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t. We 
onsider the data 
omplexity of various logi
s on twoimportant 
lasses of 
onstraint databases: dense order and linear 
on-straint databases. For dense order databases, we present a general resultallowing us to lift results on logi
s 
apturing 
omplexity 
lasses fromthe 
lass of �nite ordered databases to dense order 
onstraint databases.Considering linear 
onstraints, we show that there is a signi�
ant gapbetween the data 
omplexity of �rst-order queries on linear 
onstraintdatabases over the real and the natural numbers. This is done by prov-ing that for arbitrary high levels of the Presburger arithmeti
 there are
omplete �rst-order queries on databases over (N; <;+). The proof ofthe theorem demonstrates a simple argument for translating 
omplexityresults for pre�x 
lasses in logi
al theories to results on the 
omplexityof query evaluation in 
onstraint databases.1 Introdu
tionDes
riptive 
omplexity theory studies the relationship between logi
al de�nabil-ity and 
omputational 
omplexity. In parti
ular one looks for results saying that,on a 
ertain 
lass K of stru
tures, a logi
 L (like �rst-order logi
 or least �xedpoint logi
) 
aptures a 
omplexity 
lass C. This means that (1) for every �xedsenten
e  2 L, the 
omplexity of evaluating  on stru
tures from K is a prob-lem in the 
omplexity 
lass C, and (2) every property of stru
tures in K that
an be de
ided with 
omplexity C is de�nable in the logi
 L. Two important ex-amples of su
h results are Fagin's Theorem, saying that existential se
ond-orderlogi
 
aptures NP on the 
lass of all �nite stru
tures, and the Immerman-VardiTheorem, saying that least �xed point logi
 
aptures Ptime on the 
lass of allordered �nite stru
tures. Indeed, on ordered �nite stru
tures, logi
al 
hara
ter-izations of this kind are known for all major 
omplexity 
lasses. On the otherhand it is not known, and one of the major open problems in the area, whetherPtime 
an be 
aptured by any logi
, if no ordering is present. We refer to [1, 10℄for ba
kground on des
riptive 
omplexity.Up to now, des
riptive 
omplexity has been 
onsidered almost ex
lusivelyon �nite stru
tures. But the resear
h program of des
riptive 
omplexity makessense also for 
lasses of in�nite stru
tures, provided that they admit a �nitepresentation. There have been a few studies of des
riptive 
omplexity theory on



in�nite stru
tures 
on
erning, for instan
e, meta�nite stru
tures and 
omplexitytheory over the reals [3, 4℄, re
ursive stru
tures [8℄ and, as we do in the presentpaper, 
onstraint databases (see e.g. [12, 6, 5℄ and the referen
es there).Constraint databases are a modern database model admitting in�nite rela-tions that are �nitely presented by quanti�er-free formulae (
onstraints) oversome �xed ba
kground stru
ture. For example, to store geometri
al data, it isuseful to have not just a �nite set as the domain of the database, but to in
ludeall real numbers `in the ba
kground'. Also the presen
e of interpreted fun
tions,like addition and multipli
ation, is desirable. The 
onstraint database frameworkintrodu
ed by Kanellakis, Kuper and Revesz [12℄ meets both requirements. For-mally, a 
onstraint database 
onsists of a 
ontext stru
ture A, like (R; <;+; �),and a set f'1; : : : ; 'mg of quanti�er-free formulae de�ning the database rela-tions. We give the pre
ise de�nition in the next se
tion.When studying the data 
omplexity of 
onstraint query languages, it soonbe
ame 
lear that allowing re
ursion in query languages leads to non-
losed orunde
idable query languages even for rather simple 
ontext stru
tures. On theother hand there are promising results for non-re
ursive languages in many inter-esting 
ontexts. For the 
ontext stru
ture (R; <) a Logspa
e data 
omplexityfor �rst-order logi
 has been established by Kanellakis, Kuper, and Revesz whi
hwas later improved to AC0 by Kanellakis and Goldin [11℄. In [12℄ it has also beenshown that �rst-order logi
 still has data 
omplexity NC if the 
ontext stru
tureis extended by addition and multipli
ation. Thus �rst-order logi
 is well-suitedas a query language for spatial databases where the 
ontext stru
ture is the �eldof reals.In this paper we will 
onsider the 
omplexity of query evaluation in twoimportant 
ases: (1) linear 
onstraint databases, where the 
ontext stru
ture is(R; <;+) or (N; <;+), and (2) 
onstraint databases over dense linear orders.It turns out that the data 
omplexity of �rst-order query on linear 
onstraintdatabases depends heavily on the universe. The data 
omplexity of �rst-orderqueries on databases over (R; <;+) is known to be in NC. It has been 
onje
turedby Grumba
h and Su [6℄ that this is also true for the 
ontext stru
ture (N; <;+).We refute this 
onje
ture here by showing that we �nd 
omplete �rst-orderqueries for ea
h level of the polynomial time hierar
hy.As stated above, allowing re
ursion in query languages tends to result inunde
idable languages. For instan
e, we will observe that this is the 
ase forlinear 
onstraint queries over (R; <;+). An ex
eption are dense order 
onstraintdatabases, where the 
ontext stru
ture is (R; <) (or any other dense linear or-der without endpoints). There we 
an in
orporate re
ursion and still end up inde
idable and 
losed languages. For instan
e, it has been shown in [12, 5℄ thatin
ationary Datalog with negation has Ptime data 
omplexity and, in fa
t,that it 
aptures Ptime on dense order 
onstraint databases. We 
ontinue thisline of resear
h and present a general te
hnique that allows to lift 
apturingresults from the 
lass of ordered �nite stru
tures to 
onstraint databases over(R; <). This is done by asso
iating with every 
onstraint database over (R; <) a�nite ordered stru
ture, 
alled the invariant of the database whi
h 
arries all the2



