithms on graphs, it can often be used as alsimvay of establishing
that a property can be solved in linear time on graph clasEesunded tree-width.
Besides being of interest for specific algorithmic problerasults such as Courcelle’s
and similaralgorithmic meta-theoremgad to a better understanding how far certain
algorithmic techniques, dynamic programming and decoiitipasn the case oSO,
range and establish general upper bounds for the parasestaromplexity of a wide
range of problems. See [9, 10] for recent surveys on algoi@imeta-theorems.

From a logical perspective, Courcelle’s theorem estabtish sufficient condition
for tractability of MsO, formula evaluation on classes of graphs or structures:-what
ever the clas§ may look like, if it has bounded tree-width, therso,-model check-
ing is tractable or€. An obvious question to ask is how tight Courcelle’s theoism
i.e. whether it can be extended to classes of unboundedvictb-and if so, how large
the tree-width of graphs in the class can be in general. Ghvenonsiderable interest in
Courcelle’s theorem, it is somewhat surprising that notimad&nown about such limits
for Mso, model checking. Recently, the question has informally raged in the com-
munity and has led, e.g., to a conjecture by Grohe [9, Camje@.3] thatMso-model
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checking is not fixed-parameter tractable on any dlaskgraphs which is closed under
taking subgraphs and whose tree-width is not poly-logaritially bounded, i.e. there
are no constants d such thatw(G) < d -log®|G| for all G € C. But to the best of
my knowledge, the question has so far not been studied sgtitaty. This is the main
motivation for the work reported in this paper.

It follows from the NP-completeness 8fcolourability on planar graphs [8] that
MsoO-model checking is not fixed-parameter tractable on thesaéplanar graphs (un-
lessP = NP). Furthermore, it is a simple consequence of the exclgdieidtheorem
that on minor- or topological-minor closed classes of geaphunbounded tree-width,
MsO-model checking is not fpt unles® = NP (see Section 2). In this paper we es-
tablish a strong intractability result by showing that imte of tree-width, Courcelle’s
theorem can not be extended much further to classes of udieduree-width. Through-
out the paper, we will work with coloured graphs, i.e. we itla set/” of edge and
vertex colours. A clas§ of graphs is said to be closed undécolourings if whenever
G € C andG' is obtained fronG by recolouring, i.e. the underlying undirected graphs
are isomorphic, the’ € C. We will mostly consider classes of graphs closed under
colourings. An alternative characterisation is to considiational structures over a sig-
natures with at most binary relation symbols. We can then fix a clé@ssf graphs and
consider the class of all finite-structures whose Gaifman-graphs ar€irHowever,
in this paper we prefer to work with coloured graphs rathantGaifman-graphs of
structures. Given a clagsof graphs, we write MQUS0,, C) for the model-checking
problem forMso, onC (see Section 2 for details).

Definition 1.1. The tree-width of a class of graphs isstrongly unboundetly a func-
tion f : N — Nif there is a polynomiap(z) such that for alk 1) there is a grapts € C
of tree-width betweem andp(n) whose tree-width is not bounded By|G|) and 2)
givenn, G,, can be constructed in tin#l"«)", for somes < 1, where|n|, denotes the
unary encoding ofi. The tree-width ot is strongly unbounded poly-logarithmicalfy
it is strongly unbounded biyg® n, for all c.

Essentiallystronglymeans that a) there are not too big gaps between the treb-widt
of graphs witnessing that the tree-width®fis not bounded byf(n) and b) we can
compute such witnesses efficiently. We will see below whyg ttondition is needed.
The following is the main result of the paper. Liéte a set of colours with at least one
edge and two vertex colours.

Theorem 1.2. LetC be a constructible class éf-coloured graphs closed under colour-
ings.
1. Ifthe tree-width of is strongly unbounded poly-logarithmically thetC(Ms0s, C)
is not in XP, and hence not fpt, unless all problem&li(in fact, all problems in
the polynomial-time hierarchy) can be solved in sub-exptiaktime.
2. If the tree-width of is strongly unbounded Hyg'® n thenMC(Ms0,, C) is not in
XP unlessSAT can be solved in sub-exponential time.

See Section 2 for a definition of FPT and XP. We refer to De&iniB.6 for a pre-
cise definition of constructible classes but will explaie toncept informally below.
Let us give some applications of the theorem. &or 0 let C.. be the class of all graphs



G of tree-width at mostog® |G|. This class is constructible and hence its closure un-
der colourings has intractableso, model-checking, ifc > 16. Similarly, the class

of planar graphs of tree-width at mdsg° n is constructible. Finally, all (topological)
minor-closed classes of unbounded tree-width are corigitei@nd rich. All these ex-
amples show that Courcelle’s theorem can not be extendelddsas of graphs with
only poly-logarithmic or dog®n bound on the tree-width, far> 16.

