Descriptive Complexity Theory for Constraint
Databases

Erich Gréadel and Stephan Kreutzer

Lehrgebiet Mathematische Grundlagen der Informatik,
RWTH Aachen, D-52056 Aachen,

{graedel, kreutzer}@informatik.rwth-aachen.de

Abstract. We consider the data complexity of various logics on two
important classes of constraint databases: dense order and linear con-
straint databases. For dense order databases, we present a general result
allowing us to lift results on logics capturing complexity classes from
the class of finite ordered databases to dense order constraint databases.
Considering linear constraints, we show that there is a significant gap
between the data complexity of first-order queries on linear constraint
databases over the real and the natural numbers. This is done by prov-
ing that for arbitrary high levels of the Presburger arithmetic there are
complete first-order queries on databases over (N, <,+). The proof of
the theorem demonstrates a simple argument for translating complexity
results for prefix classes in logical theories to results on the complexity
of query evaluation in constraint databases.

1 Introduction

Descriptive complexity theory studies the relationship between logical definabil-
ity and computational complexity. In particular one looks for results saying that,
on a certain class K of structures, a logic L (like first-order logic or least fixed
point logic) captures a complexity class C. This means that (1) for every fixed
sentence 1 € L, the complexity of evaluating 1 on structures from /C is a prob-
lem in the complexity class C, and (2) every property of structures in K that
can be decided with complexity C is definable in the logic L. Two important ex-
amples of such results are Fagin’s Theorem, saying that existential second-order
logic captures NP on the class of all finite structures, and the Immerman-Vardi
Theorem, saying that least fixed point logic captures PTIME on the class of all
ordered finite structures. Indeed, on ordered finite structures, logical character-
izations of this kind are known for all major complexity classes. On the other
hand it is not known, and one of the major open problems in the area, whether
PTIME can be captured by any logic, if no ordering is present. We refer to [1, 10]
for background on descriptive complexity.

Up to now, descriptive complexity has been considered almost exclusively
on finite structures. But the research program of descriptive complexity makes
sense also for classes of infinite structures, provided that they admit a finite
presentation. There have been a few studies of descriptive complexity theory on

infinite structures concerning, for instance, metafinite structures and complexity
theory over the reals [3, 4], recursive structures [8] and, as we do in the present
paper, constraint databases (see e.g. [12, 6, 5] and the references there).

Constraint databases are a modern database model admitting infinite rela-
tions that are finitely presented by quantifier-free formulae (constraints) over
some fixed background structure. For example, to store geometrical data, it is
useful to have not just a finite set as the domain of the database, but to include
all real numbers ‘in the background’. Also the presence of interpreted functions,
like addition and multiplication, is desirable. The constraint database framework
introduced by Kanellakis, Kuper and Revesz [12] meets both requirements. For-
mally, a constraint database consists of a context structure %, like (R, <, +,),
and a set {¢1,...,pm} of quantifier-free formulae defining the database rela-
tions. We give the precise definition in the next section.

When studying the data complexity of constraint query languages, it soon
became clear that allowing recursion in query languages leads to non-closed or
undecidable query languages even for rather simple context structures. On the
other hand there are promising results for non-recursive languages in many inter-
esting contexts. For the context structure (R, <) a LOGSPACE data complexity
for first-order logic has been established by Kanellakis, Kuper, and Revesz which
was later improved to AC? by Kanellakis and Goldin [11]. In [12] it has also been
shown that first-order logic still has data complexity NC if the context structure
is extended by addition and multiplication. Thus first-order logic is well-suited
as a query language for spatial databases where the context structure is the field
of reals.

In this paper we will consider the complexity of query evaluation in two
important cases: (1) linear constraint databases, where the context structure is
(R, <,+) or (N, <,+), and (2) constraint databases over dense linear orders.

It turns out that the data complexity of first-order query on linear constraint
databases depends heavily on the universe. The data complexity of first-order
queries on databases over (R, <, +) is known to be in NC. It has been conjectured
by Grumbach and Su [6] that this is also true for the context structure (N, <, +).
We refute this conjecture here by showing that we find complete first-order
queries for each level of the polynomial time hierarchy.

As stated above, allowing recursion in query languages tends to result in
undecidable languages. For instance, we will observe that this is the case for
linear constraint queries over (R, <,+). An exception are dense order constraint
databases, where the context structure is (R, <) (or any other dense linear or-
der without endpoints). There we can incorporate recursion and still end up in
decidable and closed languages. For instance, it has been shown in [12, 5] that
inflationary DATALOG with negation has PTIME data complexity and, in fact,
that it captures PTIME on dense order constraint databases. We continue this
line of research and present a general technique that allows to lift capturing
results from the class of ordered finite structures to constraint databases over
(R, <). This is done by associating with every constraint database over (R, <) a
finite ordered structure, called the invariant of the database which carries all the

information stored in the infinite database. The finite database can be defined
by first-order formulae and therefore with very low data complexity. A query on
the constraint database can be evaluated in the invariant in such a way, that
the result of the original query can be regained from the answer on the finite
database with very low data complexity. Indeed the invariant is first-order inter-
pretable in the original database, and this allows to translate any formula that
represents a query on the invariant into an equivalent formula over the original
database. In this way capturing results are lifted from ordered finite structures
to dense order constraint databases.

