
Desriptive Complexity Theory for ConstraintDatabasesErih Gr�adel and Stephan KreutzerLehrgebiet Mathematishe Grundlagen der Informatik,RWTH Aahen, D-52056 Aahen,fgraedel, kreutzerg�informatik.rwth-aahen.deAbstrat. We onsider the data omplexity of various logis on twoimportant lasses of onstraint databases: dense order and linear on-straint databases. For dense order databases, we present a general resultallowing us to lift results on logis apturing omplexity lasses fromthe lass of �nite ordered databases to dense order onstraint databases.Considering linear onstraints, we show that there is a signi�ant gapbetween the data omplexity of �rst-order queries on linear onstraintdatabases over the real and the natural numbers. This is done by prov-ing that for arbitrary high levels of the Presburger arithmeti there areomplete �rst-order queries on databases over (N; <;+). The proof ofthe theorem demonstrates a simple argument for translating omplexityresults for pre�x lasses in logial theories to results on the omplexityof query evaluation in onstraint databases.1 IntrodutionDesriptive omplexity theory studies the relationship between logial de�nabil-ity and omputational omplexity. In partiular one looks for results saying that,on a ertain lass K of strutures, a logi L (like �rst-order logi or least �xedpoint logi) aptures a omplexity lass C. This means that (1) for every �xedsentene  2 L, the omplexity of evaluating  on strutures from K is a prob-lem in the omplexity lass C, and (2) every property of strutures in K thatan be deided with omplexity C is de�nable in the logi L. Two important ex-amples of suh results are Fagin's Theorem, saying that existential seond-orderlogi aptures NP on the lass of all �nite strutures, and the Immerman-VardiTheorem, saying that least �xed point logi aptures Ptime on the lass of allordered �nite strutures. Indeed, on ordered �nite strutures, logial harater-izations of this kind are known for all major omplexity lasses. On the otherhand it is not known, and one of the major open problems in the area, whetherPtime an be aptured by any logi, if no ordering is present. We refer to [1, 10℄for bakground on desriptive omplexity.Up to now, desriptive omplexity has been onsidered almost exlusivelyon �nite strutures. But the researh program of desriptive omplexity makessense also for lasses of in�nite strutures, provided that they admit a �nitepresentation. There have been a few studies of desriptive omplexity theory on



in�nite strutures onerning, for instane, meta�nite strutures and omplexitytheory over the reals [3, 4℄, reursive strutures [8℄ and, as we do in the presentpaper, onstraint databases (see e.g. [12, 6, 5℄ and the referenes there).Constraint databases are a modern database model admitting in�nite rela-tions that are �nitely presented by quanti�er-free formulae (onstraints) oversome �xed bakground struture. For example, to store geometrial data, it isuseful to have not just a �nite set as the domain of the database, but to inludeall real numbers `in the bakground'. Also the presene of interpreted funtions,like addition and multipliation, is desirable. The onstraint database frameworkintrodued by Kanellakis, Kuper and Revesz [12℄ meets both requirements. For-mally, a onstraint database onsists of a ontext struture A, like (R; <;+; �),and a set f'1; : : : ; 'mg of quanti�er-free formulae de�ning the database rela-tions. We give the preise de�nition in the next setion.When studying the data omplexity of onstraint query languages, it soonbeame lear that allowing reursion in query languages leads to non-losed orundeidable query languages even for rather simple ontext strutures. On theother hand there are promising results for non-reursive languages in many inter-esting ontexts. For the ontext struture (R; <) a Logspae data omplexityfor �rst-order logi has been established by Kanellakis, Kuper, and Revesz whihwas later improved to AC0 by Kanellakis and Goldin [11℄. In [12℄ it has also beenshown that �rst-order logi still has data omplexity NC if the ontext strutureis extended by addition and multipliation. Thus �rst-order logi is well-suitedas a query language for spatial databases where the ontext struture is the �eldof reals.In this paper we will onsider the omplexity of query evaluation in twoimportant ases: (1) linear onstraint databases, where the ontext struture is(R; <;+) or (N; <;+), and (2) onstraint databases over dense linear orders.It turns out that the data omplexity of �rst-order query on linear onstraintdatabases depends heavily on the universe. The data omplexity of �rst-orderqueries on databases over (R; <;+) is known to be in NC. It has been onjeturedby Grumbah and Su [6℄ that this is also true for the ontext struture (N; <;+).We refute this onjeture here by showing that we �nd omplete �rst-orderqueries for eah