High level description of the proof. Let us give an intuitive account of the proof of the
previous theorem. Clearly, with today’s methods we canogehto prove thatso,-
model-checking is fixed-parameter intractable for a cldsgraphs without relating
it to assumptions in complexity theory. Consequently, wavprthat MGMS0., C) is
fixed-parameter intractable for a claSdy reducing an NP-complete problemto
MC(Ms0.,C) such that if there is an fpt-algorithm for M@s0,, C), then P can be
solved in sub-exponential tim#?("). More precisely, for each languade € NP we
construct a formulgp and then, given a wordy, we construct a grapy,, € C such
thatG,, | ¢p if, and only if, w € P. We will see that the number of vertices of

G., can be bounded bg*!” , for somey > 1, so that if there was an algorithm for
MC(Ms0z, C) with running timef (|¢|) - |G|° then this would imply thatv € P could

1
be decided in time)(2¢*1” ) = 2°(w Here, Conditionl) of Definition 1.1 ensures
thatC contains a graply,, the wordw can be reduced to and Conditihensures that
we can compute it in time sub-exponential in the lengtiwgf For this reduction to
work, we need some intermediate steps.

It is well-known thatmMso,-model checking is fixed-parameter intractable on the
class of coloured grids (see Figure 1), which can be seenlas/§o suppose” can be
solved by a non-deterministic Turing-machih&in time n¢, wheren is the length of
the input. Given a wordv of lengthn, we choose &dn¢ x n°)-grid G,, and label its
top-most row byw from left to right. From the Turing-machin®/ decidingP we can
compute amsO,-formulay,, depending only o/ such thatG,, = ¢, if, and only
if, w is accepted by and hencev € P. Essentially, theuso formula uses the grid to
guess the computation table of a successful ruiadnw. Hence, an fpt-algorithm for
MsO-model checking on grids yields a polynomial time algoritfamP.

Clearly, if we are just given a class of graphs of tree-widthh bounded poly-
logarithmically, then there is no guarantee that it corgainy grids. But we will show
that we can define grids in graphs of this classvMso,-formulas. Adapting a recent
proof by Reed and Wood, we first show thadfis a graph of large tree-width then
it contains a large structure which we catlloured pseudo-walPseudo-walls do not
actually occur as minors or subgraphstobut as topological minors of certain inter-
section graphs formed by sets of disjoint pathg&finHowever, it turns out that this is
enough to define coloured grids in coloured pseudo-wallgsg, -formulas. It follows
that if the tree-width ofG is not bounded by: then we can define afi x [)-grid in
G in MSO,, wherel is roughly V/k (see Theorem 3.5 for details), and this grid can be
coloured. We call a clasonstructiblef we can construct these pseudo-walls in graphs
G € Cin polynomial time and it is such classes with which we workhis paper (see
Definition 3.6 for details).



The important aspect here is that the size of the grids we el&ipolynomially
related to the tree-width of the graph, in contrast to thedgguaranteed by the excluded
grid theorem (see Theorem 3.1), where the tree-width is mapitally larger than the
grids we are guaranteed to find. Hence, using pseudo-wah® free-width of a graph
is log® n then we can defin@ x 1)-grids inG for [ 2 log10 n and this is enough for the
reduction sketched above to work.

Obtaining sub-exponential time algorithms for problemshsas TSP or &r is an
important open problem in the algorithms community and thmmon assumption is
that no such algorithm exists. This has led to &xponential-time hypothesiETH)
which says that there is no such sub-exponential time afgorior SAT, a hypothesis
widely believed in the community.

Let us briefly comment on the restrictions imposed on thesels we study here.
While every graph of large enough tree-width contains lggeudo-walls, we do not
yet know if we can always compute these structures in polyaldime (and hence we
impose the additional restriction to constructible cla¥s# is conceivable that large
pseudo-walls can indeed be computed in polynomial times Woiuld essentially show
that all classes are constructible and effectively remabig dondition from our main
result. We pose this question as an open problem.

As mentioned above, Grohe conjectured thao-model checking is not fpt on any
class of graphs closed under subgraphs and whose treetswdihpoly-logarithmically
bounded. The statement of the conjecture and the main i&shlis paper are incom-
parable as | require closure under colourings whereas Gdobke not. On the other
hand, the conjecture requires closure under subgraphsiwhic not. Note that while
tree-width is preserved by taking subgraphs, logarithnaéie-wvidth is not, i.e. a graph
whose tree-width is bounded Iiyg » may contain a subgraph of order whose tree-
width is not bounded biog m. Closure under subgraphs therefore does rule out natural
examples of graph classes. For instance, the class of ghgraf tree-width at most
logn is not closed under subgraphs. On the other hand, Grohejeatare does not
require colours or constructibility conditions and referglasses of plain graphs.

Note that it is important for our results that we work wiitso, and allow quan-
tification over sets of edges as well as over sets of vertitese only consider vertex
set quantification, i.e. deal withso,, then the theorem is false, as for instaneso; -
model checking is fpt on the class of cliques.

Following Courcelle’s theorem, a series of algorithmic attteorems for first-order
logic on planar graphs [7], (locally) minor-free graphsgpand various other classes
have been obtained. Again, no deep lower bounds, i.e. tatsdity conditions, are
known (see [10] for some simple bounds and [9, 10] for recaveys of the topic). The
aim of this paper is to initiate a thorough study of sufficieanditions for intractability
in terms of structural properties of input instances.