2 Constraint Databases

The basic idea in the definition of constraint databases is to allow infinite rela-
tions which have a finite representation by a quantifier-free formula. Let 2 be a
T-structure, called the context structure, and ¢(z1,... ,x,) be a quantifier-free
formula of vocabulary 7 that may contain elements from A as parameters. Let
o :={Ry,...,Ri} be a relational signature disjoint from 7.

We say that an n-ary relation R C A™ is represented by ¢(x1,... ,z,) over 2,
it R={(a1,...,an) : A= p(ai,...,an)}. A o-constraint database over the con-
text structure 2l is an expansion 8 = (A, Ry, ... , Ry) of 2 where all o-relations
R; are finitely represented by formulae pg, over 2. The set ¢ := {¢Rr,,... , ¥R, }
is called a finite representation of 9B. The set of finitely representable relations
over 2 is denoted by Rely,(2) and the set of all constraint databases over 2 is
denoted by Expy,(2(). The signature 7 is called the contezt signature whereas o
is called the database signature.

By definition, constraint databases are expansions of a context structure by
finitely representable database relations. Note that the same relation can be
represented in different ways, e.g. p; == x < 10Az > 0 and ¢y = (0 <
zAx <6)V(6<zAz<10)V 2 =6 are different formulae but define the same
relation. Two representations @ and &' are A-equivalent, if they represent the
same database over 2.

To measure the complexity of algorithms taking constraint databases as in-
puts we have to define the size of a constraint database. Unlike finite databases,
the size of constraint databases cannot be given in terms of the number of ele-
ments stored in them but has to be based on a representation of the database.
Note that equivalent representations of a database need not to be of the same
size. Thus the size of a constraint database cannot be defined independent of a
particular representation. In the following, whenever we speak of a constraint
database B, we have a particular representation @ of % in mind. The size |B|
of B then is defined as the sum of the length of the formulae in ¢. This cor-
responds to the standard encoding of constraint databases by the formulae of
their representation.

Constraint queries. Let 2 be a 7-structure and ¢ a relational signature.
A constraint query Q : Expgr(A) — Relp () is a mapping from o-constraint
databases over 2l to finitely representable relations over 2. In the sequel we are

interested only in queries defined by formulae of a given logic £. In order to de-
fine queries by £-formulae, we require the context structures to admit quantifier
elimination for £. This means that every £-formula ¢ is equivalent in 2 to a
quantifier-free formula. If 20 admits quantifier elimination for £, then every for-
mula ¥(21,...,2x) € £[TUo] defines a query @), taking a o-constraint database
% over A to the set {a € AF¥ : B =1)(a)}, and the result of the query is itself
finitely representable.

Typical questions that arise when dealing with constraint query languages are
the complexity of query evaluation for a certain constraint query language and
the definability of a query in a given language. For a fixed query formula ¢ € L,
the data complezity of the query @, is defined as the amount of resources (e.g.
time, space, or number of processors) needed to evaluate the function that takes
a representation @ of a database 9B to a representation of the answer relation

Qy(B).

3 Linear Constraints

In this section we consider linear constraint databases, that is, databases defined
over the context structures (R, <,+), (Q, <, +) or (N, <, +). The data complex-
ity of linear constraint queries in the context of (R, <, +) and (Q, <, +) has been
studied by Grumbach, Su, and Tollu in [5, 7]. In [5] it is claimed that “first-order
queries on linear constraint databases have a NC; data complexity.”

First, we briefly discuss the possibility whether more powerful query lan-
guages than first-order logic can be effectively evaluated on linear constraint
databases. However, a simple argument shows that adding a recursion mecha-
nism to first-order logic leads to non-closed or undecidable languages. For ex-
ample, the (FO+DTC)-formula nat(z) := [DTC, ,(z + 1 =)](0, z) defines the
natural numbers, and multiplication of natural numbers can be defined by the
(FO+DTC)-formula mult(z,y, z) := [DTCyy v (u+1 = ' Av+z = v")](00,yz).

It follows that Hilbert’s 10th problem (or the existential theory of arithmetic)
can be reduced to the evaluation of existential FO+DTC-queries on linear con-
straint databases.

Theorem 1. Every query language over the context structure (R, <,+) which
is at least as expressive as existential FO+DTC is undecidable.

Thus the result by Grumbach and Su cannot be extended to query languages
allowing recursion. We now show that the result does also not generalize to linear
constraint queries over the natural numbers.

Presburger arithmetic (PrA), the theory of the structure (N, <, +), is well
known to be decidable. Strictly speaking, we have to expand (N, <, +) by divis-
ibility relations a | z (for all parameters a € N), because otherwise the theory
would not admit quantifier elimination and hence non-Boolean queries could not
be evaluated in closed form. Note that a | z is of course definable in (N, <, +) but
not by a quantifier-free formula. However, we will show that even the evaluation

of boolean first-order queries is much more complex in the context of the Pres-
burger arithmetic than on (R, <, +). This result relies on complexity results for
fragments of PrA with bounded quantifier prefixes. Let Q := Q1 - - - Q, be a word
in {3,V}*. Then [Q]NPrA is the set of sentences of the form ¢ := Q11 - - Qrxrp
such that (N, <,+) E ¢ and ¢ is quantifier-free. It has been shown [2, 15] that
the complexity of such fragments of Presburger arithmetic may reside on arbi-
trary high levels of the polynomial-time hierarchy. Essentially the evaluation of
formulae with m + 1 quantifier blocks of bounded length is in the m-th level of
the hierarchy.

