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Chapter 1

Introduction

In the last 30 to 40 years databases have experienced an enormous development from mere
extended file systems to the powerful systems we have today. One of the most important
steps in this development was the introduction of the relational data model by Codd
in 1970 [Cod70]. The advantages of this data model lie both within theory and prac-
tice. The intuitive and set-at-a-time user interface that relational database management
systems supply makes them user friendly enough to be used even by non-programmers
and non-specialists. On the other hand, there is a close relationship between relational
databases and logical structures. This results in a solid theoretical foundation for rela-
tional databases in the form of finite model theory and descriptive complexity theory.

The relational data model proved adequate for most kinds of data and became standard
in the 1980s. But with the increased power of modern computer hardware the need to
store advanced data types like multimedia or geometrical data arose. To meet the new
demands, other kinds of data models like nested relations or object oriented databases
have been proposed. One of the disadvantages almost all of the new data models share, is
the restriction to finite databases. Although this may seem to be sufficient and natural for
most kinds of databases, it is unnatural for the storage of geometrical objects like circles
or rectangles. For these kind of objects the said restriction leaves the user with the task
of finding a way to code the objects and to formulate queries for the chosen encoding.
This problem was the main motivation behind the introduction of constraint databases.

Constraint databases were first introduced by Kanellakis, Kuper, and Revesz in 1990
[KKR90]. They searched for a data model that allows the user to store an infinite amount
of data. Of course this infinite set of objects has to be stored in a computer system and
has therefore to be finitely representable. The main difference between this data model
and most other data models is that the user does not have to be concerned with the
way the data is represented but can think of the database as containing infinitely many
objects.

Before giving the exact definition of constraint databases in the next chapter, their
usefulness is demonstrated by an example. Imagine a database where geometrical shapes
are stored. Databases like this occur, for example, in the field of geographical information
systems where the shapes may represent the concentration of chemicals in a certain area.
For simplicity suppose that the shapes consist only of circles. To store the said information
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in a relational database one could for example store the centre of the circle together with
its radius, the chemical in consideration and its concentration. A user who wants to ask
if there is a point where two special chemicals occur has to query the centers and radii of
the two circles and calculate whether the sum of the radii exceeds the distance between
their centers. This is very impractical for ad-hoc queries or queries invoked from script
languages with limited expressive power.

Using constraint databases we would be able to store the circles as the set of points
inside them. The query whether two of them intersect could then be formulated by asking
if there is a point within both circles. Obviously this is much simpler and intuitive than
the query above.

1.1 Relational databases from a logical viewpoint

An important field of research about relational databases is the study of database query
languages. Questions arising here concern the expressiveness of query languages and the
efficiency of their evaluation. To deal with such questions we model a relational database
as a finite relational structure whose universe is the active domain of the database, that is
the set of elements occurring in at least one database relation. The relations of the struc-
ture are the relations of the database. Once databases are modeled as logical structures we
can consider logics as query languages. Furthermore, query languages correspond to log-
ics, for example many commonly used query languages like SQL are essentially first-order
logic or only slight extensions of it. Thus results about the complexity or expressiveness
of logics yield also results about query languages.

Generally there are three possible relations between a logic £ and a complexity class
C. We say that C contains £, £ C C, if for each signature 7 we have that every class
of finite 7-structures definable by an £[7]-sentence can be decided in C. On the other
hand we say that £ contains C, C C £, if for each signature 7 we have that every class of
T-structures decidable in C can be defined by an £[r]-sentence. We say that £ captures C
if both is the case, that is £ C C and C C £.

On the one hand, the containment relation £ C C gives an upper bound for the
complexity of the evaluation of queries from £. On the other hand, it can be used to
prove that certain properties cannot be queried by formulae from £. For example it is
known that the transitive closure query is not in ACy. As first-order logic is contained
in ACy, it cannot define transitive closure. The most interesting relation between a logic
£ and a complexity class C is the capturing relation. If £ captures C, then exactly the
properties decidable in C can be defined by formulae from £. In a sense, £ is a precise
logical description of C. Therefore the field of research that investigates the relationship
between logics and complexity classes is called descriptive complexity theory.

Starting with Fagin’s theorem stating that NP is captured by existential second-order
logic, logical descriptions have been found for many natural and important complexity
classes. Unfortunately, most of these results are true only for the class of ordered struc-
tures. For example, Immerman [Imm8&6] and Vardi [Var82] proved that least fixed-point
logic captures PTIME on the class of ordered structures. But on arbitrary structures, least
fixed-point logic is strictly contained in PTIME. Similar results have been found for other
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complexity classes such as PSPACE as well. Table 1.1 gives an overview of important cap-
turing results on ordered structures. Here FO+DTC stands for deterministic transitive
closure logic, FO+TC for transitive closure logic, FO+LFP for least fixed-point logic and
FO+PFP for partial fixed-point logic. SO denotes second-order logic and X} denotes its
existential subset. See Chapter 2 for some more explanations and references.

FO+DTC = LOGSPACE

FO+TC = NLOGSPACE
FO+LFP = PTIME

i = NP

SO = PH

FO+PFP = PSPACE

Table 1.1: An overview of capturing results on finite ordered structures.

If order is omitted, most of the equalities in Table 1.1 change to inclusions. The only
exceptions are X1 and SO, because these logics allow the definition of order. On arbitrary
structures we get the results summarized in Table 1.2.

FO Cc AC,
FO+DTC C LOGSPACE
FOo+TC C NLOGSPACE
FO+LFPA C PTIME

¥l = NP

SO = PH

FO+PFP C PSPACE

Table 1.2: An overview of complexity results on arbitrary finite structures.

For detailed information about descriptive complexity theory see for example the books
by Immerman [Imm98] and Ebbinghaus and Flum[EF95]. Another source of information
about these topics is the book by Abiteboul, Hull, and Vianu [AHV95], which presents the
material from the perspective of database theory. An introduction to complexity theory
can be found in the book by Papadimitriou [Pap94].

1.2 Aims of the diploma thesis

In the previous section we explained how, for finite databases, questions concerning the
expressiveness of query languages and the efficiency of their evaluation can be answered
using descriptive complexity theory. A natural questions is how the results and techniques
developed there extend to classes of infinite but finitely representable databases. As
an example of such databases we consider here the constraint databases introduced by
Kanellakis, Kuper, and Revesz [KKR90]. In their framework a database consists of a
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| | inequality | (R, <) | R<,+) | (R<,+,%) |
FO+DTC | C LOGSPACE = LOGSPACE | undecidable | undecidable
FO+TC || ¢ NLOGSPACE | = NLOGSPACE | undecidable | undecidable
FO+LFP C PTIME = PTIME undecidable | undecidable
FO+PFP C PSPACE = PSPACE undecidable | undecidable

Table 1.3: Data complexity bounds for query languages on dense structures.

| | (N, <.) | N<,+) | (N<,+,) ]
FO C LOGSPACE = PH undecidable
FO+DTC | ex. pos. FO+LFP | undecidable | undecidable
FOo+TC closed undecidable | undecidable
FO+LFP undecidable undecidable | undecidable
FO+PFP undecidable undecidable | undecidable

Table 1.4: Data complexity bounds for query languages on discrete structures.

fixed structure, called the context structure, which is expanded by relations defined by
quantifier-free formulae which are interpreted in the context structure. We give a formal
definition of constraint databases and their query languages in Chapter 2.

There is a difference in the notion of evaluation complexity between finite and con-
straint databases which will be explained in detail in the next chapter. It turns out that
the complexity of query languages for finitely representable databases depends heavily on
the complexity of their representation. In the case of constraint databases the complexity
of the representation depends on the complexity of the functions and relations which can
be used in the formulae defining the database relations. Therefore the complexity and
capturing results for logics on constraint databases depend on the context structure.

In the following chapters we present complexity results for many logics and context
structures. We restrict our attention to arithmetical structures, that is structures whose
relations and functions are among order, addition, and multiplication. On the side of the
logics used as query languages the focus of our investigations is put upon extensions of
first-order logic by recursion mechanisms like transitive closure or fixed-point induction.
We do not consider second-order logics. Tables 1.3 and 1.4 give an overview of the results
presented in the sequel. The closed entry for existential positive FO+LFP on the class of
discrete order databases means that existential positive FO+LFP queries can be effectively
evaluated in closed form. But nothing more is known about their complexity.

The first thing to notice is that, as for finite databases, we only get capturing results
for ordered structures. But the complexity of query evaluation also depends heavily on
whether the structures are densely or discretely ordered. The evaluation of queries on
discretely ordered constraint databases is often much harder than on densely ordered
databases. Whereas on dense order databases the various fixed-point extensions of first-
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order logic capture the same complexity classes as on finite databases, the complexity
increases drastically if the order is discrete. Also the incorporation of recursion mecha-
nisms leads to undecidable languages as soon as addition is available.

The NC result for first-order queries on the field of reals seems to be very promising
for applications of constraint databases in the field of geometrical or spatial databases.
Also the good complexity bounds for dense order databases makes them suitable as a
basis for the implementation of, for example, temporal databases.

The following chapters are organized as follows. In the next chapter we give the formal
definitions of constraint databases and query languages. In Chapter 3 we present some
general methods to obtain complexity bounds for query evaluation. Chapter 4 gives an
overview and proofs for most of the results summarized in Table 1.3 and 1.4. Chapters
5 and 6 focus on two particular context structures, namely dense and discrete orders.
In Chapter 5 we present a very general method which allows us to extend results on
logics capturing complexity classes from the realm of finite ordered structures to con-
straint databases over dense linear orders. Chapter 6 then gives a detailed proof for the
LoGSPACE data complexity bound of first-order queries on discrete order databases. We
close with a short summary and a few remarks about open problems and related work.
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Chapter 2

Preliminaries

In this chapter we give the formal definitions of constraint databases and query languages
and of the notion of complexity used in the sequel. Before we give the definitions, we fix
some notation used in the following chapters.

A signature 7 := {Ry,... Ry, f1,... , fr,C1,...,¢s} 18 a set of relation symbols R;,
function symbols f;, and constant symbols ¢;. The arity of each relation symbol R and
function symbol f is denoted by ar(R) and ar(f) respectively. 7 is called relational if
it contains only relation symbols. A 7-structure 2 consists of a universe A, a relation
R* for each relation symbol R € o, a function f* for each function symbol f € o, and
a constant ¢ for each constant symbol ¢ € 0. A (o U 7)-structure B with universe B,
where 7 and o are disjoint signatures, is called a o-ezpansion of 2, if A = B and for every
symbol s € 7 s¥ = s®. The expansion is called relational if o is relational. We write
B = (A RP,... RYF) to indicate that B is a {Ry, ..., Ry }-expansion of 2.

By FO[r] we denote the set of first-order formulae over the signature 7. Besides first-
order logic we consider some extensions of first-order logic, namely (deterministic) transi-
tive closure logic, FO+(D)TC, least or inflationary fixed point logic, FO+LFP, FO+IFP,
and partial fixed point logic, FO+PFP. In Chapter 3 we also consider the infinitary finite
variable logic L% . For a detailed description of those logics see for example [EF95].
Unless stated otherwise, whenever we speak of a logic we have one of these logics in mind.

We write ¢(z1,...,z;) for a formula with free variables among zq,...,z;. A |=
pla, ... ,a,] means that 2 is a model of ¢ where the free variables z; are interpreted as
a;. For each formula o(z1,...,7;) we write o to denote the set {(ay,...,ay) € AF
A = play, ... ,ax]} of tuples satisfying ¢ in 2. We say that formulae use parameters from
A if not only constant symbols from 7 but also constant symbols ¢,, for each a € A, can
occur in them.

2.1 Constraint databases
The basic idea in the definition of constraint databases is to allow infinite relations which

can be finitely represented. In the framework introduced by Kanellakis, Kuper, and
Revesz [KKR90] the relations are represented by quantifier-free first-order formulae.

9
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Definition 2.1. Suppose 2 is a 7-structure, called the context structure, 7/ C 7 a signa-
ture, and @(zq,...,z,) € FO|[r'] is a quantifier-free formula using parameters from A.
An n-ary relation R C A" is represented by ¢ over A, if for all ay,... ,a, € A,

A= olag, ... a,] iff (a1,... ,a,) € R.

The formula ¢ is called a finite representation of R. The set of finitely representable
relations over 2 is denoted by Rel7, (A). 7' is called the relation signature whereas 7 is
called the context signature.

In most cases the relation signature and the signature of the context structure coincide.
Therefore we omit the index 7' in Rel}’,,(%l) and agree that, unless stated otherwise, the
signature of the context structure is used as relation signature.

Definition 2.2. Suppose 2 is a 7-structure and o a relational signature disjoint from 7.
A o-constraint database is a o-expansion of the context structure, where all o-relations are
finitely representable over 2. The set of all constraint databases over a context structure
2 is denoted by Expy, (). The relations in 7 are called context relations whereas the
relations in o are called database relations. o is called the database signature.

By definition, constraint databases are relational expansions of a context structure
where all database relations are finitely representable. Note that the same relation can be
represented in different ways, e.g. 91 :=2 <10Az >0and py:= (0 <z Az <6)V(6<
z Az < 10)V z = 6 are different formulae but define the same relation.

Definition 2.3. Suppose 2 is a context structure and B := (A, RF, ... , RP) a constraint
database over 2. A set of formulae ® := {¢g,,... , pg,} is a finite representation of B, if
each pg, is a finite representation of RF over . B is called the database represented by
®. Two representations ® and @' are A-equivalent, if they represent the same database
over 2.

In the following we often deal with algorithms taking constraint databases as inputs.
The complexity of these algorithms will be measured in terms of the input size. Therefore
the size of constraint databases has to be defined. Unlike finite databases, the size of con-
straint databases cannot be given in terms of the number of elements stored in them but
has to be based on a representation of the database. Note that equivalent representations
of a database need not to be of the same size. Thus the size of a constraint database
cannot be defined independent of a particular representation.

Definition 2.4. Suppose ‘B is a constraint database and ® a finite representation of B.
The size of (B, ®) is defined as the sum of the lengths of the formulae in ®.

In the following, whenever we speak of a constraint database B, we mean a constraint
database with a particular representation ®. The size of B is then defined as the size of
(B, ®). The definition of the size of a database corresponds to the following encoding of
constraint databases on Turing machines.
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Definition 2.5. Suppose B is a constraint database and ® a finite representation of 8.
Then ‘B is encoded on a Turing tape by the formulae of ® representing the database
relations.

In this framework the database relations are represented by quantifier-free formu-
lae. Although it would be possible to base constraint databases on other logics, e.g. to
represent the relations by arbitrary first-order formulae, the close relationship between
constraint and finite databases present in this framework is a strong argument for choosing
quantifier-free logic. We illustrate this by an example.

A finite relational database consists of a finite collection of relations. A relation again
is a finite set of tuples. We can say that each tuple in a relation corresponds to an object
of the real world. In analogy to the example given in the introduction, consider a database
relation where circles are stored by their centre and radius. Each pair (p,r), where p is
the centre and r the radius, corresponds to a circle. In a constraint database, the circles
would be represented by formulae of the form (z+c¢;)?-(y+cs)? < r% Thus a tuple in the
finite relation corresponds to a conjunction of atomic formulae in the constraint relation.
Because of this correspondence Kanellakis, Kuper and Revesz called such conjunctions of
atomic formulae generalized tuples. The finite relation as a set of tuples corresponds to
the finitely representable relation as a finite set of generalized tuples. The formula for
such a set of generalized tuples is a disjunction of conjunctions of atomic formulae, that
is a quantifier-free formula in disjunctive normal form.

Some authors require that the formulae defining finitely representable relations are
always given in disjunctive normal form. We will not be so strict and allow arbitrary
quantifier-free formulae. Clearly, this does not increase the expressiveness of the finite
representations but in some cases makes the representation of relations more intuitive and
can also decrease the space needed to store the database.

2.2 Constraint queries

Now that constraint databases have been defined, we have to explain how they can be
queried.

Definition 2.6. Suppose 2 is a 7-structure and o a relational signature. A constraint
query @ : Ezps(2A) — Rels,(2() is a mapping from o-constraint databases over 2 to
finitely representable relations over 2.

By definition, a constraint query is purely semantical. In order to allow a user to
query a database, we have to define query languages, that is, a syntactic way to define
queries. To do this we require the context structure 2l to admit quantifier elimination.
This means that every first-order formula ¢ is equivalent in 2 to a quantifier-free formula.
Since we are not only interested in first-order logic but also in extensions of it, we use the
term quantifier elimination in a broader sense.