level of the polynomial time hierarhy.As stated above, allowing reursion in query languages tends to result inundeidable languages. For instane, we will observe that this is the ase forlinear onstraint queries over (R; <;+). An exeption are dense order onstraintdatabases, where the ontext struture is (R; <) (or any other dense linear or-der without endpoints). There we an inorporate reursion and still end up indeidable and losed languages. For instane, it has been shown in [12, 5℄ thatinationary Datalog with negation has Ptime data omplexity and, in fat,that it aptures Ptime on dense order onstraint databases. We ontinue thisline of researh and present a general tehnique that allows to lift apturingresults from the lass of ordered �nite strutures to onstraint databases over(R; <). This is done by assoiating with every onstraint database over (R; <) a�nite ordered struture, alled the invariant of the database whih arries all the2



information stored in the in�nite database. The �nite database an be de�nedby �rst-order formulae and therefore with very low data omplexity. A query onthe onstraint database an be evaluated in the invariant in suh a way, thatthe result of the original query an be regained from the answer on the �nitedatabase with very low data omplexity. Indeed the invariant is �rst-order inter-pretable in the original database, and this allows to translate any formula thatrepresents a query on the invariant into an equivalent formula over the originaldatabase. In this way apturing results are lifted from ordered �nite struturesto dense order onstraint databases.2 Constraint DatabasesThe basi idea in the de�nition of onstraint databases is to allow in�nite rela-tions whih have a �nite representation by a quanti�er-free formula. Let A be a� -struture, alled the ontext struture, and '(x1; : : : ; xn) be a quanti�er-freeformula of voabulary � that may ontain elements from A as parameters. Let� := fR1; : : : ; Rkg be a relational signature disjoint from � .We say that an n-ary relation R � An is represented by '(x1; : : : ; xn) over A,if R = f(a1; : : : ; an) : A j= '(a1; : : : ; an)g. A �-onstraint database over the on-text struture A is an expansion B = (A; R1; : : : ; Rk) of A where all �-relationsRi are �nitely represented by formulae 'Ri over A. The set � := f'R1 ; : : : ; 'Rkgis alled a �nite representation of B. The set of �nitely representable relationsover A is denoted by Relfr(A) and the set of all onstraint databases over A isdenoted by Expfr(A). The signature � is alled the ontext signature whereas �is alled the database signature.By de�nition, onstraint databases are expansions of a ontext struture by�nitely representable database relations. Note that the same relation an berepresented in di�erent ways, e.g. '1 := x < 10 ^ x > 0 and '2 := (0 <x ^ x < 6)_ (6 < x ^ x < 10)_ x = 6 are di�erent formulae but de�ne the samerelation. Two representations � and �0 are A-equivalent, if they represent thesame database over A.To measure the omplexity of algorithms taking onstraint databases as in-puts we have to de�ne the size of a onstraint database. Unlike �nite databases,the size of onstraint databases annot be given in terms of the number of ele-ments stored in them but has to be based on a representation of the database.Note that equivalent representations of a database need not to be of the samesize. Thus the size of a onstraint database annot be de�ned independent of apartiular representation. In the following, whenever we speak of a onstraintdatabase B, we have a partiular representation � of B in mind. The size jBjof B then is de�ned as the sum of the length of the formulae in �. This or-responds to the standard enoding of onstraint databases by the formulae oftheir representation.Constraint queries. Let A be a � -struture and � a relational signature.A onstraint query Q : Expfr(A) ! Relfr(A) is a mapping from �-onstraintdatabases over A to �nitely representable relations over A. In the sequel we are3



interested only in queries de�ned by formulae of a given logi L. In order to de-�ne queries by L-formulae, we require the ontext strutures to admit quanti�erelimination for L. This means that every L-formula ' is equivalent in A to aquanti�er-free formula. If A admits quanti�er elimination for L, then every for-mula  (x1; : : : ; xk) 2 L[� [�℄ de�nes a query Q' taking a �-onstraint databaseB over A to the set f�a 2 Ak : B j=  (�a)g, and the result of the query is itself�nitely representable.Typial questions that arise when dealing with onstraint query languages arethe omplexity of query evaluation for a ertain onstraint query language andthe de�nability of a query in a given language. For a �xed query formula ' 2 L,the data omplexity of the query Q' is de�ned as the amount of resoures (e.g.time, spae, or number of proessors) needed to evaluate