Theorem 2 (Gradel, Schéning). Let m > 1,ry,... ,rym > 1 and rpqq > 3.
Then, for odd m, [3"V"2 .. 3™y "m+1] N PrA is XP -complete, and [V"13"2 ---
Vrm3rm+1] N PrA s IIP -complete. For even m, [3V"...¥'mJ'+1] N PrA is
XP -complete and [V 3" - .- I mNY"m+1] N PrA is IIE -complete.

The proof of the following theorem exhibits a simple argument for translating
such complexity results for prefix classes in logical theories to results on the
complexity of query evaluation in constraint databases.

Theorem 3. Let ¢ be a first-order boolean query on constraint databases over
(N,<,+). Then the data complezity of ¢ is in the polynomial-time hierarchy.
Conversely, for each class XV, resp. II; of the polynomial time hierarchy there
is a fized query v whose data complezity is X -complete, resp. II}, -complete.

Proof. We can assume that ¢ = Q1x1 - - - Qi with ¢ quantifier-free and with

database relations Ry,...,R,,. Given a database B = (N, <,+,Ry,...,Rp)
where the database relations are represented by (1,..., 8, over (N, <,+), let
' = unfold(y),B) be the unfolded query, obtained by replacing in ¢ all oc-
currences of Ry, ..., R,, by the defining formulae f,... , ;. Since the j; are

quantifier-free ¢’ has the same prefix as ¢ and length bounded by O(|B]) (given
that v is considered fixed). Obviously B = ¢ if and only if ¢’ € [Q1 ... Qx]NPrA.
Hence the data complexity of 4 is in the polynomial-time hierarchy (and actually,
we can read off the level of the hierarchy directly from the prefix of).

For the second assertion of the theorem, consider any quantifier prefix Q =
@1 ...Qm- Let R be an m-ary relation symbol and let ¢ g be the query Qqy - -+
QmTmRx1 ... 2y. The decision problem for [Q] N PrA reduces to the evaluation
problem of 1o on constraint databases over (N, +, <). Indeed, for every sentence
¢ = Q121 QmTmy'(T1,... ,2m) in FO(<,+), let B, be the {R}-database
over (N, <, +) such that R®+ is represented by ¢'. The size of B, is bounded
by the length of ¢. Clearly, ¢ is true in (N, <, +) if and only if B, = ¥o.

Hence, by choosing Q as indicated by Theorem 2, the evaluation problem for
Yg is X}-complete, resp. ITx-complete. O

We have seen that first-order logic can express quite complex queries. We now
consider sub-classes of first-order logic which can still be efficiently evaluated.
It has been shown by Lenstra and Scarpellini (see references in [2]) that for all
fixed dimensions ¢ € N, [3] N PrA and [V!] N PrA are in PTIME. Thus, by an
argument similar to the one above, we can show the following theorem.

Theorem 4. Ezistential and universal boolean queries on constraint databases
over (N, <,+) have PTIME data complexity.

However, as soon as we admit queries with alternation depth two, the eval-
uation problem is NP- or Co-NP-hard. This follows from a result by Schoning
[15] who proved that [3V] N PrA is NP-complete, strengthening a result in [2].

4 Dense Linear Orders

We now consider the complexity of query evaluation in the context of dense linear
orders. We prove a general result which allows us to give precise complexity
bounds for the data complexity of various logics such as transitive closure or
fixed-point logic and to extend results on logics capturing complexity classes
from the realm of finite ordered structures to constraint databases over dense
linear orders. Given a fixed query, its evaluation in a database can be done by
(1) transforming the database into a finite structure, called its invariant, (2)
evaluating a slightly modified version of the query on the invariant, and (3)
transforming the result of the evaluation to an answer of the original query.

We fix the context structure 2 := (R, <) and a query v of vocabulary {<}Uo
with database signature ¢ = {Ry,...,Ry}. Let PY C R be the (finite) set
parameters that occur in . The query has to be transformed so that it can be
evaluated in the invariant. This transformation is independent of a particular
database and can be seen as a compilation or preprocessing step. To set up the
evaluation method outlined above, we define two mappings. The first, inv, maps
databases to their corresponding invariants; the second, m, maps the answer of
the query on the invariant to the answer of the original query.

4.1 The invariant of a constraint database

Definition 5. Let o := {R1,..., Ry} be a signature, B be a o-database over
(R,<), P C R a set of elements, and b a tuple of real numbers.

— The complete atomic type of b over P with respect to B, written as atp?(l;),
is the set of all atomic and negated atomic formulae ¢(Z) over the signature
{<,Ry,..., Ry} using parameters from P such that B |= ¢(b). We omit the
index P if P is empty and denote by otp® (b), resp. otpB (b), the complete
atomic type of b (over P) with respect to B over the signature {<}.