Definition 2.7. Let £ be a logic and 2 be a 7-structure. 2 admits quantifier elimination
for £, if for every formula p(z1, ... ,zy) € £[7], there is a quantifier-free first-order formula
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¢'(z1,..., 1), so that for all ay,... ,a; € A,

A= olar, ... ax]  iff AEar, ..., a).
In the next definition it is explained how queries can be defined by logical formulae.

Definition 2.8. Suppose £ is a logic and 2 a 7-structure admitting quantifier elimination
for £. Let o be a relational signature and 8 be a o-database over 2. For every formula
o(z1,...,2x) € £[T U o] the query Q, defined by ¢ is defined as

QQO: Eprr(Q[) — Relfr(Ql)
B — {ae AF . B = la)}

The formulae p € £[r U o] are called query formulae.

The next lemma and its corollary show that the definition of a query @, for the query
formula ¢ is well-defined. Here and in the following chapters we need a way to “unfold”
a database in a query formula, that is to combine the database and the query formula to
a single formula. This is made precise in the following definition.

Definition 2.9. Suppose 2 is a 7-structure and B a o-constraint database over 2. Let
¢ be a query formula. The query formula ¢’ := unfold(p, B) is defined as

¢ = p[Ri/ 3R],

where each occurrence of a database relation symbol R; in ¢ has been replaced by the
formula ¢} representing R in B.

Clearly, ¢ is equivalent in B8 to ¢’ and, as ¢’ is a formula over 7 alone, ® = ¢'*. The
size of ¢ is O(|p| - [B]).

Lemma 2.10. Suppose £ is a logic and 2 is a T-structure. Let B be a o-database over
A. If A admits quantifier elimination for £ then also B admits quantifier elimination for

L.

Proof. For each query formula ¢ € £[7Uc] let ¢’ be the unfolded query ¢' := unfold(p, B).
Because ¢’ is a formula over the signature 7 and 24 admits quantifier elimination for £,
¢’ is equivalent in 2 to a quantifier-free formula. Therefore, as ¢ and ¢’ are equivalent,

also ¢ is equivalent to a quantifier-free formula. O

As a corollary of the lemma we get that the notion of query formulae defining queries
is well-defined.

Corollary 2.11. If ¢ is a query formula, then Q, defines a query.

Proof. Let A be a 7-structure. By definition, @), maps a database B over 2 to the set
Q,(B) ={a : B = ¢[a]}. To prove the corollary we show that Q,(B) is finitely rep-
resentable. The preceding lemma proved that ¢ is equivalent to a quantifier-free formula
1 over the signature 7. Thus Q,(*B) equals {a : A = ¢[a]} and therefore ¢ is a finite
representation of Q,(B) over 2. O
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Note the distinction between a query which is a mapping from databases to finitely
representable relations and a query formula as a logical formula defining a query. Thus
a query can be defined by various query formulae, whereas a query formula uniquely
determines a query.

Definition 2.12. A constraint query language L for o-databases over a 7-structure 2
consists of a set of logical formulae over a signature 7/ C 7Uo, so that 2 admits quantifier
elimination for £. 7' is called the query signature. Let ¢ € L[7'] be a query formula. The
set Q,(B) is called the answer of the query @, over the database B.

Typically a logic like first-order logic or DATALOG will be used as query language, but
also subsets of those logics like the set of positive or existential formulae are used.
Two different problems in connection with the evaluation of queries have been considered
in the database literature.

Definition 2.13. Let 2 be a context structure and £ be a query language over .

e The evaluation problem for a query formula ¢ and a database 8 over 2 is defined
as the problem of finding a finite representation of Q,(B).

e The recognition problem for ¢ and *B is defined as the problem of checking whether
a given tuple @ is in Q,(B).

If ¢ is a boolean formula, than the evaluation and the recognition problem coincide,
because the answer of the query is either true or false. But if ¢ is non-boolean, say a
query in the variables 7, the two problems differ. In this case the recognition problem can
again be seen as solving a boolean query, because checking whether a tuple @ is in Q,(B)
can be done by answering true or false to the query defined by ¢[Z/a]. In contrast, the
evaluation problem requires the computation of a formula, namely the representation of
the answer of Q,(*B), and cannot be reduced to a boolean query.

It follows that only structures admitting quantifier elimination are suitable as context
structures for constraint databases if the evaluation problem of non-boolean queries is
under consideration. If we are not interested in formulae with free variables but only in
boolean queries, the structure need not necessarily admit quantifier elimination but its
theory must be decidable. An example of such a structure is Presburger arithmetic (see
[Pre27]), that is, the natural numbers with addition.

Note 2.14. The theory of any context structure has to admit effective quantifier elimina-
tion in order to allow query evaluation. If only boolean queries are considered, it suffices
for the theory of the context structure to be effectively decidable.

Typical questions that arise when dealing with constraint query languages are the
complexity of query evaluation for a certain constraint query language and the definability
of a query in a given language. We will be especially interested in the former question.
Therefore we neglect the distinction between query formulae and the queries they define
and call both just queries.

Throughout the following chapters we are mainly interested in the complexity of query
evaluation for different logics. The complexity of query evaluation can be measured in
different ways.
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Definition 2.15. Let 2 be a context structure and £ be a query language. The com-
plexity of the evaluation problem can be measured in three different ways.

e For a fixed query formula ¢ € £, the data complexity of the query @), is defined as the
amount of resources (e.g. time, space, or number of processors) needed to evaluate
the function that takes a representation ® of a database B8 to a representation of
the answer relation Q. (B).

e For a fixed constraint database B over 2, the query complexity of B is defined as
the amount of resources needed to evaluate the function taking a query formula ¢
to the representation of the answer relation Q,(*B).

e If both, the database and the query, are variable, we speak of the combined com-
plexity. It is defined as the complexity of the function taking the pair (Q,,B) to

Qy(B).

When considering query evaluation for constraint query languages, there are different
parameters to vary. The first and most important one is the context structure, which
depends on the kind of data to be stored in the database. For example a geographical
information system or software to manipulate geometrical figures may need the ordered
field of reals (R, <, +, *) as context, whereas (R, <, +) might suffice for a CAD system. So
far research has concentrated on these two structures and dense linear orders like (R, <).

The next parameter in consideration is the choice of the query language. To fix the
query language the query signature as well as the query logic has to be chosen. Here
first-order logic and DATALOG have been the logics of choice so far, where the query and
the context signature coincide.



Chapter 3

Proof methods for constraint
databases

In this chapter we investigate methods for proving complexity bounds or non-definability
results for constraint query languages. In the first section we relate the complexity of
query evaluation to the complexity of the theory of a context structure. In the section
thereafter we show as an application of Ehrenfeucht-Fraissé-games that the fixed-point
logics introduced so far are too weak over the class of databases defined by inequality
constraints over countable infinite sets to define all queries computable in LOGSPACE.

3.1 Obtaining complexity bounds

In this section we focus our attention on the question of how the complexity of the theory
of a context structure and of quantifier elimination are related to the complexity of query
evaluation. Throughout the rest of this chapter we consider first-order queries and the
first-order theory of a context structure 2.

We begin our investigations with the following lemma relating the complexity of Th(l)
to the query complexity of boolean queries. The question how similar results can be found
for data complexity is considered thereafter. The section is closed by the consideration of
the data complexity of non-boolean queries.

Lemma 3.1. Let f : N — N be a function and R be a resource, e.g. time or space.

(i) If R(f(n)) is a lower complexity bound for the theory of 2 then it is also a lower
bound for the query complexity of boolean queries.

(11) If R(f(n)) is an upper complexity bound of Th() then the query complezity of
boolean queries is bounded from above by R(f(O(n))).

Proof.

(i) Cleary, a lower bound for the complexity of Th(2l) is also a lower bound for the
query complexity of boolean queries, because every sentence of the theory is also a
boolean query on arbitrary databases over .

15
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(ii) Suppose B = (A, RY, ..., RP) is a database over 2. For each boolean query 1 let
Y := unfold(y,B) be the be the unfolded query as defined in Definition 2.9. The
truth of ¢’ can be decided in R(f(|¢'])). As the database is fixed, the size of ¢ is
O(|¥]). Thus the truth of ¥ can be checked in R(f(O(|¢]))).

O

The preceding lemma shows that the complexity of the theory of 2 yields the query
complexity for boolean queries on constraint databases over 2. It does not generally apply
to data complexity, because if data complexity is in consideration the query and therefore
the number of quantifiers is fixed, whereas the complexity of the theory often depends
heavily on the number of quantifiers. To deal with data complexity we consider sentences
with a fixed prefix length.

Definition 3.2. Let k € N be an integer. The k-dimensional theory k-Th(2A) of A is the
set of all sentences in prenex normal form with k& quantifiers which are true in 2.

The next theorem proves that a lower data complexity bound for query evaluation can
be obtained from a lower complexity bound for k-T'h().

Theorem 3.3. Suppose k € N is fized and C a lower bound for the complezity of k-Th(2l).
Then C is also a lower complexity bound for the data complexity of the query evaluation
problem.

Proof. To prove the lemma we reduce the decision problem for k-Th(2A) to the query
evaluation problem for databases over 2(. Every sentence in k-Th(2) has the form ¢ :=
Qiz1 ... Qrxry', where ¢' is quantifier-free. Let Ry be a k-ary relation symbol and 1 be
the query ¢y, := Qqx1...Qrxr Rz ... 2. Obviously the size of the query depends only
on k and is therefore fixed.

For each ¢ € k-Th(), with ¢ = Q121 ... Qrzry’, let B, be an {R}-database such
that R® is represented by ¢'. The size of B, equals the size of ¢’ and thus the size of
¢ minus a constant ¢ := 2k. Clearly, ¢ € k-Th(2) if and only if zp,?*’ evaluates to true.
Thus the lower bound for k-Th(2l) is also a lower bound for the data complexity of the
evaluation problem. O

The preceding theorem proves that a lower bound for a k-dimensional theory also
yields a lower bound for the data complexity of the query evaluation problem. An upper
complexity bound for the data complexity of boolean queries can also be derived from the
complexity of the k-dimensional theories, if the complexity of all k-dimensional theories
is known.

Theorem 3.4. Let R be a resource, e.q. time or space, and fr : N — N be a function
such that Cy := R(fr(n)) is an upper complexity bound for k-Th(). Then R(fx(O(n)))

18 an upper bound for the data complexity of all boolean queries with at most k quantifiers.

Proof. We prove the theorem by showing that every boolean query ¢ with £ quantifiers
can be evaluated in R(f;(O(n))). Suppose B := (A, RP,... ,RF) is a database. Let
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' = unfold(y,B) be the unfolded query as defined in Definition 2.9. As we consider
data complexity, the query 1 is fixed and therefore the size of ¢’ is O(|®B|). Further, ¢’
has k quantifiers and therefore the truth of ¢’ in 2 and, with it, the truth of ¥® can be
decided in R(fr(|¢'])) = R(fx(O(|B]))). O

Thus if the complexity of all k-dimensional theories is known, we can derive an up-
per data complexity bound for boolean queries. For example, if the complexity of all k-
dimensional theories is PTIME, then also the data complexity of boolean queries is PTIME.
Note the difference between the upper bound C for the data complexity of boolean queries
and the complexity of the theory of . In the calculation of the Cj the number of quanti-
fiers is considered as being fixed. Thus C is derived from the complexity of fixed dimension
theories whereas in the calculation of the complexity of Th(2) the number of quantifiers
is variable. For example consider databases defined over the ordered field of reals. The
complexity of the theory of real closed fields has a non-deterministic exponential lower
time bound (see for example [HU79]). But we will see in Section 4.2.3 that the data
complexity of first-order queries is NC.

One way to obtain lower bounds for fixed dimension theories is to study the complexity
of prefix classes.

Definition 3.5. Suppose Q € {V,3}* is a finite sequence of quantifiers. The prefiz class

[Q] of Th() is defined as the set of all sentences in prenex normal form with quantifier
prefix Q which are true in .

Obviously a lower bound for the complexity of a prefix class of 2 with & quantifiers
is also a lower bound for the complexity of the k-dimensional theory of 2. We will use
this in Section 4.3.2 to prove that for each level of the polynomial time hierarchy there is
a first-order query in the context of the Presburger arithmetic whose data complexity is
complete for this level.

So far all lemmas and theorems in this section dealt only with boolean queries. Clearly,
the complexity of non-boolean queries is at least the complexity of boolean queries. There-
fore the results for obtaining lower bounds can also be used for non-boolean queries. To
obtain upper bounds, the study of the complexity of Th(2) is not sufficient. Instead we
have to consider the complexity of quantifier elimination in 2. The next theorem relates
the complexity of quantifier elimination with the data complexity of first-order query
evaluation.

Theorem 3.6. A lower or upper complexity bound for the elimination of a fixred number
of quantifiers is also a lower or upper bound for the data complexity of first-order queries.

Proof. Clearly, an upper bound for the complexity of eliminating a fixed number of quan-
tifiers is also an upper data complexity bound for first-order queries, because a quantifier
elimination algorithm can also be used for query evaluation.

On the other hand, using the method presented in the proof of Theorem 3.3 one can easily
show that the problem of eliminating a fixed number of quantifiers can be reduced to the
evaluation problem for first-order queries. Therefore a lower complexity bound for the
former problem is also a lower bound for the latter. O
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In this section we obtained complexity bounds for problems connected to the com-
plexity of the theory of the context structure. In the next section we consider methods
to prove that a query language is too weak to define particular properties of databases.

3.2 Proving non-definability results

In [GS94] and [GS97a] Grumbach and Su examined which methods used to show non-
definability results in classical or finite model theory still work for the class of finitely
representable structures. They showed that the finitely representable model theory differs
both from classical as well as finite model theory. Among the few methods which still
work in the context of finitely representable structures are Ehrenfeucht-Fraissé games
and their variants, the pebble games. As an application of Ehrenfeucht-Fraissé games we
prove that, as in finite model theory, on unordered structures even such expressive logics
as FO+PFP lack the power to count. Thus there are tasks which can be accomplished
by LOGSPACE Turing machines which cannot be defined in FO+PFP.

To prove this we need some theorems well known from finite model theory (see for
example [EF95]). The first theorem states that the fixed-point logics introduced so far
are all contained in the infinitary logic L% .

Theorem 3.7.
(i) FO+LFPC L% .
(ii) FO+PFP C L% .

An implication of the theorem is that we can show non-definability results for the
various fixed-point logics by showing that the properties in question are not definable in
LY . To show non-definability results for L% we use a game theoretical characterization
of L% -equivalence.

Theorem 3.8. Let A and B be T-structures. The following is equivalent:
(i) A= B.
(ii) The duplicator wins the k-pebble game G* (A, B).
We use this to prove the following theorem.
Theorem 3.9. On unordered finitely representable structures LOGSPACE Z L% .

Proof. Let 2 be a structure with an empty signature whose universe is countably infinite
and o := {R} be a database signature containing only one unary relation symbol. We
use an Ehrenfeucht-Fraissé game to show that there is no LZ,  -sentence ¢ which is true
in a database B = (A, R®) if and only if R® is infinite or of even cardinality. For the
sake of contradiction suppose there would be such a sentence ¢ € LY . Recall that LY
is defined as the union of L%  for all k& € N. Thus there is a k € N such that p € L% .
Let P be the set of constants occurring in . Consider two databases 8; and B; where
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|R®'| = k and |R®2?| = k + 1 and no constant from P occurs in R®* or R®2. Obviously
the duplicator wins the game G* (B;,B,), because, essentially, he has to ensure that
whenever the spoiler places his pebble on an element of R in one structure, he has to
do so in the other structure, and whenever the spoiler places his pebble on an element
which occurs as a constant in P, he has to do so as well. This is always possible because
the spoiler can only place k& pebbles and both relations contain at least & elements which
occur not as a constant in P. Thus the duplicator wins the game G* (B;,B,) and, by
Theorem 3.8, the structures B; and B, are L*  -equivalent. Therefore either ¢ holds
in both structures or in none of them. Clearly, one of R®! and R®? is of even and the
other of odd cardinality. Thus ¢ cannot distinguish between relations of odd and even
cardinality.

Now we show that a LOGSPACE Turing machine can decide whether a relation R is finite
and of even cardinality. Note that as R is unary it is represented by a quantifier-free
formula g with only one variable z. We define a set unbounded(¢g) by induction on the
structure of ¢g.

e If pr := x = ¢, where c is a parameter, then unbounded(pg) := &.

o If pr := x # ¢ then unbounded(pg) := {x # c}.

e If o := p1 A @y then unbounded(pg) := unbounded(p1) N unbounded(ps).
o If pr := 1 V s then unbounded(pr) := unbounded(p1) U unbounded(yp3).

