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Abstract. One of Courcelle’s celebrated results states that ifC is a class of
graphs of bounded tree-width, then model-checking for monadic second order
logic (MSO2) is fixed-parameter tractable (fpt) onC by linear time parameterised
algorithms. An immediate question is whether this is best possible or whether the
result can be extended to classes of unbounded tree-width.
In this paper we show that in terms of tree-width, the theoremcan not be extended
much further. More specifically, we show that ifC is a class of graphs which is
closed under colourings and satisfies certain constructibility conditions such that
the tree-width ofC is not bounded bylog16

n thenMSO2-model checking is not
fpt unless SAT can be solved in sub-exponential time. If the tree-width ofC is not
poly-log. bounded, thenMSO2-model checking is not fpt unless all problems in
the polynomial-time hierarchy can be solved in sub-exponential time.

1 Introduction

In 1990, Courcelle proved a fundamental result stating thatevery property of graphs
definable inmonadic second-order logic with edge set quantification(MSO2) can be
decided in linear time on any classC of graphs of bounded tree-width. Courcelle’s
theorem has important consequences both in logic and in algorithm theory. In the design
of efficient algorithms on graphs, it can often be used as a simple way of establishing
that a property can be solved in linear time on graph classes of bounded tree-width.
Besides being of interest for specific algorithmic problems, results such as Courcelle’s
and similaralgorithmic meta-theoremslead to a better understanding how far certain
algorithmic techniques, dynamic programming and decomposition in the case ofMSO2,
range and establish general upper bounds for the parameterised complexity of a wide
range of problems. See [9, 10] for recent surveys on algorithmic meta-theorems.

From a logical perspective, Courcelle’s theorem establishes a sufficient condition
for tractability of MSO2 formula evaluation on classes of graphs or structures: what-
ever the classC may look like, if it has bounded tree-width, thenMSO2-model check-
ing is tractable onC. An obvious question to ask is how tight Courcelle’s theoremis,
i.e. whether it can be extended to classes of unbounded tree-width and if so, how large
the tree-width of graphs in the class can be in general. Giventhe considerable interest in
Courcelle’s theorem, it is somewhat surprising that not much is known about such limits
for MSO2 model checking. Recently, the question has informally beenraised in the com-
munity and has led, e.g., to a conjecture by Grohe [9, Conjecture 8.3] thatMSO-model
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checking is not fixed-parameter tractable on any classC of graphs which is closed under
taking subgraphs and whose tree-width is not poly-logarithmically bounded, i.e. there
are no constantsc, d such thattw(G) ≤ d · logc |G| for all G ∈ C. But to the best of
my knowledge, the question has so far not been studied systematically. This is the main
motivation for the work reported in this paper.

It follows from the NP-completeness of3-colourability on planar graphs [8] that
MSO-model checking is not fixed-parameter tractable on the class of planar graphs (un-
lessP = NP). Furthermore, it is a simple consequence of the excludedgrid theorem
that on minor- or topological-minor closed classes of graphs of unbounded tree-width,
MSO-model checking is not fpt unlessP = NP (see Section 2). In this paper we es-
tablish a strong intractability result by showing that in terms of tree-width, Courcelle’s
theorem can not be extended much further to classes of unbounded tree-width. Through-
out the paper, we will work with coloured graphs, i.e. we willfix a setΓ of edge and
vertex colours. A classC of graphs is said to be closed underΓ -colourings if whenever
G ∈ C andG′ is obtained fromG by recolouring, i.e. the underlying undirected graphs
are isomorphic, thenG′ ∈ C. We will mostly consider classes of graphs closed under
colourings. An alternative characterisation is to consider relational structures over a sig-
natureσ with at most binary relation symbols. We can then fix a classC′ of graphs and
consider the class of all finiteσ-structures whose Gaifman-graphs are inC. However,
in this paper we prefer to work with coloured graphs rather than Gaifman-graphs of
structures. Given a classC of graphs, we write MC(MSO2, C) for the model-checking
problem forMSO2 onC (see Section 2 for details).

Definition 1.1. The tree-width of a classC of graphs isstrongly unboundedby a func-
tionf : N → N if there is a polynomialp(x) such that for alln 1) there is a graphG ∈ C
of tree-width betweenn andp(n) whose tree-width is not bounded byf(|G|) and 2)
givenn,Gn can be constructed in time2(|n|u)ε

, for someε < 1, where|n|u denotes the
unary encoding ofn. The tree-width ofC is strongly unbounded poly-logarithmicallyif
it is strongly unbounded bylogc n, for all c.

Essentially,stronglymeans that a) there are not too big gaps between the tree-width
of graphs witnessing that the tree-width ofC is not bounded byf(n) and b) we can
compute such witnesses efficiently. We will see below why this condition is needed.
The following is the main result of the paper. LetΓ be a set of colours with at least one
edge and two vertex colours.

Theorem 1.2. LetC be a constructible class ofΓ -coloured graphs closed under colour-
ings.

1. If the tree-width ofC is strongly unbounded poly-logarithmically thenMC(MSO2, C)
is not in XP, and hence not fpt, unless all problems inNP (in fact, all problems in
the polynomial-time hierarchy) can be solved in sub-exponential time.

2. If the tree-width ofC is strongly unbounded bylog16 n thenMC(MSO2, C) is not in
XP unlessSAT can be solved in sub-exponential time.

See Section 2 for a definition of FPT and XP. We refer to Definition 3.6 for a pre-
cise definition of constructible classes but will explain the concept informally below.
Let us give some applications of the theorem. Forc > 0 let Cc be the class of all graphs
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G of tree-width at mostlogc |G|. This class is constructible and hence its closure un-
der colourings has intractableMSO2 model-checking, ifc > 16. Similarly, the class
of planar graphs of tree-width at mostlogc n is constructible. Finally, all (topological)
minor-closed classes of unbounded tree-width are constructible and rich. All these ex-
amples show that Courcelle’s theorem can not be extended to classes of graphs with
only poly-logarithmic or alogc n bound on the tree-width, forc > 16.