information stored in the in�nite database. The �nite database 
an be de�nedby �rst-order formulae and therefore with very low data 
omplexity. A query onthe 
onstraint database 
an be evaluated in the invariant in su
h a way, thatthe result of the original query 
an be regained from the answer on the �nitedatabase with very low data 
omplexity. Indeed the invariant is �rst-order inter-pretable in the original database, and this allows to translate any formula thatrepresents a query on the invariant into an equivalent formula over the originaldatabase. In this way 
apturing results are lifted from ordered �nite stru
turesto dense order 
onstraint databases.2 Constraint DatabasesThe basi
 idea in the de�nition of 
onstraint databases is to allow in�nite rela-tions whi
h have a �nite representation by a quanti�er-free formula. Let A be a� -stru
ture, 
alled the 
ontext stru
ture, and '(x1; : : : ; xn) be a quanti�er-freeformula of vo
abulary � that may 
ontain elements from A as parameters. Let� := fR1; : : : ; Rkg be a relational signature disjoint from � .We say that an n-ary relation R � An is represented by '(x1; : : : ; xn) over A,if R = f(a1; : : : ; an) : A j= '(a1; : : : ; an)g. A �-
onstraint database over the 
on-text stru
ture A is an expansion B = (A; R1; : : : ; Rk) of A where all �-relationsRi are �nitely represented by formulae 'Ri over A. The set � := f'R1 ; : : : ; 'Rkgis 
alled a �nite representation of B. The set of �nitely representable relationsover A is denoted by Relfr(A) and the set of all 
onstraint databases over A isdenoted by Expfr(A). The signature � is 
alled the 
ontext signature whereas �is 
alled the database signature.By de�nition, 
onstraint databases are expansions of a 
ontext stru
ture by�nitely representable database relations. Note that the same relation 
an berepresented in di�erent ways, e.g. '1 := x < 10 ^ x > 0 and '2 := (0 <x ^ x < 6)_ (6 < x ^ x < 10)_ x = 6 are di�erent formulae but de�ne the samerelation. Two representations � and �0 are A-equivalent, if they represent thesame database over A.To measure the 
omplexity of algorithms taking 
onstraint databases as in-puts we have to de�ne the size of a 
onstraint database. Unlike �nite databases,the size of 
onstraint databases 
annot be given in terms of the number of ele-ments stored in them but has to be based on a representation of the database.Note that equivalent representations of a database need not to be of the samesize. Thus the size of a 
onstraint database 
annot be de�ned independent of aparti
ular representation. In the following, whenever we speak of a 
onstraintdatabase B, we have a parti
ular representation � of B in mind. The size jBjof B then is de�ned as the sum of the length of the formulae in �. This 
or-responds to the standard en
oding of 
onstraint databases by the formulae oftheir representation.Constraint queries. Let A be a � -stru
ture and � a relational signature.A 
onstraint query Q : Expfr(A) ! Relfr(A) is a mapping from �-
onstraintdatabases over A to �nitely representable relations over A. In the sequel we are3



interested only in queries de�ned by formulae of a given logi
 L. In order to de-�ne queries by L-formulae, we require the 
ontext stru
tures to admit quanti�erelimination for L. This means that every L-formula ' is equivalent in A to aquanti�er-free formula. If A admits quanti�er elimination for L, then every for-mula  (x1; : : : ; xk) 2 L[� [�℄ de�nes a query Q' taking a �-
onstraint databaseB over A to the set f�a 2 Ak : B j=  (�a)g, and the result of the query is itself�nitely representable.Typi
al questions that arise when dealing with 
onstraint query languages arethe 
omplexity of query evaluation for a 
ertain 
onstraint query language andthe de�nability of a query in a given language. For a �xed query formula ' 2 L,the data 
omplexity of the query Q' is de�ned as the amount of resour
es (e.g.time, spa
e, or number of pro
essors) needed to evaluate the fun
tion that takesa representation � of a database B to a representation of the answer relationQ'(B).3 Linear ConstraintsIn this se
tion we 
onsider linear 
onstraint databases, that is, databases de�nedover the 
ontext stru
tures (R; <;+), (Q; <;+) or (N; <;+). The data 
omplex-ity of linear 
onstraint queries in the 
ontext of (R; <;+) and (Q; <;+) has beenstudied by Grumba
h, Su, and Tollu in [5, 7℄. In [5℄ it is 
laimed that \�rst-orderqueries on linear 
onstraint databases have a NC1 data 
omplexity."First, we brie
y dis
uss the possibility whether more powerful query lan-guages than �rst-order logi
 
an be e�e
tively evaluated on linear 
onstraintdatabases. However, a simple argument shows that adding a re
ursion me
ha-nism to �rst-order logi
 leads to non-
losed or unde
idable languages. For ex-ample, the (FO+DTC)-formula nat(x) := [DTCx;y(x+ 1 = y)℄(0; x) de�nes thenatural numbers, and multipli
ation of natural numbers 
an be de�ned by the(FO+DTC)-formulamult(x; y; z) := [DTCuv;u0v0(u+1 = u0^v+x = v0)℄(00; yz):It follows that Hilbert's 10th problem (or the existential theory of arithmeti
)
an be redu
ed to the evaluation of existential FO+DTC-queries on linear 
on-straint databases.Theorem 1. Every query language over the 
ontext stru
ture (R; <;+) whi
his at least as expressive as existential FO+DTC is unde
idable.Thus the result by Grumba
h and Su 
annot be extended to query languagesallowing re
ursion. We now show that the result does also not generalize to linear
onstraint queries over the natural numbers.Presburger arithmeti
 (PrA), the theory of the stru
ture (N; <;+), is wellknown to be de
idable. Stri
tly speaking, we have to expand (N; <;+) by divis-ibility relations a j x (for all parameters a 2 N), be
ause otherwise the theorywould not admit quanti�er elimination and hen
e non-Boolean queries 
ould notbe evaluated in 
losed form. Note that a j x is of 
ourse de�nable in (N; <;+) butnot by a quanti�er-free formula. However, we will show that even the evaluation4



