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Chapter 1IntroductionIn the last 30 to 40 years databases have experienced an enormous development from mereextended �le systems to the powerful systems we have today. One of the most importantsteps in this development was the introduction of the relational data model by Coddin 1970 [Cod70]. The advantages of this data model lie both within theory and prac-tice. The intuitive and set-at-a-time user interface that relational database managementsystems supply makes them user friendly enough to be used even by non-programmersand non-specialists. On the other hand, there is a close relationship between relationaldatabases and logical structures. This results in a solid theoretical foundation for rela-tional databases in the form of �nite model theory and descriptive complexity theory.The relational data model proved adequate for most kinds of data and became standardin the 1980s. But with the increased power of modern computer hardware the need tostore advanced data types like multimedia or geometrical data arose. To meet the newdemands, other kinds of data models like nested relations or object oriented databaseshave been proposed. One of the disadvantages almost all of the new data models share, isthe restriction to �nite databases. Although this may seem to be su�cient and natural formost kinds of databases, it is unnatural for the storage of geometrical objects like circlesor rectangles. For these kind of objects the said restriction leaves the user with the taskof �nding a way to code the objects and to formulate queries for the chosen encoding.This problem was the main motivation behind the introduction of constraint databases.Constraint databases were �rst introduced by Kanellakis, Kuper, and Revesz in 1990[KKR90]. They searched for a data model that allows the user to store an in�nite amountof data. Of course this in�nite set of objects has to be stored in a computer system andhas therefore to be �nitely representable. The main di�erence between this data modeland most other data models is that the user does not have to be concerned with theway the data is represented but can think of the database as containing in�nitely manyobjects.Before giving the exact de�nition of constraint databases in the next chapter, theirusefulness is demonstrated by an example. Imagine a database where geometrical shapesare stored. Databases like this occur, for example, in the �eld of geographical informationsystems where the shapes may represent the concentration of chemicals in a certain area.For simplicity suppose that the shapes consist only of circles. To store the said information3



4 CHAPTER 1. INTRODUCTIONin a relational database one could for example store the centre of the circle together withits radius, the chemical in consideration and its concentration. A user who wants to askif there is a point where two special chemicals occur has to query the centers and radii ofthe two circles and calculate whether the sum of the radii exceeds the distance betweentheir centers. This is very impractical for ad-hoc queries or queries invoked from scriptlanguages with limited expressive power.Using constraint databases we would be able to store the circles as the set of pointsinside them. The query whether two of them intersect could then be formulated by askingif there is a point within both circles. Obviously this is much simpler and intuitive thanthe query above.1.1 Relational databases from a logical viewpointAn important �eld of research about relational databases is the study of database querylanguages. Questions arising here concern the expressiveness of query languages and thee�ciency of their evaluation. To deal with such questions we model a relational databaseas a �nite relational structure whose universe is the active domain of the database, that isthe set of elements occurring in at least one database relation. The relations of the struc-ture are the relations of the database. Once databases are modeled as logical structures wecan consider logics as query languages. Furthermore, query languages correspond to log-ics, for example many commonly used query languages like SQL are essentially �rst-orderlogic or only slight extensions of it. Thus results about the complexity or expressivenessof logics yield also results about query languages.Generally there are three possible relations between a logic L and a complexity classC. We say that C contains L, L � C, if for each signature � we have that every classof �nite � -structures de�nable by an L[� ]-sentence can be decided in C. On the otherhand we say that L contains C, C � L, if for each signature � we have that every class of� -structures decidable in C can be de�ned by an L[� ]-sentence. We say that L captures Cif both is the case, that is L � C and C � L.On the one hand, the containment relation L � C gives an upper bound for thecomplexity of the evaluation of queries from L. On the other hand, it can be used toprove that certain properties cannot be queried by formulae from L. For example it isknown that the transitive closure query is not in AC0. As �rst-order logic is containedin AC0, it cannot de�ne transitive closure. The most interesting relation between a logicL and a complexity class C is the capturing relation. If L captures C, then exactly theproperties decidable in C can be de�ned by formulae from L. In a sense, L is a preciselogical description of C. Therefore the �eld of research that investigates the relationshipbetween logics and complexity classes is called descriptive complexity theory.Starting with Fagin's theorem stating that NP is captured by existential second-orderlogic, logical descriptions have been found for many natural and important complexityclasses. Unfortunately, most of these results are true only for the class of ordered struc-tures. For example, Immerman [Imm86] and Vardi [Var82] proved that least �xed-pointlogic captures Ptime on the class of ordered structures. But on arbitrary structures, least�xed-point logic is strictly contained in Ptime. Similar results have been found for other