High level description of the proof. Let us give an intuitive account of the proof of the
previous theorem. Clearly, with today’s methods we cannot hope to prove thatMSO2-
model-checking is fixed-parameter intractable for a class of graphs without relating
it to assumptions in complexity theory. Consequently, we prove that MC(MSO2, C) is
fixed-parameter intractable for a classC by reducing an NP-complete problemP to
MC(MSO2, C) such that if there is an fpt-algorithm for MC(MSO2, C), thenP can be
solved in sub-exponential time2o(n). More precisely, for each languageP ∈ NP we
construct a formulaϕP and then, given a wordw, we construct a graphGw ∈ C such
thatGw |= ϕP if, and only if, w ∈ P . We will see that the number of vertices of

Gw can be bounded by2|w|
1

y , for somey > 1, so that if there was an algorithm for
MC(MSO2, C) with running timef(|ϕ|) · |G|c then this would imply thatw ∈ P could

be decided in timeO(2c|w|
1

y
) = 2o(|w|). Here, Condition1) of Definition 1.1 ensures

thatC contains a graphGw the wordw can be reduced to and Condition2) ensures that
we can compute it in time sub-exponential in the length of|w|. For this reduction to
work, we need some intermediate steps.

It is well-known thatMSO2-model checking is fixed-parameter intractable on the
class of coloured grids (see Figure 1), which can be seen as follows: supposeP can be
solved by a non-deterministic Turing-machineM in timenc, wheren is the length of
the input. Given a wordw of lengthn, we choose a(nc × nc)-grid Gw and label its
top-most row byw from left to right. From the Turing-machineM decidingP we can
compute anMSO2-formulaϕM depending only onM such thatGw |= ϕM if, and only
if, w is accepted byM and hencew ∈ P . Essentially, theMSO formula uses the grid to
guess the computation table of a successful run ofM onw. Hence, an fpt-algorithm for
MSO-model checking on grids yields a polynomial time algorithmfor P .

Clearly, if we are just given a class of graphs of tree-width not bounded poly-
logarithmically, then there is no guarantee that it contains any grids. But we will show
that we can define grids in graphs of this class byMSO2-formulas. Adapting a recent
proof by Reed and Wood, we first show that ifG is a graph of large tree-width then
it contains a large structure which we callcoloured pseudo-wall. Pseudo-walls do not
actually occur as minors or subgraphs ofG but as topological minors of certain inter-
section graphs formed by sets of disjoint paths inG. However, it turns out that this is
enough to define coloured grids in coloured pseudo-walls byMSO2-formulas. It follows
that if the tree-width ofG is not bounded byk then we can define an(l × l)-grid in
G in MSO2, wherel is roughly 10

√
k (see Theorem 3.5 for details), and this grid can be

coloured. We call a classconstructibleif we can construct these pseudo-walls in graphs
G ∈ C in polynomial time and it is such classes with which we work inthis paper (see
Definition 3.6 for details).
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The important aspect here is that the size of the grids we define is polynomially
related to the tree-width of the graph, in contrast to the grids guaranteed by the excluded
grid theorem (see Theorem 3.1), where the tree-width is exponentially larger than the
grids we are guaranteed to find. Hence, using pseudo-walls, if the tree-width of a graph
is logc n then we can define(l× l)-grids inG for l ∼= log

c
10 n and this is enough for the

reduction sketched above to work.
Obtaining sub-exponential time algorithms for problems such as TSP or SAT is an

important open problem in the algorithms community and the common assumption is
that no such algorithm exists. This has led to theexponential-time hypothesis(ETH)
which says that there is no such sub-exponential time algorithm for SAT, a hypothesis
widely believed in the community.

Let us briefly comment on the restrictions imposed on the classesC we study here.
While every graph of large enough tree-width contains largepseudo-walls, we do not
yet know if we can always compute these structures in polynomial time (and hence we
impose the additional restriction to constructible classes). It is conceivable that large
pseudo-walls can indeed be computed in polynomial time. This would essentially show
that all classes are constructible and effectively remove this condition from our main
result. We pose this question as an open problem.

As mentioned above, Grohe conjectured thatMSO-model checking is not fpt on any
class of graphs closed under subgraphs and whose tree-widthis not poly-logarithmically
bounded. The statement of the conjecture and the main resultof this paper are incom-
parable as I require closure under colourings whereas Grohedoes not. On the other
hand, the conjecture requires closure under subgraphs which I do not. Note that while
tree-width is preserved by taking subgraphs, logarithmic tree-width is not, i.e. a graph
whose tree-width is bounded bylogn may contain a subgraph of orderm whose tree-
width is not bounded bylogm. Closure under subgraphs therefore does rule out natural
examples of graph classes. For instance, the class of all graphs of tree-width at most
logn is not closed under subgraphs. On the other hand, Grohe’s conjecture does not
require colours or constructibility conditions and refersto classes of plain graphs.

Note that it is important for our results that we work withMSO2 and allow quan-
tification over sets of edges as well as over sets of vertices.If we only consider vertex
set quantification, i.e. deal withMSO1, then the theorem is false, as for instance,MSO1-
model checking is fpt on the class of cliques.

Following Courcelle’s theorem, a series of algorithmic meta-theorems for first-order
logic on planar graphs [7], (locally) minor-free graphs [6,2] and various other classes
have been obtained. Again, no deep lower bounds, i.e. intractability conditions, are
known (see [10] for some simple bounds and [9, 10] for recent surveys of the topic). The
aim of this paper is to initiate a thorough study of sufficientconditions for intractability
in terms of structural properties of input instances.