of boolean �rst-order queries is mu
h more 
omplex in the 
ontext of the Pres-burger arithmeti
 than on (R; <;+). This result relies on 
omplexity results forfragments of PrA with bounded quanti�er pre�xes. Let Q := Q1 � � �Qk be a wordin f9;8g�. Then [Q℄\PrA is the set of senten
es of the form  := Q1x1 � � �Qkxk'su
h that (N; <;+) j=  and ' is quanti�er-free. It has been shown [2, 15℄ thatthe 
omplexity of su
h fragments of Presburger arithmeti
 may reside on arbi-trary high levels of the polynomial-time hierar
hy. Essentially the evaluation offormulae with m+ 1 quanti�er blo
ks of bounded length is in the m-th level ofthe hierar
hy.Theorem 2 (Gr�adel, S
h�oning). Let m � 1; r1; : : : ; rm � 1 and rm+1 � 3.Then, for odd m, [9r18r2 � � � 9rm8rm+1 ℄ \ PrA is �pm-
omplete, and [8r19r2 � � �8rm9rm+1 ℄ \ PrA is �pm-
omplete. For even m, [9r18r2 � � � 8rm9rm+1 ℄ \ PrA is�pm-
omplete and [8r19r2 � � � 9rm8rm+1 ℄ \ PrA is �pm-
omplete.The proof of the following theorem exhibits a simple argument for translatingsu
h 
omplexity results for pre�x 
lasses in logi
al theories to results on the
omplexity of query evaluation in 
onstraint databases.Theorem 3. Let  be a �rst-order boolean query on 
onstraint databases over(N; <;+). Then the data 
omplexity of  is in the polynomial-time hierar
hy.Conversely, for ea
h 
lass �pk , resp. �pk of the polynomial time hierar
hy thereis a �xed query  whose data 
omplexity is �pk-
omplete, resp. �pk -
omplete.Proof. We 
an assume that  = Q1x1 � � �Qkxk' with ' quanti�er-free and withdatabase relations R1; : : : ; Rm. Given a database B = (N; <;+; R1 ; : : : ; Rm)where the database relations are represented by �1; : : : ; �m over (N; <;+), let 0 := unfold( ;B) be the unfolded query, obtained by repla
ing in  all o
-
urren
es of R1; : : : ; Rm by the de�ning formulae �1; : : : ; �m. Sin
e the �i arequanti�er-free  0 has the same pre�x as  and length bounded by O(jBj) (giventhat  is 
onsidered �xed). ObviouslyB j=  if and only if  0 2 [Q1 : : : Qk℄\PrA.Hen
e the data 
omplexity of  is in the polynomial-time hierar
hy (and a
tually,we 
an read o� the level of the hierar
hy dire
tly from the pre�x of  ).For the se
ond assertion of the theorem, 
onsider any quanti�er pre�x Q =Q1 : : :Qm. Let R be an m-ary relation symbol and let  Q be the query Q1x1 � � �QmxmRx1 : : : xm. The de
ision problem for [Q℄\PrA redu
es to the evaluationproblem of  Q on 
onstraint databases over (N;+; <). Indeed, for every senten
e' = Q1x1 � � �Qmxm'0(x1; : : : ; xm) in FO(<;+), let B' be the fRg-databaseover (N; <;+) su
h that RB' is represented by '0. The size of B' is boundedby the length of '. Clearly, ' is true in (N; <;+) if and only if B' j=  Q.Hen
e, by 
hoosing Q as indi
ated by Theorem 2, the evaluation problem for Q is �pk-
omplete, resp. �k-
omplete. utWe have seen that �rst-order logi
 
an express quite 
omplex queries. We now
onsider sub-
lasses of �rst-order logi
 whi
h 
an still be eÆ
iently evaluated.It has been shown by Lenstra and S
arpellini (see referen
es in [2℄) that for all�xed dimensions t 2 N, [9t℄ \ PrA and [8t℄ \ PrA are in Ptime. Thus, by anargument similar to the one above, we 
an show the following theorem.5



Theorem 4. Existential and universal boolean queries on 
onstraint databasesover (N; <;+) have Ptime data 
omplexity.However, as soon as we admit queries with alternation depth two, the eval-uation problem is NP- or Co-NP-hard. This follows from a result by S
h�oning[15℄ who proved that [98℄ \ PrA is NP-
omplete, strengthening a result in [2℄.4 Dense Linear OrdersWe now 
onsider the 
omplexity of query evaluation in the 
ontext of dense linearorders. We prove a general result whi
h allows us to give pre
ise 
omplexitybounds for the data 
omplexity of various logi
s su
h as transitive 
losure or�xed-point logi
 and to extend results on logi
s 
apturing 
omplexity 
lassesfrom the realm of �nite ordered stru
tures to 
onstraint databases over denselinear orders. Given a �xed query, its evaluation in a database 
an be done by(1) transforming the database into a �nite stru
ture, 
alled its invariant, (2)evaluating a slightly modi�ed version of the query on the invariant, and (3)transforming the result of the evaluation to an answer of the original query.We �x the 
ontext stru
ture A := (R; <) and a query  of vo
abulary f<g[�with database signature � = fR1; : : : ; Rkg. Let P � R be the (�nite) setparameters that o