— A maximally consistent set of atomic and negated atomic o U {<}-formulae
»(Z) is a complete atomic type (over P) in the variables T, if it is a complete
atomic type (over P) of a tuple b with respect to a o-expansion of 2. We
write atp® (), resp. atph(z), for a complete atomic type (over P) in the
variables Z over the database signature o of 8.

A type is an n-type if it has n free variables. We omit B if it is clear from the
context. When speaking about types we always mean complete atomic types
throughout this chapter.

We call complete atomic types over o U {<} also complete database types.
Database types are of special interest here because the database type of a tuple
b determines everything we can say about b in terms of the database, especially
in which database relations b stands.

Suppose B is a database and P® the set of parameters used in its defini-
tion. Recall from the introduction that there are different ways to represent the
database B. The set of parameters used in these representations will generally
differ from P®. We define a set of parameters, called the canonical parameters,
which can be extracted from 9B independent of its representation.

Definition 6. Suppose B = (R, <,RT,..., RP)is a database. The set cp(B) C
R of canonical parameters of B is the set of elements p satisfying the following
condition.

For at least one n-ary relation R € {R?,... ,R>} there are a1,... ,a, € R, an
€ € R e > 0, and an e-neighbourhood § = (p — €, p + €) of p such that one of the
following holds.

— For all ¢ € §,¢ < p and for no ¢ € §,q > p we have Ra[p/q]. Here Ra[p/q|
means that all components a; = p are replaced by g.

— For all ¢ € §,¢ > p and for no g € 4, ¢ < p we have Ra[p/q].

Ra[p/q] holds for all ¢ € §\{p} but not for ¢ = p.

Ra[p/q] holds for ¢ = p but not for any ¢ € 6\ {p}.

Lemma 7. All canonical parameters of B occur explicitly in all representations

of B.

In particular this implies that the cardinality of ep(*8) is bounded by the size
of any representation of 8.

We show in the next lemma that an atomic order type over cp(B) uniquely
determines a complete database type. It follows that every two tuples realizing
the same atomic order type over ¢p(B) occur in the same database relations.
Thus the parameter set cp(9B) is sufficient to define a representation of B.

Lemma 8. Suppose B is a database and a,b € R* are two k-tuples.

(i) If otp?;(%)(d) = otp?;(%)(é), then atp® (a) = atp® (b).
(i1) If otp?;(%)(ai) = otpc%;)(%)(bi) for all 1 < i < k and otp®(a) = otp™(b),

then otp?;(%)(?)) = otp?;(%)(d). i
(iii) If P D cp(B) is a superset of cp(B), then otpp (b) = otpp(a) implies
otpg)(%)((z) = otpz(%)(b).

Proof. The proof of the second and third part are straightforward. To prove the
first part suppose for the sake of contradiction that atp® (b) and atp® (a) differ.
Then there is an atomic or negated atomic formula ¢ such that B |= (@) but
B = p(b). If ¢ is of the form z; < x;, then a; < a; but not b; < b;, which
contradicts the assumption that otp?;(%) (b) = otp?;(%) (@).

Now suppose ¢ is of the form Rz - - - 2., where r := ar(R). Let C := (¢o, C1, ... ,C)

be a sequence of points in R¥, such that for ¢;; := b; for all j < i and ¢;; := a;
for all j > ¢. Thus ¢y = a, ¢ = B, c1 = (bl,ag,... ,ak), Cy = (bl,bg,ag,... ,ak),
and so on. Further, let L := (ly,...,l;) be a sequence of lines such that the
endpoints of I; are ¢; ; and ¢;. As B = (@) but B £ ¢(b), there is an
I; that intersects both R® and R*\R®. Assume w.l.o.g. that a; < b;. Let
q := ¢j—1. Then there is a p € R with a; < p < b; such that R®¢ but not
R%q, ... 1 @j—1,D,qj+1,--- »qk- We claim that there is at least one canonical
parameter d with a; < d < p. To prove this claim, let A := {a € R : a; <
a and R®q,... ,qj—1a'qj+1,... ,qk for all a; < a’ < a}. Let d be the supremum
of A. Then, by Definition 6, c is a canonical parameter and a; < d < p. This
proves the claim. Thus @ and b do not satisfy the same complete order type over
cp(B) which contradicts the assumption. O

One implication of the lemma is the following. Suppose we want to decide
if Ra holds for a tuple @ := a4,...,a; and a k-ary database relation R. The
question can be answered if we know whether Rb holds for a tuple b := by, ... , by
such that @ and b realize the same order type and each b; realizes the same 1-
order type over cp(*B) as a;. This will be the central idea in the definition of the
invariant.

The relevant set of parameters that we need for the evaluation of ¢ on a
database B is P®¥ := {0,1} U ep(B) U P¥. The constants 0 and 1 are included
because they will be needed in the definition of the invariant.

Since PV is finite and Definition 6 of the set of canonical parameters can
obviously be formalized in first-order logic, it follows that for any fixed 1, the
set P2V ig uniformly first-order definable over (R, <,0,1, P¥).

Lemma 9. There exists a first-order formula §(z) of vocabulary {<,0,1, PY}Uc
such that for every o-database B = (R, <,R¥,... ,RF), PP¥Y ={aeR: B |

5(a)}.