Organisation. We recall monadic second-order logic and what we need about its pa-
rameterised complexity in Section 2. The main result is thenproved as follows. To show
that MC(MSO2, C) is hard on classesC of tree-width not poly-logarithmically bounded,
we first use a result by Reed and Wood [12] to show that any graphof large enough
tree-width contains a structure that is grid-like enough for our purposes. This is proved
in Section 3. While these structures do not exist as minors inthe graphs, they turn out
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a) b)

Fig. 1.a) A (4 × 5)-grid and b) an elementary wall of order5.

to be MSO2-definable, which is is shown in Section 4. To use theMSO2-definability
for our result, we introduce a new kind of interpretations between structures, called
MSO2−MSO2-transductions(see Section 5). Finally, in Section 6, we combine all this
to show the main result of the paper. Due to space restrictions, some proofs have been
removed from this abstract. See http://arxiv.org/abs/0904.1302 for a full version.

Acknowledgements.I would like to thank Mark Weyer for pointing out that the result
proved here readily extends to problems in the polynomial time hierarchy.

2 Complexity of Monadic Second-Order Logic

We first need some notation and a few concepts from graph theory. We refer to [3] for
background on graphs. Fork ≥ 1, we define[k] := {1 . . . , k}. All graphs in this paper
are finite and undirected. We writeV (G) for the set of vertices andE(G) for the set of
edges in a graphG. A graphH is asub-divisionofG (a1-subdivision) if H is obtained
fromG by replacing edges inG by paths of arbitrary length (of length2, resp.).H is a
topological minorof G if a subgraphG′ ⊆ G is isomorphic to a sub-division ofH .

An elementary wallW is a graph as in Figure 1b). The cycles of minimal length
in W are calledbricks. A wall is a subdivision of an elementary wall. Theheightof a
wall is the number of rows of bricks and itswidth the number of columns of bricks. An
l×k-wall is a wall of heightl and widthk and a wall oforder l is anl× l-wall. Finally,
thenails of a wall are the vertices of degree3 in it together with the4 corners. Hence,
in an elementary wall all vertices are nails whereas in a general wall only the vertices
of the underlying elementary wall are nails.

For the purpose of this paper, it might be easier to think ofk × k-grids instead of
k×k-walls and everything would go through with grids also. The important property of
walls is that their maximum degree is3. And if a graphH of degree≤ 3 is a minor of
G, thenH is also a topological minor ofG (see [3, Prop. 1.7.2]). Hence, a sub-division
of H actually occurs as subgraph ofG. Defining topological minors inMSO2 is much
easier than defining minors as we do not need contraction. We will therefore work with
walls instead of grids in this paper.

I assume familiarity with basic notions of mathematical logic (see e.g. [4]). In this
paper we will only consider signaturesσ := {E,B1, . . . , Bs, C1, . . . , Ct} of coloured
graphs, whereE denotes the edge relation,Bi the colours of edges andCi the colours
of vertices. We allow multiple colours per edge or vertex. Wedenoteσ-structures by
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Roman lettersA,G,H, .... If R ∈ σ is a relation symbol andA aσ-structure, we write
R(A) for the interpretation ofR in A.

The class of formulas ofmonadic second-order logic with edge set quantification
over a signatureσ, denotedMSO2[σ], is defined by the rules for first-order logic with
the following additional rules: ifX is a second-order variable either ranging over sets
of vertices or over sets of edges andϕ ∈ MSO2[σ∪̇{X}], then∃Xϕ ∈ MSO2[σ] and
∀Xϕ ∈ MSO2[σ] with the obvious semantics where, e.g., a formula∃Fϕ, F being a
variable over sets of edges, is true in a structureA if there is a subsetF ⊆ E(A) such
that (A,F ) |= ϕ. If ϕ(x) is a formula with a free variablex andA is a structure, we
writeϕ(A) for the set{a : A |= ϕ[a]}. See [11] for more onMSO.

In [15], Vardi proved that model checking forMSO2 is PSPACE-complete on the
class of all graphs. The complexity of model-checking problems can elegantly be stud-
ied in the framework ofparameterised complexity(see [5] for background on parame-
terised complexity). IfC is a class ofσ-structures, we define theparameterised model-
checking problemMC(MSO2, C) for MSO2 onC as the problem to decide, givenG ∈ C
andϕ ∈ MSO2[σ], if G |= ϕ. Theparameteris |ϕ|. The problem isfixed-parameter
tractable(fpt), or in the class FPT, if there is a computable functionf : N → N and
k ∈ N, such that for allG ∈ C andϕ ∈ MSO2[σ], G |= ϕ can be decided in time
f(|ϕ|) · |G|k. The problem is in the class XP, if it can be decided in time|G|f(|ϕ|). FPT
in the parameterised world corresponds to polynomial-timein the classical framework
as the class of problems that can be solved efficiently. XP canbe seen as the parame-
terised exponential-time and is obviously a much larger class of problems than FPT.

Tree-width is a global connectivity measure of graphs that was introduced by Robert-
son and Seymour in their graph minor series. We refer the reader to [3] for a definition
of tree-width. Letf : N → N be a function andC be a class of graphs. The tree-width
of C is bounded byf , if tw(G) ≤ f(|G|) for all G ∈ C. C hasbounded tree-widthif its
tree-width is bounded by a constant. Many natural classes ofgraphs, for instance series-
parallel graphs, are found to have bounded tree-width.The following lemma, whose
proof is standard, will be needed below.

Lemma 2.1. LetM be a non-deterministic Turing-machine. There is a formulaϕM ∈
MSO2 such that for all wordsw ∈ Σ∗, if G is a k × k-wall whose top-most row is
coloured byw from the left, thenG |= ϕM if, and only if,M acceptsw in at mostk
steps. Furthermore, the formulaϕM can be constructed effectively fromM . The same
holds ifM is an alternating Turing-machine with a bounded number of alternations, as
they are used to define the polynomial-time hierarchy.

Lemma 2.1 together with Theorem 3.1 shows that ifC is closed under (topological)
minors and has unbounded tree-width, then MC(MSO2, C) is not fpt unlessP = NP.

3 Pseudo-Walls in Graphs

One of the fundamental results of Robertson and Seymour’s theory of graph minors is
the excluded grid theorem [14], saying that there is a computable functionf : N → N

such that every graph of tree-width at leastf(k) contains ak × k-grid as a minor. The
best explicit bound known for the functionf is given by the following theorem.