the funtion that takesa representation � of a database B to a representation of the answer relationQ'(B).3 Linear ConstraintsIn this setion we onsider linear onstraint databases, that is, databases de�nedover the ontext strutures (R; <;+), (Q; <;+) or (N; <;+). The data omplex-ity of linear onstraint queries in the ontext of (R; <;+) and (Q; <;+) has beenstudied by Grumbah, Su, and Tollu in [5, 7℄. In [5℄ it is laimed that \�rst-orderqueries on linear onstraint databases have a NC1 data omplexity."First, we briey disuss the possibility whether more powerful query lan-guages than �rst-order logi an be e�etively evaluated on linear onstraintdatabases. However, a simple argument shows that adding a reursion meha-nism to �rst-order logi leads to non-losed or undeidable languages. For ex-ample, the (FO+DTC)-formula nat(x) := [DTCx;y(x+ 1 = y)℄(0; x) de�nes thenatural numbers, and multipliation of natural numbers an be de�ned by the(FO+DTC)-formulamult(x; y; z) := [DTCuv;u0v0(u+1 = u0^v+x = v0)℄(00; yz):It follows that Hilbert's 10th problem (or the existential theory of arithmeti)an be redued to the evaluation of existential FO+DTC-queries on linear on-straint databases.Theorem 1. Every query language over the ontext struture (R; <;+) whihis at least as expressive as existential FO+DTC is undeidable.Thus the result by Grumbah and Su annot be extended to query languagesallowing reursion. We now show that the result does also not generalize to linearonstraint queries over the natural numbers.Presburger arithmeti (PrA), the theory of the struture (N; <;+), is wellknown to be deidable. Stritly speaking, we have to expand (N; <;+) by divis-ibility relations a j x (for all parameters a 2 N), beause otherwise the theorywould not admit quanti�er elimination and hene non-Boolean queries ould notbe evaluated in losed form. Note that a j x is of ourse de�nable in (N; <;+) butnot by a quanti�er-free formula. However, we will show that even the evaluation4



of boolean �rst-order queries is muh more omplex in the ontext of the Pres-burger arithmeti than on (R; <;+). This result relies on omplexity results forfragments of PrA with bounded quanti�er pre�xes. Let Q := Q1 � � �Qk be a wordin f9;8g�. Then [Q℄\PrA is the set of sentenes of the form  := Q1x1 � � �Qkxk'suh that (N; <;+) j=  and ' is quanti�er-free. It has been shown [2, 15℄ thatthe omplexity of suh fragments of Presburger arithmeti may reside on arbi-trary high levels of the polynomial-time hierarhy. Essentially the evaluation offormulae with m+ 1 quanti�er bloks of bounded length is in the m-th level ofthe hierarhy.Theorem 2 (Gr�adel, Sh�oning). Let m � 1; r1; : : : ; rm � 1 and rm+1 � 3.Then, for odd m, [9r18r2 � � � 9rm8rm+1 ℄ \ PrA is �pm-omplete, and [8r19r2 � � �8rm9rm+1 ℄ \ PrA is �pm-omplete. For even m, [9r18r2 � � � 8rm9rm+1 ℄ \ PrA is�pm-omplete and [8r19r2 � � � 9rm8rm+1 ℄ \ PrA is �pm-omplete.The proof of the following theorem exhibits a simple argument for translatingsuh omplexity results for pre�x lasses in logial theories to results on theomplexity of query evaluation in onstraint databases.Theorem 3. Let  be a �rst-order boolean query on onstraint databases over(N; <;+). Then the data omplexity of  is in the polynomial-time hierarhy.Conversely, for eah lass �pk , resp. �pk of the polynomial time hierarhy thereis a �xed query  whose data omplexity is �pk-omplete, resp. �pk -omplete.Proof. We an assume that  = Q1x1 � � �Qkxk' with ' quanti�er-free and withdatabase relations R1; : : : ; Rm. Given a database B = (N; <;+; R1 ; : : : ; Rm)where the database relations are represented by �1; : : : ; �m over (N; <;+), let 0 := unfold( ;B) be the unfolded query, obtained by replaing in  all o-urrenes of R1; : : : ; Rm by the de�ning formulae �1; : : : ; �m. Sine the �i arequanti�er-free  0 has the same pre�x as  and length bounded by O(jBj) (giventhat  is onsidered �xed). ObviouslyB j=  if and only if  0 2 [Q1 : : : Qk℄\PrA.Hene the data omplexity of  is in the polynomial-time hierarhy (and atually,we an read o� the level of the hierarhy diretly from the pre�x of  ).For the seond assertion of the theorem, onsider any quanti�er pre�x Q =Q1 : : :Qm. Let R be an m-ary relation symbol and let  Q be the query Q1x1 � � �QmxmRx1 : : : xm. The deision problem for [Q℄\PrA redues to the evaluationproblem of  Q on onstraint databases over (N;+; <). Indeed, for every sentene' = Q1x1 � � �Qmxm'0(x1; : : : ; xm) in FO(<;+), let B' be the fRg-databaseover (N; <;+) suh that RB' is represented by '0. The size of B' is boundedby the length of '. Clearly, ' is true in (N; <;+) if and only if B' j=  Q.Hene, by hoosing Q as indiated by Theorem 2, the evaluation problem for Q is �pk-omplete, resp. �k-omplete. utWe have seen that �rst-order logi an express quite omplex queries. We nowonsider sub-lasses of �rst-order logi whih an still be eÆiently evaluated.It has been shown by Lenstra and Sarpellini (see referenes in [2℄) that for all�xed dimensions t 2 N, [9t℄ \ PrA and [8t℄ \ PrA are in Ptime. Thus, by anargument similar to the one above, we an show the following theorem.5