By induction it can be shown that R is finite if and only if unbounded(pg) is empty.
Although a LoGSPACE Turing machine cannot explicitly generate the set unbounded(¢r),
it can test for every negated atomic formula ¢ occurring in @g if ¢ € unbounded(¢r).
Thus finiteness of R can be decided in LOGSPACE. Now we show that for every finite R it
can be checked in LOGSPACE whether R is of even cardinality. Clearly, if R is finite, then
all elements satisfying ¢z must occur as parameter in it. Thus the Turing machine can
test for every parameter if it satisfies ¢ and decide whether the number of parameters
for which the test succeeded is even. Thus for every finite relation R, the test whether R
is of even cardinality can be done in LOGSPACE. This proves the lemma.

O

In this chapter we considered proof methods which are independent of a particular con-
text structure. In contrast we consider in the following chapters special context structures
and the data complexity of query languages defined for them.
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Chapter 4

An overview of data complexity
bounds

In this chapter we give an overview of results about the complexity of query evaluation.
The chapter is organized as follows. In each of the following sections we cover the results
found for a certain context structure. We begin with the simplest case, the extension of
finite databases to databases with an infinite domain. In the sections thereafter we add
successively more arithmetical functions to the context structure. As we will see, there is
a significant difference between discrete and dense structures.

4.1 Inequality constraints over an infinite domain

One important restriction of finite databases and their query languages is the restriction
to safe queries. Safe queries are those which are guaranteed to produce a finite output
on a finite database. To guarantee the safety of a query language for finite databases, its
syntax is restricted so that all queries which can be formulated in the restricted language
are safe. For example predicate calculus is restricted to the safe calculus by prohibiting
the use of universal quantifiers and allow negation only for certain “guarded” expressions.
In the context of constraint databases, all these restrictions are unnecessary. The obvious
extension of finite databases to constraint databases is to allow an infinite domain and
consider all first-order queries on the database, that is to allow negation and universal
quantification. Kanellakis, Kuper and Revesz proved in [KKR90] that the data complexity
of first-order queries is still LOGSPACE.

Theorem 4.1. First-order logic with equality constraints over an infinite domain has
LOGSPACE data complexity.

We give the proof explicitly because it demonstrates a common proof technique for
constraint databases. Consider a query with k free variables. The idea is to partition the
k-dimensional space into a finite number of sets, such that the points in one set cannot
be distinguished by first-order formulae and each set can be defined by a quantifier-free
formula. A query can be evaluated by testing for each partition if one representative point
in it satisfies the query. The answer of the query consists of the union of all partitions

21
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for which the test succeeded. This answer can be represented by the disjunction of the
formulae defining the partitions in the union.

In the rest of this section we assume a database B = (N, RF, ..., RY), where 2 := N
is the context structure over the empty signature whose universe is the set of integers.
Further, we assume a query ¢ where all occurrences of database relation symbols R have
been replaced by their representations % in 9B. Let P be the set of parameters used in v
or in the representation of 8. Now we use the method outlined above to prove Theorem
4.1. We define a so called e-configuration to represent a partition.

Definition 4.2. A k-dimensional e-configuration & = (~,v) consists of an equivalence
relation ~ on {1,... ,k} and a sequence v = (vy, ... ,v;), where each v; is in PU{-}, such
that for all 1 <1i,5 <k,

(1) if i ~ j, then v; = v;, and
(11) if v; = v; and v;,v; # -, then ¢ ~ j.

The idea behind the e-configurations is as follows. Consider two points @ and b in AF.
The two points are distinguishable using inequality constraints and parameters from P
if and only if two elements of one tuple are equal and the corresponding elements of the
other tuple are not or one element of a tuple equals a constant in P and the corresponding
element in the other tuple does not. We prove in Lemma 4.9 below that an e-configuration
defines a set of indistinguishable points.

The following two definitions relate points to e-configurations, the first defining the
set of points contained in an e-configuration and the second defining for a given point p
an e-configuration £ containing it.

Definition 4.3. Suppose £ = (~,7) is a k-dimensional e-configuration. The formula
F(&) corresponding to £ is defined as the conjunction of

1.z, =xj,if i ~ 7,
2. x; #xj, if i £ 7,
3. x; =v;, if v; # -, and
4. x; #pforallpe P, if v; = -.
The set of points contained in £ is defined as the set of points satisfying F'(&).

The next definition explains how an e-configuration £ can be found for a given point
p such that p is contained in &.

Definition 4.4. Let a € A* be a k-tuple. The e-configuration e-conf(a) := (~,v) is
defined as follows.

e i ~ jif and only if a; = a;.

e If g¢; € P then v; = a;. Otherwise v; = -.
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We illustrate the previous definition by an example. Let P be the set {1,2} and
a = (1,1,2,4,2,4,3). The e-configuration e-conf(a@) consists of the equivalence relation
e={{1,2},{3,5},{4,6},{7}} and the sequence v = (1,1,2,-,2,-,-).
The next lemma proves that for a given point @ € A* the e-configuration e-conf(a)
contains a. Moreover, it is the unique e-configuration containing a.

Lemma 4.5. Let (ay,...,a;) be a point in A*. There exists a unique e-configuration &
such that A = F(&)(aq, - .. ,ax).

Proof. Let & := e-conf (@) be the e-configuration according to Definition 4.4. Clearly, F(&)
is satisfied by @. Now suppose that &' is an e-configuration such that F(¢') is satisfied by @
as well. We show that & and & must be equal by proving that if £ # &' then F(§)AF(&') is
not satisfiable. For the sake of contradiction suppose that £ # &' but (ay, ... , ay) satisfies
F)NF(E). IfE#E, then ~#A~" or T £ 7.

If ~#~" then there are i, with i ~ j and i ¥’ j or ¢ % j and ¢ ~' j. Suppose w.l.o.g.
that i ~ j and ¢ %' j. Thus F(§) contains z; = z; whereas F(¢') contains z; # x; and
therefore F(§) A F(&') is not satisfiable.

On the other hand, if ~=~' but ¥ # ¥, then there is an 1 < i < k such that v; # v].
If neither v; nor v equals - then F() contains z; = v; whereas F'(¢') contains x; = v]. As
v; # vl, F(§) A F(&') is not satisfiable. Now suppose w.l.o.g. that v; = p € P and v, = -.
Then F(§) contains x; = p whereas F(¢') contains z; # p and again F (&) A F(¢') is not
satisfiable. O

Before we can define the evaluation algorithm for first-order queries on inequality
constraint databases, we need some more technical definitions and lemmas. The first
definition and the following lemma explain how a k-dimensional e-configuration can be
extended to a (k + 1)-dimensional one.

Definition 4.6. Suppose £ = (~,vy,...,v,) is a k-dimensional e-configuration. A (k +
1)-dimensional e-configuration &' = (~',7') is an extension of £ if and only if for all
1<i,j<ki~jiffi~'jand ¥ = (vy,...,v4,vp,,) for some v; , € A.

Lemma 4.7. Let £ be a k-dimensional e-configuration and &' be a (k + 1)-dimensional
extension of £&. Then for all ay,... ,a; € A,

A= F(¢)(a) iff there is an a € A such that A = F(&')(a, a).

Proof. For the backward direction note that F'(€) is a conjunction of formulae occurring
also in F(¢'). Thus A = F(¢')(a, a) implies A = F(&)(a).

To prove the forth direction we show that there is an a € A such that (ay,...,ax, a)
satisfies F'(¢'). If (k +1) ~ i for some 1 < ¢ < k then set a = a;. Otherwise if
V41 = p € P set a = p. If none of both is the case set a = ¢ for some ¢ € A\P. This
is possible as A is infinite whereas P is always finite. In all cases (ay, ... ,ax, a) satisfies
F(&). O

The next lemma states that every e-configuration defines a non-empty set of elements.
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Lemma 4.8. For every k-dimensional e-configuration & there are elements ay,... ,a; €

A such that A = F(&)(a).

Proof. The proof follows easily by induction on k£ using Lemma 4.7 and the fact that if £
is 0O-dimensional, then F'(§) = true. O

The last lemma needed to define the evaluation algorithm shows that to decide whether
the points contained in an e-configuration satisfy a formula v it suffices to test whether
one of them satisfies 9.

Lemma 4.9. Suppose £ = (~,7) is a k-dimensional e-configuration and ¢ is a formula
with at most k free variables 1, ... ,xy using only parameters from P.

(i) If 2 |= F(€)(@) and A = F(€)(@) then X j= (@) iff A = ().
(ii) F(&) A is satisfiable in A if and only if F(&) — ¢ is valid in 2.
Proof.

(i) The first part of the lemma is proved by induction on the structure of ¢. Suppose
A= F(¢)(a) and A = F(£)(@).

e Suppose ¢ := x; = ¢, where ¢ € P. Obviously 2 = ¢(a) if and only if a; = ¢
and therefore v; = ¢. As A = F(£)(@), also a; = ¢ and thus 2 = ¢(@').

e The proof of the boolean cases is straightforward.

e Now suppose 9 := Jz¢)'. Then (ay,... ,ay) satisfies ¢ if and only if for some
a € Al(ay,...,aa)satisfies ¢'. By Lemma 4.5 there is a (k+1)-dimensional e-
configuration £ such that 2 = F(£')(@, a). Obviously £ extends & and because
(ai, ... a}) satisfies F(§) there is by Lemma 4.7 an element o’ € A such that
A= F(E)(a,ad). As ) is a sub-formula of ¢ we get by induction that ¢’ is
satisfied by (a},...,a},a’) and thus 9 is satisfied by (ai,. .. ,a}).

(i1) If F(§) — ¢ is valid then, by Lemma 4.8, F(§) A ¢ is satisfiable. For the backward
direction suppose that 2 = F(£) A ¢(a) for some @ € A*. By the first part of this
lemma we get that all tuples @’ satisfying F(&), satisfy ¢ as well. Thus F(§) — ¢
is valid.

O

Now we are ready to define the evaluation algorithm. The algorithm works as follows.
Given a query formula i with k& free variables as input it tests for every k-dimensional
e-configuration £ whether F(§) — 4 is valid. This is done by a sub-algorithm TEST. It
then outputs the disjunction of the formulae F'(§) for every ¢ such that F(£) — ¢ is valid.
Recall from the beginning of the section that the database relation symbols occurring in
the query have been replaced by the formulae representing the relations in the database.

Algorithm 4.10. TEST(¢,¢)
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Input: A formula v with k free variables and a k-dimensional e-configuration § = (~, 7).
Output: true if F(§) — 1 is valid, false otherwise.
The algorithm is defined inductively on the structure of 1.

e Suppose v is atomic of the form x; = x;.
If i ~ j return true else return false.

e Suppose 1 is atomic of the form x; = c.
If v; = ¢ return true else return false.

o Suppose ¢ s of the form Y1 V 1s.
If TEST (41, &) returns true return true, else return TEST (15, &).

e Suppose 1 is of the form —)'.
If TEST(¢', &) returns false then return true else return false.

e Suppose 1 is of the form Iz,
For every extension &' of & do TEST(1),¢'). If one of these returns true then return
true as well. Otherwise return false.

The algorithm TEST is used in the following evaluation algorithm evaluate,.
Algorithm 4.11. evaluatey(B)
Input: A constraint database 8.
Output: A finite representation of Y.

We assume in the algorithm that the occurrences of the database relation symbols in 1)
have been replaced by the formulae representing the relations in 8. Further, let k be the
number of free variables in ¢ and P be the set of parameters used in B and .

for each k-dimensional e-configuration £ using parameters from P do
execute TEST (¢, ¢)

od

output The disjunction of all F(§) so that TEST(¢,§) returned true.

Having defined the evaluation algorithm we have to prove its correctness. This is done
in the following two lemmas, the first proving the correctness of the sub algorithm TEST
and the second proving the correctness of evaluate.

Lemma 4.12. The algorithm TEST (1), §) returns true if and only if F(§) — ¢ is valid.
Proof. The proof is by induction on the structure of .

e The atomic cases are trivial.



26 CHAPTER 4. AN OVERVIEW OF DATA COMPLEXITY BOUNDS

e Suppose ¢ is of the form ¢ V 5. To prove the forth direction recall that TEST
returns true if at least one of the sub algorithms called for ¢y and 5 returns true.
Thus, by induction, F(§) — ¢; or F (&) — 1 and therefore also F/(§) — (¢1 V )
is valid.

Now suppose F(£) — (11 V 1) is valid. Then, by Lemma 4.9, F(&) A (1 V 1y) is
satisfiable. Thus F'(§) Ay or F(€) A1), is satisfiable and by Lemma 4.9 F(§) — 4
or F(§) — 1 is valid. By induction we get that at least one of TEST(1)y,&) or
TEST(1s,€) and therefore also TEST(v, &) returns true.

e Suppose v is of the form —)'. To prove the correctness of this case we show that
F(§) — —' is valid if and only if F(§) — ' is not. F(§) — —' is equivalent to
—(F (&) A¢') and, by Lemma 4.9, to —(F (&) — ¢'). Thus F(§) — —' is valid if
and only if F'(§) — ¢’ is not.

e Suppose ¥ is of the form Jz1)’. To prove this case we show that F(§) — ¢ is valid if
and only if F(§') — ¢ is valid for some extension &' of £&. By Lemma 4.9 it suffices
to show that F(§) A 1 is satisfiable in 2 if and only if F(§') A ¢’ is satisfiable for
some extension &' of £.

For the forth direction suppose that A = F(§) A ¢[a]. Because a satisfies ¢ there
is an a € A such that 2 = ¢'[a,a]. By Lemma 4.5 there is an e-configuration &'
containing (@, a). Clearly, ' is an extension of £ and therefore 2 = F(¢') A ¢'[a, a.
For the backward direction suppose that 2 = F(¢') A ¢'[a, a] for some extension &'
of £ and elements @,a € A. As &' extends &, Lemma 4.7 gives 2 = F(§)[a] and,
because (@, a) satisfies ¢', A |= ¢[a]. Thus A = F(§) A ¢al.

This finishes the proof.

We use the previous result to show the correctness of the evaluation algorithm.
Lemma 4.13. The result of evaluatey(B) is equivalent to ¢®.

Proof. Let C' = {&;, ..., &} be the set of all e-configurations such that F(&;) — 1 is valid.
Thus the result of evaluatey is \/,,.,, F'(&). To prove the lemma we show that a tuple @
satisfies ¢ in B if and only if it satisfies \/,_,.,, F(&)-

Clearly, (\,<;<,, F(&)) — 9 is valid and therefore every tuple a satisfying (\/,,,, F(&))
satisfies ¢ as well. For the converse let @ be a tuple with 2 = ¢(a). By Lemma 4.5
there is an e-configuration & containing @. Thus @ satisfies F(§) A ¢ and, by Lemma 4.9,
F(&) — v is valid. Therefore ¢ € C and @ satisfies (\/,_,., F(&)). O

Having proven the correctness of the algorithm we still have to show that it runs in
logarithmic space.

Lemma 4.14. evaluate, is a LOGSPACE-algorithm.

Proof. Let 1 be a first-order query with k free variables and B := (A, RE,... ,R®) be
the input database. To prove the lemma we show that both algorithms, TEST and
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evaluate, are LOGSPACE-algorithms. We begin with the sub-algorithm TEST. TEST is
called by evaluate with the query ¢ and a k-dimensional e-configuration £ as parameter.
Recall that we assumed in the definition of the algorithms that the database relation
symbols occurring in 1 have been replaced by the formulae defining the relations in 8.
Let o' := ¢[R;/¢R ] be the result of the substitution. Clearly, ¢’ cannot be stored
on the working tape as it consumes more than logarithmic space. Instead of explicitly
creating 1)’, the algorithm operates on the original query v and each time it comes to a
database relation symbol R it remembers its current position in the query and continues
the evaluation with the formula ¢ on the input tape. The Turing machine can remember
the current position in the query in its states. Thus no extra space is used for the
representation of .

We now show that a k-dimensional e-configuration £ can be stored on the working
tape in logarithmic space. As 1 is fixed, the number k of free variables is independent of
the input. Recall that an e-configuration essentially consists of a k& tuple of coefficients
from the query or the database and the equivalence relation ~. Clearly, the size of
the equivalence relation depends only on k£ and is therefore fixed. The coefficients in &
occurring in the query are independent of the input and therefore fixed in size whereas
the coefficients occurring in the database can be stored by pointers to their occurrence
on the input tape. Thus the e-configuration ¢ can be stored by at most k? pointers, and
with this, in space logarithmic to the size of the input. We now show that TEST does not
use more than logarithmic space. The algorithm operates by induction on the structure
of the query. Whenever it comes to a database relation symbol R it has to test whether
F(€) A o3 is satisfiable in 2. This can clearly be done in LOGSPACE.