6



Theorem 3.1 (Robertson, Seymour, Thomas [13]). Every graph of tree-width at least
202·k5

contains ak × k grid as a minor.

Robertson et al. [13] also proved that there are graphs of tree-width proportional to
k2 log k that do not containGk×k as a minor. So far this is the best lower bound known
for the functionf above. In particular it is open whetherf(k) above can be bounded by
a polynomial. In [12] Reed and Wood consider a different typeof obstructions to small
tree-width, calledgrid-like minors. A grid-like minor of orderl in a graphG is a set
P of paths inG such that the intersection graphI(P) contains aKl-minor, whereKl

denotes the complete graph onl vertices. Here, theintersection graphof a setP of paths
is the graph with vertex setP and an edge between two pathsP,Q ∈ P if P ∩Q 6= ∅.
If P ,Q are sets of paths inG, we writeI(P ,Q) for I(P∪̇Q), the intersection graph of
their disjoint union.

Theorem 3.2 (Reed, Wood [12]). Every graph of tree-width at leastck4
√

log k con-
tains a grid-like minor of orderk, for some constantc. Conversely, every graph that
contains a grid-like minor of orderl has tree-width at least⌈ l

2⌉ − 1.

While I do not yet know how to use this result directly, we can use its proof to find the
structures inG we need.

Definition 3.3. A pseudo-wallof orderl in G is a pair(P ,Q) of sets of disjoint paths
in G such thatI(P ,Q) is a wall of orderl.

We will see below that every graph of large enough tree-widthcontains a large
pseudo-wall and that these can be defined inMSO2. Essentially, to show thatMSO2

model-checking is fixed-parameter intractable on a classC of large enough tree-width,
we will use pseudo-walls in a similar way as walls are used in Lemma 2.1. In particular,
we want to label the top-most row of the pseudo-wall by a wordw over a finite alpha-
bet. However, pseudo-walls do not occur as subgraphs of the graphsG, which makes
labelling them somewhat more difficult. Instead, we have to colour the graphG so that
this colouring induces the labelling of the pseudo-wall it contains. The main difficulty
is that the colouring ofG must induce a unique labelling of the pseudo-wall and that
both the pseudo-wall as well as its labelling can be defined insideG by MSO2-formulas.
Unfortunately, this makes the definition of a coloured pseudo-wall technically some-
what more complicated. LetΣ be a set of colours and letB be an additional colour for
edges andR an additional colour for vertices. LetΓ := {B,R} ∪̇Σ.

A Σ-coloured pseudo-wallof orderl in aΓ -coloured graphG is a triple(P ,Q, A)
such that one of the following holds:

Simple pseudo-walls.I(P ,Q) is a1-subdivision of an elementary wallW of order
l such that the vertices ofW (which we callednails above) are exactly the paths inP .
See Figure 2 for an illustration. Figure 2 a) shows the pseudo-wall, where the solid
black circles are the vertices fromP and squares denote the vertices fromQ. Figure 2
b) shows how (a part of) this pseudo-wall corresponds to paths in G, where dashed
lines represent paths inQ and solid lines paths inP . Note, though, that in general the
paths could intersect in much more complicated ways than displayed and that paths can
intersect more than3 other paths although walls have maximal degree3.

Let P := {P1, . . . , Pk} be such thatP1 . . . Pl form the nails of the top-most row
of W in order from left to right. Recall that eachPi is a path inG. ThenA is the path

7



a) a simple pseudo-wall b) its generation from disjoint paths

Fig. 2. A simple pseudo-wall and the pathsP (solid) andQ (dashed) generating it.

in G obtained from the “concatenation”P1 · P2 · · ·Pk, i.e. V (A) :=
⋃

1≤i≤k V (Pi)
andE(A) consists of

⋃

1≤i≤k E(Pi) together with additional edges connecting one
endpoint ofPi to an endpoint ofPi+1, for 1 ≤ i < k, so that this results in a path.

Furthermore, the edges inE(A) are coloured by colourB ∈ Γ . The two endpoints
of eachPi are coloured byR and the vertices in the pathsP1, . . . , Pl carry colours from
Σ so that all vertices in a pathPi are coloured by the same colour fromΣ.

This colouring ofG induces a labelling of the wall of orderl where the nails
v1, . . . , vl in the top-most row are labelled so thatvi is labelled by the colourCi ∈ Σ

of the pathPi. If w := C1 · · ·Cl is the sequence of colours onP we say that(P ,Q, A)
encodesthe wordw ∈ Σ∗.

The motivation behind simple pseudo-walls is as follows. Ifwe find this structure
in a graphG then the pathA tells us what the top-most row of the wall is and it also
gives us an order on the vertices of the top-most row. ColouringA by B will enable
us to define this coloured pseudo-wall inMSO2. If we want to encode a wordw :=
w1, . . . , wl ∈ Σ∗ in the wall then we can simply label the pathsP1, . . . , Pl in G which
form the top-most row of the wall byw1, . . . , wl and this induces the correct labelling
of the wallI(Q,P).

Complex pseudo-walls. Complex walls are structures as illustrated in Figure 3.
Essentially, they consist of a subdivisionW ′ of a wall W in I(P ,Q). To define the
colouring of the wall, there will be additional paths inI(P ,Q) connecting some of the
vertices of the top-most row ofW ′ to the pathA so that the order is preserved, i.e. the
paths do not “cross”. We can then colour the pathA and thereby induce a colouring of
the top-most row.

Formally, for complex coloured pseudo-walls,A is a path inG such that eachU ∈ P
has exactly one endpoint inA and no path inQ has an endpoint inA. Furthermore, there
are subsetsP ′ ⊆ P andQ′ ⊆ Q such thatI ′ := I(P ′,Q′) is a wall of orderl.