Organisation. We recall monadic second-order logic and what we need alopat
rameterised complexity in Section 2. The main result is fhrewed as follows. To show
that MC(MSOy, C) is hard on class&s of tree-width not poly-logarithmically bounded,
we first use a result by Reed and Wood [12] to show that any go&jdrge enough
tree-width contains a structure that is grid-like enougtofar purposes. This is proved
in Section 3. While these structures do not exist as minotisargraphs, they turn out



a) b)

Fig.1.a) A (4 x 5)-grid and b) an elementary wall of ord&r

to be Mso,-definable, which is is shown in Section 4. To use k&0,-definability
for our result, we introduce a new kind of interpretationsaB®n structures, called
MSO; —MSO;-transductiongsee Section 5). Finally, in Section 6, we combine all this
to show the main result of the paper. Due to space restrigt@yme proofs have been
removed from this abstract. See http://arxiv.org/absA0B802 for a full version.

Acknowledgements.| would like to thank Mark Weyer for pointing out that the résu
proved here readily extends to problems in the polynomiadthierarchy.

2 Complexity of Monadic Second-Order Logic

We first need some notation and a few concepts from graphythéfr refer to [3] for
background on graphs. Fér> 1, we defingk] := {1..., k}. All graphs in this paper
are finite and undirected. We writé(G) for the set of vertices anH(G) for the set of
edgesin a grapty. A graphH is asub-divisiorof G (a1-subdivisionif H is obtained
from G by replacing edges i& by paths of arbitrary length (of length resp.).H is a
topological minorof G if a subgrapha’ C G is isomorphic to a sub-division df .

An elementary wallV is a graph as in Figure 1b). The cycles of minimal length
in W are calledbricks. A wall is a subdivision of an elementary wall. Theightof a
wall is the number of rows of bricks and igdth the number of columns of bricks. An
I x k-wall is a wall of height and width%k and a wall oforder is ani x I-wall. Finally,
thenails of a wall are the vertices of degr8en it together with thet corners. Hence,
in an elementary wall all vertices are nails whereas in a ggmeall only the vertices
of the underlying elementary wall are nalils.

For the purpose of this paper, it might be easier to think of k-grids instead of
k x k-walls and everything would go through with grids also. Timportant property of
walls is that their maximum degree3dsAnd if a graphH of degree< 3 is a minor of
G, thenH is also a topological minor af (see [3, Prop. 1.7.2]). Hence, a sub-division
of H actually occurs as subgraph @f Defining topological minors imMso, is much
easier than defining minors as we do not need contraction. Mherefore work with
walls instead of grids in this paper.

| assume familiarity with basic notions of mathematicalito@ee e.g. [4]). In this
paper we will only consider signatures.= {E, By, ..., Bs,C1,...,C} of coloured
graphs, wherd” denotes the edge relatioB; the colours of edges and; the colours
of vertices. We allow multiple colours per edge or vertex. démoteo-structures by



Roman lettersA, G, H, .... If R € o is a relation symbol and a o-structure, we write
R(A) for the interpretation oR? in A.

The class of formulas ahonadic second-order logic with edge set quantification
over a signature, denotedvso,[o], is defined by the rules for first-order logic with
the following additional rules: ifX is a second-order variable either ranging over sets
of vertices or over sets of edges apde MSO;[cU{ X }], thendX ¢ € MSO;[s] and
VX € MSOz[o] with the obvious semantics where, e.g., a formilifép, F' being a
variable over sets of edges, is true in a structiiéthere is a subsel’ C E(A) such
that (A4, F) = ¢. If ¢(x) is a formula with a free variable and A is a structure, we
write p(A) for the set{a : A = ¢[a]}. See [11] for more oMSO.

In [15], Vardi proved that model checking fosso, is PsPACEcomplete on the
class of all graphs. The complexity of model-checking peat can elegantly be stud-
ied in the framework oparameterised complexitgee [5] for background on parame-
terised complexity). IT is a class ob-structures, we define thgarameterised model-
checking problenMC(MsS0., C) for MSO, onC as the problem to decide, givéhe C
andyp € MSQ:[o], if G = ¢. Theparameteris |p|. The problem idixed-parameter
tractable (fpt), or in the class FPT, if there is a computable functfonN — N and
k € N, such that for allG € C andy € MSO;[0], G = ¢ can be decided in time
f(¢]) - |G|*. The problem is in the class XP, if it can be decided in tigg (¢D. FPT
in the parameterised world corresponds to polynomial-imrtée classical framework
as the class of problems that can be solved efficiently. XPbeaseen as the parame-
terised exponential-time and is obviously a much largescte problems than FPT.

Tree-width is a global connectivity measure of graphs thest imtroduced by Robert-
son and Seymour in their graph minor series. We refer theeraad3] for a definition
of tree-width. Letf : N — N be a function and be a class of graphs. The tree-width
of C isbounded by, if tw(G) < f(|G|) for all G € C. C hasbounded tree-widtlf its
tree-width is bounded by a constant. Many natural classgsaphs, for instance series-
parallel graphs, are found to have bounded tree-width.®Hewiing lemma, whose
proof is standard, will be needed below.

Lemma 2.1. Let M be a non-deterministic Turing-machine. There is a formpila €
MSO, such that for all wordsw € X*, if G is a k x k-wall whose top-most row is
coloured byw from the left, therG = ¢y, if, and only if, M acceptsw in at mostk
steps. Furthermore, the formulay,; can be constructed effectively frahi. The same
holds if M is an alternating Turing-machine with a bounded number tdralations, as
they are used to define the polynomial-time hierarchy.

Lemma 2.1 together with Theorem 3.1 shows that i closed under (topological)
minors and has unbounded tree-width, then(M€0;, C) is not fpt unless® = NP.