ur in  . The query has to be transformed so that it 
an beevaluated in the invariant. This transformation is independent of a parti
ulardatabase and 
an be seen as a 
ompilation or prepro
essing step. To set up theevaluation method outlined above, we de�ne two mappings. The �rst, inv, mapsdatabases to their 
orresponding invariants; the se
ond, �, maps the answer ofthe query on the invariant to the answer of the original query.4.1 The invariant of a 
onstraint databaseDe�nition 5. Let � := fR1; : : : ; Rkg be a signature, B be a �-database over(R; <), P � R a set of elements, and �b a tuple of real numbers.{ The 
omplete atomi
 type of �b over P with respe
t to B, written as atpBP (�b),is the set of all atomi
 and negated atomi
 formulae '(�x) over the signaturef<;R1; : : : ; Rkg using parameters from P su
h that B j= '(�b). We omit theindex P if P is empty and denote by otpB(�b), resp. otpBP (�b), the 
ompleteatomi
 type of �b (over P ) with respe
t to B over the signature f<g.{ A maximally 
onsistent set of atomi
 and negated atomi
 � [ f<g-formulae'(�x) is a 
omplete atomi
 type (over P ) in the variables �x, if it is a 
ompleteatomi
 type (over P ) of a tuple �b with respe
t to a �-expansion of A. Wewrite atpB(�x), resp. atpBP (�x), for a 
omplete atomi
 type (over P ) in thevariables �x over the database signature � of B.A type is an n-type if it has n free variables. We omit B if it is 
lear from the
ontext. When speaking about types we always mean 
omplete atomi
 typesthroughout this 
hapter. 6



We 
all 
omplete atomi
 types over � [ f<g also 
omplete database types.Database types are of spe
ial interest here be
ause the database type of a tuple�b determines everything we 
an say about �b in terms of the database, espe
iallyin whi
h database relations �b stands.Suppose B is a database and PB the set of parameters used in its de�ni-tion. Re
all from the introdu
tion that there are di�erent ways to represent thedatabase B. The set of parameters used in these representations will generallydi�er from PB. We de�ne a set of parameters, 
alled the 
anoni
al parameters,whi
h 
an be extra
ted from B independent of its representation.De�nition 6. SupposeB = (R; <;RB1 ; : : : ; RBk ) is a database. The set 
p(B) �R of 
anoni
al parameters of B is the set of elements p satisfying the following
ondition.For at least one n-ary relation R 2 fRB1 ; : : : ; RBk g there are a1; : : : ; an 2 R, an� 2 R; � > 0; and an �-neighbourhood Æ = (p� �; p+ �) of p su
h that one of thefollowing holds.{ For all q 2 Æ; q < p and for no q 2 Æ; q > p we have R�a[p=q℄. Here R�a[p=q℄means that all 
omponents ai = p are repla
ed by q.{ For all q 2 Æ; q > p and for no q 2 Æ; q < p we have R�a[p=q℄.{ R�a[p=q℄ holds for all q 2 Ænfpg but not for q = p.{ R�a[p=q℄ holds for q = p but not for any q 2 Ænfpg.Lemma 7. All 
anoni
al parameters of B o

ur expli
itly in all representationsof B.In parti
ular this implies that the 
ardinality of 
p(B) is bounded by the sizeof any representation of B.We show in the next lemma that an atomi
 order type over 
p(B) uniquelydetermines a 
omplete database type. It follows that every two tuples realizingthe same atomi
 order type over 
p(B) o

ur in the same database relations.Thus the parameter set 
p(B) is suÆ
ient to de�ne a representation of B.Lemma 8. Suppose B is a database and �a;�b 2 Rk are two k-tuples.(i) If otpB
p(B)(�a) = otpB
p(B)(�b), then atpB(�a) = atpB(�b).(ii) If otpB
p(B)(ai) = otpB
p(B)(bi) for all 1 � i � k and otpB(�a) = otpB(�b),then otpB
p(B)(�b) = otpB
p(B)(�a).(iii) If P � 
p(B) is a superset of 
p(B), then otpBP (�b) = otpBP (�a) impliesotpB
p(B)(�a) = otpB
p(B)(�b).Proof. The proof of the se
ond and third part are straightforward. To prove the�rst part suppose for the sake of 
ontradi
tion that atpB(�b) and atpB(�a) di�er.Then there is an atomi
 or negated atomi
 formula ' su
h that B j= '(�a) butB 6j= '(�b). If ' is of the form xi < xj , then ai < aj but not bi < bj , whi
h
ontradi
ts the assumption that otpB
p(B)(�b) = otpB
p(B)(�a).Now suppose ' is of the formRx1 � � �xr, where r := ar(R). Let C := (�
0; �
1; : : : ; �
k)7