Let T ⊆ I ′ be the top-most row of the wall and letx1 . . . xk be the vertices ofT in
order from left to right. LetI := {i1, . . . , il} be the index set such thatxi1 is the top-left
corner,xil

is the top-right corner and(xij
)1<j<l lists the vertices inT of degree3 in

order from left to right. For1 < s < t ≤ l let T (s, t] be the segment ofT between
xis

andxit
including the latter but not the former. We defineT [0, 1] to be the segment
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Fig. 3. A complex pseudo-wall.

containing the verticesxi1 , . . . xi2 . Now, the setsPr := P \ P ′ andQr := Q \ Q′

induce disjoint pathsP1 . . . Pl in I := I(P ,Q) (i.e. eachPi consists of a set of paths
in G) such that 1) one endpoint of each pathPi in I is incident to a vertexxi of the
top-most row of the wall so that eachT (s, t], for 1 < s < t ≤ l, contains exactly one
xi andT [0, 1] contains2 and 2) for the other endpointui of Pi in I(P ,Q) (which is a
path inG) we have{vi} = ui ∩ A, wherevi ∈ V (G), and 3)v1, . . . , vl occur in this
order onA.

Now supposev1 . . . vl are coloured byC1 . . . Cl respectively. Then this colouring
induces the labelling ofI(P ′,Q′) wherexis

gets colourCs, 1 ≤ s ≤ l. We say that
(P ,Q, A) encodesthe wordw := C1 . . . Cl.

A crucial feature of pseudo-walls in coloured graphs is thatthey are unique in the
sense that ifG is a graph coloured by{B,R}∪̇Σ, then every pseudo-wall(P ,Q, A) in
G encodes the same wordw (there may be no coloured pseudo-wall inG).

This is obvious for simple pseudo-walls, as the pathA is uniquely determined by its
colouring (B-edges and thePi’s separated byR-vertices) and this uniquely determines
the colouring of the wall and hence the encoded word. For complex walls, the pathA is
again determined by its colouring and this fixes the order of the colours occurring onA
and hence on the wall. Here we use that the paths connectingA to the wall preserve the
order.

Definition 3.4. We say that a graphG encodesw ∈ Σ∗ if it contains aΣ-coloured
pseudo-wall encodingw. We say thatG encodesw with powerk, for somek ≥ 1, if G
contains aΣ-coloured pseudo-wall of order|w|k encodingw.

The proof of the next theorem is essentially the proof of Theorem 3.2 with some
modifications to get coloured pseudo-walls instead of grid-like minors.

Theorem 3.5. There is a constantc such that ifG is a graph of tree-width at least
c ·m8 ·

√

log(m2), thenG contains aΣ-coloured pseudo-wall of orderm.

We can now give a formal definition ofconstructibleclasses of graphs.

Definition 3.6. Let C be a class of graphs closed underΓ -colourings.C is calledcon-
structible if in every graphG ∈ C of tree-width at leastc · m8 ·

√

log(m2), wherec
is from Theorem 3.5, we can compute in polynomial time a coloured pseudo-wall of
orderm.
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It is conceivable that the large pseudo-walls whose existence we proved above can
always be computed in polynomial time. This would imply thatall classes of graphs are
constructible. We leave this for future research.

Theorem 3.5 shows that in any graph of sufficiently large tree-width we find a large
pseudo-wall. We will show below that this is enough to define large walls in graphs of
large tree-width by means ofMSO2-formulas. It follows from Theorem 3.5 above that
if C is a class of graphs of unbounded tree-width which is closed under colouring then
for eachw ∈ Σ∗, C contains a graph encodingw. In fact, for eachc ≥ 1,G contains a
graph encodingw with powerc. The following lemma summarises what we will need
about colourings in the following sections.

Lemma 3.7. LetC be a class of graphs closed underΓ -colourings and letw ∈ Σ∗ be
a word of lengthm. If there is a graphG ∈ C of tree-widthc · (mk)8 ·

√

log(mk)2,
wherec is the constant from Theorem 3.5, whose tree-width is not bounded bylog8k |G|
then there is a graphG ∈ C encodingw with powerk such that|G| < 2c′·m

1

y , for some
constantsy > 1 andc′ := c(k) depending onk but not onw.

4 Defining coloured pseudo-walls in graphs of large tree-width

In this section we aim at definingΣ-coloured pseudo-walls in graphs of large enough
tree-width inMSO2. Fix a setΣ of colours and letΓ := Σ ∪̇ {B,R} be as defined in
Section 3. LetG be aΓ -coloured graph andP ,Q, A ⊆ E(G) be sets of edges. For
(P ,Q, A) to be aΣ-coloured pseudo-wall inG, we first need to say thatP andQ are
sets of pairwise disjoint paths inG. Note thatP induces a set of pairwise disjoint paths
if, and only if, i) every vertexv ∈ G is incident to at most two edges inP and ii)
the subgraph ofG induced by the edges inP is acyclic. This can easily be defined in
MSO2 and we will see the formulas below for the more complicated case of paths and
acyclicity inI(P ,Q). Furthermore, we have to say that the edges ofA, and only those,
are coloured byB. Now, we have to distinguish between simple and complex coloured
pseudo-walls. This can easily be done inMSO2 as in the first case

⋃

P∈P P ⊆ A (at
least in the pseudo-walls generated in the previous section, in general pseudo-walls
this is only true for the paths in the top-most row, but that could equally be used to
distinguish the two types of walls) whereas this fails in thesecond. We will present the
case for simple pseudo-walls explicitly. The other case follows using the same ideas.

We first need a few auxiliary formulas. To ease the presentation we assume that no
pathP occurs in bothP andQ. This is guaranteed by the pseudo-walls generated in
Section 3 but we could also easily modify the formulas below to avoid this assumption
(see also Section 5).