3 Pseudo-Walls in Graphs

One of the fundamental results of Robertson and Seymowe@ytof graph minors is
the excluded grid theorem [14], saying that there is a coaigatfunctionf : N — N
such that every graph of tree-width at led@gk) contains & x k-grid as a minor. The
best explicit bound known for the functighis given by the following theorem.



Theosrem 3.1 (Robertson, Seymour, Thomas [L3)ery graph of tree-width at least
20%*” contains ak x k grid as a minor.

Robertson et al. [13] also proved that there are graphs efwtidth proportional to
k2 log k that do not contailiy, », as a minor. So far this is the best lower bound known
for the functionf above. In particular it is open whethgtk) above can be bounded by
a polynomial. In [12] Reed and Wood consider a different tghebstructions to small
tree-width, calledgrid-like minors. A grid-like minor of ordef in a graphG is a set
P of paths inG such that the intersection grafliP) contains ai;-minor, wherek
denotes the complete graphibrertices. Here, thimtersection graplof a setP of paths
is the graph with vertex s and an edge between two patAs) € Pif PN Q # o.
If P, Q are sets of paths ¥, we writeZ(P, Q) for Z(PUQ), the intersection graph of
their disjoint union.

Theorem 3.2 (Reed, Wood [12])Every graph of tree-width at leask*+/log k con-
tains a grid-like minor of ordet, for some constant. Conversely, every graph that
contains a grid-like minor of orderhas tree-width at leasti ] — 1.

While | do not yet know how to use this result directly, we cae its proof to find the
structures inG we need.

Definition 3.3. A pseudo-walbf orderl in G is a pair(P, Q) of sets of disjoint paths
in G such thatZ(P, Q) is a wall of ordet.

We will see below that every graph of large enough tree-widthtains a large
pseudo-wall and that these can be definet8n,. Essentially, to show thatiso,
model-checking is fixed-parameter intractable on a dasklarge enough tree-width,
we will use pseudo-walls in a similar way as walls are usedemmma 2.1. In particular,
we want to label the top-most row of the pseudo-wall by a woraver a finite alpha-
bet. However, pseudo-walls do not occur as subgraphs ofréEhgG, which makes
labelling them somewhat more difficult. Instead, we havediowr the grapltG so that
this colouring induces the labelling of the pseudo-wallkibtains. The main difficulty
is that the colouring o€z must induce a unique labelling of the pseudo-wall and that
both the pseudo-wall as well as its labelling can be definsidat; by Mso,-formulas.
Unfortunately, this makes the definition of a coloured psewall technically some-
what more complicated. Lef be a set of colours and Iét be an additional colour for
edges and? an additional colour for vertices. Lét := {B, R} U X.

A X-coloured pseudo-wabf order! in a I'-coloured graplt is a triple(P, Q, A)
such that one of the following holds:

Simple pseudo-wallsZ (P, Q) is al-subdivision of an elementary walW of order
[ such that the vertices &7 (which we callechails above) are exactly the paths#h
See Figure 2 for an illustration. Figure 2 a) shows the pseualf where the solid
black circles are the vertices frof and squares denote the vertices frgnFigure 2
b) shows how (a part of) this pseudo-wall corresponds tospailiz, where dashed
lines represent paths i@ and solid lines paths i®. Note, though, that in general the
paths could intersect in much more complicated ways thaalied and that paths can
intersect more thad other paths although walls have maximal dedgree

LetP := {Py,..., P} be such tha?; ... P, form the nails of the top-most row
of W in order from left to right. Recall that eadh is a path inG. ThenA is the path



a) a simple pseudo-wall b) its generation from disjoint path

Fig. 2. A simple pseudo-wall and the patf#s(solid) andQ (dashed) generating it.

in G obtained from the “concatenatiod® - Ps - -- Py, i.e. V(A) = U, «;«, V(P)
and E(A) consists ofl J, ., E(P;) together with additional edges connecting one
endpoint ofP; to an endpoint of%;, |, for 1 < i < k, so that this results in a path.

Furthermore, the edges f(A) are coloured by colouB € I'. The two endpoints
of eachP; are coloured by? and the vertices in the pati#y, . . ., P, carry colours from
X’ so that all vertices in a patR; are coloured by the same colour frath

This colouring of G induces a labelling of the wall of ordérwhere the nails
v1, ..., in the top-most row are labelled so thatis labelled by the colou€; €
of the pathP;. If w := C - - - C; is the sequence of colours dhwe say thatP, O, A)
encodeshe wordw € X*.

The motivation behind simple pseudo-walls is as followswvéf find this structure
in a graphG then the path tells us what the top-most row of the wall is and it also
gives us an order on the vertices of the top-most row. Cahgudi by B will enable
us to define this coloured pseudo-wallntso,. If we want to encode a word :=
wi,...,w; € X* in the wall then we can simply label the paths . . ., P, in G which
form the top-most row of the wall by, . .., w; and this induces the correct labelling
of the wallZ(Q, P).

Complex pseudo-walls. Complex walls are structures as illustrated in Figure 3.
Essentially, they consist of a subdivisid¥i’ of a wall W in Z(P, Q). To define the
colouring of the wall, there will be additional pathsZiiP, Q) connecting some of the
vertices of the top-most row d¥’ to the pathA so that the order is preserved, i.e. the
paths do not “cross”. We can then colour the pathnd thereby induce a colouring of
the top-most row.