The only other interesting case is existential quantification. Here TEST calls itself for
every extension &' of €. Clearly there are only finitely many extensions and an extension
can also be stored in logarithmic space. As the space occupied by an extension can
be reused for the next one, the algorithm has only to store one of the extensions at a
time. By induction we get that the recursive calls with one extension can also be done in
LoGsPACE. This proves that TEST is a LOGSPACE-algorithm.

Now consider the algorithm evaluate. All it does is to generate all possible e-configu-
rations of dimension k£ with parameters form the query or the database and to execute
TEST for each of it. As the space used for the e-configurations can be reused and TEST
works in LOGSPACE, evaluate is itself a LOGSPACE-algorithm. This finishes the proof.
O

The last two lemmas together prove Theorem 4.1 giving the LOGSPACE upper com-
plexity bound for first-order queries.
Using the methods we develop in Chapter 5, complexity bounds for other logics like tran-
sitive closure or least fixed-point logic can be proven. We already saw in Section 3.2 that
these logics cannot express all LOGSPACE computable queries. Table 4.1 gives an overview
of the complexity bounds for databases defined over countably infinite sets.

In the next sections we switch from unordered to ordered structures. As we will see,
there is a significant difference between structures with a discrete universe and dense
structures. The next section deals with dense structures whereas the discrete structures
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FO+DTC C LOGSPACE
FO+TC C NLOGSPACE
FO+LFP C PTIME
FO+PFP C PSPACE

Table 4.1: Logics and complexity classes in the context of inequality constraints.

will be covered in the section thereafter.

4.2 Structures with a densely ordered universe

A straightforward extension of the databases considered in the previous section are dense
order constraint databases, that is databases over a context structure which is a dense
order. We consider such databases in the next section. In the sections thereafter we enrich
the context signature first by addition and then by addition and multiplication.

4.2.1 Dense order databases

In this section we consider databases over dense orders. Kanellakis, Kuper and Revesz
considered dense order databases in [KKR90] and proved that first-order queries can be
evaluated in LOGSPACE.

Theorem 4.15. First-order queries over dense order databases have LOGSPACE data
complexity.

Their argument is very similar to the one presented above to prove the LOGSPACE
upper bound for inequality constraints over an infinite domain. The proof is based on
r-configurations instead of the e-configurations used above. Again let P be the set of
parameters occurring in the query or the database.

Definition 4.16. A k-dimensional r-configuration ¢ = (f,1,u) consists of a sequence
f = (fi, .., fr), where {f1,...,fi} = {1,...,5} for some j < k, and two sequences
Il=(ly,...,It) and @ = (uy,...,uy), where the l;’s are in P U {—o0o} and the ;s are in
P U {0}, such that for all 1 <i,j < k:

o [; <uy.

e There is no constant ¢ € P with [; < ¢ < u;.
e Whenever f; < f;, then l; < u;.

e Whenever f; = f;, then [; = [; and u; = u;.

The idea is that two points T and ¥ can be distinguished using order constraints and
the available parameters if the relative order of the x;’s and the y;’s differ or if for some ¢,
x; and y; are in a different relation to some element of P. Using r-configurations instead
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of e-configurations the proof of Theorem 4.15 is very similar to the proof given in the
previous section. We don’t go into details here because dense order databases will be
considered in detail in Chapter 5, where not only first-order logic but also its various
fixed-point extensions will be considered.

In other work, Kanellakis and Goldin [KG94] give an extension of Codd’s relational algebra
to dense order databases. This constraint algebra can be used to implement evaluation
algorithms for first-order queries on dense order databases which are based on circuits.
By doing this an ACy upper bound can be shown.

4.2.2 Linear constraints

In this section we consider linear constraint databases, that is, databases defined over the
context structure (R, <,+). An example for the application of linear constraint databases
are databases used by CAD-systems. The data complexity of linear constraint queries has
been studied by Grumbach, Su, and Tollu in [GS97b] and [GST95]. In [GS97b] Grumbach
and Su claim that “first-order queries on linear constraint databases have a NC; data
complexity.” Unfortunately the proof is given only for the two dimensional case and
cannot be extended to higher dimensions.

We briefly investigate the data complexity of more expressive logics than first-order.
It turns out that adding a recursion mechanism to first-order logic leads to non-closed or
undecidable languages. All fixed-point extensions of first-order logic considered so far are
not closed. For example, the following FO+DTC formula

nat(z) == [DTC,(z + 1 = y)](0, z)

defines the natural numbers. As the natural numbers are not even definable in the field
of reals the result of the query nat cannot be represented by a quantifier-free formula
over (R, <,+). The following theorem shows that there is no way to enrich the context
structure by functions or relations such that FO+DTC-queries would be decidable and
closed.

Theorem 4.17. Every query language over the context structure (R, <,+) which is at
least as expressive as existential FO+DTC is undecidable.

Proof. To prove the theorem we reduce the decision problem for the existential theory of
arithmetic, which is known to be undecidable (see [EFT94]), to the evaluation problem of
boolean existential FO+DTC-queries. As we saw above the natural numbers are definable
in FO+DTC. The graph of the multiplication for natural numbers can be defined by the
FO+DT(C-formula

mult(a,b,c) :=[DTCyywy(y+1=9y ANz +a=2"]0,0,cb).

Now we reduce the decision problem for the existential theory of arithmetic to the
query evaluation problem for boolean FO+DT(C-queries. For each sentence ¢ of the
existential theory of arithmetic let ¢’ be the result of relativizing each quantifier in ¢ to
nat and replacing each occurrence of multiplication by the formula mult. Note that as
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multiplication occurs in ¢ as a function, we have to introduce new existential quantifiers
to replace it by the formula mult. These new quantifiers are also relativized to nat.

The formulae nat and mult are both existential FO+DTC-formulae. Therefore ¢’ is also
existential. Clearly, ¢ is true in the existential theory of arithmetic if and only if ¢’
evaluates to true. Thus the undecidability of the evaluation problem follows from the
undecidability of the existential theory of arithmetic. O

4.2.3 Real closed fields

In this subsection we consider databases defined over the field of reals. Databases like
this can be used to store geometrical objects, one of the most promising applications of
constraint databases.

In their seminal paper [KKR90], Kanellakis, Kuper and Revesz considered databases
over the field of reals and proved an NC upper data complexity bound.

Theorem 4.18. First-order queries in the context of the field of reals have NC data
complexity.

The proof of the theorem is based on the following result by Ben-or, Kozen and Reif
[BoKRS86].

Theorem 4.19. The theory of real closed fields can be decided in deterministic exponen-
tial space or parallel exponential time. In fixed dimension, the theory can be decided in

NC.

The main result of the previous section immediately implies that the various fixed-
point extensions of first-order logic are undecidable over the field of reals.

4.3 Structures with a discretely ordered universe

In the previous sections we analyzed the complexity of query languages in the context
structures with a dense universe. Now we shift our attention to structures with a discrete
universe. As we will see, there is a serious gap in complexity between dense and discrete
order query languages. We proceed as in the previous sections, beginning with a discrete
order as context structure and successively enriching the signature in the succeeding
sections by addition and addition and multiplication.

4.3.1 Discrete linear orders

In Section 4.2.1 we saw that extending finite databases to dense order databases still yields
efficient query languages. As we will see in this section the situation changes drastically
if discrete instead of dense orders are considered. We will show that FO+LFP is already
Turing complete. Throughout this section (N, <) serves as an example of discrete linear
orders.

Grumbach and Su [GS97b] stated that the techniques used by Kanellakis and Goldin
in [KG94] to prove an AC, bound for dense linear orders could be extended to discrete



4.3. STRUCTURES WITH A DISCRETELY ORDERED UNIVERSE 31

orders. Unfortunately this is not the case as the theory of discrete linear orders does not
admit quantifier elimination. For example the formula ¢(z,y) := 3z x < 2 Az < y is not
equivalent to any quantifier-free formula. To obtain quantifier elimination for (N, <), the
language has to be enriched by a countable set of relations {<,: ¢ € NU{—1}}. The
intended meaning of z <, y is ¢+ ¢ < y. These relations are called gap-orders. Using this
signature the formula ¢ above can be translated to an equivalent formula ¢(z,y) :=2 <; y
which is quantifier-free. Note that <, is the usual order and <_; corresponds to <. In
the following we consider the context structure (N, (<c)cenuq-1})-

The complexity of first-order queries on gap-order databases will be considered in some
detail in Chapter 6. Here we consider the data complexity of more expressive logics. We
will see in Chapter 5 that, because it captures PTIME, FO+LFP is an important logic for
the class of dense order databases. The next theorem by Revesz [Rev93] shows that it is
already too powerful over the class of discrete orders because it can express any Turing
computable function.

Theorem 4.20. Any Turing computable function is expressible by an FO+LFP formula
on discrete gap-order databases.

Proof. The class of Turing computable functions coincides with the class of u-recursive
functions. Thus is suffices to show that every pu-recursive function is expressible by an
FO+LFP formula. These functions are built up from the initial functions zero, proj, and
succ by the operations of composition, primitive recursion, and the p-operator. In the
following we show that the graph of these (partial) functions is definable by FO+LFP-
formulae.

The functions zero(z), proj;(x1, ..., %n,y), and succ(z,y) can be defined by

Qazero(m) = _'Ely y<uz,
Oproj; (T1, ..., Tn,Y) == 2; =y, and
Sosucc(x,y) =r < y/\—Elz r<zNz<y.

Given formulae ¢g, @p,, - . . , @n, corresponding to u-recursive functions g and h;, the func-
tion f = g(hq, ..., hy) derived by composing g and hq, ... , hj can be expressed by

0r(@,y) =TT pg@y) A N\ on, (T, ).
1<i<k

Recall that a function f : N**! — N is obtained by primitive recursion on ¢ : N* — N
and h : N"*2 — N if

f(z1,...,2,,0) = g(x1,...,2,)
flz1,...szni+1) = h(z,... 25 f(21,... 25, 10),10).

Let ¢, and ¢; be formulae corresponding to g and h. We define an (n + 2)-ary relation
R such that Ra,c,b holds if f(@,c) = b. The relation is used in the fixed-point formula

5(@, 0, y) = [LFPraiy (0 = 0 A ¢y (T, 9))V
(Z 7é 0A ElleT,’l - 1»@/' A QOh(E, ylai - 173/)))](5’ Zay)
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defining the graph of the function f. It states that “4 = 0 and ¢(Z) = y or ¢ # 0 and
there is y' such that f(Z,i — 1) = ¢’ and h(T,y’,i) = y”. The abbreviation i — 1 used in
the definition of ¢ can be defined using the successor function.

The last operation we have to consider is the p-operator. Recall that the u-operator is
defined as follows. Let g : N**!1 — N be a p-recursive function. The function f : N* —
N, f := pyg is derived from g by an application of the p-operator, if

the smallest y such that ¢(Z,y) =0 and for all z <y

f(@) = g(z, z) is defined and not 0
undefined, if no such y exists.
Let g4(Z1,...,Zn, Tny1,y) be a formula corresponding to the function g. The formula

@¢(x1,...,2,,y) can be defined as

pr(@1,. a0, y) = g(T,y,0) AVz <yTy' >0 (94(T,2,9)).
Thus all p-recursive functions can be expressed by FO+LFP-formulae. O

We get from the theorem that FO+LFP is too expressive in the context of discrete
orders. The reason for this is the combination of recursion and the definability of the
successor function. Leaving out recursion leads to first-order queries which are considered
in detail in Chapter 6, where it is shown that their data complexity is LOGSPACE.

If the formulae are restricted to positive ones, the successor function becomes undefin-
able. Revesz considered in [Rev90] and [Rev93| positive DATALOG queries on gap-order
databases. He used a representation of constraints by graphs, so called gap-graphs, to
set up an evaluation algorithm and proved the algorithm to terminate on every query.
But nothing more is known of its complexity. Since positive DATALOG is equivalent to
existential positive fixed-point logic, we get the following theorem.

Theorem 4.21 ([Rev93]). Ezistential positive FO+LFP queries can be evaluated bot-
tom up in closed form.

In this section we saw that the combination of gap-orders as context structure and
recursive query languages leads to high data complexity. In the next section we add
addition to the natural numbers and see that even boolean first-order queries have a very
high data complexity.

4.3.2 Presburger arithmetic

In the last section we saw that the structure (N, <) does not admit quantifier elimination
but can be enriched by certain relations so that the expanded structure admits quantifier
elimination. The same happens if we consider the structure (N, <,+), also known as
Presburger arithmetic. An example that shows that the Presburger arithmetic does not
admit quantifier elimination is the set of even numbers which can be defined by ¢(z) :=
dz z + z = x but which cannot be defined without quantifiers.
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Grumbach and Su claimed in [GS97b] that first-order queries on (N, <, +) as context
structure could be evaluated in NC; data complexity. We will prove this to be false using
the methods of Section 3.1.

The proof is based on the following theorem by Gradel [Gra88] and Schéning [Sch97].

Theorem 4.22. (Grddel [Grd88], Schéoning [Sch97])
If m is odd, then

(a) [31V2...3mV3] is T -complete.
(b) V132 ...V 3?] is TP -complete.
If m is even, then
(a) [F1Vs ... V3] is X2 -complete.
(b) [V13y...3,,V3] is T2 -complete.
We use this to prove the following theorem.

Theorem 4.23. For each level X7, resp. 114, of the polynomial time hierarchy there is a
fized query such that the data complexity of the query is X% -complete, resp. II}-complete.

Proof. A direct implication of Theorem 4.22 and Theorem 3.3 is that for each level X,
or IT7 resp., there are queries such that X}, or II} resp., is a lower bound for the data
complexity of the queries. In the proof of Theorem 3.3 we reduced the decision problem for
a k-dimensional theory to the evaluation problem for boolean queries. We can therefore
reduce the decision problem for the prefix classes mentioned above to the evaluation
problem for boolean queries. This proves that for each level of the polynomial time
hierarchy there are queries whose data complexity is complete for that level. O

As a corollary of the theorem we get that FO captures PH on the class of constraint
databases defined over the Presburger arithmetic.

Corollary 4.24. First-order logic captures the polynomial time hierarchy on the class of
constraint databases defined over the Presburger arithmetic.

Proof. Clearly, FO C PH because every first-order query either already has a prefix of
the form as in Theorem 4.22 or it can be converted to such a form by adding quantifiers.
The corollary now follows immediately from Theorem 4.23. O

As we can see, first-order logic can express quite complex queries. A natural question
is to ask for sub-classes of first-order logic which can still be evaluated in polynomial time.
We will see that existential and universal boolean queries are such classes. The following
lemma is due to Lenstra [Len83] and Scarpellini [Sca84].

Lemma 4.25. For all fivred dimensions t € N, [3] and [V'] are in PTIME.

As an implication of this lemma and Theorem 3.4 we get the following theorem.
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Theorem 4.26. FEuxistential and universal boolean queries have PTIME data complexity.

Although first-order queries have a very high data complexity, boolean existential
or universal queries are still tractable. Schéning [Sch97] proved that the prefix class
[3V] N PA, that is the set of all sentences with quantifier prefix 3V true in the Presburger
arithmetic, is NP-complete. Thus, unless PTIME = NP, the above two classes are the
only sub-classes which can be evaluated in PTIME.

In Section 4.2.2 we saw that the various fixed-point extensions of first-order logic
lead to undecidable query languages over the context structure (R, <,+), because the
natural numbers with addition and multiplication become definable. The same happens
in the context of the Presburger arithmetic because the formula mult given in Section
4.2.2 can be used to define multiplication in this context as well. Thus also with the
Presburger arithmetic as context structure, adding fixed-points to first-order logic leads
to undecidable languages.

4.3.3 The theory of arithmetic

We proved in the last section that using Presburger arithmetic as context structure re-
sults in query languages with very high data complexity. Adding multiplication to the
Presburger arithmetic leads to undecidable query languages as the first-order theory of
(N, <,+, *) is undecidable. In contrast, when the universe of the context structure is
densely ordered, we have been able to add multiplication to the signature and still end
up in tractable query languages.

4.4 Summary

The results presented in this chapter are summarized in Table 4.2 and 4.3.

| | inequality | (R,<) | R<,+) | (R <, +,%) |
FO LOGSPACE | LOGSPACE ? NC
ex. FO+DTC - - undecidable | undecidable

Table 4.2: Overview, Part I, of the results presented in Chapter 4.

| | N, <.) | N<,+) | (N<+,) ]
bool. univ. or ex. FO - PTIME -
boolean FO - = PH undecidable
ex. pos. FO+LFP closed - -
FO+LFP Turing complete | undecidable | undecidable

Table 4.3: Overview, Part I, of the results presented in Chapter 4.