1.2. AIMS OF THE DIPLOMA THESIS 5complexity classes such as Pspace as well. Table 1.1 gives an overview of important cap-turing results on ordered structures. Here FO+DTC stands for deterministic transitiveclosure logic, FO+TC for transitive closure logic, FO+LFP for least �xed-point logic andFO+PFP for partial �xed-point logic. SO denotes second-order logic and �11 denotes itsexistential subset. See Chapter 2 for some more explanations and references.FO+DTC = LogspaceFO+TC = NLogspaceFO+LFP = Ptime�11 = NPSO = PHFO+PFP = PspaceTable 1.1: An overview of capturing results on �nite ordered structures.If order is omitted, most of the equalities in Table 1.1 change to inclusions. The onlyexceptions are �11 and SO, because these logics allow the de�nition of order. On arbitrarystructures we get the results summarized in Table 1.2.FO � AC0FO+DTC � LogspaceFO+TC � NLogspaceFO+LFPA � Ptime�11 = NPSO = PHFO+PFP � PspaceTable 1.2: An overview of complexity results on arbitrary �nite structures.For detailed information about descriptive complexity theory see for example the booksby Immerman [Imm98] and Ebbinghaus and Flum[EF95]. Another source of informationabout these topics is the book by Abiteboul, Hull, and Vianu [AHV95], which presents thematerial from the perspective of database theory. An introduction to complexity theorycan be found in the book by Papadimitriou [Pap94].1.2 Aims of the diploma thesisIn the previous section we explained how, for �nite databases, questions concerning theexpressiveness of query languages and the e�ciency of their evaluation can be answeredusing descriptive complexity theory. A natural questions is how the results and techniquesdeveloped there extend to classes of in�nite but �nitely representable databases. Asan example of such databases we consider here the constraint databases introduced byKanellakis, Kuper, and Revesz [KKR90]. In their framework a database consists of a



6 CHAPTER 1. INTRODUCTIONinequality (R; <) (R; <;+) (R; <;+; �)FO � AC0 � AC0 ? NCFO+DTC � Logspace = Logspace undecidable undecidableFO+TC � NLogspace = NLogspace undecidable undecidableFO+LFP � Ptime = Ptime undecidable undecidableFO+PFP � Pspace = Pspace undecidable undecidableTable 1.3: Data complexity bounds for query languages on dense structures.(N ; <c) (N; <;+) (N; <;+; �)FO � Logspace = PH undecidableFO+DTC ex. pos. FO+LFPclosed undecidable undecidableFO+TC undecidable undecidableFO+LFP undecidable undecidable undecidableFO+PFP undecidable undecidable undecidableTable 1.4: Data complexity bounds for query languages on discrete structures.�xed structure, called the context structure, which is expanded by relations de�ned byquanti�er-free formulae which are interpreted in the context structure. We give a formalde�nition of constraint databases and their query languages in Chapter 2.There is a di�erence in the notion of evaluation complexity between �nite and con-straint databases which will be explained in detail in the next chapter. It turns out thatthe complexity of query languages for �nitely representable databases depends heavily onthe complexity of their representation. In the case of constraint databases the complexityof the representation depends on the complexity of the functions and relations which canbe used in the formulae de�ning the database relations. Therefore the complexity andcapturing results for logics on constraint databases depend on the context structure.In the following chapters we present complexity results for many logics and contextstructures. We restrict our attention to arithmetical structures, that is structures whoserelations and functions are among order, addition, and multiplication. On the side of thelogics used as query languages the focus of our investigations is put upon extensions of�rst-order logic by recursion mechanisms like transitive closure or �xed-point induction.We do not consider second-order logics. Tables 1.3 and 1.4 give an overview of the resultspresented in the sequel. The closed entry for existential positive FO+LFP on the class ofdiscrete order databases means that existential positive FO+LFP queries can be e�ectivelyevaluated in closed form. But nothing more is known about their complexity.The �rst thing to notice is that, as for �nite databases, we only get capturing resultsfor ordered structures. But the complexity of query evaluation also depends heavily onwhether the structures are densely or discretely ordered. The evaluation of queries ondiscretely ordered constraint databases is often much harder than on densely ordereddatabases. Whereas on dense order databases the various �xed-point extensions of �rst-