Formally, for complex coloured pseudo-wallsis a path inZ such thateacl € P
has exactly one endpointifrand no path ir@ has an endpointid. Furthermore, there
are subset®’ C P andQ’ C Q such thatZ’ := Z(P’, Q') is a wall of order.

LetT C 7’ be the top-most row of the wall and let . . . z, be the vertices of in
order from leftto right. Lef := {i1,...,%;} be the index set such thay, is the top-left
corner,z;, is the top-right corner anfv;; )1« < lists the vertices ifi” of degrees in
order from left to right. Fonl < s < t < [ let T'(s,t] be the segment df between
x;, andz;, including the latter but not the former. We defifi, 1] to be the segment
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Fig. 3. A complex pseudo-wall.

containing the vertices;,, ... z;,. Now, the setsP, := P\ P’ andQ, := Q\ &
induce disjoint path$” ... P, in Z := Z(P, Q) (i.e. eachP; consists of a set of paths
in G) such that 1) one endpoint of each pdthin 7 is incident to a vertex; of the
top-most row of the wall so that eadf(s, ¢], for 1 < s < ¢t < [, contains exactly one
x; andT'[0, 1] contains2 and 2) for the other endpoint of P; in Z(P, Q) (which is a
path inG) we have{v;} = u; N A, wherev; € V(G), and 3)uvy,...,v; occur in this
order onA.

Now suppose ..., are coloured by’; ... C; respectively. Then this colouring
induces the labelling af (P’, Q') wherez;, gets colourC;, 1 < s < [. We say that
(P, Q, A) encodeshe wordw := C; ... C.

A crucial feature of pseudo-walls in coloured graphs is thay are unique in the
sense that i7 is a graph coloured byB, R} U, then every pseudo-waP, Q, A) in
G encodes the same woud(there may be no coloured pseudo-walGi

This is obvious for simple pseudo-walls, as the patis uniquely determined by its
colouring (B-edges and th&;’s separated by-vertices) and this uniquely determines
the colouring of the wall and hence the encoded word. For ¢exivgalls, the pathi is
again determined by its colouring and this fixes the ordehefblours occurring od
and hence on the wall. Here we use that the paths connettioghe wall preserve the
order.

Definition 3.4. We say that a grapty encodesy € X* if it contains aX'-coloured
pseudo-wall encoding. We say that7 encodesv with powerk, for somek > 1, if G
contains a>-coloured pseudo-wall of ordéw|* encodingw.

The proof of the next theorem is essentially the proof of Then3.2 with some
modifications to get coloured pseudo-walls instead of gkielminors.

Theorem 3.5. There is a constant such that ifG is a graph of tree-width at least
c-m® - /log(m?), thenG contains aX-coloured pseudo-wall of orden.

We can now give a formal definition @bnstructibleclasses of graphs.

Definition 3.6. Let C be a class of graphs closed undécolouringsC is calledcon-
structibleif in every graphG € C of tree-width at least - m® - \/log(m?2), wherec
is from Theorem 3.5, we can compute in polynomial time a cadypseudo-wall of
orderm.



It is conceivable that the large pseudo-walls whose exigteve proved above can
always be computed in polynomial time. This would imply tathtlasses of graphs are
constructible. We leave this for future research.

Theorem 3.5 shows that in any graph of sufficiently large-wegth we find a large
pseudo-wall. We will show below that this is enough to defargé walls in graphs of
large tree-width by means ofso,-formulas. It follows from Theorem 3.5 above that
if C is a class of graphs of unbounded tree-width which is clogettucolouring then
for eachw € X*, C contains a graph encoding In fact, for each: > 1, G contains a
graph encodingy with powerc. The following lemma summarises what we will need
about colourings in the following sections.

Lemma 3.7. LetC be a class of graphs closed undgfcolourings and letv € X* be

a word of lengthm. If there is a graphG' € C of tree-widthc - (m*)® - \/log(m*)2,

wherec is the constant from Theorem 3.5, whose tree-width is natthed bylog®* |G|
1

then there is a grapli’ € C encodingw with powerk such thatG| < 2¢m¥ for some
constanty > 1 and¢’ := ¢(k) depending ork but not onw.

4 Defining coloured pseudo-walls in graphs of large tree-witth

In this section we aim at defining-coloured pseudo-walls in graphs of large enough
tree-width inMs0,. Fix a setX of colours and lef” := X U {B, R} be as defined in
Section 3. LetG be al'-coloured graph an®, Q, A C FE(G) be sets of edges. For
(P, Q,A) to be aX-coloured pseudo-wall igr, we first need to say th& andQ are
sets of pairwise disjoint paths (. Note thatP induces a set of pairwise disjoint paths
if, and only if, i) every vertexv € G is incident to at most two edges # andii)
the subgraph of7 induced by the edges iR is acyclic. This can easily be defined in
MSO, and we will see the formulas below for the more complicateskaa paths and
acyclicity inZ(P, Q). Furthermore, we have to say that the edged,aind only those,
are coloured byB. Now, we have to distinguish between simple and complexureld
pseudo-walls. This can easily be doneviso, as in the first casg), ., P C A (at
least in the pseudo-walls generated in the previous sedtiogeneral pseudo-walls
this is only true for the paths in the top-most row, but thaildeequally be used to
distinguish the two types of walls) whereas this fails in seeond. We will present the
case for simple pseudo-walls explicitly. The other caskfzd using the same ideas.