Theorem 4. Existential and universal boolean queries on onstraint databasesover (N; <;+) have Ptime data omplexity.However, as soon as we admit queries with alternation depth two, the eval-uation problem is NP- or Co-NP-hard. This follows from a result by Sh�oning[15℄ who proved that [98℄ \ PrA is NP-omplete, strengthening a result in [2℄.4 Dense Linear OrdersWe now onsider the omplexity of query evaluation in the ontext of dense linearorders. We prove a general result whih allows us to give preise omplexitybounds for the data omplexity of various logis suh as transitive losure or�xed-point logi and to extend results on logis apturing omplexity lassesfrom the realm of �nite ordered strutures to onstraint databases over denselinear orders. Given a �xed query, its evaluation in a database an be done by(1) transforming the database into a �nite struture, alled its invariant, (2)evaluating a slightly modi�ed version of the query on the invariant, and (3)transforming the result of the evaluation to an answer of the original query.We �x the ontext struture A := (R; <) and a query  of voabulary f<g[�with database signature � = fR1; : : : ; Rkg. Let P � R be the (�nite) setparameters that our in  . The query has to be transformed so that it an beevaluated in the invariant. This transformation is independent of a partiulardatabase and an be seen as a ompilation or preproessing step. To set up theevaluation method outlined above, we de�ne two mappings. The �rst, inv, mapsdatabases to their orresponding invariants; the seond, �, maps the answer ofthe query on the invariant to the answer of the original query.4.1 The invariant of a onstraint databaseDe�nition 5. Let � := fR1; : : : ; Rkg be a signature, B be a �-database over(R; <), P � R a set of elements, and �b a tuple of real numbers.{ The omplete atomi type of �b over P with respet to B, written as atpBP (�b),is the set of all atomi and negated atomi formulae '(�x) over the signaturef<;R1; : : : ; Rkg using parameters from P suh that B j= '(�b). We omit theindex P if P is empty and denote by otpB(�b), resp. otpBP (�b), the ompleteatomi type of �b (over P ) with respet to B over the signature f<g.{ A maximally onsistent set of atomi and negated atomi � [ f<g-formulae'(�x) is a omplete atomi type (over P ) in the variables �x, if it is a ompleteatomi type (over P ) of a tuple �b with respet to a �-expansion of A. Wewrite atpB(�x), resp. atpBP (�x), for a omplete atomi type (over P ) in thevariables �x over the database signature � of B.A type is an n-type if it has n free variables. We omit B if it is lear from theontext. When speaking about types we always mean omplete atomi typesthroughout this hapter. 6



We all omplete atomi types over � [ f<g also omplete database types.Database types are of speial interest here beause the database type of a tuple�b determines everything we an say about �b in terms of the database, espeiallyin whih database relations �b stands.Suppose B is a database and PB the set of parameters used in its de�ni-tion. Reall from the introdution that there are di�erent ways to represent thedatabase B. The set of parameters used in these representations will generallydi�er from PB. We de�ne a set of parameters, alled the anonial parameters,whih an be extrated from B independent of its representation.De�nition 6. SupposeB = (R; <;RB1 ; : : : ; RBk ) is a database. The set p(B) �R of anonial parameters of B is the set of elements p satisfying the followingondition.For at least one n-ary relation R 2 fRB1 ; : : : ; RBk g there are a1; : : : ; an 2 R, an� 2 R; � > 0; and an �-neighbourhood Æ = (p� �; p+ �) of p suh that one of thefollowing holds.{ For all q 2 Æ; q < p and for no q 2 Æ; q > p we have R�a[p=q℄. Here R�a[p=q℄means that all omponents ai = p are replaed by q.{ For all q 2 Æ; q > p and for no q 2 Æ; q < p we have R�a[p=q℄.{ R�a[p=q℄ holds for all q 2 Ænfpg but not for q = p.{ R�a[p=q℄ holds for q = p but not for any q 2 Ænfpg.Lemma 7. All anonial parameters of B our expliitly in all representationsof B.In partiular this implies that the ardinality of p(B) is bounded by the sizeof any representation of B.We show in the next lemma that an atomi order type over p(B) uniquelydetermines a omplete database type. It follows that every two tuples realizingthe same atomi order type over p(B) our in the same database relations.Thus the parameter set p(B) is suÆient to de�ne a representation of B.Lemma 8. Suppose B is a database and �a;�b 2 Rk are two k-tuples.(i) If otpBp(B)(�a) = otpBp(B)(�b), then atpB(�a) = atpB(�b).(ii) If otpBp(B)(ai) = otpBp(B)(bi) for all 1 � i � k and otpB(�a) = otpB(�b),then otpBp(B)(�b) = otpBp(B)(�a).(iii) If P � p(B) is a superset of p(B), then otpBP (�b) = otpBP (�a) impliesotpBp(B)(�a) = otpBp(B)(�b).Proof. The proof of the seond and third part are straightforward. To prove the�rst part suppose for the sake of ontradition that atpB(�b) and atpB(�a) di�er.Then there is an atomi or negated atomi formula ' suh that B j= '(�a) butB 6j= '(�b). If ' is of the form xi < xj , then ai < aj but not bi < bj , whihontradits the assumption that otpBp(B)(�b) = otpBp(B)(�a).Now suppose ' is of the formRx1 � � �xr, where r := ar(R). Let C := (�0; �1; : : : ; �k)7