1.2. AIMS OF THE DIPLOMA THESIS 7order logic capture the same complexity classes as on �nite databases, the complexityincreases drastically if the order is discrete. Also the incorporation of recursion mecha-nisms leads to undecidable languages as soon as addition is available.The NC result for �rst-order queries on the �eld of reals seems to be very promisingfor applications of constraint databases in the �eld of geometrical or spatial databases.Also the good complexity bounds for dense order databases makes them suitable as abasis for the implementation of, for example, temporal databases.The following chapters are organized as follows. In the next chapter we give the formalde�nitions of constraint databases and query languages. In Chapter 3 we present somegeneral methods to obtain complexity bounds for query evaluation. Chapter 4 gives anoverview and proofs for most of the results summarized in Table 1.3 and 1.4. Chapters5 and 6 focus on two particular context structures, namely dense and discrete orders.In Chapter 5 we present a very general method which allows us to extend results onlogics capturing complexity classes from the realm of �nite ordered structures to con-straint databases over dense linear orders. Chapter 6 then gives a detailed proof for theLogspace data complexity bound of �rst-order queries on discrete order databases. Weclose with a short summary and a few remarks about open problems and related work.



8 CHAPTER 1. INTRODUCTION



Chapter 2PreliminariesIn this chapter we give the formal de�nitions of constraint databases and query languagesand of the notion of complexity used in the sequel. Before we give the de�nitions, we �xsome notation used in the following chapters.A signature � := fR1; : : : ; Rk; f1; : : : ; fr; c1; : : : ; csg is a set of relation symbols Ri,function symbols fi, and constant symbols ci. The arity of each relation symbol R andfunction symbol f is denoted by ar(R) and ar(f) respectively. � is called relational ifit contains only relation symbols. A � -structure A consists of a universe A, a relationRA for each relation symbol R 2 �, a function fA for each function symbol f 2 �, anda constant cA for each constant symbol c 2 �. A (� [ �)-structure B with universe B,where � and � are disjoint signatures, is called a �-expansion of A, if A = B and for everysymbol s 2 � sA = sB. The expansion is called relational if � is relational. We writeB := (A; RB1 ; : : : ; RBk ) to indicate that B is a fR1; : : : ; Rkg-expansion of A.By FO[� ] we denote the set of �rst-order formulae over the signature � . Besides �rst-order logic we consider some extensions of �rst-order logic, namely (deterministic) transi-tive closure logic, FO+(D)TC, least or in
ationary �xed point logic, FO+LFP;FO+IFP,and partial �xed point logic, FO+PFP. In Chapter 3 we also consider the in�nitary �nitevariable logic L!1!. For a detailed description of those logics see for example [EF95].Unless stated otherwise, whenever we speak of a logic we have one of these logics in mind.We write '(x1; : : : ; xk) for a formula with free variables among x1; : : : ; xk. A j='[a1; : : : ; ak] means that A is a model of ' where the free variables xi are interpreted asai. For each formula '(x1; : : : ; xk) we write 'A to denote the set f(a1; : : : ; ak) 2 Ak :A j= '[a1; : : : ; ak]g of tuples satisfying ' in A. We say that formulae use parameters fromA if not only constant symbols from � but also constant symbols ca, for each a 2 A, canoccur in them.2.1 Constraint databasesThe basic idea in the de�nition of constraint databases is to allow in�nite relations whichcan be �nitely represented. In the framework introduced by Kanellakis, Kuper, andRevesz [KKR90] the relations are represented by quanti�er-free �rst-order formulae.9