We first need a few auxiliary formulas. To ease the presemtate assume that no
path P occurs in boti? and Q. This is guaranteed by the pseudo-walls generated in
Section 3 but we could also easily modify the formulas belowoid this assumption
(see also Section 5).

In what follows we will usemso,-formulas, interpreted 7, to speak about the
intersection grapl¥ := Z(P, Q). To increase readability of formulas we agree on
the following convention: lower case letters are used fat-farder variables, variables
P, Q, ... range over sets of edges and variabied”, H range over sets of vertices. It
may seem bizarre to ugé H for a set of vertices. The reason will become clear below
as we will be using variableE for sets of vertices itz which represent sets of edges
in Z. As a final piece of notation, we write™ € P” to say thatP is a component of
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P, i.e. one of the paths i, and analogously fof) € Q. Furthermore, we will write
x € V(P) for the formulady Pzy to say thate is adjacent to an edge iR.

Recall that for two path® € P and@ € Q there is an edgéP,Q} € E(Z) if
PNQ # oin G. As P and Q are sets of disjoint paths, there are no three distinct
paths inP U Q intersecting in a single vertex. Hence, we can represergsdg Q} <
E(Z) by a vertexv € V(P N Q). However, inMS0O, we cannot pick a single vertex
from V(P N Q) and therefore will represent the edg®, Q} by the setV’ (P N Q).
Let pp(z) == 3P € P 3Q € Q z € V(P NQ), inc(z,P) := x € V(P) and
x~y:=3P P 3IQ € Q x,y € V(PnNQ) beMso,-formulas, where we will
usually write~(x, y) in infix notation.~ defines an equivalence relation on the set of
vertices satisfying i (x) and we can represent edgediy equivalence classes of
in G. HenceZ is isomorphic to the graphi := (V, E, o) with vertex setV’ := P U Q
and edge seb := {[z]. : = € vr(G)}, where a vertex? € V is incident with an
edgee € F if there is a vertex € en P (and hence C P). J is MSOs-definable in
G, by the formulasy g, inc and~ with parameter®, Q and we can represent variables
over elements df by variables ranging over sets of edgesiy enforcing that these
are interpreted by a path from eitlféror Q. VariablesX over sets of elements Gfcan
be represented iv by pairsXp, X of variables ranging over sets of edges so that a
setX C V/(3J) is represented by the pair of seXf$ := X NP andXg := X N Q.
Finally, setsF" C E(J) of edges can be represented by 9€ts” ¢z (G) closed under
~ so thatif{P,@Q} € F thenV(P N Q) C F’. Using this idea we can then say about
J, and hence abod, thatJ is a wall as follows1) There are two set&,V C E(Z) of
edges, each of which induces a set of pairwise vertex digpaiths inZ (which we will
think of as horizontal and vertical paths in a wall).For all P € Hand@ € V, PNQ
is connected ant¥ (PN Q)NV(H) =z forall H € (WUH)\ {P,Q}.3) There is
a pathL € V such that the intersection éfwith each@ € H contains an endpoint of
Q (we think of L as the left-most vertical path in the wall). Once we héveve can
give the horizontal path® € H a direction, where we say thate V(P) is tothe left
of p’ € V(P), if the subpath ofP containingp’ and a vertex in_ also containg. 4)
There is a patll” € H such that the intersection @f with eachP € )V contains an
endpoint ofP (T is the top-most horizontal path in the wall). We can nowTide give
the vertical pathg® € V a direction and say thatc V(P) is abovep’ € V(P), if the
subpath ofP containingp’ and a vertex irf” also containg. 5) For each pattP? € V
exceptL there is a path?’ € V (the path immediately to the left d?) such that for
alQ e H:if p e V(PNQ)andp’ € V(P N Q) are vertices in the intersection of
Q andP, P’ resp., theny’ is to the left ofp in Q and there is n& € H such that any
s € V(SN Q) lies in the subpath of) betweerp andp’. The analogue condition for
horizontal paths.

To demonstrate the idea of tims0O,-formalisation we give precise formulas for the set
‘H in Condition1. It will be clear that the other conditions can be formalisedlo-
gously. We have to say that there is a®ef E(J) of edges inducing a set of pairwise
disjoint paths inJ. To define this inGG, we first need a formula PatR, @, H) saying
that there is a path frol? € P U Q to Q € P U Q using only edges froni/, where
H is a subset ok (G), closed under-, representing edges h The usual way of
expressing that two verticasy in a graph are connected within a gétof edges is to
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say that all set&’ of vertices which contaim and are closed under the edge relatibn
also contairy. In our case, sets of vertices®are represented by pairs of séts C P
andUg C Q consisting of connected componentsfpand Q. Hence, the idea above
is expressed by the formula Paih @, H) defined as

YUp C PYUG C Q((P e UpUUg A
VX,Y €e PUQ[X € UpUUq Ae(e € H Aincle, X) Ainc(Y)))
~Y €UpUUQ)) Q€ UpUT,)

where we writeX € Up U Ug to say thatX is a component either df » or Ug and

Up C P to say thalUp is a set of components . Now, we can say th&t induces a

set of pairwise disjoint paths as follows. We first say thargwertex in{ has degree

at most2: VP € P U Q(3=2f € H inc(f, P)), where3=2f... is an abbreviation for:
there are at most edgesf such that .... To say th&f induces an acyclic graph we say
that forallP € P U Q, if Pisincidentto an edge := {P,Q} € H then there is no
path fromP to QQ in H — e. The latter can be expressed using the formula Path above.
This concludes the formalisation of Conditidh

Clearly, if ¥ and’H satisfy the conditions above, then they generate a walland
conversely, the disjoint horizontal and vertical paths efal satisfy the conditions.
HenceJ is a wall if suchY andH exist containing all vertices and edgesioformal-
ising all this gives us a formula which saysf O that the paifP, Q) is a pseudo-wall.
Note that so far we have not used the additional pathlence, if we are not interested
in coloured pseudo-walls but simply in pseudo-walls we camthis formula.