be a sequene of points in Rk , suh that for ij := bj for all j � i and ij := ajfor all j > i. Thus �0 = �a, �k = �b, �1 = (b1; a2; : : : ; ak), �2 = (b1; b2; a3; : : : ; ak),and so on. Further, let L := (l1; : : : ; lk) be a sequene of lines suh that theendpoints of li are i�1 and i. As B j= '(�a) but B 6j= '(�b), there is anlj that intersets both RB and RknRB. Assume w.l.o.g. that aj < bj . Let�q := �j�1. Then there is a p 2 R with aj < p � bj suh that RB�q but notRBq1; : : : ; qj�1; p; qj+1; : : : ; qk. We laim that there is at least one anonialparameter d with aj � d � p. To prove this laim, let A := fa 2 R : aj �a and RBq1; : : : ; qj�1a0qj+1; : : : ; qk for all aj � a0 � ag: Let d be the supremumof A. Then, by De�nition 6,  is a anonial parameter and aj � d � p. Thisproves the laim. Thus �a and �b do not satisfy the same omplete order type overp(B) whih ontradits the assumption. utOne impliation of the lemma is the following. Suppose we want to deideif R�a holds for a tuple �a := a1; : : : ; ak and a k-ary database relation R. Thequestion an be answered if we know whether R�b holds for a tuple �b := b1; : : : ; bksuh that �a and �b realize the same order type and eah bi realizes the same 1-order type over p(B) as ai. This will be the entral idea in the de�nition of theinvariant.The relevant set of parameters that we need for the evaluation of  on adatabase B is PB; := f0; 1g[ p(B) [P : The onstants 0 and 1 are inludedbeause they will be needed in the de�nition of the invariant.Sine P is �nite and De�nition 6 of the set of anonial parameters anobviously be formalized in �rst-order logi, it follows that for any �xed  , theset PB; is uniformly �rst-order de�nable over (R; <; 0; 1; P ).Lemma 9. There exists a �rst-order formula Æ(x) of voabulary f<; 0; 1; P g[�suh that for every �-database B = (R; <;RB1 ; : : : ; RBk ), PB; = fa 2 R : B j=Æ(a)g.We are now ready to de�ne the invariant. Given a database B, de�ne anequivalene relation � on R suh that two elements a and b are �-equivalent ifand only if they realize the same 1-order type over PB; . As PB; is �rst-orderde�nable the equivalene relation � is �rst-order de�nable as well. The set ofequivalene lasses R� serves as the universe of the invariant. To omplete thede�nition we have to speify the database relations.Before we give the detailed de�nition of the relations in the invariant, weillustrate the idea by an example. Consider a database B with a single binaryrelation S represented by 'S(x; y) := x > 1^x < 8^ y > 0^ y < 6^ y < x. Therelation is shown in the following �gure.
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As explained above, the invariant depends not only on the database B butalso on the parameters used in the query  . To simplify the example let  be anarbitrary query with no extra parameters. Thus the set PB; onsists of the fourelements 0; 1; 6; 8 and there are nine di�erent �-equivalene lasses, namely theintervals (�1; 0); f0g; (0; 1); f1g; (1; 6); f6g; (6; 8); f8g; and (8;1). Reall thatthese equivalene lasses form the universe of the invariant. Thus the relation Shas somehow to be de�ned in terms of these lasses. Obviously it is not enoughto fatorize S by �, beause as 5 � 5:1, the equivalene lasses [5℄ and [5:1℄ areequal, but ([5:1℄; [5℄) 2 S and ([5℄; [5℄) 62 S. Thus S=� would not be well-de�ned.Instead of simply fatorizing a m-ary relation R by � we onsider the set CRof (m+1)-tuples ([a1℄; : : : ; [ak℄; �), where [ai℄ 2 R=� ; 1 � i � m and � denotes anm-order type, suh that ([a1℄; : : : ; [am℄; �) 2 CR if and only if there is a �b 2 Rmrealizing � suh that R�b holds and ai � bi for all 1 � i � m. In the exampleabove, the set CS onsists of the set of all triples ([a1℄; [a2℄; �) suh that [a1℄�[a2℄is in the retangle marked by the dashed line in the �gure and � is the ordertype x < y.The idea behind the de�nition of the relation in the invariant is to use theset CR as a �nite relation arrying all the information neessary to restore theoriginal database relation R.Note that the set ord(m) of di�erent m-order types is �nite for all m. Thuswe an assign to eah order type p 2 ord(m) a binary word �m(p) 2 f0; 1g`(m)where `(m) := minf` : 2` � jord(m)jg. Form = 