Chapter 5

Dense linear orders

The focus of this chapter is the complexity of query evaluation in the context of dense
linear orders. We prove a general result which allows us to give precise complexity bounds
for the data complexity of various logics such as transitive closure or fixed-point logic and
to extend results on logics capturing complexity classes from the realm of finite ordered
structures to constraint databases over dense linear orders. Given a fixed query, its evalu-
ation in a database can be done by transforming the database into a finite structure, called
its invariant, evaluating a slightly modified version of the query in it, and transforming
the result of the evaluation to an answer of the original query. Although this evaluation
method may seem to be a long way round, it will actually prove to be a shortcut.

5.1 Evaluating queries

In this chapter the context structure A := (R, <) serves as an example of a dense linear
order without endpoints, but the results hold for arbitrary dense linear orders, because
no special features of the reals will be used. Throughout the chapter we consider a
fixed query 1) with a set PY of parameters. The query has to be transformed so that
it can be evaluated in the invariant. This transformation is independent of a particular
database and can be seen as a compilation or preprocessing step. To set up the evaluation
method outlined above, we define two mappings. The first, tnv, maps databases to their
corresponding invariants; the second, 7, maps the answer of the query on the invariant to
the answer of the original query. Before the mappings are defined we fix some notation
and prove a few facts about dense linear order databases.

Definition 5.1. Let o := {Ry,..., R} be a signature, B be a o-database over (R, <),
P C R a set of elements, and b a tuple of real numbers.

e The complete atomic type of b with respect to B, written as atp®(b), is the set of all
atomic and negated atomic formulae (Z) over the signature {<, Ry,..., Ry} such
that B = ¢[b].

e The complete atomic type of b over P with respect to B, atp®(b), is defined in the
same way as atp®(b), but with formulae that may also use the parameters from P.

35
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e The complete order type of b with respect to B, otp®(b), is defined as the complete
atomic type of b over the signature {<}. The definition of a complete order type of
b over P is analogous.

e A maximally consistent set of atomic and negated atomic o U {<}-formulae ¢(Z) is
a complete atomic type (over P) in the variables T, if it is a complete atomic type
(over P) of a tuple b with respect to a o-expansion of A. We write atp®(Z), resp.
atpp(T), for a complete atomic type (over P) in the variables T over the database
signature o of B.

A type is an n-type if it has n free variables. We omit B if it is clear from the con-
text. When speaking about types we always mean complete atomic types throughout this
chapter.

We call complete atomic types over o U {<} also complete database types. Database
types are of special interest here because the database type of a tuple b determines every-
thing we can say about b in terms of the database, especially in which database relations
b stands.

Suppose B is a database and P the set of parameters used in its definition. Recall
from the introduction that there are different ways to represent the database 8. The set
of parameters used in these representations will generally differ from P. We define a set of
parameters, called the canonical parameters, which can be extracted from B independent
of its representation.

Definition 5.2. Suppose B = (R, <, RY,..., RY) is a database. The set cp(B8) C R of
canonical parameters of B is the set of elements p satisfying the following condition.

For at least one n-ary relation R € {R¥,...  RF} there are ay,... ,a, E R, ane € R e >
0, and an e-neighbourhood § = (p — &, p + ¢) of p such that one of the following holds.

e For all ¢ € §,q < p and for no ¢ € §,q > p we have Ralp/q|.
e For all ¢ € §,¢ > p and for no ¢ € §,q < p we have Ralp/q|.
e Ralp/q] holds for all ¢ € 6\{p} but not for ¢ = p.
e Ralp/q] holds for ¢ = p but not for any ¢ € 6\{p}.

Ra[p/q] means that all components a; = p are replaced by gq.

One important property of c¢p(B) we need in the sequel is that ep(B) is finite for all
dense order constraint databases. This is proved in the following lemma.

Lemma 5.3. The set cp(B) of canonical parameters is finite for all databases B.

Proof. We claim that all canonical parameters occur explicitly as constants in every rep-
resentation of the database. The proof of the lemma then follows easily because as all
representations are finite, only finitely many parameters can occur in them and thus the
set of canonical parameters must also be finite.
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To prove the claim let p be a canonical parameter. There exists a relation R, an n-tuple a,
and an e-neighbourhood § of p such that at least one of the four conditions of Definition
5.2 is met. We give the proof explicitly for the first condition. The other cases can be
treated analogously.

As the first condition is met, for all ¢ € §,q < p and for no ¢ € §,q > p, we have
Ralp/q]. Thus there is a boolean combination of atomic and negated atomic formulae in
the representation of R distinguishing between the two sets {a[p/q] : q € 0,9 < p} and
{alp/q] : q € 6,q > p}. As the universe R is dense, we can always find an ¢’ > 0 such
that no a; # p is an element of the &’-neighbourhood ¢' := (p — &', p + ¢') of p. Clearly,
no formula of the form z; < z; or z; = z; can distinguish between any two points b, EI,
such that b € A~ := {a[p/q] : q¢ € §,q < p} and b e At = {a[p/q] : q €, q> p}
As for all b € A~ and for no b € A we have Rb, there must be a boolean combination
of formulae of the form z; < ¢ or x; = ¢, where ¢ is a parameter, in the representation of
R, distinguishing between A~ and A*. Obviously, the parameter p must occur in these
formulae. This proves the claim. O

The parameters in the previous definition have been called canonical, because they
can be defined in the database independent of a particular representation. We show in
the next lemma that an atomic order type over c¢p(*8) uniquely determines a complete
database type. It follows that every two tuples realizing the same atomic order type over
cp(*B) occur in the same database relations and thus the set cp(B) is sufficient to define
a representation of 8.

Lemma 5.4. Suppose B is a database and @,b € R* are two k-tuples.

Proof.

(i) For the sake of contradiction suppose that atp®(b) and atp®(a) differ. Then there
is an atomic or negated atomic formula ¢ such that B = p[a] but B ~ ¢[b]. If ¢ is
of the form z; < z;, then a; < a; but not b; < b;, which contradicts the assumption

that otpg(%) (5) = otp?;(%)(a)-

Now suppose ¢ is of the form Rz, ... ,z,, where r := ar(R). Let C := (¢, ¢y, ... , Cx)
be a sequence of points in R¥, such that for 0 < i < k, cij = bjforalll <j <
and ¢;; = a; foralli < j < k. Thus ¢ = @, ¢, = b, & = (b1,a9,...,az),
¢y = (by,by,as,...,a;), and so on. Further, let L := (Iy,...,l;) be a sequence of

lines such that for all 1 < ¢ < k the endpoints of I; are ¢; ; and ¢;. As B = ¢[a] but
B £ p[b], there is 1 < j < k such that [; intersects both R® and RF\R®. Assume
w.l.o.g. that a; < b;. Let g := ¢;_;. Then there is p € R with a; < p < b; such
that R®g but not R®q, ... ,qj—1,p,qj+1,--- ,q. We claim that there is at least
one canonical parameter d with a; < d < p. Thus @ and b do not satisfy the same
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complete order type over cp(B) which contradicts the assumption.
To prove the claim, let A be a set of real numbers defined as

A={a€R : aj<aand R®q,...,qj_1d'¢1,... ,q for all a; < a’' < a}.

If A is closed let d be the biggest element in A, otherwise let d be the upper boundary
of A. Then, by Definition 5.2, ¢ is a canonical parameter and a; < d < p. This
proves the claim.

The case where ¢ is negated atomic can be proven analogously.

(i) The proof follows from the fact that all formulae ¢ occurring in otpc“;(%)(f) for
variables z1, ...,z either occur in otp®(Z), if they are of the form z; < z; for
some 1 < 4,5 < k, or occur in otp?;(%)(mi), if they are of the form z; = p for
some p € cp(*B). Thus, because otpz(%)(ai) = otp?;(%)(b,’) for all 1 < i < k and
otp® (@) = otp®(b), also otp?;(%)(d) = otp?;(%)(a).

U

One implication of the lemma is the following. Suppose we want to decide if Ra holds
for a tuple @ := ay, ... ,a; and a k-ary database relation R. The question can be answered
if we know whether Rb holds for a tuple b := by, ... , b, such that @ and b realize the same
order type and each b; realizes the same 1-order type over c¢p(B) as a;. This will be the
central idea in the definition of the invariant.

The lemma also has some other useful corollaries.

Corollary 5.5. Suppose B is a o-database and @,b € R are k-tuples. If otpg(%)(d) =

otpg(%) (b) then @ and b cannot be distinguished by a first-order formula using only pa-
rameters from cp(*B).

Proof. Let ¢ € FOlo U {<}] be a first-order formula and ¢’ := unfold(p,B) be the
unfolded query according to Definition 2.9. As ¢’ is a first-order formula over the signature
{<} and the theory of dense linear orders admits quantifier elimination, ¢’ is equivalent
to a quantifier-free formula . It follows from Lemma 5.4(¢) that ¢ cannot distinguish

between @ and b. As also ¢ is equivalent to 1, @ and b cannot be distinguished by ¢
either. O

In Definition 5.9 below the canonical parameters of a database will be used to define
its invariant. Not only the parameters of the database but also the parameters P¥ used
in the query are needed. Thus it has to be shown that the preceding lemma holds even if
we extend the set cp(B).

Proposition 5.6. Suppose B is a database, a,be I@k are two k-tuples, and P := cp(*B)U
PYU{0,1}. Then otp?;(%)(d) = otp?;(%)(b) if otpB (b) = otph(a).

Proof. The proof of the proposition follows immediately from the fact that all atomic
formulae occurring in the atomic order type over ¢p(B) also occur in the atomic order
type over P. O
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For the rest of this chapter we define P to be the set {0,1}Ucp(B)UP?. The constants
0 and 1 are included because they are needed in the definition of the invariant. The last

thing we need for the definition of inv is that the set P is uniformly first-order definable
over (R, <,0,1, PY).

Lemma 5.7. Suppose B = (A, RF,... | RP) is a database. For each 1 <i < k let r; be
the arity of R;. Then P equals {a : B |= 0[a]}, where 6(x) is defined as

o) == Vi G- o, Vii, Fudv u <z Az < oA
VeIyp . 3y (NS Wi =2 =y = 2) A (v # 2 — ¥ = 3i) A
[(u<z<z— "Riyr...Yj-12Yj .. Yn,
ANe <z<v—Ryi...Y-12Yj . Yr;)
Viu<z<z— Ryr...Yj-12Yj ... Yn,
ANe <2 <v—= "Ry .Yj—12Y; - Yr;)]
VRy1 .. Yj—1TYj - - Yr N
(u<zAz<vA-z==x) = “RY1...Yj—12Yj - - - Ur;
VRt . Yi—1TYj .. Y,
(AN <zAz<vA-z==z)—= RY1...Yj—12Yj - - - Yr; |
VVpeppz=pVz=0Vz=1

Proof. The proof should be clear as the formula ¢ is essentially a first-order formalization
of Definition 5.2 augmented with the formula including 0, 1, and the parameters from PY¥.
O

We are now ready to define the invariant. Define an equivalence relation ~ on R such
that two elements a and b are ~-equivalent if and only if they realize the same 1-order type
over P. As P is first-order definable the equivalence relation ~ is first-order definable
as well. The set of equivalence classes R. serves as the universe of the invariant. To
complete the definition we have to specify the database relations.

Before we give the detailed definition of the relations in the invariant, we illustrate the
idea by an example. Consider a database 8 with a single binary relation S represented
by ps(z,y) =2 >4 ANz <8Ay>3Ay<6Ay <z The relation is shown in Figure
5.1. The set cp(B) consists of the four elements {3,4,6,8}. Thus there are nine different
~-equivalence classes, namely the intervals (—oc, 3), {3}, (3,4), {4}, (4,6), {6}, (6,8), {8},
and (8,00). Recall that these equivalence classes form the universe of the invariant. Thus
the relation S has somehow to be defined in terms of these classes. Obviously it is not
enough to factorize S by ~, because as 5 ~ 5.1, the equivalence classes [5] and [5.1] are
equal, but ([5.1],[5]) € S and ([5],[5]) ¢ S. Thus S, would not be well-defined.

Instead of simply factorizing a k-ary relation R by ~ we consider the set Cg of (k+1)-
tuples ([ai], ... ,[ax),p), where [a;] € R, ,1 < i < k and p denotes a k-order type, such
that ([a1],...,[ax], p) € Cr if and only if there is a b € R¥ realizing p such that Rb holds
and a; ~ b; for all 1 < i < k. In the example above, the set Cs consists of the set of all
triples ([a1], [az], p) such that [a1] X [as] is in the rectangle marked by the dashed line in
Figure 5.1 and p is the order type = < y.

The idea behind the definition of the relation in the invariant is to use the set Cg
as a finite relation carrying all the information necessary to restore the original database
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x

Figure 5.1: Relation S represented by x >4 ANz <8Ay>3Ay<6Ay<uz.

relation R. Note that the number of different k-order types is finite for all k. Thus we
can assign to each order type a finite word &(p) over {0,1}. Once such an injection ¢ is
fixed, the set Cg can be rewritten to a set C' := {([a1], ... ,[ax],t) : ([a1],---,[ax],p) €
Cr and &(p) = t}. This gives the definition of the relations in the invariant.

Definition 5.8. For each £ € N let ord(k) be the set of k-order types and on(k) =
[log(|ord(k)|)]. Fix for each k € N an injection &, taking ord(k) to the set {0, 1}°**). For
k = 2 we define &, to be the injection taking z < y to 00, x = y to 01, and y < z to 10.

Definition 5.9. Let 0 := {Ry,... , Ry} be a relational signature where each R; is of arity
r;. Suppose ‘B is a o-database over 2. The invariant B’ of B is a finite structure with
universe U over the signature {<, R}, ..., R}, where

o U .= R/N,
e [z] < [y] if and only if z < y and = ¢ y, and

e R! is of arity r; + on(k) and defined as: R;®'[a)]...[ag]ts .. ton iff there are
bl, e ,bk € R with fk(Otp(E)) = tl, PN aton(k) so that R?bl . bk and [a,] = [bz]
forl1 <i<k.

The mapping inv is defined as the function taking databases to their invariants.

Note that this idea of a finite encoding of finitely representable relations is similar
to the encoding given by Belegradek, Stolboushkin and Taitslin in [BST98]. The main
difference is that they only coded the relations but kept the infinite universe, whereas
here both, the relations and the universe are finite.

Having defined the invariant of a database, we have to explain how the query has to
be transformed for evaluation in the invariant. This translation of the formulae follows
the same ideas described above, namely to increase the arity of the relations to store the
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order type. While translating a formula with free variables {1, ... , z;} we introduce new
free variables 7 to hold the order type.

In Definition 5.11 below we define the transformation of formulae according to their
structure. In this transformation we need to compare order types over a different number
of variables. In particular we need to check if for two order types p; and ps, p1 C ps holds.

Definition 5.10. Suppose p; is a kj-order type in the variables zq,...,z,, and py a
ko-order type in the variables zy, ... ,zy,, where ky < ko. po extends py, if p1 C ps.

This means that the order type p, behaves on 24, ... , zy, in the same way as p;. In the
query transformation we need a formula extendsy,, (7, j) stating that ¢ := i1, ..., lon(k,)
codes a kj-order type p1, j := ji,..., Jon(ks) @ ko-order type py, and po extends p;. The
formula is defined as

extendsy, i, (i,]) := \/ (Eka(p2) =7 — \/ &, (p1) = 1)

szOTd(kz) p1€ord(ky)
po extends py

We are now ready to define the transformation of queries.

Definition 5.11. Suppose ¢ is a database schema and 7 the signature of the invariants
corresponding to o-databases. Further, let £ be a logic from {FO, FO+DTC, FO+TC,
FO+LFP, FO+PFP}. Suppose ¥(z1, ... ,x;) € L]o]is a query. The map f : Lo]| — L[7]
is defined inductively as follows.

o Y(z,y) =z <y.
(fo)(z,y,d1,02) =2 <y Aip =0 Ady = 0.

e Y(z
(f

y) =z =y
(z,y,i1,02) == =y Aig =0 Aiy=1.