We are now ready to define the invariant. Given a database B, define an
equivalence relation ~ on R such that two elements a and b are ~-equivalent if
and only if they realize the same 1-order type over P®:%. As PB-¥ ig first-order
definable the equivalence relation ~ is first-order definable as well. The set of
equivalence classes R. serves as the universe of the invariant. To complete the
definition we have to specify the database relations.

Before we give the detailed definition of the relations in the invariant, we
illustrate the idea by an example. Consider a database 8 with a single binary
relation S represented by ps(z,y) ;=2 > 1Az <8Ay>0Ay <6Ay < z. The
relation is shown in the following figure.

As explained above, the invariant depends not only on the database B but
also on the parameters used in the query . To simplify the example let ¥ be an
arbitrary query with no extra parameters. Thus the set P%-¥ consists of the four
elements 0,1, 6,8 and there are nine different ~-equivalence classes, namely the
intervals (—o0,0),{0},(0,1),{1},(1,6),{6},(6,8), {8}, and (8,00). Recall that
these equivalence classes form the universe of the invariant. Thus the relation S
has somehow to be defined in terms of these classes. Obviously it is not enough
to factorize S by ~, because as 5 ~ 5.1, the equivalence classes [5] and [5.1] are
equal, but ([5.1],[5]) € S and ([5],[5]) € S. Thus S, would not be well-defined.

Instead of simply factorizing a m-ary relation R by ~ we consider the set Cg
of (m+1)-tuples ([a1], ..., [ax], p), where [a;] € R/_,1 < i < m and p denotes an
m-order type, such that ([a1],...,[am],p) € Cgr if and only if there is a b € R™
realizing p such that Rb holds and a; ~ b; for all 1 < i < m. In the example
above, the set C's consists of the set of all triples ([a1], [a2], p) such that [a1] x [as]
is in the rectangle marked by the dashed line in the figure and p is the order
type z < y.

The idea behind the definition of the relation in the invariant is to use the
set C'g as a finite relation carrying all the information necessary to restore the
original database relation R.

Note that the set ord(m) of different m-order types is finite for all m. Thus
we can assign to each order type p € ord(m) a binary word &, (p) € {0,1}¢(™)
where £(m) := min{/ : 2* > |ord(m)|}. For m = 2 we define & to be the encoding
taking z < y to 00, z = y to 01, and y < x to 10. Once such an encoding &,
is fixed, the set Cr can be represented by a set C = {([a1],-.. ,[am].?)
([a1l, ..., [am], p) € Cr and &(p) = t}. This gives the definition of the relations
in the invariant.

Definition 10. Let o := {R;,... ,R;} and B be a o-database over (R, <).
The invariant B’ of B is a finite structure with universe U over the signature
{<,R},... . R}}, where

-U:=R/_,

— [#] < [y] if and only if < y and x # y, and

— If R € ¢ has arity m, then the corresponding relation R’ has arity m + £(m)
and R'[a1]...[am]t1 ... t¢m) holds in B’ iff there are by,... b, € R with

fm(Otp(b)) =11 'tg(m) so that R?bl AN bm and [az] = [bl] for 1 S i S m.
The mapping inv is defined as the function taking databases to their invariants.

We also need a function taking the finite encoding of relations back to their
representation.

Definition 11. Let S be a (m + £(m))-ary relation of the form indicated by
Definition 10. The function

m

7:S e ps(Tr,... ,2m) = (Um(:E,ﬂ/\/\(:Ujrvaj)),
atesS j=1

maps S to a formula ¢g representing the corresponding relation on the origi-
nal database. Here 0,,(Z,1) is a formula stating that T satisfies the order type
specified by ¢. The corresponding function mapping relations on the invariant to

finitely representable relations over the database is 7 : S — {a : A |= #(5)[a]}.

Lemma 12. The invariant inv(B) is an ordered finite structure whose cardi-
nality is linearly bounded in the size of any representation of B.

Proof. For any set P, the number of 1-order types over P is 2|P| + 1. The
cardinality of inv(B) is the number of 1-order types over P%+¥. Recall that
|PZ:¥| = |ep(B)| + O(1) (since 1 is considered fixed) and that the size of cp(B)
is bounded by the size of any representation of 8. O

Corollary 13. The functions inv and 7 can be computed in LOGSPACE.

Proof. The LOGSPACE-computability of inv is a direct implication of the previ-
ous lemma and a result by Kanellakis, Kuper and, Revesz stating that first-order
queries can be evaluated in LOGSPACE. For 7, let S be a (m + £(m))-ary answer
of a query on an invariant. As an implication of the previous lemma, the size of
S is polynomially bounded in the size of any representation of 2B. All the algo-
rithm to calculate #(S) has to do is to output the disjunction of the formulae
(om(Z,1) A /\le(mj ~ aj)) for every tuple @i € S. Clearly, this can be done in
LOGSPACE. O

4.2 The transformation of the query

Having defined the invariant of a database, we have to explain how the query
has to be transformed for evaluation in the invariant. This translation of the
formulae follows the same ideas described above, namely to increase the arity
of the relations to store the order type. While translating a formula with free
variables {z1,... , 7, } we introduce new free variables i to hold the order type.