2 we de�ne �2 to be the enodingtaking x < y to 00, x = y to 01, and y < x to 10. One suh an enoding �mis �xed, the set CR an be represented by a set C 0R := f([a1℄; : : : ; [am℄; �t) :([a1℄; : : : ; [am℄; �) 2 CR and �(�) = �tg. This gives the de�nition of the relationsin the invariant.De�nition 10. Let � := fR1; : : : ; Rkg and B be a �-database over (R; <).The invariant B0 of B is a �nite struture with universe U over the signaturef<;R01; : : : ; R0kg, where{ U := R=� ,{ [x℄ < [y℄ if and only if x < y and x 6� y, and{ If R 2 � has arity m, then the orresponding relation R0 has arity m+ `(m)and R0[a1℄ : : : [am℄t1 : : : t`(m) holds in B0 i� there are b1; : : : ; bm 2 R with�m(otp(�b)) = t1 � � � t`(m) so that RBi b1 : : : bm and [ai℄ = [bi℄ for 1 � i � m.The mapping inv is de�ned as the funtion taking databases to their invariants.We also need a funtion taking the �nite enoding of relations bak to theirrepresentation.De�nition 11. Let S be a (m + `(m))-ary relation of the form indiated byDe�nition 10. The funtion�̂ : S 7! 'S(x1; : : : ; xm) := _�a�t2S(�m(�x; �t) ^ m̂j=1(xj � aj));9



maps S to a formula 'S representing the orresponding relation on the origi-nal database. Here �m(�x;�i) is a formula stating that �x satis�es the order typespei�ed by �i. The orresponding funtion mapping relations on the invariant to�nitely representable relations over the database is � : S 7! f�a : A j= �̂(S)[�a℄g:Lemma 12. The invariant inv(B) is an ordered �nite struture whose ardi-nality is linearly bounded in the size of any representation of B.Proof. For any set P , the number of 1-order types over P is 2jP j + 1. Theardinality of inv(B) is the number of 1-order types over PB; . Reall thatjPB; j = jp(B)j+O(1) (sine  is onsidered �xed) and that the size of p(B)is bounded by the size of any representation of B. utCorollary 13. The funtions inv and �̂ an be omputed in Logspae.Proof. The Logspae-omputability of inv is a diret impliation of the previ-ous lemma and a result by Kanellakis, Kuper and, Revesz stating that �rst-orderqueries an be evaluated in Logspae. For �̂, let S be a (m+ `(m))-ary answerof a query on an invariant. As an impliation of the previous lemma, the size ofS is polynomially bounded in the size of any representation of B. All the algo-rithm to alulate �̂(S) has to do is to output the disjuntion of the formulae(�m(�x;�i) ^Vkj=1(xj � aj)) for every tuple �a�i 2 S. Clearly, this an be done inLogspae. ut4.2 The transformation of the queryHaving de�ned the invariant of a database, we have to explain how the queryhas to be transformed for evaluation in the invariant. This translation of theformulae follows the same ideas desribed above, namely to inrease the arityof the relations to store the order type. While translating a formula with freevariables fx1; : : : ; xmg we introdue new free variables �i to hold the order type.It will be neessary to ompare order types over a di�erent number of vari-ables. Suppose that �1; �2 are order types in the variables x1; : : : ; xm and x1; : : : ;xn, respetively, where m � n. We say that �2 extends �1, if �1 � �2. This meansthat the order type �2 behaves on x1; : : : ; xm in the same way as �1. In the querytransformation we need a formula extendsmn(�i; �j) stating that �i := i1; : : : ; i`(m)odes some m-order type �1, �j := j1; : : : ; j`(n) odes a n-order type �2, and �2extends �1. The formula is de�ned asextendsmn(�i; �j) := _�22ord(n)(�n(�2) = �j ! _�12ord(m)�2 extends �1 �m(�1) = �i):De�nition 14. Suppose � is a database shema and � the signature of theinvariants orresponding to �-databases. Further, let L be a logi from fFO,FO+DTC, FO+TC, FO+LFP, FO+PFPg. f : L[�℄ ! L[� ℄ is de�ned indu-tively as follows. 10



{ Let  (x; y) := x < y. Then (f )(x; y; i1; i2) := x � y ^ i1 = 0 ^ i2 = 0.{ Let  (x) := x < . Then (f )(x; i) := x < [℄ ^ i = 0.{ An equality  (x; y) := x = y is translated to (f )(x; y; i1; i2) := x = y^i1 =0 ^ i2 = 1.{ An equality  (x) := x =  orresponds to (f )(x; i) := x = [℄ ^ i = 0.{ Let  (x1; : : : ; xj) := Riu1 : : : um where the ui are either onstants or vari-ables from fx1; : : : ; xjg and all xi our in fu1; : : : ; umg. Then(f )(x1; : : : ; xj ; i1; : : : ; i`(j)) := R0iv1 : : : vm�i; where vr := (xs if ur = xs;[℄ if ur = :{ Let  (x1; : : : ; xm) :=  1(y1; : : : ; ym1)^  2(z1; : : : ; zm2), where all yi and ziour in �x. Let �i := i1; : : : ; i`(m), �j := j1; : : : ; j`(m1), and �j0 := j01; : : : ; j 0̀(m2).Then (f )(�x;�i) := 9�j9�j0 extendsm1m(�j;�i)^extendsm2m(�j0;�i)^(f 1)(�y; �j)^(f 2)(�z; �j0):{ For  := :', set (f ) := :(f').{ Let  (x1; : : : ; xm) := 9y '(�x; y): Then (f )(x1; : : : ; xm;�i) := 9y9j1; : : : ;9j`(m+1)extendm(m+1)(�i; �j) ^ (f')(�x; y; �j):{ Let  (�u; �v) := [DTC�x;�y'(�x; �y)℄(�u; �v).Then (f )(�u; �v;�i) := [DTC�x;�y;�j(f')(�x; �y; �j)℄(�u; �v;�i).