We now proceed to define coloured walls and the induced colgwf Z(P, Q).
From the formalisation above we now have sAts) containing the horizontal and
vertical paths of the wall as well as two pathsT' giving the top-most row and left-
most column. The left-most row gives us an ordering on thenast row and all we
have to do is to define the colours of the vertices on the toptnoav from the additional
path 4, which is easily done. Hence, we can write formujas(P), for C € X which
are true for the vertices in the wall coloured@yComplex pseudo-walls can be defined
analogously. Taken together, we have a formutd P, Q, A) which says thafP, Q, A)
is a coloured pseudo-wall. Here, the sBtandQ define the vertices of the pseudo-wall
whereasA is an additional parameter used in the formulas. It will bavemient to
take the setq’, L defining the top- and left-most row and column as parametscs a
rather than defining them. Hence, we have a formupdP, Q, A, L, T)) which says
that(P, Q, A) is aX-coloured pseudo-wall with left-most coluninand top-most row
T, formulaspg(z, P, Q, A, L,T),inc(z, P,P,Q, A, L, T) and~(z,y,P,Q, A, L, T)
defining the edge relation of the pseudo-wall and formygsz, P, Q, A, L, T') and
oc(P,P,Q,A,L,T), whereC € YU{R}, defining the colours.

All formulas together define, in graphs of large enough tégith coloured prop-
erly, alarge wall whose top-most row is labelled by a wordraveHence, ifC is a class
of graphs of unbounded tree-width, closed under colouriwgscan define arbitrarily
large coloured walls i€. We know already that (presumably$o,-model checking is
not fixed-parameter tractable on the class of coloured watlgprove the main result
of this paper we need a way to translago,-formulasy over walls toMso,-formulas
©* over the graphs in which we define the walls. We could do thignrad-hoc way
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and modify the formulagy ... for each given formulg. We find it more convenient,
though, to treat these modifications uniformly within thenfrework of interpretations.
In the next section we therefore introduce a new form of priations which simpli-
fies dealing with the intersection graphs we have to definevendh might also be
useful elsewhere.

5 MSO5;—MSO»-transductions

In this section we introduce a class of interpretationsedaiso,—MsO, -transductions
between classes of graphs which allow us to define one Blaggraphs inside another
classC so that we can translateso,-formulas over53 to MSO,-formulas saying the
same over the graphsdh Unlike first-order interpretationsiSO,—MSO, -transductions
associate with every structure a class of structures anbisnsense resembleso-
transductions as, e.g., studied by Courcelle.d et {E, By,...,B;,Cy,...,Cs} be
a signature of coloured graphs as defined in Section 2r beta signature.

Definition 5.1 (MSO,-MSO,-transduction)LetU := Uy, ..., Uy andX = X;,...,X;
be tuples of binary relation symbols. Ars0, —MS0O,-transduction ot in 7 with pa-

rameters/, X is a tuple® := (@U(Ul, LU X)), (0 (@), incy (x, P,Q), ~

(x))1§i<j§k’ (@}}‘J (x))1§i<j§k,Fe{Bl,...,Bt}’ (@C(P)i)CEa,lgigk) ) WhereP, Q
are unary second-order variables ands a first-order variable, such that for ait
structuresA and setd/, X C E(A) with (A, U, X) E ¢u:

— ~%7 defines an equivalence relation pfy/ (4)

—forallz € V(A)andl < i < j < k, if (A,U,X) E ¢4/ (z) then there are
exactly two sets?; C U; andP; C U; such tha(A, U, X) = incy/ (z, P;, P;) and
if (A,U,X) |=x~ ythen(A,T,X) = inc (y, P, P;)

—forall FF € {By,...,B:}, pr(A) C vr(A).

We abbreviate#1So, —MS0,-transductions of in T aso-r-transductions. Le® be
ao-r-transduction. To every-structureA4, © associates a clag3(A) of o-structures
defined as follows. IUy,..., Uy, X1, ..., X; C E(A) are sets of edges such that
(A,U, X) = ¢u, then we define the structurg:= 6(A, U, X) as follows:

- V(B) = U1gingi whereV; := {V C U, : V is a connected componentof}

— E(B) = Uy;j<, B whereE™ = {[v] .., : v € ¢}/ (A)} and theE"J are
taken to be disjoint. N

— an edge: € E*/ is incident to vertices® € V; and@ € V; if A =inc"’ (e, P,Q)
for someQ € V; and likewise forP € V.

— anedge € E%J, for1 <i < j <k, is coloured byF, whereF € ¢ is binary, if
A E ¥ (e). — ,

— avertexP € V; it coloured byC € o, whereC'is unary, if(4,U, X) = ¢ (P).