In what follows we will useMSO2-formulas, interpreted inG, to speak about the
intersection graphI := I(P ,Q). To increase readability of formulas we agree on
the following convention: lower case letters are used for first-order variables, variables
P,Q, ... range over sets of edges and variablesE,F,H range over sets of vertices. It
may seem bizarre to useF,H for a set of vertices. The reason will become clear below
as we will be using variablesE for sets of vertices inG which represent sets of edges
in I. As a final piece of notation, we write “P ∈ P” to say thatP is a component of
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P , i.e. one of the paths inP , and analogously forQ ∈ Q. Furthermore, we will write
x ∈ V (P ) for the formula∃yPxy to say thatx is adjacent to an edge inP .

Recall that for two pathsP ∈ P andQ ∈ Q there is an edge{P,Q} ∈ E(I) if
P ∩ Q 6= ∅ in G. As P andQ are sets of disjoint paths, there are no three distinct
paths inP ∪Q intersecting in a single vertex. Hence, we can represent edges{P,Q} ∈
E(I) by a vertexv ∈ V (P ∩ Q). However, inMSO2 we cannot pick a single vertex
from V (P ∩ Q) and therefore will represent the edge{P,Q} by the setV (P ∩ Q).
Let ϕE(x) := ∃P ∈ P ∃Q ∈ Q x ∈ V (P ∩ Q), inc(x, P ) := x ∈ V (P ) and
x ∼ y := ∃P ∈ P ∃Q ∈ Q x, y ∈ V (P ∩ Q) be MSO2-formulas, where we will
usually write∼(x, y) in infix notation.∼ defines an equivalence relation on the set of
vertices satisfyingϕE(x) and we can represent edges inI by equivalence classes of∼
in G. Hence,I is isomorphic to the graphI := (V,E, σ) with vertex setV := P ∪ Q
and edge setE := {[x]∼ : x ∈ ϕE(G)}, where a vertexP ∈ V is incident with an
edgee ∈ E if there is a vertexv ∈ e ∩ P (and hencee ⊆ P ). I is MSO2-definable in
G, by the formulasϕE , inc and∼ with parametersP ,Q and we can represent variables
over elements ofI by variables ranging over sets of edges inG by enforcing that these
are interpreted by a path from eitherP orQ. VariablesX over sets of elements ofI can
be represented inG by pairsXP , XQ of variables ranging over sets of edges so that a
setX ⊆ V (I) is represented by the pair of setsXP := X ∩ P andXQ := X ∩ Q.
Finally, setsF ⊆ E(I) of edges can be represented by setsF ′ ⊆ ϕE(G) closed under
∼ so that if{P,Q} ∈ F thenV (P ∩ Q) ⊆ F ′. Using this idea we can then say about
I, and hence aboutI, thatI is a wall as follows:1) There are two setsH,V ⊆ E(I) of
edges, each of which induces a set of pairwise vertex disjoint paths inI (which we will
think of as horizontal and vertical paths in a wall).2) For allP ∈ H andQ ∈ V , P ∩Q
is connected andV (P ∩Q) ∩ V (H) = ∅ for all H ∈ (V ∪ H) \ {P,Q}. 3) There is
a pathL ∈ V such that the intersection ofL with eachQ ∈ H contains an endpoint of
Q (we think ofL as the left-most vertical path in the wall). Once we haveL, we can
give the horizontal pathsP ∈ H a direction, where we say thatp ∈ V (P ) is to the left
of p′ ∈ V (P ), if the subpath ofP containingp′ and a vertex inL also containsp. 4)
There is a pathT ∈ H such that the intersection ofT with eachP ∈ V contains an
endpoint ofP (T is the top-most horizontal path in the wall). We can now useT to give
the vertical pathsP ∈ V a direction and say thatp ∈ V (P ) is abovep′ ∈ V (P ), if the
subpath ofP containingp′ and a vertex inT also containsp. 5) For each pathP ∈ V
exceptL there is a pathP ′ ∈ V (the path immediately to the left ofP ) such that for
all Q ∈ H: if p ∈ V (P ∩ Q) andp′ ∈ V (P ′ ∩ Q) are vertices in the intersection of
Q andP , P ′ resp., thenp′ is to the left ofp in Q and there is noS ∈ H such that any
s ∈ V (S ∩ Q) lies in the subpath ofQ betweenp andp′. The analogue condition for
horizontal paths.

To demonstrate the idea of theMSO2-formalisation we give precise formulas for the set
H in Condition1. It will be clear that the other conditions can be formalisedanalo-
gously. We have to say that there is a setH ⊆ E(I) of edges inducing a set of pairwise
disjoint paths inI. To define this inG, we first need a formula Path(P,Q,H) saying
that there is a path fromP ∈ P ∪ Q to Q ∈ P ∪ Q using only edges fromH , where
H is a subset ofϕE(G), closed under∼, representing edges inI. The usual way of
expressing that two verticesx, y in a graph are connected within a setH of edges is to
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say that all setsU of vertices which containx and are closed under the edge relationH

also containy. In our case, sets of vertices ofI are represented by pairs of setsUP ⊆ P
andUQ ⊆ Q consisting of connected components ofP andQ. Hence, the idea above
is expressed by the formula Path(P,Q,H) defined as

∀UP ⊆ P∀UQ ⊆ Q
(

(

P ∈ UP ∪ UQ ∧
∀X,Y ∈ P ∪ Q

[

X ∈ UP ∪ UQ ∧ ∃e(e ∈ H ∧ inc(e,X) ∧ inc(Y )))

→ Y ∈ UP ∪ UQ

])

→ Q ∈ UP ∪ Uq

)

where we writeX ∈ UP ∪ UQ to say thatX is a component either ofUP or UQ and
UP ⊆ P to say thatUP is a set of components ofP . Now, we can say thatH induces a
set of pairwise disjoint paths as follows. We first say that every vertex inH has degree
at most2: ∀P ∈ P ∪ Q

(

∃≤2f ∈ H inc(f, P )), where∃≤2f... is an abbreviation for:
there are at most2 edgesf such that .... To say thatH induces an acyclic graph we say
that for allP ∈ P ∪ Q, if P is incident to an edgee := {P,Q} ∈ H then there is no
path fromP toQ in H − e. The latter can be expressed using the formula Path above.
This concludes the formalisation of Condition1).