{ Let  (�u) := [LFPR;�x'(R; �x)℄(�u).Then (f )(�u;�i) := [LFPR0;�x;�j(f')(R0; �x; �j)℄(�u;�i).{ The rules for the TC, IFP- and PFP-operators are de�ned analogously.All parts of the evaluation algorithm have now been de�ned. The next theo-rem proves its orretness.Theorem 15. Let  2 L, where L is one of the logis in De�nition 14, be aquery, B be a database over (R; <) and B0 := inv(B) be the invariant orre-sponding to B. Then  B = �((f )B0 ).Proof. The proof is by indution on the struture of the query. The argument forthe boolean operations is straightforward and therefore omitted. Also, we onlygive the argument for the LFP-operator and omit the ases of formulae built byDTC, TC, and PFP-operators whih are treated in preisely the same way.� For  (x; y) := x < y, the set  B ontains the pairs (a; b) 2 R2 suh that a < b.By de�nition, f( ) is x � y ^ i1 = 0 ^ i2 = 0. Evaluating (f ) on B0 results inthe set C := f(a; b; i1; i2) : a � b; i1 = 0; i2 = 0g. Transforming this set withthe mapping �̂ yields the formula 'C(x; y) := W(a;b;i1;i2)2C(�2(x; y; i1; i2) ^ x �a^y � b). As i1 and i2 are 0 for all tuples (a; b; i1; i2) 2 C, �2(x; y; i1; i2) reduesto x < y and thus �(C) equals f(a; b) 2 R2 : a < bg.� Let  (x) := x = . Then (f )(x; i) := x = [℄ ^ i = 0 and (f ) evaluateson B0 to the set C := f([℄; 0)g. Thus �̂(C) results in the formula '(x) :=�1(x; 0) ^ x � . This formula is satis�ed only by  beause  2 P and thereforethe only member of [℄ is  itself. We get �(C) := fg =  B.� Let  (x1; : : : ; xj) := Rsu1 : : : um as in De�nition 14. We assume w.l.o.g. thatthe �rst arguments of the relation are the variables and the parameters omethereafter, that is u1 = x1; : : : ; uj = xj and ul+1 = 1; : : : ; um = m�j . The11



transformed query is (f )(x1; : : : ; xj ;�i) := R0sx1 : : : xj [1℄ : : : [m�j ℄�i: Evaluat-ing f( ) on B0 yields the set C := f([a1℄; : : : ; [aj ℄; [1℄; : : : ; [m�j ℄;�i) 2 R0B0s g.Now we have to show that �(C) =  B. Suppose that (a1; : : : ; am) 2 �(C).Then there is a disjunt ' := �m(x1; : : : ; xm;�i) ^ Vr(xr � br) in �̂(C) with(�b;�i) 2 C and B j= '(�a). As (�b;�i) 2 R0B0 and therefore, by De�nition 10,(a1; : : : ; am) 2 RB we get �a 2  B. Conversely, suppose that (a1; : : : ; am) 2 RB.Then ([a1℄; : : : ; [am℄;�i) is in R0B0 , where �m(otp(�a)) = �i, and �m(�x;�i)^Vr ar �xr ours as a disjunt in �̂(C). Obviously this formula is satis�ed by �a andtherefore �a 2 �(C).� Let  (x1; : : : ; xm) := 9y '(�x; y). The transformed formula is (f )(�x;�i) :=9y9j1; : : : ; j`(m+1)extendm(m+1)(�i; �j)^(f')(�x; y; �j): Suppose that (a1; : : : ; ak) 2 B. This is the ase if and only in there is an am+1 with (a1; : : : ; am; am+1) 2'B. By indution 'B = �((f')B0). Thus there is a tuple ([a1℄; : : : ; [am+1℄; �j) 2(f')B0 and (a1; : : : ; am+1) satis�es the (m+1)-order type � denoted by �j. Thisis the ase if and only if there is a tuple ([a1℄; : : : ; [am℄;�i) 2 (f )B0 suh that �extends the order type denoted by �i. Thus we get that (a1; : : : ; am) 2  B if andonly if ([a1℄; : : : ; [am℄;�i) 2 (f )B0 , where (a1; : : : ; am) satis�es the order typedenoted by �i. This implies that  B = �((f )B0 ).� Finally, let  (�u) := [LFPR;�x'(R; �x)℄(�u). We an assume that ' does notontain an LFP-operator. The proof then is straightforward. utNow all parts of the evaluation method are de�ned. We illustrate the methodin the following �gure. Q0inv � inv(B; Q(B))(B0; Q0(B0))�B QB0To evaluate the query Q (onsidered as being �xed) in the database B, theinvariant B0 := inv(B) is onstruted, the transformed query Q0 := f(Q) isevaluated in B0, and the result is transformed bak via the map �̂. By Corollary13 the mappings inv and �̂ are Logspae-omputable. Thus we get the followingtheorem.Theorem 16. Suppose L 2 fFO;FO+DTC, FO+TC, FO+LFP, FO+IFP,FO+PFPg is a logi and C a omplexity lass so that the evaluation problemfor L on �nite databases is in C. Then the evaluation problem for L on denselinear order databases is also in C.4.3 Capturing omplexity lassesWe now use the invariant to lift the apturing results of desriptive omplexitytheory from �nite ordered strutures to dense linear order databases. The ruialobservation is that inv(B) is interpretable in B. In partiular, this will give us atransformation from formulae over the invariant to formulae over the database.See [9℄ for bakground on interpretations.12