10 CHAPTER 2. PRELIMINARIESDe�nition 2.1. Suppose A is a � -structure, called the context structure, � 0 � � a signa-ture, and '(x1; : : : ; xn) 2 FO[� 0] is a quanti�er-free formula using parameters from A.An n-ary relation R � An is represented by ' over A, if for all a1; : : : ; an 2 A,A j= '[a1; : : : ; an] i� (a1; : : : ; an) 2 R:The formula ' is called a �nite representation of R. The set of �nitely representablerelations over A is denoted by Rel� 0fr(A). � 0 is called the relation signature whereas � iscalled the context signature.In most cases the relation signature and the signature of the context structure coincide.Therefore we omit the index � 0 in Rel� 0fr(A) and agree that, unless stated otherwise, thesignature of the context structure is used as relation signature.De�nition 2.2. Suppose A is a � -structure and � a relational signature disjoint from � .A �-constraint database is a �-expansion of the context structure, where all �-relations are�nitely representable over A. The set of all constraint databases over a context structureA is denoted by Expfr(A). The relations in � are called context relations whereas therelations in � are called database relations. � is called the database signature.By de�nition, constraint databases are relational expansions of a context structurewhere all database relations are �nitely representable. Note that the same relation can berepresented in di�erent ways, e.g. '1 := x < 10^ x > 0 and '2 := (0 < x ^ x < 6)_ (6 <x ^ x < 10) _ x = 6 are di�erent formulae but de�ne the same relation.De�nition 2.3. Suppose A is a context structure andB := (A; RB1 ; : : : ; RBk ) a constraintdatabase over A. A set of formulae � := f'R1; : : : ; 'Rkg is a �nite representation of B, ifeach 'Ri is a �nite representation of RBi over A. B is called the database represented by�. Two representations � and �0 are A-equivalent, if they represent the same databaseover A.In the following we often deal with algorithms taking constraint databases as inputs.The complexity of these algorithms will be measured in terms of the input size. Thereforethe size of constraint databases has to be de�ned. Unlike �nite databases, the size of con-straint databases cannot be given in terms of the number of elements stored in them buthas to be based on a representation of the database. Note that equivalent representationsof a database need not to be of the same size. Thus the size of a constraint databasecannot be de�ned independent of a particular representation.De�nition 2.4. Suppose B is a constraint database and � a �nite representation of B.The size of (B;�) is de�ned as the sum of the lengths of the formulae in �.In the following, whenever we speak of a constraint database B, we mean a constraintdatabase with a particular representation �. The size of B is then de�ned as the size of(B;�). The de�nition of the size of a database corresponds to the following encoding ofconstraint databases on Turing machines.