09
. (a)ima—
(f)(z,4) == =[]M=0~
. $(z) v <c
(f) (@, i) := <[C]M=0~
o Y(xy,...,x) := Rjuy...ug, where k& = ar(R;). The u; are either constants or
variables from {zy,... ,z;} and all z; occur in {uy,... , us}.
= s if r — Ls,
(fY) (@1, 2,01, lonq)) 1= Riv1 ... vgt, where v, 1= To BUr=E

le] ifu,=c

o Y(xy,...,xp) = wl(yl,... s Uky) AN Ua(21, .. zk2) where all y; and z; occur in 7.
Let 7 :=i,..., zon() J = Jts o Jon(ki)s and 7 :—j{,... ,j(’m( . Then

(f)(7,7) = 3535 extendsy,k(7,7) A extendsi (7 ,7) A (f1h1)(F, ) A (F2)(Z, 7).

e The disjunction case is defined analogously.
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® 7=y
(f4) :==~(fe)
o Y(z1,...,z) =Ty o(T,y).

T,
(f) (@1, wkyd) i= Fy3gr, -, Fonrrnyextendirny (i, 7) A (Fo)(T,y, 7).
o (U, ) := [DT Crgp(7,9)](4, V). )
(f¥)(@,9,7) := [DT Cy55(f ) (. 7, 5)|(w, v, 7).
e The rule for the T'C-operator is defined analogously.

o Y(u) := [LFPrzp(R,T)|(u).
(f)(@, i) := [LFPg z5(f o) (R, 7, j)](, 1).

e The rules for the I F'P- and PF P-operators are defined analogously.

Now almost all parts of the query evaluation method are defined. A query formula ¢
on a database B can be evaluated by evaluating f(¢) in inv(8) using the methods for
finite databases. What is left to be done is to define the way back.

Definition 5.12. Suppose S is a (k 4+ on(k))-ary answer of a query on an invariant. The
map 7 maps S to a formula pg representing the corresponding relation on the original
database. 7 is defined as

7S ps(xr,. .. o) = \/(ak(f,f)/\ T~ aj)),

atcsS

.
I =>=
N

—~

where 04 (7, 1) is a formula stating that T satisfies the order type specified by 7. The map
7 mapping relations to finitely representable relations is defined as

m:S—{a : AE=a(9)[al}.

All parts of the evaluation algorithm have now been defined. The next theorem proves
its correctness.

Theorem 5.13. Suppose B is a database over A and v is a query. Let B' := inv(B) be
the invariant corresponding to B. Then

WP =a((f9)™).
Proof. The proof is by induction on the structure of the query.

e Suppose (z,y) ;= z < y. ¥® is the set of pairs (a,b) € R? such that a < b. By
Definition 5.11, f(1) is defined as z < y Ai; = 0 Aiy = 0. Evaluating ()% results
in the set C':= {(a,b,11,13) : a < b,i; = 0,i; = 0}. Transforming this set with the
mapping 7 yields the formula c(z, y) ==V (4441 incc(02(@, ¥, i1, i2) AT ~ aAy ~ b).
As iy and iy are O for all tuples (a,b,i1,13) € C, 03(x,y,11,12) reduces to z < y and
thus 7(C) equals {(a,b) € R? : a < b}.



5.1. EVALUATING QUERIES 43

The case where 1 is of the form ¢(z,y) := z = y can be treated analogously.

Suppose ¥(z) := & = ¢. Then (f)(z,4) ;= =[] Ai = 0 and (f1))® evaluates to
the set C' := {([c],0)}. Thus 7(C) results in the formula ¢(z) := o1(z,0) Az ~ c. ¢
is satisfied only by ¢ because ¢ € P and therefore the only member of [c] is ¢ itself.

We get 7(C) := {c} = ¢®.
The case ¢(z) := & < ¢ can be treated in the same way.

Suppose ¥(xq,...,x;) := Rsuy ... u; as in Definition 5.11. We assume w.l.o.g. that
the first arguments of the relation are the variables and the parameters come there-
after, that is u; = xy,...,u; = x; and w41 = ¢1,... ,up = ¢;_;. The transformed
query is (fo)(xq,... 2,1 ) =Rz, ... ;[c1]. .. [cx4]i. Evaluating f(3) in B’ yields
the set C := {([a41],... ,|a],[c1], ... [ck,l],g) € R®}. Now we have to show that
7(C) = >,

For the forth direction suppose that (ai,...,a;) € 7(C). Then there is a disjunct
¢ = op(z1,... ,2,8) AN, (T ~ b,) in fr(C) Wlth (b,7) € C and B = p(@). As
(b,7) € R'® and therefore, by Definition 5.9, (ay,... ,a;) € R® we get @ € ¢,

For the back direction suppose that (ai,...,ax) € R%. Then ([a1], ... ,[ax], ) is in
R'™ | where & (otp(@)) = i, and o4(7,7) A A\, a» ~ z, occurs as a disjunct in 7(C).
Obviously this formula is satisfied by @ and therefore @ € 7(C).

Suppose ¥(T) := 11 (7) A»(Z), where all y; and 2; occur in Z. The set ¥® consists of
all tuples @ so that the corresponding parts of @ are in ¥ and ¢5. By induction we

have 7((f¢1)%) = ¥P and 7((f12)®) = ¥2. It follows that also ¥® = w((fy)%").
The other boolean cases can be proven analogously.

Suppose ¥(z1,... ,x) = Jy p(T,y). The transformed formula (f1)) is defined as
(f’(b)(fv 7’) = Hyajla B ajon(k-l-l)e'rtendk(k-l-l)(iaj) A (f@)(f, ya])

Suppose that (ay, ... ,ak) E ¥®. This is the case if and only in there is an aj;
with (a1,...,ax, art1) € ©®. By induction p® = 7n((f¢)®'). Thus there is a tuple
([a1], . .. [akH] j) € (fgo) B and (ay,...,ap41) satisfies the (k + 1)-order type p
denoted by j. This is the case if and only if there is a tuple ([a1], ... ,[az],7) € (fv)¥
such that p extends the order type denoted by 7. Thus we get that (ay,... ,a;) € ¥®
if and only if ([a4],... ,[ax],7) € (fv)®, where (ay,... ,a;) satisfies the order type
denoted by 7. This 1mp11es R ﬂ((fib)%')

Y(u) := [LFPrzp(R,7)|(1).

7)) = [LF Py (f0) (R 7, ))(3,).

We assume in the proof that ¢ does not include an LFP-operator. This is no
restriction of generality because the number of LFP-operators occurring in the query
is fixed. Thus they can be eliminated one by one starting with the innermost.

The proof is by induction on the steps of the fixed-point evaluation. We denote
by R; the value of R after the ith induction step and show that after each step
R; = m(R}) holds.

The proof for the 0-th induction step is straightforward, because ¢ can be seen as a
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query on an expansion of 8 by the empty relation R. It follows from the induction
on the structure of ¢ that Ry = 7(Ry).

Now suppose that after the n-th step R,, = w(R},). Again ¢ can be seen as a query on
the expansion of B by R, and f(y) as a query on the invariant expanded by R!. By
induction assumption we have R,, = m(R},) and therefore the expanded invariant is
again the invariant of the expanded database. Now the induction hypothesis follows
by the induction on the structure of ¢.

e The other cases can be proven in the same way.
O

Now that we have given an evaluation method for queries on dense linear order
databases we are interested in the data complexity of such queries. In the next sec-
tion we will prove upper complexity bounds; we show them to be optimal in the section
thereafter.

5.2 Data complexity

The complexity of the evaluation method defined above depends on the three different
tasks involved in the algorithm. First of all the invariant is created. We will show this to
be in LOGSPACE. This done, the query can be evaluated in the invariant. The complexity
of this task is well understood as it is just a query on a finite ordered database. Thus
we can use the results of descriptive complexity theory for this part of the evaluation
process. The third task in the algorithm is to transform the answer of the evaluation in
the invariant back to the answer on the database. We will show this to be in LOGSPACE
as well. Taken together, the complexity of the complete algorithm is determined by the
complexity of the second task, because all the logics we are interested in have a data
complexity on finite databases of at least LOGSPACE. We get that the change from finite
to dense order databases does not increase the evaluation complexity. The next lemmas
prove the LOGSPACE results for the first and the last part. The following theorem gives
the complexity of the whole evaluation process.

Lemma 5.14. The map inv can be calculated in LOGSPACE, that is given a representa-
tion of a constraint database, its invariant can be constructed in logarithmic space.

Proof. We split the construction of the invariant in two separate algorithms. In the first
the invariant’s universe and in the second the relations are constructed.

In Lemma 5.7 it is proven that the set P can be defined by a first-order formula.
The set of canonical parameters is extracted from the input database in the following
way. For every parameter p occurring in the input we use the formula é(z)[z/p| as a
boolean query on the database. If the query evaluation returns true then p is a canonical
parameter. As first-order queries can be evaluated in LOGSPACE (see [KKR90]), we get
that the set P can be constructed in LoGsPACEas well. To set up the universe U of the
invariant we assume that our Turing machines have an operation mean taking the mean
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of two elements. Besides this we need two other operations +1 and —1 with the obvious
semantic. Now we use these operations to construct the invariant’s universe. The Turing
machine takes every pair u, v from P such that v is the successor of u in P and uses mean
to find an element m,, between u and v. The universe of the invariant consists of all
these new elements m,, together with the set P and the elements [ — 1 and b+ 1, where
[ is the smallest and b the biggest element in P. Obviously all the operations involved,
and thus the construction of the universe, can be done in LOGSPACE.

Now that the universe has been constructed, the relations have to be built up. A
relation R’ in the invariant of arity k + on(k) can be constructed by taking the set of
tuples @, ¢, where @ € U* and ¢ codes a k-order type, such that the query

k
3z(\ ©i ~ a; A 0x(%,7) A RT)

i=1

on the database evaluates to true. Each query is first-order and can be evaluated in
LOGSPACE. As the space can be reused, the whole relation can be constructed in
LoGsPACE. Thus the second sub-algorithm a LoGsPACE-algorithm.

As the composition of LOGSPACE-algorithms is also in LOGSPACE, we get that the
combined algorithm constructing the invariant is also in LOGSPACE. O

Lemma 5.15. The map 7 can be calculated in LOGSPACE.

Proof. Suppose B’ is the invariant of a dense linear order database and R an answer
relation obtained by a query ¢ on B’. All the algorithm to calculate 7(R) has to do is to
output the disjunction of the formulae (o (T,7) A /\le(xj ~ a;)) for every tuple @i € R.
Clearly, this can be done in LOGSPACE. O

Now we have the complexity of the three parts of the evaluation algorithm. The
following theorem puts the parts together and gives an upper bound for the complexity
of various dense order query languages.

Theorem 5.16. Suppose L € {FO, FO+DTC, FO+TC, FO+LFP, FO+IFP, FO+PFP}
18 a logic and € a complexity class so that the evaluation problem for L on finite databases
18 in €. Then the evaluation problem for L on dense linear order databases is also in €.

The theorem above gives us the upper data complexity bounds for query evaluation.
In the next section we show them to be optimal.

5.3 Capturing complexity classes

As in the previous sections we use the invariant to lift the capturing results for finite
structures from descriptive complexity theory to dense linear order databases. In the
proof of the capturing results a transformation of formulae over the invariant to formulae
over the database is needed. In a way this forms the opposite direction we took in the first
section of this chapter. We will define this mapping by means of a first-order interpretation
? of the invariant in the database (see [Hod97]).
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Definition 5.17. To ease notation we denote by B the database B := (A, RE,... | RY),
by o its signature, by 9B’ its invariant inv(B), and by 7 the signature of the invariant.
The interpretation ? interpreting 8’ in B is given by

e the domain formula d0r(z) := true,
e a surjective map fr : R — U defined as fr(z) := [z], and

e for each atomic formula ¢ € FO[r] a formula yr € FOlo].
A formula u = v € FOIr] corresponds to u ~ v, where u, v denote either variables
or parameters from P. The formulae for all other atomic formulae can be given
according to Definition 5.9. That is, a formula v < v € FO|r] corresponds to
u < vA-u~ vand RTi to 3G RG A ar(r,) (T, 1) A \j(z; ~ ;). Recall the
definition of o}, from Definition 5.12.

Clearly, for all atomic formulae ¢ € FOlr|, B' = ¢[fra] if and only if B’ E ¢r[a],
because the correspondence between formulae given in the previous definition is only a
formalization of Definition 5.9. The last thing needed to prove the capturing results is
a generalization of the reduction lemma given in [Hod97] to transitive closure and fixed-
point logic.

Lemma 5.18 (generalized reduction lemma). Suppose B is a o-structure, B' a 7-
structure and 7 a 1-dimensional interpretation of B’ in B. Let L be a logic from {FO,
FO+DTC, FO+TC, FO+LFP, FO+IFP, FO+PFP}. Then for every formula ¥)(y) of the
language L[] there is a formula ¢¥r(T) of the language L[o], such that for alla € (6r(A))",

B' = ¢(fra) <= B F ¥r(a@).
Proof. We extend ¢r given in Definition 5.17 by the following rules:
e (=¢)r = ~(¢r).
(Y1 At2)r = (Y1)r A (Y2)r-
(Fyd)r = 3z (r(z) A ¢r).

® ([LFPRya:lvvxkip)F = [LFPR7$177xk¢F]

The rules for the other operators like the DT'C or PF P operator are analogous to the
LF'P case. The first-order cases are already proven in the reduction lemma, whereas the
LFP case follows from the same argument as in Theorem 5.13. O

We are now ready to prove the theorem lifting the capturing results over finite struc-
tures to dense linear order databases. We state the theorem explicitly only for FO+LFP
but the proof works exactly the same way for FO+DTC, FO+TC, FO+IFP, and FO+PFP.

Theorem 5.19. FO+LFP captures PTIME in the context of dense linear orders.
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FO+DTC = LOGSPACE
FO+TC = NLOGSPACE
FO+LFP = PTIME
FO+PFP = PSPACE

Table 5.1: Logics and complexity classes in the context of dense linear orders.

Proof. We have already proven that FO+LFP C PTIME. To show the other direction
suppose that 28 is a dense linear order database and ) a PTIME query. Then there is
a PTIME-algorithm Mg which takes a database B as input and returns Q(*B) as an-
swer. Again let o be the database signature and 7 be the signature of the corresponding
invariants. We now show that there is an FO+LFP[o|-formula 1g defining Q.

We define an algorithm M which takes an invariant inv(B) of a database B as input
and returns Q(8) as output. The algorithm M operates as follows. First it reconstructs
a representation of the database 8 whose invariant is given as input. Afterwards it
executes the algorithm Mg on the representation. M operates in PTIME, because the
representation of the database can be constructed in polynomial time and the algorithm
Mg is by assumption a PTiME-algorithm. Note that in contrast to the algorithm of the
previous section this algorithm constructs the database from the invariant and evaluates
the query in the database, whereas the algorithm in the previous section constructs the
invariant from the database and then operates on the invariant.

Note that M takes a finite structure as input and is itself a PTiME-algorithm. Thus,
by the result of Immerman [Imm86] and Vardi [Var82|, there is an FO+LFP|r]-formula
¢ equivalent to M. Further, we proved in Lemma 5.18 that there is a formula pr €
FO+LFP|o] such that for all @ € R" inv(B) = ¢([a]) iff B = ¢r(a). Thus B E ¢r(a) if
and only if @ € Q(B). This proves the theorem. O

As stated above the proof of the theorem works in exactly the same way for the other
logics mentioned above. Thus we get the relations between logics and complexity classes
in the context of dense linear orders summarized in Table 5.1.
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Chapter 6

Discrete linear orders

In this chapter we examine the complexity of first-order queries on discrete linear order
databases. Recall from Section 4.3.1 that (N, <) does not admit quantifier elimination and
is therefore not suitable as a context structure. As explained there, quantifier elimination
can be obtained by adding a countable set of relations {<. : ¢ € N}, where the intended
interpretation of x <. y is ¢ + ¢ < y. For convenience we add the relation < ; as an
abbreviation for <. Note that <g is simply the usual order relation.

In Section 4.3.1 we examined the evaluation complexity for different logics on gap-
order databases but left open the first-order case which is the topic of this chapter. We
will prove a LOGSPACE upper bound for the evaluation complexity of first-order queries.

6.1 First-order query evaluation

Let 7 := {<,: ¢ € NU{—1}} be the signature of gap-orders. For the rest of this
chapter assume a fixed query 9 (zy,...,zs) and a database B = (2, R?,... , RF) over
the 7-structure A = (Z, (<c)eenug_13). Further, we assume that the representation of B
is in disjunctive normal form whereas the query does not have to be in some normal form.
We consider databases over the integers instead of the natural numbers because it makes
the notation for the algorithms easier. But the main result also holds for databases with
the natural numbers as universe because N is definable in Z by the formula =z > 0.