De�nition 17. Let B := (R; <;RB1 ; : : : ; RBk ) a database with signature � over(R; <), let B0 = inv(B) its invariant, and � be the signature of the invariant.The interpretation � interpreting B0 in B is given by(1) a surjetive funtion f� : R ! U de�ned as f� (x) := [x℄, and(2) for eah atomi � -formula  (x1; : : : ; xm) a formula  � (x1; : : : ; xm) 2FO[�℄ suh that for all tuples �a 2 Rm : B0 j=  (f� (�a)) if and only if B j= � (�a):An equality u = v 2 FO[� ℄ orresponds to u � v, where u; v denote eithervariables or parameters from PB; (reall that � is �rst-order de�nable). Thetranslations for all other atomi formulae is given aording to De�nition 10.That is, a formula u < v 2 FO[� ℄ orresponds to u < v ^ :u � v and R0s�x�i to9�y Rs�y ^ �ar(Rs)(�y;�i)^Vj(xj � yj). (Reall the de�nition of �k from De�nition11).We an now replae in any formula  of voabulary � in �rst-order logi,transitive losure logi or �xed point logi the atomi formula by their orre-sponding formulae and obtain a �-formula  � . The equivalene between  and � in part (2) of the de�nition thus extends to arbitrary formula in these logis.We are now ready to lift the apturing results from �nite ordered stru-tures to dense linear order databases. Clearly, every, say, FO+LFP-query  isinvariant under automorphisms on A that preserve the onstants in  . Thus wean only hope to apture those Ptime-queries whih are invariant under suhautomorphisms. This is made preise in the following de�nition.De�nition 18. A omplexity lass C is aptured by a logi L on the lass ofdense order databases, if for all queries Q in C for whih we an hoose a �niteset S � R suh that Q ommutes with every automorphism on (R; <; S), there isa formula  in L satisfying the following property: For all dense order databasesB we have that Q(B) is true i� B j=  .Theorem 19. Let L be a logi as in Theorem 16 and C be a omplexity lasssuh that L aptures C on the lass of �nite ordered strutures. Then L apturesC on the lass of dense order databases.Proof. We give the proof expliitly only for FO+LFP. The other ases an beproven analogously. We have already shown that FO+LFP � Ptime. For theother diretion, suppose that Q a polynomial-time omputable query on denseorder onstraint databases of signature �. We show that there is an FO+LFP [�℄-formula  Q de�ning Q.Again let � denote the signature of the orresponding invariants. Let Q0 bethe query that takes invariants inv(B) of databases B as inputs and returnsas output the set Q0(B0) := ff� (�a) : �a 2 Q(B)g. Clearly Q0 an be omputedin polynomial time, sine a representation of the database B whose invariant isgiven as the input an be omputed in Logspae and sine Q is a Ptime-query.(Note that in ontrast to the algorithm of the previous setion this algorithm on-struts the database from the invariant and evaluates the query in the database,13



whereas the algorithm in the previous setion onstruts the invariant from thedatabase and then operates on the invariant.)Sine Q0 is a Ptime-query on �nite ordered strutures, there exists by theTheorem of Immerman and Vardi (see [1, 10℄) an FO+LFP [� ℄-formula ' thatde�nes Q0. By the remarks above, there exists a formula '� 2 FO+LFP [�℄ suhthat for all �a 2 Rm ; inv(B) j= '(f� (�a)) i� B j= '� (�a): Thus B j= '� (�a) if andonly if �a 2 Q(B). This proves the theorem. utThe following table summarizes the relations between logis and omplexitylasses in the ontext of dense linear orders.Logis and omplexity lasses in the ontext of dense linear orders.FO+DTC = LogspaeFO+TC = NLogspaeFO+LFP = PtimeFO+PFP = Pspae5 Summary and Further ResultsIn the main result of this paper we presented a general method to prove om-plexity bounds for query languages over dense order databases. The idea wasto ode the �nitely represented database as a �nite database and then use theevaluation algorithms available for the query language on �nite databases. Itturned out that this enoding an be de�ned by �rst-order formulae using onlythe order prediate and some very limited kind of arithmeti. It an thereforebe done with very low data omplexity. This method enabled us to evaluatequeries for various query languages within the same omplexity lasses as for�nite databases.This method also works for databases de�ned by inequality onstraints over aountable in�nite set. By a simple argument based on Ehrenfeuht-Fra��ss�e gameswe an also prove that the various �xed-point logis onsidered before are tooweak to express all Logspae-omputable queries.Unfortunately the good results for dense order databases annot be extendedto linear onstraint databases over the reals. As soon as we admit reursion inthe query language the arithmeti over N beomes de�nable and thus the querylanguage undeidable.The situation hanges drastially if strutures with a disrete order as uni-verse are onsidered. It is known that positiveDatalog-queries on disrete orderdatabases an be evaluated in losed form (see [14℄) but the data omplexity isstill unknown. For �rst-order queries a better result an be shown.Theorem 20. First-order queries on disrete order databases an be evaluatedin Logspae.See [13℄ for a proof of the theorem. In Setion 3 we have shown that thedata omplexity of �rst-order queries over (N; <;+) is in the polynomial timehierarhy and that there are omplete �rst-order queries for all levels of PH.14
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