2.2. CONSTRAINT QUERIES 11De�nition 2.5. Suppose B is a constraint database and � a �nite representation of B.Then B is encoded on a Turing tape by the formulae of � representing the databaserelations.In this framework the database relations are represented by quanti�er-free formu-lae. Although it would be possible to base constraint databases on other logics, e.g. torepresent the relations by arbitrary �rst-order formulae, the close relationship betweenconstraint and �nite databases present in this framework is a strong argument for choosingquanti�er-free logic. We illustrate this by an example.A �nite relational database consists of a �nite collection of relations. A relation againis a �nite set of tuples. We can say that each tuple in a relation corresponds to an objectof the real world. In analogy to the example given in the introduction, consider a databaserelation where circles are stored by their centre and radius. Each pair (p; r), where p isthe centre and r the radius, corresponds to a circle. In a constraint database, the circleswould be represented by formulae of the form (x+c1)2 �(y+c2)2 � r2. Thus a tuple in the�nite relation corresponds to a conjunction of atomic formulae in the constraint relation.Because of this correspondence Kanellakis, Kuper and Revesz called such conjunctions ofatomic formulae generalized tuples. The �nite relation as a set of tuples corresponds tothe �nitely representable relation as a �nite set of generalized tuples. The formula forsuch a set of generalized tuples is a disjunction of conjunctions of atomic formulae, thatis a quanti�er-free formula in disjunctive normal form.Some authors require that the formulae de�ning �nitely representable relations arealways given in disjunctive normal form. We will not be so strict and allow arbitraryquanti�er-free formulae. Clearly, this does not increase the expressiveness of the �niterepresentations but in some cases makes the representation of relations more intuitive andcan also decrease the space needed to store the database.2.2 Constraint queriesNow that constraint databases have been de�ned, we have to explain how they can bequeried.De�nition 2.6. Suppose A is a � -structure and � a relational signature. A constraintquery Q : Expfr(A) ! Relfr(A) is a mapping from �-constraint databases over A to�nitely representable relations over A.By de�nition, a constraint query is purely semantical. In order to allow a user toquery a database, we have to de�ne query languages, that is, a syntactic way to de�nequeries. To do this we require the context structure A to admit quanti�er elimination.This means that every �rst-order formula ' is equivalent in A to a quanti�er-free formula.Since we are not only interested in �rst-order logic but also in extensions of it, we use theterm quanti�er elimination in a broader sense.De�nition 2.7. Let L be a logic and A be a � -structure. A admits quanti�er eliminationfor L, if for every formula '(x1; : : : ; xk) 2 L[� ], there is a quanti�er-free �rst-order formula



12 CHAPTER 2. PRELIMINARIES'0(x1; : : : ; xk), so that for all a1; : : : ; ak 2 A,A j= '[a1; : : : ; ak] i� A j= '0[a1; : : : ; ak]:In the next de�nition it is explained how queries can be de�ned by logical formulae.De�nition 2.8. Suppose L is a logic and A a � -structure admitting quanti�er eliminationfor L. Let � be a relational signature and B be a �-database over A. For every formula'(x1; : : : ; xk) 2 L[� [ �] the query Q' de�ned by ' is de�ned asQ' : Expfr(A) ! Relfr(A)B 7! fa 2 Ak : B j= '[a]gThe formulae ' 2 L[� [ �] are called query formulae.The next lemma and its corollary show that the de�nition of a query Q' for the queryformula ' is well-de�ned. Here and in the following chapters we need a way to \unfold"a database in a query formula, that is to combine the database and the query formula toa single formula. This is made precise in the following de�nition.De�nition 2.9. Suppose A is a � -structure and B a �-constraint database over A. Let' be a query formula. The query formula '0 := unfold(';B) is de�ned as'0 := '[Ri='BRi];where each occurrence of a database relation symbol Ri in ' has been replaced by theformula 'BRi representing RBi in B.Clearly, ' is equivalent in B to '0 and, as '0 is a formula over � alone, 'B = '0A. Thesize of '0 is O(j'j � jBj).Lemma 2.10. Suppose L is a logic and A is a � -structure. Let B be a �-database overA. If A admits quanti�er elimination for L then also B admits quanti�er elimination forL.Proof. For each query formula ' 2 L[�[�] let '0 be the unfolded query '0 := unfold(';B).Because '0 is a formula over the signature � and A admits quanti�er elimination for L,'0 is equivalent in A to a quanti�er-free formula. Therefore, as ' and '0 are equivalent,also ' is equivalent to a quanti�er-free formula.As a corollary of the lemma we get that the notion of query formulae de�ning queriesis well-de�ned.Corollary 2.11. If ' is a query formula, then Q' de�nes a query.Proof. Let A be a � -structure. By de�nition, Q' maps a database B over A to the setQ'(B) = fa : B j= '[a]g. To prove the corollary we show that Q'(B) is �nitely rep-resentable. The preceding lemma proved that ' is equivalent to a quanti�er-free formula over the signature � . Thus Q'(B) equals fa : A j=  [a]g and therefore  is a �niterepresentation of Q'(B) over A.