Clearly, ifV andH satisfy the conditions above, then they generate a wall inI and
conversely, the disjoint horizontal and vertical paths of awall satisfy the conditions.
Hence,I is a wall if suchV andH exist containing all vertices and edges ofI. Formal-
ising all this gives us a formula which says ofP ,Q that the pair(P ,Q) is a pseudo-wall.
Note that so far we have not used the additional pathA. Hence, if we are not interested
in coloured pseudo-walls but simply in pseudo-walls we can use this formula.

We now proceed to define coloured walls and the induced colouring of I(P ,Q).
From the formalisation above we now have setsH,V containing the horizontal and
vertical paths of the wall as well as two pathsL, T giving the top-most row and left-
most column. The left-most row gives us an ordering on the top-most row and all we
have to do is to define the colours of the vertices on the top-most row from the additional
pathA, which is easily done. Hence, we can write formulasϕC(P ), for C ∈ Σ which
are true for the vertices in the wall coloured byC. Complex pseudo-walls can be defined
analogously. Taken together, we have a formulaϕU (P ,Q, A) which says that(P ,Q, A)
is a coloured pseudo-wall. Here, the setsP andQ define the vertices of the pseudo-wall
whereasA is an additional parameter used in the formulas. It will be convenient to
take the setsT, L defining the top- and left-most row and column as parameters also
rather than defining them. Hence, we have a formulaϕU (P ,Q, A, L, T ) which says
that(P ,Q, A) is aΣ-coloured pseudo-wall with left-most columnL and top-most row
T , formulasϕE(x,P ,Q, A, L, T ), inc(x, P,P ,Q, A, L, T ) and∼(x, y,P ,Q, A, L, T )
defining the edge relation of the pseudo-wall and formulasϕB(x,P ,Q, A, L, T ) and
ϕC(P,P ,Q, A, L, T ), whereC ∈ Σ∪̇{R}, defining the colours.

All formulas together define, in graphs of large enough tree-width coloured prop-
erly, a large wall whose top-most row is labelled by a word overΣ. Hence, ifC is a class
of graphs of unbounded tree-width, closed under colourings, we can define arbitrarily
large coloured walls inC. We know already that (presumably)MSO2-model checking is
not fixed-parameter tractable on the class of coloured walls. To prove the main result
of this paper we need a way to translateMSO2-formulasϕ over walls toMSO2-formulas
ϕ∗ over the graphs in which we define the walls. We could do this inan ad-hoc way
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and modify the formulasϕU ... for each given formulaϕ. We find it more convenient,
though, to treat these modifications uniformly within the framework of interpretations.
In the next section we therefore introduce a new form of interpretations which simpli-
fies dealing with the intersection graphs we have to define andwhich might also be
useful elsewhere.

5 MSO2−MSO2-transductions

In this section we introduce a class of interpretations, calledMSO2−MSO2-transductions,
between classes of graphs which allow us to define one classB of graphs inside another
classC so that we can translateMSO2-formulas overB to MSO2-formulas saying the
same over the graphs inC. Unlike first-order interpretations,MSO2−MSO2-transductions
associate with every structure a class of structures and in this sense resembleMSO-
transductions as, e.g., studied by Courcelle. Letσ := {E,B1, . . . , Bt, C1, . . . , Cs} be
a signature of coloured graphs as defined in Section 2. Letτ be a signature.

Definition 5.1 (MSO2−MSO2-transduction).LetU := U1, . . . , Uk andX := X1, . . . , Xl

be tuples of binary relation symbols. AnMSO2−MSO2-transduction ofσ in τ with pa-

rametersU,X is a tupleΘ :=
(

ϕU (U1, . . . , Uk, X),
(

ϕ
i,j
E (x), inci,j

E (x, P,Q), ∼i,j

(x)
)

1≤i<j≤k
,

(

ϕ
i,j
F (x)

)

1≤i<j≤k,F∈{B1,...,Bt}
, (ϕC(P )i)C∈σ,1≤i≤k

)

, whereP,Q

are unary second-order variables andx is a first-order variable, such that for allτ -
structuresA and setsU,X ⊆ E(A) with (A,U,X) |= ϕU :

– ∼i,j defines an equivalence relation onϕi,j
E (A)

– for all x ∈ V (A) and1 ≤ i < j ≤ k, if (A,U,X) |= ϕ
i,j
E (x) then there are

exactly two setsPi ⊆ Ui andPj ⊆ Uj such that(A,U,X) |= inci,j
E (x, Pi, Pj) and

if (A,U,X) |= x ∼i,j y then(A,U,X) |= inci,j
E (y, Pi, Pj)

– for all F ∈ {B1, . . . , Bt}, ϕF (A) ⊆ ϕE(A).

We abbreviateMSO2−MSO2-transductions ofσ in τ asσ-τ -transductions. LetΘ be
a σ-τ -transduction. To everyτ -structureA, Θ associates a classΘ(A) of σ-structures
defined as follows. IfU1, . . . , Uk, X1, . . . , Xl ⊆ E(A) are sets of edges such that
(A,U,X) |= ϕU , then we define the structureB := Θ(A,U,X) as follows:

– V (B) := ˙⋃
1≤i≤kVi whereVi := {V ⊆ Ui : V is a connected component ofUi}

– E(B) := ˙⋃
1≤i<j≤kE

i,j whereEi,j := {[v]∼i,j : v ∈ ϕ
i,j
E (A)} and theEi,j are

taken to be disjoint.
– an edgee ∈ Ei,j is incident to verticesP ∈ Vi andQ ∈ Vj if A |= inci,j(e, P,Q)

for someQ ∈ Vj and likewise forP ∈ Vj .
– an edgee ∈ Ei,j , for 1 ≤ i < j ≤ k, is coloured byF , whereF ∈ σ is binary, if
A |= ϕ

i,j
F (e).

– a vertexP ∈ Vi it coloured byC ∈ σ, whereC is unary, if(A,U,X) |= ϕi
C(P ).