It will be necessary to compare order types over a different number of vari-
ables. Suppose that pi, p» are order types in the variables 1, ... ,z,, and x4, ... ,
T, respectively, where m < n. We say that ps extends py, if p1 C po. This means
that the order type p» behaveson x4, ... , x,, in the same way as p;. In the query
transformation we need a formula eztends,, (i, j) stating that i :=iy,... ,igm)
codes some m-order type p1, j := ji,...,jin) codes a n-order type p2, and py
extends p;. The formula is defined as

extendspn (i, j) = \/ (&nlp2) =7 — \/ Em(pr) = 0).
pa2€ord(n) p1 Eord(m)
po extends pq
Definition 14. Suppose o is a database schema and 7 the signature of the
invariants corresponding to o-databases. Further, let £ be a logic from {FO,
FO+DTC, FO+TC, FO+LFP, FO+PFP}. f : L[o] — L[7] is defined induc-
tively as follows.

10

— Let ¢(z,y) :== 2 <y. Then (f¢)(z,y,i1,i2) ;=2 <yAir =0Ais =0.

— Let ¢(z) := 2 < c. Then (fo))(z,i) ==z < [c]Ai=0.

— An equality ¢(z,y) := z = y is translated to (f)(z,y,41,12) ;= = yAi; =
0Aix =1.

— An equality ¢(z) := = = ¢ corresponds to (f¢)(z,i) .=z =[c]Ai=0.

— Let ¢(21,...,2;) := R;ju1 ... u, where the u; are either constants or vari-
ables from {z1,...,z;} and all z; occur in {u1,...,up}. Then
(f’g[})(:ﬂl ,Cﬂj,il,... ,ig(j))tz Ré’l)l...’l)mg, where Vp 1= s Tfur—fs,
[ifu,=c
— Let ¢(x1,...,2m) := 1/)1(y1. o Yma) ANa(21, .o Zmy), Where all y; and 2;
occur in Z. Let 1=, ie(m)s J = J1se - ,Jé(ml) and j' == ji,...] l(mQ).
Then (fv)(Z,1) := 3535 extends,ym(j,i)/\ea:tendsm2m(j DA(fY) (7, 5) A

(fib2)(2,5")-
— For ¢ := -, set (f1)) := =(fy).
= Let (z1,...,2m) = Jy @(Z,y). Then (fo)(w1,... ,Tm,i i) = JyTjr,...,
Fje(mr1)extendpmi1 (i, J) A (fo)(Z,y,7)-
~ Let (7,0) := [DTCs.yo(7, D) (7, 0).
Then (f0)(3, 5,1) = [DTC, ,5(f¢)(#, 5, 7))(@, 5,3).
~ Let (@) = [LFPp (R, 2)](5). o
Then (f)(@.7) = [LFP e 5 3 (fi) (R',2,7)](@,7).
— The rules for the TC, IFP- and PFP-operators are defined analogously.

All parts of the evaluation algorithm have now been defined. The next theo-
rem proves its correctness.

Theorem 15. Let ¢ € L, where L is one of the logics in Definition 14, be a
query, B be a database over (R, <) and B' := inv(B) be the invariant corre-
sponding to B. Then YT = n((f)?).

Proof. The proof is by induction on the structure of the query. The argument for
the boolean operations is straightforward and therefore omitted. Also, we only
give the argument for the LFP-operator and omit the cases of formulae built by
DTC, TC, and PFP-operators which are treated in precisely the same way.

e For ¢(z,y) := x <y, the set 1)® contains the pairs (a,b) € R? such that a < b.
By definition, f(¢) is <y A i1 = 0 Aiy = 0. Evaluating (f1) on B’ results in
the set C := {(a,b,i1,i2) : a < b,iy = 0,i2 = 0}. Transforming this set with
the mapping 7 yields the formula ¢ (z,y) := \/(a b il@)ec(ag (z,y,i1,02) Nz ~
aAy ~ b). As iy and iy are 0 for all tuples (a, b,i1,i2) € C, o2(2,y,41,i2) reduces
to z < y and thus 7(C) equals {(a,b) € R? : a < b}.

o Let ¢(z) := 2 = c¢. Then (fo)(x,i) := x = [c] Ai = 0 and (fe¢) evaluates
on B’ to the set C' := {([¢],0)}. Thus #(C) results in the formula p(z) :=
o1(z,0) Az ~ c. This formula is satisfied only by ¢ because ¢ € P and therefore
the only member of [c] is ¢ itself. We get 7(C) := {c} = ¢®.

o Let ¢(z1,...,2;) := Rsu1...up, as in Definition 14. We assume w.l.o.g. that
the first arguments of the relation are the variables and the parameters come
thereafter, that is w1 = z1,...,u; = z; and uj41 = c1,... ,um = cp—j. The