be a sequen
e of points in Rk , su
h that for 
ij := bj for all j � i and 
ij := ajfor all j > i. Thus �
0 = �a, �
k = �b, �
1 = (b1; a2; : : : ; ak), �
2 = (b1; b2; a3; : : : ; ak),and so on. Further, let L := (l1; : : : ; lk) be a sequen
e of lines su
h that theendpoints of li are 
i�1 and 
i. As B j= '(�a) but B 6j= '(�b), there is anlj that interse
ts both RB and RknRB. Assume w.l.o.g. that aj < bj . Let�q := �
j�1. Then there is a p 2 R with aj < p � bj su
h that RB�q but notRBq1; : : : ; qj�1; p; qj+1; : : : ; qk. We 
laim that there is at least one 
anoni
alparameter d with aj � d � p. To prove this 
laim, let A := fa 2 R : aj �a and RBq1; : : : ; qj�1a0qj+1; : : : ; qk for all aj � a0 � ag: Let d be the supremumof A. Then, by De�nition 6, 
 is a 
anoni
al parameter and aj � d � p. Thisproves the 
laim. Thus �a and �b do not satisfy the same 
omplete order type over
p(B) whi
h 
ontradi
ts the assumption. utOne impli
ation of the lemma is the following. Suppose we want to de
ideif R�a holds for a tuple �a := a1; : : : ; ak and a k-ary database relation R. Thequestion 
an be answered if we know whether R�b holds for a tuple �b := b1; : : : ; bksu
h that �a and �b realize the same order type and ea
h bi realizes the same 1-order type over 
p(B) as ai. This will be the 
entral idea in the de�nition of theinvariant.The relevant set of parameters that we need for the evaluation of  on adatabase B is PB; := f0; 1g[ 
p(B) [P : The 
onstants 0 and 1 are in
ludedbe
ause they will be needed in the de�nition of the invariant.Sin
e P is �nite and De�nition 6 of the set of 
anoni
al parameters 
anobviously be formalized in �rst-order logi
, it follows that for any �xed  , theset PB; is uniformly �rst-order de�nable over (R; <; 0; 1; P ).Lemma 9. There exists a �rst-order formula Æ(x) of vo
abulary f<; 0; 1; P g[�su
h that for every �-database B = (R; <;RB1 ; : : : ; RBk ), PB; = fa 2 R : B j=Æ(a)g.We are now ready to de�ne the invariant. Given a database B, de�ne anequivalen
e relation � on R su
h that two elements a and b are �-equivalent ifand only if they realize the same 1-order type over PB; . As PB; is �rst-orderde�nable the equivalen
e relation � is �rst-order de�nable as well. The set ofequivalen
e 
lasses R� serves as the universe of the invariant. To 
omplete thede�nition we have to spe
ify the database relations.Before we give the detailed de�nition of the relations in the invariant, weillustrate the idea by an example. Consider a database B with a single binaryrelation S represented by 'S(x; y) := x > 1^x < 8^ y > 0^ y < 6^ y < x. Therelation is shown in the following �gure.
1

6

8
x

y

8



As explained above, the invariant depends not only on the database B butalso on the parameters used in the query  . To simplify the example let  be anarbitrary query with no extra parameters. Thus the set PB; 
onsists of the fourelements 0; 1; 6; 8 and there are nine di�erent �-equivalen
e 
lasses, namely theintervals (�1; 0); f0g; (0; 1); f1g; (1; 6); f6g; (6; 8); f8g; and (8;1). Re
all thatthese equivalen
e 
lasses form the universe of the invariant. Thus the relation Shas somehow to be de�ned in terms of these 
lasses. Obviously it is not enoughto fa
torize S by �, be
ause as 5 � 5:1, the equivalen
e 
lasses [5℄ and [5:1℄ areequal, but ([5:1℄; [5℄) 2 S and ([5℄; [5℄) 62 S. Thus S=� would not be well-de�ned.Instead of simply fa
torizing a m-ary relation R by � we 
onsider the set CRof (m+1)-tuples ([a1℄; : : : ; [ak℄; �), where [ai℄ 2 R=� ; 1 � i � m and � denotes anm-order type, su
h that ([a1℄; : : : ; [am℄; �) 2 CR if and only if there is a �b 2 Rmrealizing � su
h that R�b holds and ai � bi for all 1 � i � m. In the exampleabove, the set CS 
onsists of the set of all triples ([a1℄; [a2℄; �) su
h that [a1℄�[a2℄is in the re
tangle marked by the dashed line in the �gure and � is the ordertype x < y.The idea behind the de�nition of the relation in the invariant is to use theset CR as a �nite relation 
arrying all the information ne
essary to restore theoriginal database relation R.Note that the set ord(m) of di�erent m-order types is �nite for all m. Thuswe 
an assign to ea
h order type p 2 ord(m) a binary word �m(p) 2 f0; 1g`(m)where `(m) := minf` : 2` � jord(m)jg. Form = 2 we de�ne �2 to be the en
odingtaking x < y to 00, x = y to 01, and y < x to 10. On
e su
h an en
oding �mis �xed, the set CR 
an be represented by a set C 0R := f([a1℄; : : : ; [am℄; �t) :([a1℄; : : : ; [am℄; �) 2 CR and �(�) = �tg. This gives the de�nition of the relationsin the invariant.De�nition 10. Let � := fR1; : : : ; Rkg and B be a �-database over (R; <).The invariant B0 of B is a �nite stru
ture with universe U over the signaturef<;R01; : : : ; R0kg, where{ U := R=� ,{ [x℄ < [y℄ if and only if x < y and x 6� y, and{ If R 2 � has arity m, then the 
orresponding relation R0 has arity m+ `(m)and R0[a1℄ : : : [am℄t1 : : : t`(m) holds in B0 i� there are b1; : : : ; bm 2 R with�m(otp(�b)) = t1 � � � t`(m) so that RBi b1 : : : bm and [ai℄ = [bi℄ for 1 � i � m.The mapping inv is de�ned as the fun
tion taking databases to their invariants.We also need a fun
tion taking the �nite en
oding of relations ba
k to theirrepresentation.De�nition 11. Let S be a (m + `(m))-ary relation of the form indi
ated byDe�nition 10. The fun
tion�̂ : S 7! 'S(x1; : : : ; xm) := _�a�t2S(�m(�x; �t) ^ m̂j=1(xj � aj));9