We assume w.l.o.g. that every atomic formula occurring in the representation of B is
of the form z <, y, x =y, ¢ < a, a < z, or x = a, where a is a parameter. Formulae
of the kind x < a, x <. a, or a <. x, where ¢ # 0, can easily be converted to equivalent
formulae of the type z < a’' or o’ < x.

The goal of this chapter is to prove the following theorem.

Theorem. First-order queries on gap-order constraint databases can be evaluated in
LOGSPACE.

At the end of this section we define an algorithm to evaluate first-order queries in-
ductively over the structure of the query. The algorithm evaluates the query from the
inside out. As explained above it is only called on databases whose representations are in
disjunctive normal form. While evaluating the query it keeps the evaluation results in dnf.

49
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Therefore the following algorithms dealing with the different logical operations suppose
that their input is also in disjunctive normal form. As we will see, the only complicated
operations are existential quantification and negation. We first give two sub-algorithms
dealing with these cases.

6.1.1 Handling quantification

The next algorithm will be used to eliminate one existential quantifier. It takes a con-
junction ¥ of atomic or negated atomic formulae together with a variable z as input and
returns a quantifier-free formula equivalent to 32¥ in which z does not occur. The al-
gorithm is only called on conjunctions of literals because the evaluation algorithm deals
only with formulae in dnf and, as 3z(\/; ¢;) = V,;(32¢;), the quantifier can independently
be eliminated in the disjuncts. The resulting formula is also a conjunction of literals. To
ease notation we neglect the difference between a conjunction of literals and the set of all
literals occurring in it.

Algorithm 6.1. eliminate(7, 2)

Input: A variable z and a conjunction ¥ of atomic or negated atomic formulae over the
signature T.

Output: A conjunction W' of atomic or negated atomic formulae equivalent to 32V.

e If there is no literal in ¥ containing z return ¥' := V.

e [f there is a formula of the type z = a in V¥, where a € 7, then do the following. If
there is a formula z = b with a # b, a formula z < b with b < a, or a formula b < z
with a < b in U, then return false. Otherwise return V' := ¥[z/al.

o If there is only one literal ¢ € U containing z, then check whether ¢ is satisfiable
in A. Return V' := false if not and U\{p} if it is.

e [f there is more than one literal in ¥ containing z do the following three steps.

(i) Let ®' be the set of formulae of the type z < a or a < z. If 2@’ is false in A
then return U’ := false.

(i1) Let ®, be the set of literals in ¥ containing z. We build a set ® containing
the literals of ¥ together with some new literals generated as follows. For each
pair of formulae (@, ) € ®, do the following steps.

o If p =2 <.z then do one of the following.
— If i is of the form y <o z add a new formula y <. e 11 © to .
—If Y = =z <o y then if ¢ > ¢ add a formula ~x <o . o y to .
Otherwise add y < _. T.
o Ifo=u<.zandp =y <y z add a formula —~y <g_._o x to ® if ' > c.
Ifd <caddr<.oi19.
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o [fop=—z<.2 and ¢y =~y <o z add a formula -y <. o_1 x to P.
o If p = z < a, where a € Z, then do one of the following. If ¥ = x <. z
addr<a—c—1to®. Ifp=—z<.z addzx <a+ctod.

e [fo=a<zthenifyp =2<.,zadda+c+1<zxto® Otherwise if
Y="r<.zadda—c<z.

o If p and ¥ are not of one of the above forms, do nothing.

(11i) For every ¢ € ® — VU is satisfiable in A return V' := & — ®,. Otherwise return
U’ .= false.

The steps in part (i7) of the algorithm are used to eliminate the atomic formulae
containing z. In the sequel they are therefore called elimination steps. Note that the
elimination steps do not cover all pairs of formulae (p,1) € ®,, that is there are pairs
of formulae where no elimination step is defined for. We explain later why this is not
necessary.

Having defined the algorithm we have to prove its correctness. This is done in the
following lemma.

Lemma 6.2. Suppose ¥ is a conjunction of atomic or negated atomic formulae in the
variables T,z and V' := eliminate(V, z). Then

— !
HZ\I] =9 v s
where =y means equivalence in 2.

To prove the lemma we need a few technical sub-lemmas. The first two lemmas prove
that the elimination steps are correct. This is done in two steps. In the first we prove
that if ¢y and v, are eliminated to ¢ then 3z(1¢); A 19) =g ¢. In the second step we show
that if no elimination step is defined for the pair (¢1, %) then all pairs of elements satisfy

32(1h1 A ahy).

Lemma 6.3. Suppose iy and s are two literals containing z and ¢ is the result of an
elimination step on 1y and 5. Then for all ay,as € Z,

A = Fz(Y1 A o)lar, as] iff A = plar, as).

Proof. We demonstrate the proof for the various sub-cases by two examples. The other
cases can be proven analogously.

o If ¢y == 2 <,z and 15 := y <o z then the new formula ¢ = y <.1¢11 x is added.
Suppose A = Jz(11 A a)[x/a1,y/as]. Then there is an element a € Z such that
A = 1[x/ay, z/a] and A = sy /as, z/a]. Thus, by definition, we have ay + ¢’ < a
and a + ¢ < a; which is equivalent to as + ¢’ < a and a < a; — ¢ — 1. This implies
as + ¢ < a; — ¢ — 1 which gives a3 + ¢ + ¢+ 1 < a;. Thus A = ¢[z/a,y/as).

For the converse suppose 2 = ¢[x /a1, y/as]. Then, by definition, as+c' +c+1 < a;.
Let a := as+c'+1. Clearly, as+c' < a and a+c < a; and therefore A = ¢1[z/ay, z/al
and A = Ysy/ag, z/a)]. Thus A = Jz(Y1 A o)[z/a1,y/as].
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e Suppose Yy ;= z <,z and Py := =z <o y. We consider two sub-cases. For the first
case suppose that ¢/ > ¢. We illustrate this in the following figure.

z+ct+l
\ 2%
/9(

\1 —~ ) J
z+¢ Z+C

Y

ey
NN |\
V4

The figure illustrates the sets of numbers valid for z and y for a particular z. The
values for y are marked by the lines from the upper left to the lower right, whereas
the values for x are marked by the lines from the lower left to the upper right. As
we can see the formula is satisfied if y < z orif y > z but x + ¢ — ¢ — 2 > y. Thus
Jz(11 A 1bg) is satisfied by all pairs (a, b) so that a + ¢’ — ¢ — 2 > b, which is the set
of pairs satisfying the formula -z <._._5 ¥.

For the second sub-case suppose that ¢’ < c¢. Again we illustrate this by a figure.

i z+c+l

A | vz

AN | - LS
z z+C zZ+C

Y

As we can see, the set of pairs (a,b) such that 2 = 3z(11 A )z /a,y/b] is exactly
the set {(a,b) : b+ c—c < a}. Thus the formula is equivalent to y <._. z.

O

The next lemma proves that the elimination steps cover all pairs of formulae 1, 1y € ¥
such that 3z(1¢; A 1y) restricts the set of tuples satisfying W.

Lemma 6.4. Suppose 11 and vy are two literals containing z such that no elimination
step is defined for the pair (v1,1s). Then for all ay,ay € Z,

A = 3z(Y1 A o)]as, asl.

Proof. To prove the lemma we consider all pairs (¢, ¥ ) of literals such that no elimination
step is possible on them. Let ay,as; be two arbitrary elements of Z. Obviously if ¢; and
15 are both of the same type, say for example, ¥y := z; <. z and ¥ := x5 <o 2z, then we
can always choose z so that a; and a, satisfy both formulae. In the example we choose z
so that a; +c < z and ay + ¢ < 2.

The case where both formulae are of the types z < a or a < z is dealt with at the
beginning of the algorithm. Now suppose that ¥, := 2z <. 1 and ¢5 := —z5 <o 2z. In this
case we can choose z so that it is both smaller than a; — ¢ and a,.

What is left to show are the cases where one formula is of the type a < z and the other
is either of the type x <. z or -z <. z, or one formula is of the type z < a and the
other is either =z <. z or z <. z. If ¥; := a < z and ¥y := x; <. z then we choose z so
that it is larger than the maximum of a and a; + ¢. The other three cases can be proven
analogously. All cases together give the proof of the lemma. O
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The last lemma needed for the proof of Lemma 6.2 proves that 32® and ¥’ are satisfied
in 2 by the same tuples @, where ® and ¥ are defined as in Algorithm 6.1.

Lemma 6.5. Let ¥ be a conjunction of atomic or negated atomic formulae in the vari-
ables T,z and V' := eliminate(V, z). Further, let ® be as defined in Algorithm 6.1. Then
® and V' are equivalent in A. In other words, for all @,

A = 30a] iff A = W',

Proof. The forth direction is trivial because ® contains all formulae occurring in ¥'. For
the opposite direction let ®, := {¢1,...,p,} be defined as in Algorithm 6.1. Suppose
A = U'[al. Let Z and Z; for 1 < i < n be sets of elements defined as 7 := {a : A |=
(AL, @)lE/a, z/a]} and Z; ;= {a : A |= ¢i[T/a,z/a]}. We show that Z is not empty.
Obviously Z = (;_; Z;. Note that each Z; either consists of a single point, if ¢; is z = a,
a closed interval of elements, or an interval open on one side. Therefore 7 is empty if and
only if there are two formulae ¢,, ¢, € ®, such that Z, N Z, = @.

Now suppose that there exist two such formulae ¢,, s € ®, with Z, N Z;, = &. Lemma
6.4 proves that if no elimination step is defined for (¢,, ¢,), then the intersection of Z,
and Z; is not empty. Thus, as ¢, and ¢, contain z, there is an elimination step defined
for the pair (¢,, ¢5) and the result ¥ of the elimination step is a sub-formula of ¥'. By
Lemma we get 6.3 that 2 = Jz(¢, A ¢s)[a] iff A = ¢[a]. Therefore if Z, N Z; is empty
then @ does not satisfy ¢ which contradicts the assumption that 2 = ¥'[a]. Thus no such
pair (¢, ¢s) exists. This proves the lemma. a

Now we are ready to prove Lemma 6.2.
Proof of Lemma 6.2. We consider the different cases of the algorithm eliminate. If there
is no literal in ¥ containing z, then 92W is equivalent to ¥ which is the output of the
algorithm.
To prove the second sub-case suppose there is a formula of the type z = a in ¥. Clearly,
if there is also a formula z = b with b # a, a formula z < b with b < a, or a formula b < z
with @ < bin ¥, then 3V is not satisfiable and therefore equivalent to false. If no formula
of these kinds occurs in ¥, then 32V is equivalent to ¥' := ¥[z/a].
The proof of the third sub-case is straightforward, because if ¥ contains only one literal
¢ containing z, then 42V is false if ¢ is not satisfiable, for example ¢ := 2z < z, or it is
equivalent to ¥’ := U\{p}.
The proof of the fourth sub-case is slightly more complicated. The first step in this sub-
case is to test whether the set ®' of formulae z < a or a < z occurring in ¥ is satisfiable.
Clearly, if 3®' is not satisfiable, then also 32 is not satisfiable and therefore equivalent
to W' := false. Now suppose that ®' is satisfiable. The next step in the algorithm is to
eliminate the formulae containing z. In each elimination step new formulae are added
to ®. Clearly, as ® is a conjunction of formulae, the set of tuples satisfying & cannot
increase. Let ¢ be a formula added to ® by an elimination step on v; and ;. By Lemma
6.3 we get that ¢ is satisfied by all pairs (a1, as) € Z x Z satisfying 3z(1); A1by). Therefore
32(¥ A p) is equivalent in A to 32¥ and by induction on the number of elimination steps
we get d2® =y JzV. In the third step of this sub-case the set ¥’ is obtained from &
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by removing the formulae in ® containing z. We proved in Lemma 6.5 that 32® =y V'
Thus we have 32® =y ¥’ and 2P =4 J2¥ and therefore 2 =y V' O

6.1.2 Handling negation

The next algorithm negate takes a quantifier-free formula as input and returns a quantifier-
free formula which is equivalent to the negation of the input formula. Note that we
cannot simply convert the input formula first to negation normal form and then back
to disjunctive normal form again, because the size of the resulting formula could be
exponential in the size of the input formula. Instead we define an algorithm based on
complete atomic types to obtain LOGSPACE complexity.

Definition 6.6. Let P and C' be non-empty sets of elements such that ¢ > —1 for all
¢ € C. Let @ be a tuple of elements.

e The signature 7¢ induced by C is defined as 7¢ := {<.: c € C}.

e The complete atomic type of a over P and C with respect to 2, written as atp%,c(ﬁ),
is defined as the set of all atomic or negated atomic formulae ¢(Z) over the signature
7c such that A = ¢[a).

e A maximally consistent set of atomic and negated atomic 7o-formulae is a complete
atomic type over P and C' in the variables T, atp%c(f), if it is the complete atomic
type of a tuple @ over P and C.

Clearly, each tuple @ realizes exactly one complete atomic type over P and C and

elements realizing the same complete atomic type over P and C' cannot be distinguished
by quantifier-free formulae over the signature 7 using only parameters from P.
We use this to define the algorithm negate. The idea is to successively generate all different
complete atomic types over P and C, where P is the set of parameters occurring in the
input formula ¢ and C := {¢ : <, occurs in ¢}, and test for each type whether a point
realizing it satisfies ¢). The algorithm then outputs the disjunction of all types the test
failed for.

To implement the algorithm sketched above we need some technical definitions and
lemmas.

Definition 6.7. Let p be a complete atomic type over P and C in the variables T :=
T1,...,x,. The reduced type representation rir(p) of p is defined as follows.

(i) If there is a formula ¢ := z; = p in p, where 1 < i < k and p € P, then ¢ € rtr(p).

(i1) For each 1 < i < k, if there is a formula ¢ := z; < p and no formula z; < p’ in p,
where p,p’ € P and p’ < p, then ¢ € ritr(p).

(11i) For each 1 < i < k, if there is a formula ¢ := p < z; and no formula p' < z; in p,
where p,p' € P and p < p/, then ¢ € rir(p).



6.1. FIRST-ORDER QUERY EVALUATION 99

() For every 1 < i # j <k, if there is a formula ¢ := z; <. z; and no formula z; <. z;
in p, where ¢, ¢’ € C and ¢ < ¢, then ¢ € rtr(p).

(v) For every 1 < i # j < k, if there is a formula ¢ := —z; <. z; and no formula
—z; <o zj in p, where ¢,¢’ € C and ¢’ < ¢, then ¢ € rir(p).

(vi) For every 1 <4, j <k, if there is a formula z; = z; or ~z; = z; in p, then it is also
in rtr(p).

(vii) rtr(p) is the smallest set of formulae satisfying (i) — (vi).

The set k-rtr(P, C) is defined as {rtr(p) : p is a complete atomic type over P and C in
the variables xq,... 23}

The next lemma proves that each complete atomic type p is equivalent to its reduced
type representation rtr(p).

Lemma 6.8. Let p be a complete atomic type over P and C' in the variables x1, ... , xy.
Then for all@ := ay,. .. ,a; € Z*,

A= pla] f A=rir(p)lal.

Proof. The forth direction is straightforward, because every formula in rtr(p) occurs also
in p. To prove the back direction let @ be a tuple such that 2 |= rtr(p)[a). We show that
a satisfies every atomic and negated atomic formulae occurring in p. Let ¢ € p be atomic
or negated atomic. We consider the different possible cases for ¢.

(1) If ¢ == z; = p, where 1 < ¢ < k and p € P, then ¢ occurs also in rir(p) and is
therefore satisfied in 2 by a.

(i1) If ¢ := z; < p, where 1 < i < k and p € P, then there is a formula ¢’ := z; < p’ in
rir(p) with p’ < p. Clearly, ¢’ implies ¢ and therefore ¢ is satisfied by @.

(111) The proof for ¢ := p < z; is analogous.

() If ¢ := x; <. x;, where 1 < ¢ # j < k, then there is a formula ¢’ := z; <o z; in
rtr(p) with ¢ > ¢. Again, ¢’ implies ¢ and therefore @ satisfies .

(v) The case where ¢ := —z; <, z;, 1 <i# j <k, can be treated analogously.

(vi) Formulae of the type ; = z; or —x; = «; occurring in p also occur in rtr(p) and are
therefore satisfied by a.