Hence, with every structureA and satisfying assignmentU1, . . . , Uk, X of ϕU the
transductionΘ associates structures whose universes consist of the connected compo-
nents of theUi. For classesA of τ -structures we defineΘ(A) := {B : B ∈ Θ(A) for
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someA ∈ A}. The definition of the edge relation may seem to be overly complicated,
as we define the edges and their incidence by different formulas and furthermore do it
separately for each pairi, j. The reason is that we want to useMSO2-formulas over the
structuresΘ(A) and hence have to be able to quantify over sets of edges inB ∈ Θ(A).
As MSO2 does not allow quantification over arbitrary binary relations, we have to en-
code edges by individual elements ofA and then use sets over vertices to encode sets
of edges.

As all interpretations,MSO2−MSO2-transductions define a way of transforming one
class of structures into another and on the other hand, provide a translation ofMSO2-
formulasϕ overσ-structures intoMSO2-formulasϕ∗ over τ -structures so that ifϕ is
a formula with free variablesF1, . . . , Fl, X1, . . . , Xs, y1, . . . , yr, where theFi’s are
binary, theXi’s are unary and theyi’s are individual variables, thenϕ∗ is a formula
with free variables(Fi)

∗
1, . . . , (Fi)

∗
k, (Xi)

∗
1, . . . , (Xi)

∗
k, and (Yi)

∗
1, . . . , (Yi)

∗
k, where

the(Fi)
∗
j ’s are binary and all other unary. In addition, the parametersU,X of the trans-

duction occur free inϕ∗. We refer to the full version for details.

Lemma 5.2 (interpretation lemma). LetA be aτ -structure andU,X ⊆ E(A) be such
that(A,U,X) |= ϕU . LetB := Θ(A,U,X). For all ϕ ∈ MSO2[σ], (A,U,X) |= Θ(ϕ)
if, and only if,B |= ϕ.

Corollary 5.3. Letϕ ∈ MSO2[σ] andψ := ∃U∃Xϕ∗ ∈ MSO2[τ ]. For all τ -structures
A, A |= ψ iff there is aB ∈ Θ(A) such thatB |= ϕ.

6 Putting it all together
In this section we prove Theorem 1.2. LetΣ := {C1, . . . , Cl}, with l ≥ 2, be a set
of colours andΓ := Σ ∪̇ {B,R}, whereB is a binary andR a unary relation symbol.
Let C be a constructible class ofΓ -coloured graphs closed under colourings such that
the tree-width ofC is strongly unbounded bylog8k n, for somek ≥ 1. We first observe
that the formulasϕU (P ,Q, A, L, T ), ϕE , inc,∼, ϕB, ϕC as constructed in Section 4
can be used to define anMSO2−MSO2-transductionΘ such thatΘ(C) is the class of
coloured walls in graphsG ∈ C. Here, we takeU := P ,Q as the parameters defining
the vertex set of the resulting graphs andX := A,L, T as additional parameters used
in the transduction.

By Lemma 3.7,Θ(C) contains for eachw ∈ Σ∗ a wall encodingw with powerk,
i.e. there is a(|w|k × |w|k)-wall in Θ(C) whose top-most row is labelled byw from the
left. In particular, as SAT can be solved in time quadratic in the size of the input by a
non-deterministic Turing-machine, ifk ≥ 2 then for each CNF formulaw of lengthm,
Θ(C) contains a wall of sizem2 ×m2 labelled byw.

Now take a formulaϕCNF which, on a wallW encodingw, checks whetherw
correctly encodes a CNF-formula and whether the order ofW is at least|w|2. This
can be done by simulating a non-deterministic Turing machine doing this test. Let
ψCNF := ∃PQALT (ϕU ∧ Θ(ϕCNF)) and letCCNF := {A ∈ C : A |= ψCNF} ⊆ C. By
the interpretation Lemma 5.2,CCNF contains for each CNF-formulaw a graphG ∈ C
encodingw with power2 and conversely each graphG ∈ CCNF encodes a CNF-formula
with power2.

Now, letϕ be theMSO2-sentence from Section 2 which, by simulating an appro-
priate Turing-machine, is true in a wall of order|w|2 encoding a CNF-formulaw if,
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and only if,w is satisfiable and letϑ := Θ(ϕ). It follows that if the tree-width ofC is
strongly unbounded bylog16 n, then model-checkingϑ := Θ(ϕ) in CCNF is equivalent
to solving SAT. If in additionC is constructible then this allows us to formally define a
subexponential time reduction from SAT to C as follows. Given a CNF-formulaw, we

construct a graphG ∈ C such thatG encodesw with power2 and|G| < 2c·|w|
1

y , for
somey > 1 andc > 0. By definition of constructibility and strongly unboundedness,
such a graphG exists inC and can be constructed in time|G|r, for some fixedr > 0,

and hence in time< (2|w|
1

y
)r = 2r·|w|

1

y . Now suppose MC(MSO2, C) was in XP, i.e.
for some computable functionf , given a graphG ∈ C andϕ ∈ MSO2, G |= ϕ could
be decided in time|G|f(|ϕ|). Hence, we could decide ifG |= ϑ, whereϑ is the formula

defined above, in time|G|f(|ϑ|) < 2f(|ϑ|)·|w|
1

y . Taken together, we could decide ifw is

satisfiable in time< 2(r+f(|ϑ|))·|w|
1

y , for fixedr, y > 1 and a fixed formulaϑ. Hence,
SAT would be decidable in sub-exponential time.

The same argument shows that ifC is a rich and constructible class ofΓ -coloured
graphs closed under colourings whose tree-width is effectively not bounded bylog8·k n

andL is a problem that can be decided by a non-deterministic Turing-machine in time
nk, then MC(MSO2, C) is not in XP unlessL can be solved in sub-exponential time.
This implies Theorem 1.2. The extension to the polynomial time hierarchy follows as
we can simulate alternating Turing-machines with bounded number of alternations in
MSO2 in the same way as non-deterministic Turing-machines.
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