maps S to a formula 'S representing the 
orresponding relation on the origi-nal database. Here �m(�x;�i) is a formula stating that �x satis�es the order typespe
i�ed by �i. The 
orresponding fun
tion mapping relations on the invariant to�nitely representable relations over the database is � : S 7! f�a : A j= �̂(S)[�a℄g:Lemma 12. The invariant inv(B) is an ordered �nite stru
ture whose 
ardi-nality is linearly bounded in the size of any representation of B.Proof. For any set P , the number of 1-order types over P is 2jP j + 1. The
ardinality of inv(B) is the number of 1-order types over PB; . Re
all thatjPB; j = j
p(B)j+O(1) (sin
e  is 
onsidered �xed) and that the size of 
p(B)is bounded by the size of any representation of B. utCorollary 13. The fun
tions inv and �̂ 
an be 
omputed in Logspa
e.Proof. The Logspa
e-
omputability of inv is a dire
t impli
ation of the previ-ous lemma and a result by Kanellakis, Kuper and, Revesz stating that �rst-orderqueries 
an be evaluated in Logspa
e. For �̂, let S be a (m+ `(m))-ary answerof a query on an invariant. As an impli
ation of the previous lemma, the size ofS is polynomially bounded in the size of any representation of B. All the algo-rithm to 
al
ulate �̂(S) has to do is to output the disjun
tion of the formulae(�m(�x;�i) ^Vkj=1(xj � aj)) for every tuple �a�i 2 S. Clearly, this 
an be done inLogspa
e. ut4.2 The transformation of the queryHaving de�ned the invariant of a database, we have to explain how the queryhas to be transformed for evaluation in the invariant. This translation of theformulae follows the same ideas des
ribed above, namely to in
rease the arityof the relations to store the order type. While translating a formula with freevariables fx1; : : : ; xmg we introdu
e new free variables �i to hold the order type.It will be ne
essary to 
ompare order types over a di�erent number of vari-ables. Suppose that �1; �2 are order types in the variables x1; : : : ; xm and x1; : : : ;xn, respe
tively, where m � n. We say that �2 extends �1, if �1 � �2. This meansthat the order type �2 behaves on x1; : : : ; xm in the same way as �1. In the querytransformation we need a formula extendsmn(�i; �j) stating that �i := i1; : : : ; i`(m)
odes some m-order type �1, �j := j1; : : : ; j`(n) 
odes a n-order type �2, and �2extends �1. The formula is de�ned asextendsmn(�i; �j) := _�22ord(n)(�n(�2) = �j ! _�12ord(m)�2 extends �1 �m(�1) = �i):De�nition 14. Suppose � is a database s
hema and � the signature of theinvariants 
orresponding to �-databases. Further, let L be a logi
 from fFO,FO+DTC, FO+TC, FO+LFP, FO+PFPg. f : L[�℄ ! L[� ℄ is de�ned indu
-tively as follows. 10



{ Let  (x; y) := x < y. Then (f )(x; y; i1; i2) := x � y ^ i1 = 0 ^ i2 = 0.{ Let  (x) := x < 
. Then (f )(x; i) := x < [
℄ ^ i = 0.{ An equality  (x; y) := x = y is translated to (f )(x; y; i1; i2) := x = y^i1 =0 ^ i2 = 1.{ An equality  (x) := x = 
 
orresponds to (f )(x; i) := x = [
℄ ^ i = 0.{ Let  (x1; : : : ; xj) := Riu1 : : : um where the ui are either 
onstants or vari-ables from fx1; : : : ; xjg and all xi o

ur in fu1; : : : ; umg. Then(f )(x1; : : : ; xj ; i1; : : : ; i`(j)) := R0iv1 : : : vm�i; where vr := (xs if ur = xs;[
℄ if ur = 
:{ Let  (x1; : : : ; xm) :=  1(y1; : : : ; ym1)^  2(z1; : : : ; zm2), where all yi and zio

ur in �x. Let �i := i1; : : : ; i`(m), �j := j1; : : : ; j`(m1), and �j0 := j01; : : : ; j 0̀(m2).Then (f )(�x;�i) := 9�j9�j0 extendsm1m(�j;�i)^extendsm2m(�j0;�i)^(f 1)(�y; �j)^(f 2)(�z; �j0):{ For  := :', set (f ) := :(f').{ Let  (x1; : : : ; xm) := 9y '(�x; y): Then (f )(x1; : : : ; xm;�i) := 9y9j1; : : : ;9j`(m+1)extendm(m+1)(�i; �j) ^ (f')(�x; y; �j):{ Let  (�u; �v) := [DTC�x;�y'(�x; �y)℄(�u; �v).Then (f )(�u; �v;�i) := [DTC�x;�y;�j(f')(�x; �y; �j)℄(�u; �v;�i).{ Let  (�u) := [LFPR;�x'(R; �x)℄(�u).Then (f )(�u;�i) := [LFPR0;�x;�j(f')(R0; �x; �j)℄(�u;�i).{ The rules for the TC, IFP- and PFP-operators are de�ned analogously.All parts of the evaluation algorithm have now been de�ned. The next theo-rem proves its 
orre
tness.Theorem 15. Let  2 L, where L is one of the logi
s in De�nition 14, be aquery, B be a database over (R; <) and B0 := inv(B) be the invariant 
orre-sponding to B. Then  B = �((f )B0 ).Proof. The proof is by indu
tion on the stru
ture of the query. The argument forthe boolean operations is straightforward and therefore omitted. Also, we onlygive the argument for the LFP-operator and omit the 
ases of formulae built byDTC, TC, and PFP-operators whi
h are treated in pre
isely the same way.� For  (x; y) := x < y, the set  B 
ontains the pairs (a; b) 2 R2 su
h that a < b.By de�nition, f( ) is x � y ^ i1 = 0 ^ i2 = 0. Evaluating (f ) on B0 results inthe set C := f(a; b; i1; i2) : a � b; i1 = 0; i2 = 0g. Transforming this set withthe mapping �̂ yields the formula 'C(x; y) := W(a;b;i1;i2)2C(�2(x; y; i1; i2) ^ x �a^y � b). As i1 and i2 are 0 for all tuples (a; b; i1; i2) 2 C, �2(x; y; i1; i2) redu
esto x < y and thus �(C) equals f(a; b) 2 R2 : a < bg.� Let  (x) := x = 
. Then (f )(x; i) := x = [
℄ ^ i = 0 and (f ) evaluateson B0 to the set C := f([
℄; 0)g. Thus �̂(C) results in the formula '(x) :=�1(x; 0) ^ x � 
. This formula is satis�ed only by 
 be
ause 
 2 P and thereforethe only member of [
℄ is 
 itself. We get �(C) := f
g =  B.� Let  (x1; : : : ; xj) := Rsu1 : : : um as in De�nition 14. We assume w.l.o.g. thatthe �rst arguments of the relation are the variables and the parameters 
omethereafter, that is u1 = x1; : : : ; uj = xj and ul+1 = 
1; : : : ; um = 
m�j . The11