11

transformed query is (f¢)(z1,...,2;,1) := Rizi...z;[c1] ... [cm—;]i. Evaluat-
ing f(v) on B’ yields the set C := {([a1],... ,[aj], [e1], .o s [em-jl,0) € R®').
Now we have to show that m(C) = . Suppose that (ai,...,a,) € 7(C).
Then there is a disjunct ¢ := op(z1,... ,Tm,1) A A, (zr ~ by) in #(C) with
(b,i) € C and B = ¢(a). As (b,i) € R'® and therefore, by Definition 10,
(ai,...,am) € R® we get a € 9. Conversely, suppose that (ay,...,a,) € R®.
Then ([a1], ... ,[am],7) is in R'®', where &, (otp(a)) = i, and o, (F,1) AN\, ar ~
x, occurs as a disjunct in #(C). Obviously this formula is satisfied by a and
therefore a € 7(C).
o Let t(21,...,%m) := Jyp(F,y). The transformed formula is (f4)(F,4) :=
FyTjr. - . Jegmryextend,,mi1) (i,) A(f)(Z,y,). Suppose that (ay,... ,ax) €
¢®. This is the case if and only in there is an a;,41 with (a1,. .., Gm, ama1) €
©®. By induction ¢® = 7((fe)®'). Thus there is a tuple ([a1],... , [ams1],]) €
(f(p) % and (ai,. .. ,ams1) satisfies the (m + 1)-order type p denoted by 7. This
is the case if and only if there is a tuple ([a1], ... ,[am],i) € (f1))® such that p
extends the order type denoted by 4. Thus we get that (a1,...,a,) € ™ if and
only if ([a1],... ,[am],7) € (f¢) B’ where (al, ... ,an) satisfies the order type
denoted by 1. This implies that ¥® = 7((f¢)®").
e Finally, let ¢(a) := [LFPrzp(R,Z)](4). We can assume that ¢ does not
contain an LFP-operator. The proof then is straightforward. d
Now all parts of the evaluation method are defined. We illustrate the method
in the following figure.

B3 —= (B.Q(B))

wlfe]

B — (B,Q(P))

To evaluate the query @) (considered as being fixed) in the database 9B, the
invariant B’ := inv(B) is constructed, the transformed query Q' := f(Q) is
evaluated in B’, and the result is transformed back via the map #. By Corollary
13 the mappings inv and 7 are LOGSPACE-computable. Thus we get the following
theorem.

Theorem 16. Suppose L € {FO,FO+DTC, FO+TC, FO+LFP, FO+IFP,
FO+PFP} is a logic and C a complexity class so that the evaluation problem
for L on finite databases is in C. Then the evaluation problem for L on dense
linear order databases is also in C.

4.3 Capturing complexity classes

We now use the invariant to lift the capturing results of descriptive complexity
theory from finite ordered structures to dense linear order databases. The crucial
observation is that inv(B) is interpretable in 9. In particular, this will give us a
transformation from formulae over the invariant to formulae over the database.
See [9] for background on interpretations.

12

Definition 17. Let B := (R, <,RY,... ,R}) a database with signature o over
(R, <), let B' = inv(B) its invariant, and 7 be the signature of the invariant.
The interpretation I' interpreting B’ in B is given by

(1) a surjective function fr : R — U defined as fr(z) := [z], and

(2) for each atomic 7-formula ¢(zi,...,2,) a formula ¢¥p(zy,...,z,) €
FOlo] such that for all tuples @ € R™: B’ = ¢(fr(a)) if and only if B |=
vr(a).

An equality u = v € FOIr] corresponds to u ~ v, where u,v denote either
variables or parameters from P®¥ (recall that ~ is first-order definable). The
translations for all other atomic formulae is given according to Definition 10.
That is, a formula u < v € FO[r] corresponds to u < v A —u ~ v and R;Zi to
Y Rsy A Oar(r,)(Y,1) A N\j(zj ~ y;). (Recall the definition of o), from Definition
11).

We can now replace in any formula ¢ of vocabulary 7 in first-order logic,
transitive closure logic or fixed point logic the atomic formula by their corre-
sponding formulae and obtain a o-formula . The equivalence between 1 and
Y in part (2) of the definition thus extends to arbitrary formula in these logics.

We are now ready to lift the capturing results from finite ordered struc-
tures to dense linear order databases. Clearly, every, say, FO+LFP-query ¢ is
invariant under automorphisms on 2 that preserve the constants in ¢). Thus we
can only hope to capture those PTIME-queries which are invariant under such
automorphisms. This is made precise in the following definition.

Definition 18. A complexity class C is captured by a logic £ on the class of
dense order databases, if for all queries @) in C for which we can choose a finite
set S C R such that) commutes with every automorphism on (R, <, S), there is
a formula v in £ satisfying the following property: For all dense order databases
B we have that Q(*B) is true iff B |= 1.

Theorem 19. Let L be a logic as in Theorem 16 and C be a complexity class
such that L captures C on the class of finite ordered structures. Then L captures
C on the class of dense order databases.

Proof. We give the proof explicitly only for FO+LFP. The other cases can be
proven analogously. We have already shown that FO+LFP C PTiME. For the
other direction, suppose that) a polynomial-time computable query on dense
order constraint databases of signature 0. We show that there is an FO+LFP [o]-
formula ¢ defining Q.

Again let 7 denote the signature of the corresponding invariants. Let Q' be
the query that takes invariants inv(B) of databases B as inputs and returns
as output the set Q'(*B') := {fr(a) : a € Q(B)}. Clearly Q' can be computed
in polynomial time, since a representation of the database B whose invariant is
given as the input can be computed in LOGSPACE and since @ is a PTIME-query.
(Note that in contrast to the algorithm of the previous section this algorithm con-
structs the database from the invariant and evaluates the query in the database,

13

whereas the algorithm in the previous section constructs the invariant from the
database and then operates on the invariant.)