2.2. CONSTRAINT QUERIES 13Note the distinction between a query which is a mapping from databases to �nitelyrepresentable relations and a query formula as a logical formula de�ning a query. Thusa query can be de�ned by various query formulae, whereas a query formula uniquelydetermines a query.De�nition 2.12. A constraint query language L for �-databases over a � -structure Aconsists of a set of logical formulae over a signature � 0 � � [�, so that A admits quanti�erelimination for L. � 0 is called the query signature. Let ' 2 L[� 0] be a query formula. Theset Q'(B) is called the answer of the query Q' over the database B.Typically a logic like �rst-order logic or Datalog will be used as query language, butalso subsets of those logics like the set of positive or existential formulae are used.Two di�erent problems in connection with the evaluation of queries have been consideredin the database literature.De�nition 2.13. Let A be a context structure and L be a query language over A.� The evaluation problem for a query formula ' and a database B over A is de�nedas the problem of �nding a �nite representation of Q'(B).� The recognition problem for ' and B is de�ned as the problem of checking whethera given tuple a is in Q'(B).If ' is a boolean formula, than the evaluation and the recognition problem coincide,because the answer of the query is either true or false. But if ' is non-boolean, say aquery in the variables x, the two problems di�er. In this case the recognition problem canagain be seen as solving a boolean query, because checking whether a tuple a is in Q'(B)can be done by answering true or false to the query de�ned by '[x=a]. In contrast, theevaluation problem requires the computation of a formula, namely the representation ofthe answer of Q'(B), and cannot be reduced to a boolean query.It follows that only structures admitting quanti�er elimination are suitable as contextstructures for constraint databases if the evaluation problem of non-boolean queries isunder consideration. If we are not interested in formulae with free variables but only inboolean queries, the structure need not necessarily admit quanti�er elimination but itstheory must be decidable. An example of such a structure is Presburger arithmetic (see[Pre27]), that is, the natural numbers with addition.Note 2.14. The theory of any context structure has to admit e�ective quanti�er elimina-tion in order to allow query evaluation. If only boolean queries are considered, it su�cesfor the theory of the context structure to be e�ectively decidable.Typical questions that arise when dealing with constraint query languages are thecomplexity of query evaluation for a certain constraint query language and the de�nabilityof a query in a given language. We will be especially interested in the former question.Therefore we neglect the distinction between query formulae and the queries they de�neand call both just queries.Throughout the following chapters we are mainly interested in the complexity of queryevaluation for di�erent logics. The complexity of query evaluation can be measured indi�erent ways.



14 CHAPTER 2. PRELIMINARIESDe�nition 2.15. Let A be a context structure and L be a query language. The com-plexity of the evaluation problem can be measured in three di�erent ways.� For a �xed query formula ' 2 L, the data complexity of the query Q' is de�ned as theamount of resources (e.g. time, space, or number of processors) needed to evaluatethe function that takes a representation � of a database B to a representation ofthe answer relation Q'(B).� For a �xed constraint database B over A, the query complexity of B is de�ned asthe amount of resources needed to evaluate the function taking a query formula 'to the representation of the answer relation Q'(B).� If both, the database and the query, are variable, we speak of the combined com-plexity. It is de�ned as the complexity of the function taking the pair (Q';B) toQ'(B).When considering query evaluation for constraint query languages, there are di�erentparameters to vary. The �rst and most important one is the context structure, whichdepends on the kind of data to be stored in the database. For example a geographicalinformation system or software to manipulate geometrical �gures may need the ordered�eld of reals (R; <;+; �) as context, whereas (R; <;+) might su�ce for a CAD system. Sofar research has concentrated on these two structures and dense linear orders like (R; <).The next parameter in consideration is the choice of the query language. To �x thequery language the query signature as well as the query logic has to be chosen. Here�rst-order logic and Datalog have been the logics of choice so far, where the query andthe context signature coincide.