transformed query is (f )(x1; : : : ; xj ;�i) := R0sx1 : : : xj [
1℄ : : : [
m�j ℄�i: Evaluat-ing f( ) on B0 yields the set C := f([a1℄; : : : ; [aj ℄; [
1℄; : : : ; [
m�j ℄;�i) 2 R0B0s g.Now we have to show that �(C) =  B. Suppose that (a1; : : : ; am) 2 �(C).Then there is a disjun
t ' := �m(x1; : : : ; xm;�i) ^ Vr(xr � br) in �̂(C) with(�b;�i) 2 C and B j= '(�a). As (�b;�i) 2 R0B0 and therefore, by De�nition 10,(a1; : : : ; am) 2 RB we get �a 2  B. Conversely, suppose that (a1; : : : ; am) 2 RB.Then ([a1℄; : : : ; [am℄;�i) is in R0B0 , where �m(otp(�a)) = �i, and �m(�x;�i)^Vr ar �xr o

urs as a disjun
t in �̂(C). Obviously this formula is satis�ed by �a andtherefore �a 2 �(C).� Let  (x1; : : : ; xm) := 9y '(�x; y). The transformed formula is (f )(�x;�i) :=9y9j1; : : : ; j`(m+1)extendm(m+1)(�i; �j)^(f')(�x; y; �j): Suppose that (a1; : : : ; ak) 2 B. This is the 
ase if and only in there is an am+1 with (a1; : : : ; am; am+1) 2'B. By indu
tion 'B = �((f')B0). Thus there is a tuple ([a1℄; : : : ; [am+1℄; �j) 2(f')B0 and (a1; : : : ; am+1) satis�es the (m+1)-order type � denoted by �j. Thisis the 
ase if and only if there is a tuple ([a1℄; : : : ; [am℄;�i) 2 (f )B0 su
h that �extends the order type denoted by �i. Thus we get that (a1; : : : ; am) 2  B if andonly if ([a1℄; : : : ; [am℄;�i) 2 (f )B0 , where (a1; : : : ; am) satis�es the order typedenoted by �i. This implies that  B = �((f )B0 ).� Finally, let  (�u) := [LFPR;�x'(R; �x)℄(�u). We 
an assume that ' does not
ontain an LFP-operator. The proof then is straightforward. utNow all parts of the evaluation method are de�ned. We illustrate the methodin the following �gure. Q0inv � inv(B; Q(B))(B0; Q0(B0))�B QB0To evaluate the query Q (
onsidered as being �xed) in the database B, theinvariant B0 := inv(B) is 
onstru
ted, the transformed query Q0 := f(Q) isevaluated in B0, and the result is transformed ba
k via the map �̂. By Corollary13 the mappings inv and �̂ are Logspa
e-
omputable. Thus we get the followingtheorem.Theorem 16. Suppose L 2 fFO;FO+DTC, FO+TC, FO+LFP, FO+IFP,FO+PFPg is a logi
 and C a 
omplexity 
lass so that the evaluation problemfor L on �nite databases is in C. Then the evaluation problem for L on denselinear order databases is also in C.4.3 Capturing 
omplexity 
lassesWe now use the invariant to lift the 
apturing results of des
riptive 
omplexitytheory from �nite ordered stru
tures to dense linear order databases. The 
ru
ialobservation is that inv(B) is interpretable in B. In parti
ular, this will give us atransformation from formulae over the invariant to formulae over the database.See [9℄ for ba
kground on interpretations.12



De�nition 17. Let B := (R; <;RB1 ; : : : ; RBk ) a database with signature � over(R; <), let B0 = inv(B) its invariant, and � be the signature of the invariant.The interpretation � interpreting B0 in B is given by(1) a surje
tive fun
tion f� : R ! U de�ned as f� (x) := [x℄, and(2) for ea
h atomi
 � -formula  (x1; : : : ; xm) a formula  � (x1; : : : ; xm) 2FO[�℄ su
h that for all tuples �a 2 Rm : B0 j=  (f� (�a)) if and only if B j= � (�a):An equality u = v 2 FO[� ℄ 
orresponds to u � v, where u; v denote eithervariables or parameters from PB; (re
all that � is �rst-order de�nable). Thetranslations for all other atomi
 formulae is given a