Since @’ is a PTIME-query on finite ordered structures, there exists by the
Theorem of Immerman and Vardi (see [1, 10]) an FO+LFP [r]-formula ¢ that
defines Q'. By the remarks above, there exists a formula ¢, € FO+LFP [o] such
that for all @ € R™, inv(B) = ¢(fr(a)) iff B = ¢r(a). Thus B = ¢r(a) if and
only if @ € Q(B). This proves the theorem. O

The following table summarizes the relations between logics and complexity
classes in the context of dense linear orders.

Logics and complexity classes in the context of dense linear orders.

FO+DTC = LOGSPACE
FO+TC = NLOGSPACE
FO+LFP = PTIME
FO+PFP = PSPACE

5 Summary and Further Results

In the main result of this paper we presented a general method to prove com-
plexity bounds for query languages over dense order databases. The idea was
to code the finitely represented database as a finite database and then use the
evaluation algorithms available for the query language on finite databases. It
turned out that this encoding can be defined by first-order formulae using only
the order predicate and some very limited kind of arithmetic. It can therefore
be done with very low data complexity. This method enabled us to evaluate
queries for various query languages within the same complexity classes as for
finite databases.

This method also works for databases defined by inequality constraints over a
countable infinite set. By a simple argument based on Ehrenfeucht-Fraissé games
we can also prove that the various fixed-point logics considered before are too
weak to express all LOGSPACE-computable queries.

Unfortunately the good results for dense order databases cannot be extended
to linear constraint databases over the reals. As soon as we admit recursion in
the query language the arithmetic over N becomes definable and thus the query
language undecidable.

The situation changes drastically if structures with a discrete order as uni-
verse are considered. It is known that positive DATALOG-queries on discrete order
databases can be evaluated in closed form (see [14]) but the data complexity is
still unknown. For first-order queries a better result can be shown.

Theorem 20. First-order queries on discrete order databases can be evaluated
tn LOGSPACE.

See [13] for a proof of the theorem. In Section 3 we have shown that the
data complexity of first-order queries over (N, <,+) is in the polynomial time
hierarchy and that there are complete first-order queries for all levels of PH.

14

As in the case of the context structure (R, <, +), adding recursion to the query
language leads to undecidable query languages. Of course, even first-order queries
are undecidable if we also add multiplication to the context structure.

The following table summarizes the results. The NC bound for first-order
queries on databases over the field of reals comes from [12]. Note that only in
the case of (R, <) we have precise capturing results. The other cases are just
complexity bounds.

| [inequality [(R, <) [R, <, D[R <, +,)] (N <) [N, <, D[N <, +,)]

FO ACP ACP NC NC Loaspace| PH n.d.
FO+DTC|| LoGSPACE | LOGSPACE n.d. n.d. n.d. n.d. n.d.
FO+TC |INLoGSPACE|NLOGSPACE| n.d. n.d. n.d. n.d. n.d.
FO+LFP PTIME PTIME n.d. n.d. n.d. n.d. n.d.
FO+PFP PSPACE PSPACE n.d. n.d. n.d. n.d. n.d.

n.d. = not decidable

References

[1] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

[2] E. Gréadel. Subclasses of Presburger arithmetic and the polynomial-time hierarchy.
Theoretical Computer Science, 56:289-301, 1988.

[3] E. Griadel and Y. Gurevich. Metafinite model theory. Information and Computa-
tion, 140:26-81, 1998.

[4] E. Gradel and K. Meer. Descriptive complexity theory over the real numbers. In
Mathematics of Numerical Analysis: Real Number Algorithms, volume 32 of AMS
Lectures in Applied Mathematics, pages 381-403. 1996.

[5] S. Grumbach and J. Su. Finitely representable databases. Journal of Computer
and System Sciences, 55:273-298, 1997.

[6] S. Grumbach and J. Su. Queries with arithmetical constraints. Theoretical Com-
puter Science, 173:151-181, 1997.

[7] S. Grumbach, J. Su, and C. Tollu. Linear constraint query languages: Expressive
power and complexity. Lecture Notes in Computer Science, 960:426-446, 1995.

[8] D. Harel. Towards a theory of recursive structures. volume 1450 of Lecture Notes
in Computer Science, pages 36-53. Springer, 1998.

[9] W. Hodges. Model Theory. Cambridge University Press, 1993.

[10] N. Immerman. Descriptive complerity. Graduate Texts in Computer Science.
Springer, 1998.

[11] P. Kanellakis and D. Goldin. Constraint programming and database query lan-
guages. volume 789 of Lecture Notes in Computer Science, pages 96—120. Springer,
1994.

[12] P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journal of
Computer and Systems Sciences, 51:26-52, 1995.

[13] S. Kreutzer. Descriptive complexity theory for constraint databases. Diplomarbeit,
RWTH Aachen, 1999.

[14] P. Revesz. A closed form evaluation for datalog queries with integer (gap)-order
constraints. Theoretical Computer Science, 116:117-149, 1993.

[15] U. Schéning. Complexity of Presburger arithmetic with fixed quantifier dimension.
Theory of Computing Systems, 30:423-428, 1997.

15