Hence, with every structuré and satisfying assignmebt;, . .., Uy, X of ¢y the
transductior® associates structures whose universes consist of the cednsompo-
nents of thdJ;. For classesA of 7-structures we defin@(A) := {B : B € ©O(A) for
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someA € A}. The definition of the edge relation may seem to be overly dimaied,

as we define the edges and their incidence by different fasnamhd furthermore do it
separately for each pairj. The reason is that we want to ugeo,-formulas over the
structure®(A) and hence have to be able to quantify over sets of edgBsdrO(A).

As Ms0O, does not allow quantification over arbitrary binary relapwe have to en-
code edges by individual elements éfand then use sets over vertices to encode sets
of edges.

As all interpretationsyiso, —Ms0O,-transductions define a way of transforming one
class of structures into another and on the other hand, geavitranslation of1S0,-
formulasy over o-structures intaMso,-formulasp* over r-structures so that ip is
a formula with free variable$, ..., F;, X1,..., Xs,v1,-- ., ¥y, Where theF;'s are
binary, theX;’s are unary and thg;’s are individual variables, thep* is a formula
with free variables(F;);, ..., (F3)5, (Xi)i, ..., (X5 and(Y5)7, ..., (Yi);, where
the(F);’s are binary and all other unary. In addition, the paransdterX of the trans-
duction occur free ip*. We refer to the full version for details.

Lemma 5.2 (interpretation lemma).et A be ar-structure and/, X C E(A) be such
that(A,U, X) = pu.LetB := O(A,U, X). Forall o € MSOy[o], (4,U, X) = O(p)
if, and only if, B = .

Corollary 5.3. Lety € MSOx[o] andy := FUIXp* € MSO,[7]. For all 7-structures
A, A = ¢iffthereis aB € ©(A) such thatB = ¢.

6 Putting it all together

In this section we prove Theorem 1.2. LBt:= {Cy,...,C;}, with I > 2, be a set

of colours and” := XU {B, R}, whereB is a binary andR? a unary relation symbol.
Let C be a constructible class d@f-coloured graphs closed under colourings such that
the tree-width of? is strongly unbounded byg®* n, for somek > 1. We first observe
that the formulaspy (P, Q, A, L, T), vg,INC,~, ¢, pc as constructed in Section 4
can be used to define ars0, — MSO,-transductior® such that9(C) is the class of
coloured walls in graph&' € C. Here, we takd/ := P, Q as the parameters defining
the vertex set of the resulting graphs aXid= A, L, T as additional parameters used
in the transduction.

By Lemma 3.7©0(C) contains for eaclw € X* a wall encodingy with powerk,

i.e. there is d|w|* x |w|*)-wall in ©(C) whose top-most row is labelled hyfrom the
left. In particular, as 8t can be solved in time quadratic in the size of the input by a
non-deterministic Turing-machine,if> 2 then for each CNF formula of lengthm,
O(C) contains a wall of sizen? x m? labelled byuw.

Now take a formulapcye Which, on a walllW encodingw, checks whethew
correctly encodes a CNF-formula and whether the ordeifofs at leastjw|?. This
can be done by simulating a non-deterministic Turing maelaing this test. Let
Yene := FPQALT (puy A O(pene)) and letCone :={A €C: A E wCNF} C C. By
the interpretation Lemma 5.2¢y contains for each CNF-formula a graphG € C
encodingw with power2 and conversely each graghe Ccyr encodes a CNF-formula
with power2.

Now, let ¢ be theMso,-sentence from Section 2 which, by simulating an appro-
priate Turing-machine, is true in a wall of ordes|?> encoding a CNF-formula if,
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and only if,w is satisfiable and lef := ©(y). It follows that if the tree-width o€ is
strongly unbounded blg'® n, then model-checking := ©(¢) in Cey is equivalent
to solving &T. If in additionC is constructible then this allows us to formally define a
subexponential time reduction fromngto C as follows. Given a CNF-formula, we

1
construct a grapliy € C such thatG encodesy with power2 and|G| < 2¢1*!” | for
somey > 1 andc > 0. By definition of constructibility and strongly unboundeds,
such a grapld: exists inC and can be constructed in tim@|", for some fixed- > 0,

and hence in timec (2/*!" )" = 271*1¥ ' Now suppose MQMsO,,C) was in XP, i.e.
for some computable functiofy given a graphG € C andy € MSO;, G |= ¢ could
be decided in timéG|/(¥1). Hence, we could decided = ¥, whered is the formula

1
defined above, in timgs| /(17D < 2/(9D-1wl¥ Taken together, we could decideufis

1
satisfiable in time< 2(+/(9D)1wl¥ for fixedr,y > 1 and a fixed formula). Hence,
SAT would be decidable in sub-exponential time.

The same argument shows thafifs a rich and constructible class ffcoloured
graphs closed under colourings whose tree-width is effelgtnot bounded byogs"“ n
and/ is a problem that can be decided by a non-deterministic Gumiachine in time
n*, then MQMSO0;, C) is not in XP unlessC can be solved in sub-exponential time.
This implies Theorem 1.2. The extension to the polynomiakthierarchy follows as
we can simulate alternating Turing-machines with boundedlver of alternations in
MSO; in the same way as non-deterministic Turing-machines.
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