ording to De�nition 10.That is, a formula u < v 2 FO[� ℄ 
orresponds to u < v ^ :u � v and R0s�x�i to9�y Rs�y ^ �ar(Rs)(�y;�i)^Vj(xj � yj). (Re
all the de�nition of �k from De�nition11).We 
an now repla
e in any formula  of vo
abulary � in �rst-order logi
,transitive 
losure logi
 or �xed point logi
 the atomi
 formula by their 
orre-sponding formulae and obtain a �-formula  � . The equivalen
e between  and � in part (2) of the de�nition thus extends to arbitrary formula in these logi
s.We are now ready to lift the 
apturing results from �nite ordered stru
-tures to dense linear order databases. Clearly, every, say, FO+LFP-query  isinvariant under automorphisms on A that preserve the 
onstants in  . Thus we
an only hope to 
apture those Ptime-queries whi
h are invariant under su
hautomorphisms. This is made pre
ise in the following de�nition.De�nition 18. A 
omplexity 
lass C is 
aptured by a logi
 L on the 
lass ofdense order databases, if for all queries Q in C for whi
h we 
an 
hoose a �niteset S � R su
h that Q 
ommutes with every automorphism on (R; <; S), there isa formula  in L satisfying the following property: For all dense order databasesB we have that Q(B) is true i� B j=  .Theorem 19. Let L be a logi
 as in Theorem 16 and C be a 
omplexity 
lasssu
h that L 
aptures C on the 
lass of �nite ordered stru
tures. Then L 
apturesC on the 
lass of dense order databases.Proof. We give the proof expli
itly only for FO+LFP. The other 
ases 
an beproven analogously. We have already shown that FO+LFP � Ptime. For theother dire
tion, suppose that Q a polynomial-time 
omputable query on denseorder 
onstraint databases of signature �. We show that there is an FO+LFP [�℄-formula  Q de�ning Q.Again let � denote the signature of the 
orresponding invariants. Let Q0 bethe query that takes invariants inv(B) of databases B as inputs and returnsas output the set Q0(B0) := ff� (�a) : �a 2 Q(B)g. Clearly Q0 
an be 
omputedin polynomial time, sin
e a representation of the database B whose invariant isgiven as the input 
an be 
omputed in Logspa
e and sin
e Q is a Ptime-query.(Note that in 
ontrast to the algorithm of the previous se
tion this algorithm 
on-stru
ts the database from the invariant and evaluates the query in the database,13



whereas the algorithm in the previous se
tion 
onstru
ts the invariant from thedatabase and then operates on the invariant.)Sin
e Q0 is a Ptime-query on �nite ordered stru
tures, there exists by theTheorem of Immerman and Vardi (see [1, 10℄) an FO+LFP [� ℄-formula ' thatde�nes Q0. By the remarks above, there exists a formula '� 2 FO+LFP [�℄ su
hthat for all �a 2 Rm ; inv(B) j= '(f� (�a)) i� B j= '� (�a): Thus B j= '� (�a) if andonly if �a 2 Q(B). This proves the theorem. utThe following table summarizes the relations between logi
s and 
omplexity
lasses in the 
ontext of dense linear orders.Logi
s and 
omplexity 
lasses in the 
ontext of dense linear orders.FO+DTC = Logspa
eFO+TC = NLogspa
eFO+LFP = PtimeFO+PFP = Pspa
e5 Summary and Further ResultsIn the main result of this paper we presented a general method to prove 
om-plexity bounds for query languages over dense order databases. The idea wasto 
ode the �nitely represented database as a �nite database and then use theevaluation algorithms available for the query language on �nite databases. Itturned out that this en
oding 
an be de�ned by �rst-order formulae using onlythe order predi
ate and some very limited kind of arithmeti
. It 
an thereforebe done with very low data 
omplexity. This method enabled us to evaluatequeries for various query languages within the same 
omplexity 
lasses as for�nite databases.This method also works for databases de�ned by inequality 
onstraints over a
ountable in�nite set. By a simple argument based on Ehrenfeu
ht-Fra��ss�e gameswe 
an also prove that the various �xed-point logi
s 
onsidered before are tooweak to express all Logspa
e-
omputable queries.Unfortunately the good results for dense order databases 
annot be extendedto linear 
onstraint databases over the reals. As soon as we admit re
ursion inthe query language the arithmeti
 over N be
omes de�nable and thus the querylanguage unde
idable.The situation 
hanges drasti
ally if stru
tures with a dis
rete order as uni-verse are 
onsidered. It is known that positiveDatalog-queries on dis
rete orderdatabases 
an be evaluated in 
losed form (see [14℄) but the data 
omplexity isstill unknown. For �rst-order queries a better result 
an be shown.Theorem 20. First-order queries on dis
rete order databases 
an be evaluatedin Logspa
e.See [13℄ for a proof of the theorem. In Se
tion 3 we have shown that thedata 
omplexity of �rst-order queries over (N; <;+) is in the polynomial timehierar
hy and that there are 
omplete �rst-order queries for all levels of PH.14



As in the 
ase of the 
ontext stru
ture (R; <;+), adding re
ursion to the querylanguage leads to unde
idable query languages. Of 
ourse, even �rst-order queriesare unde
idable if we also add multipli
ation to the 
ontext stru
ture.The following table summarizes the results. The NC bound for �rst-orderqueries on databases over the �eld of reals 
omes from [12℄. Note that only inthe 
ase of (R; <) we have pre
ise 
apturing results. The other 
ases are just
omplexity bounds.inequality (R; <) (R; <;+) (R; <;+; �) (N; <
) (N; <;+) (N; <;+; �)FO AC0 AC0 NC NC Logspa
e PH n.d.FO+DTC Logspa
e Logspa
e n.d. n.d. n.d. n.d. n.d.FO+TC NLogspa
e NLogspa
e n.d. n.d. n.d. n.d. n.d.FO+LFP Ptime Ptime n.d. n.d. n.d. n.d. n.d.FO+PFP Pspa
e Pspa
e n.d. n.d. n.d. n.d. n.d.n.d. = not de
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