Thus every formula occurring in p is satisfied by @ and therefore 2 = p|a]. O

Let p be a complete atomic type and rir(p) be its reduced type representation. To
find a tuple realizing p, we find a tuple satisfying the set of equalities and inequalities
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contained in rtr(p). The (in)equalities occurring there can be rewritten according to the
following equivalences.

p<z = —r;<-p-—1

r<p = x; <p-—1

r,=p = ; <p N—x; < —p

r=x; = 4 ST N-x; < -

ri<.r; = r;+c+1<u; = z;—x; < —c—1
T <. Tj = Tit+c>x; = rj—1;<c

Thus we get that in order to find a tuple realizing p we have to solve the following set of
inequalities. Forall 1 <i# j <k and p € P,

—x; < —p—1, for every formula p < x; € p,

ry <p-—1, for every formula x; < p € p,

z; <
i=b for every formula z; = p € p,

;< w; '
Lo } for every formula z; = z; € p,

—Z; S —Zy,
ri—2; < —c—1, for every formula z; <. z; € p,
—r; +z; <c for every formula —z; <. z; € p.

Let m be the number of inequalities in (6.1). The set can be written in the form AZ < b,
where A is a (m x k)-matrix, all of whose coefficients are either 0, 1, or —1. We use the
Fourier-Motzkin elimination method to solve the inequality AZ < b (see [Sch86]). In the
method the variables are eliminated one after another. To do this we write the system
of inequalities in the following form, where Z' := (z9,...,z;) and @, is the i-th row of A
with the first entry removed.

o+ @) <b, 1<i<m
—zy 4 (@)"T < b;, mi+1<j<my (6.2)
@)@ <b, me+1<1<ms

my is the number of inequalities in which the coefficient of z; is 1, my the number of
inequalities in which the coefficient is —1, and mgs the number of inequalities in which the
coefficient is 0. The first two lines of (6.2) are equivalent to

P AY A A : . (AT
oy ax (@) —bj) <21 < min (b —(@)'7). (6.3)
Therefore the variable x; can be eliminated. We get that (6.2) is equivalent to the
following system of inequalities.

@)TT — by <b—@)7F, 1<i<mym+1<j<my

(@)@ <b, my+1<1<mg (6.4)
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The system can be rewritten as follows.

@ +a;)"7 <b+b;, 1<i<mym+1<j<my

(@)@ <, my+1<1<mgs (6.5)

In the last system of inequalities the variable z; is eliminated. A solution for x; can
be derived from a solution for (6.5) by choosing a value for z; satisfying (6.3). If no such
value exists then obviously (6.2) has no integer solution.

We use this to define an algorithm which outputs on a given reduced type represen-
tation a tuple satisfying it. Given a reduced type representation rtr(p), we find a tuple
realizing the type p by successively eliminating the variables as described above until only
one variable is left. We then choose a solution for this last variable and use it to compute
solutions for the other variables.

Having defined the algorithm, we now consider its data complexity. In our setup the
number k of variables is fixed and the number of inequalities in the initial system (6.1) is
bounded by 3k2+ 3k. We have to iterate the method only % times and if n; is the number
of inequalities after the i-th step then the number of inequalities after the (i + 1)-th step
is bounded by n? + n;. Therefore the number of inequalities after the k iterations is also
bounded by a constant and independent of the input. To measure the complexity of the
algorithm we must take into account the size of the coefficients which have to be stored
on the working tape. We prove that the coefficients generated by the algorithm can be
stored in logarithmic space. The proof is by induction on the number of iterations using
the following lemma.

Lemma 6.9. Any integer a which can be calculated by a fized number of additions of
constants or parameters occurring in the input can be stored in space logarithmic to the
size of the input.

Proof. Suppose a := p; + ...+ p, + ¢1 + ...cs, where the p; are parameters from the
input and the ¢; are constants. The parameters can be stored by a pointer to their
occurrences on the input tape. Thus the parameters and constants used to calculate a
can be stored on the working tape in logarithmic space. Now a can be stored as the tuple
(4,015« sDr, C1y e v 5 Cs).

Each time a is needed by the Turing machine, the value of a is calculated by adding
the parameters and constants. Clearly, the addition of a fixed number of integers is in
LoGSPACE. As the composition of LOGSPACE-algorithms is also in LOGSPACE, we get
that a can be stored and accessed in logarithmic space. O

We now show by induction on the number of elimination steps in the Fourier-Motzkin
method that the coefficients generated by the algorithm are either constants, occur in
the reduced type representation, or can be obtained from those by a fixed number of
additions.

As explained above, all coefficients of a variable in the initial system (6.2) are either 0,
1, or —1. The b;’s on the right side of the inequalities either occur in the input or they
can be obtained by decreasing a parameter from the input by one. By Lemma 6.9 we
get that these decreased parameters can be stored on the working tape using only space
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logarithmic in the size of the input. In the induction step suppose that all coefficients in
the previous steps can be stored in logarithmic space. Note that the coefficients in (6.5)
can be obtained by addition of two coefficients from the previous elimination step. Thus,
using Lemma 6.9 again, we get that these coefficients can also be stored in logarithmic
space. As the total number of elimination steps is fixed we get the following corollary.

Corollary 6.10. For every complete atomic type, a tuple realizing it can be computed in
space logarithmic to the size of its reduced type representation.

We are now ready to define the algorithm negate.
Algorithm 6.11. negate(7))
Input: A quantifier-free formula (zy, ... ,zy) in dnf.
Output: A formula in dnf equivalent to —p.

The algorithm proceeds as follows.

Extract from the input the set P of parameters occurring in 1.
If P 1s empty, add O to it.
Extract the set C :={c €N : ¢=0 or <. occurs in 1}.
for each ¢ € k-rtr(P,C) do
choose a tuple Z¢ satisfying &.
test if z¢ satisfies 1.
od
output the disjunction of all { such that Z; does not satisfy 1.

The next lemma proves the correctness of the previous algorithm.

Lemma 6.12. Suppose ¢(z1, ... ,xy) is a quantifier-free formula in disjunctive normal
form and ¢ := negate(y)). Then —) = .

Proof. To prove the forth direction let @ be a tuple satisfying —. Let p be the complete
atomic type realized by a. In the for-loop of the algorithm all possible reduced type
representations in & variables are enumerated. Thus also rtr(p) is generated in an iteration
step of the for-loop. The algorithm chooses a tuple Z and tests whether it satisfies 1.
As @ does not satisfy 1, 9 is quantifier-free, and by Lemma 6.8 @ and Z realize the same
complete atomic type, also Z does not satisfy ¢. Thus rir(p) is a disjunct in ¢ and
therefore ¢ is satisfied by a.

For the back direction let @ be a tuple satisfying ¢. Because ¢ consists of a disjunction
of reduced type representations, there is a complete atomic type p such that £ :=rtr(p)
occurs as a disjunct in ¢ and is satisfied by @. As rtr(p) occurs in the output, the point Z,
chosen by the algorithm does not satisfy ¢. Thus, as @ and z; realize the same complete
atomic type p and v is quantifier-free, @ does also not satisfy . This proves the lemma.
O

Now we are ready to define the evaluation algorithm.
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Algorithm 6.13. gap-evaluate, (‘B)
Input: A gap-order constraint database B = (A, RY,... ,RY).
Output: A finite representation of Y.

The algorithm is defined by induction on the structure of the query.

e If 1 is atomic and does not contain a database relation symbol, then output 1.

o If ¢ is of the form Ruy, ..., uqr), where R is a database relation symbol and
the u; are either variables or parameters, then the output consists of the formula
eplr1/u1, ... Tar(r)/Uar(r)], where F(T) is the formula defining R® in B.

e Suppose Y is a conjunction of two formulae ¥y and 1. First, the algorithm cal-
culates ¢y := gap-evaluatey, (B) and ¢, := gap-evaluatey,(B). Then it returns as
output the disjunction of each ¢} N ¢4 such that ¢} is a disjunct in ¢ and @} is a
disjunct in @s.

e Suppose ¥ is a disjunction of two formulae ¥, and 5. Then the output consists of
@1V 2, where @1 := gap-evaluatey, (B) and ¢, :=gap-evaluate,, (B).

o Suppose Y(x1,...,x) = —'(T). First gap-evaluatey (B) is called. The output is
then obtained by applying the algorithm negate to the resulting formula.

o Suppose Y(x1,...,x) = F29'(T,z). First ® :=gap-evaluatey (B) is calculated.
Then the disjunction of ¢' := eliminate(yp, z) for every disjunct ¢ in ® is returned
as output.

Having defined the evaluation algorithm we now prove its correctness.

Theorem 6.14. Suppose B is a o-database over A and iy a first-order query. Then
gap-evaluate, (B) is a finite representation of ™.

Proof. The theorem can be proven by induction on the structure of the query. The proof
for the negation and existential quantification cases follow from the Lemmas 6.12 and 6.2
respectively. The atomic and boolean cases are straightforward. O

The previous theorem proves the correctness of the evaluation algorithm. We investi-
gate its complexity in the next section.

6.2 Complexity of first-order queries

The aim of this section is to prove a LOGSPACE upper bound for the evaluation algorithm
of the previous section. We do this by proving that the two sub-algorithms negate and
eliminate are LOGSPACE-algorithms. The LOGSPACE-bound for gap-evaluate then follows
easily.
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Lemma 6.15. The algorithm eliminate has a LOGSPACE upper complezity bound.

Proof. To prove the lemma we have to consider the four sub-cases of the algorithm. The
proof of the LOGSPACE-bound of the first three sub-cases is straightforward. We now
prove the LOGSPACE-bound of the fourth sub-case. The input of the algorithm consists
of a conjunction of atomic or negated atomic formulae. For each pair (1, ¢2) of these
formulae the algorithm checks whether an elimination step can be applied to them. If so,
then the result of the elimination step is calculated. Clearly, each elimination step can be
done in LOGSPACE, because only the addition of a fixed number of integers is involved.
As the elimination steps are only defined for sub-formulae of the input, the output of one
step does not have to be considered for further elimination steps. Therefore it does not
have to be stored on the working tape but can directly be written on the output tape.
We get that all elimination steps together can be done in LOGSPACE. After all steps have
been done, the algorithm copies all input formulae which do not contain z to the output.
This is clearly in LOGSPACE. Thus eliminate is a LOGSPACE-algorithm. O

The next lemma proves the LOGSPACE upper bound for the algorithm negate.
Lemma 6.16. The algorithm negatey has a LOGSPACE upper complexity bound.

Proof. The algorithm starts by extracting the sets P and C. These sets do not have to
be stored on a Turing tape but can be looked up in the input each time an element of
a set gets used. Clearly, this is in LOGSPACE. In the following for-loop, the algorithm
generates one after another all reduced type representations for complete atomic types p
in the variables z1, ..., z;. Each reduced type representation consists of at most 3k2 + 3k
atoms or negated atoms. All gap-orders occurring in a reduced type representation occur
also on the input tape and can therefore be stored by pointers to the input. Thus a
reduced type representation can be stored in space logarithmic to the input size.

Once a reduced type information is generated, a tuple Z satisfying it is computed. By
Corollary 6.10 this is in LOGSPACE. Finally it is checked whether Z satisfies . Clearly,
this can also be done in LOGSPACE. As the space used in one iteration step of the for-loop
can be reused in the next iteration step, the space needed by negate is logarithmic in the
size of the input. This proves the lemma. O

We can now prove the main result of this chapter.

Theorem 6.17. First-order queries on gap-order constraint databases can be evaluated
in LOGSPACE.

Proof. Suppose 7 is a first-order query. We show that the algorithm gap-evaluate,; can
be evaluated in logarithmic space by induction on the structure of the query. The atomic
cases are simple. If ¢ is atomic and does not contain a database relation symbol, then
the output consists of 1 itself. Otherwise if ¥ contains a database relation symbol, then,
essentially, the algorithm copies the representation of the relation in the database as
output. Both can be done in LOGSPACE.

Now suppose 1 consists of a conjunction of two formulae ¥; and 1. First, gap-evaluate
is called recursively on %; and 1, resulting in two formulae ¢; and 5. By induction, the
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recursive calls to gap-evaluate are in LOGSPACE. Then the conjunction of each pair of
disjuncts from ¢, and 5 is generated and the disjunction of these is returned as output.
Clearly, this can also be done in LOGSPACE. The case where 1 := 1); V 1 can be treated
analogously.

Lemma 6.16 and 6.15 prove the negation and quantification cases. As the compo-
sition of LOGSPACE algorithms is also in LOGSPACE, the complete algorithm works in
LOGSPACE. This proves the theorem. O
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Chapter 7

Conclusion

In this work we investigated the complexity of query languages for constraint databases.
The main interest was in the data complexity of query languages based on fixed-point
extensions of first-order logic. In most cases arithmetical structures served as context
structures, either dense structures with the real numbers as universe, or discrete structures
over the naturals or integers.

7.1 Summary of results

We began our investigations in Chapter 3 with methods to find complexity bounds for
query languages. These bounds have been derived from known complexity bounds for
problems related to the decision problem for the theory of the context structure. As
an application of these methods we proved that for each level of the polynomial time
hierarchy there are first-order queries on databases defined over Presburger arithmetic
whose data complexity is complete for this level.

In the remaining three chapters we considered the data complexity of query languages
for particular context structures. Chapter 4 gave an overview of complexity results for
various context structures whereas in Chapter 5 and Chapter 6 we considered in detail
two special context structures, namely dense and discrete linear orders.

In the main result of this work we presented a general method to prove complexity
bounds for query languages over dense order databases. The idea was to code the finitely
represented database as a finite database and then use the evaluation algorithms available
for the query language on finite databases. It turned out that this encoding can be
defined by first-order formulae using only the order predicate and some very limited kind
of arithmetic. It can therefore be done with very low data complexity. This method
enabled us to evaluate queries for various query languages within the same complexity
classes as for finite databases.

This method also works for databases defined by inequality constraints over a count-
able infinite set. Therefore queries defined over inequality constraints can be computed
within complexity bounds as for finite databases. We also proved that the various fixed-
point logics considered here are too weak to express all LOGSPACE-computable queries.
The proof was an application of Ehrenfeucht-Fraissé games, one of the few methods from
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| | inequality | (R, <) | R<,+) | (R<,+,%) |
FO+DTC | C LOGSPACE = LOGSPACE | undecidable | undecidable
FO+TC || ¢ NLOGSPACE | = NLOGSPACE | undecidable | undecidable
FO+LFP C PTIME = PTIME undecidable | undecidable
FO+PFP C PSPACE = PSPACE undecidable | undecidable

Table 7.1: Data complexity bounds for query languages on dense structures.

| | N, <.) | N<,+) | (N < +,9) ]
FO C LOGSPACE = PH undecidable
FO+DTC | ex. pos. FO+LFP | undecidable | undecidable
FOo+TC closed undecidable | undecidable
FO+LFP undecidable undecidable | undecidable
FO+PFP undecidable undecidable | undecidable

Table 7.2: Data complexity bounds for query languages on discrete structures.

finite or classical model theory that still work for finitely representable databases.

We saw in Chapter 4 that adding arithmetical functions to a dense order as context
structure still yields efficient query languages. In particular it has been shown that first-
order queries have NC data complexity over real closed fields. The situation changes
drastically if discrete instead of dense orders are under consideration. Although the data
complexity of first-order queries on gap-order constraints was in Chapter 6 shown to be
LOGSPACE, the complexity of more expressive logics increases enormously. Least fixed-
point logic is Turing-complete and the only thing known about positive DATALOG, which
is equivalent to positive existential FO+LFP, is that it can be evaluated in closed form.
But nothing more is known about its complexity.

Also adding arithmetical functions to discrete orders yields very complex query lan-
guages. It was shown that first-order logic captures the polynomial time hierarchy on
the class of databases defined over the Presburger arithmetic. First-order queries on the
naturals with order, addition, and multiplication are even undecidable.

Thus it seems that using dense structures as context structures is more promising than
the usage of discrete structures. Unfortunately this is only true for first-order queries. If
not first-order but, for example, FO+ T C-queries are considered, we end up in undecidable
query languages if the context structure includes addition.

Table 7.1 and 7.2 give an overview of the complexity results presented in this work.

7.2 Open problems

When studying Table 7.1 one encounters undecidability results for many interesting query
languages and context structures. The reason for this is that the combination of recursion
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and addition make the natural numbers with their addition and multiplication definable
in the reals. One question is to find query languages that allow a useful form of recursion
and addition but are still decidable and computable in closed form. Another open entry
in the table is the complexity of first-order queries on (R, <, +).

Generally, there is a lack of methods to prove complexity bounds or (un)definability
results for finitely representable structures. One of the most powerful ways to find upper
complexity bounds seems to be to code a finitely representable database as a finite set of
objects, evaluate the query there and transform the result back. Examples of this can be
found in the proofs of the LOGSPACE-complexity for inequality constraints over countable
infinite sets and in the proof for dense order databases given in Chapter 5. Recently
Benedict and Libkin [BL98| as well as Vandeurzen, Gyssens, and Van Gucht [VGG9S]
considered this idea in a broader sense.
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