Chapter 3Proof methods for constraintdatabasesIn this chapter we investigate methods for proving complexity bounds or non-de�nabilityresults for constraint query languages. In the �rst section we relate the complexity ofquery evaluation to the complexity of the theory of a context structure. In the sectionthereafter we show as an application of Ehrenfeucht-Fra��ss�e-games that the �xed-pointlogics introduced so far are too weak over the class of databases de�ned by inequalityconstraints over countable in�nite sets to de�ne all queries computable in Logspace.3.1 Obtaining complexity boundsIn this section we focus our attention on the question of how the complexity of the theoryof a context structure and of quanti�er elimination are related to the complexity of queryevaluation. Throughout the rest of this chapter we consider �rst-order queries and the�rst-order theory of a context structure A.We begin our investigations with the following lemma relating the complexity of Th(A)to the query complexity of boolean queries. The question how similar results can be foundfor data complexity is considered thereafter. The section is closed by the consideration ofthe data complexity of non-boolean queries.Lemma 3.1. Let f : N ! N be a function and R be a resource, e.g. time or space.(i) If R(f(n)) is a lower complexity bound for the theory of A then it is also a lowerbound for the query complexity of boolean queries.(ii) If R(f(n)) is an upper complexity bound of Th(A) then the query complexity ofboolean queries is bounded from above by R(f(O(n))).Proof.(i) Cleary, a lower bound for the complexity of Th(A) is also a lower bound for thequery complexity of boolean queries, because every sentence of the theory is also aboolean query on arbitrary databases over A.15



16 CHAPTER 3. PROOF METHODS FOR CONSTRAINT DATABASES(ii) Suppose B = (A; RB1 ; : : : ; RBk ) is a database over A. For each boolean query  let 0 := unfold( ;B) be the be the unfolded query as de�ned in De�nition 2.9. Thetruth of  0 can be decided in R(f(j 0j)). As the database is �xed, the size of  0 isO(j j). Thus the truth of  can be checked in R(f(O(j j))).The preceding lemma shows that the complexity of the theory of A yields the querycomplexity for boolean queries on constraint databases over A. It does not generally applyto data complexity, because if data complexity is in consideration the query and thereforethe number of quanti�ers is �xed, whereas the complexity of the theory often dependsheavily on the number of quanti�ers. To deal with data complexity we consider sentenceswith a �xed pre�x length.De�nition 3.2. Let k 2 N be an integer. The k-dimensional theory k-Th(A) of A is theset of all sentences in prenex normal form with k quanti�ers which are true in A.The next theorem proves that a lower data complexity bound for query evaluation canbe obtained from a lower complexity bound for k-Th(A).Theorem 3.3. Suppose k 2 N is �xed and C a lower bound for the complexity of k-Th(A).Then C is also a lower complexity bound for the data complexity of the query evaluationproblem.Proof. To prove the lemma we reduce the decision problem for k-Th(A) to the queryevaluation problem for databases over A. Every sentence in k-Th(A) has the form ' :=Q1x1 : : : Qkxk'0, where '0 is quanti�er-free. Let Rk be a k-ary relation symbol and  k bethe query  k := Q1x1 : : : QkxkRx1 : : : xk. Obviously the size of the query depends onlyon k and is therefore �xed.For each ' 2 k-Th(A), with ' := Q1x1 : : : Qkxk'0, let B' be an fRg-database suchthat RB' is represented by '0. The size of B' equals the size of '0 and thus the size of' minus a constant c := 2k. Clearly, ' 2 k-Th(A) if and only if  B'k evaluates to true.Thus the lower bound for k-Th(A) is also a lower bound for the data complexity of theevaluation problem.The preceding theorem proves that a lower bound for a k-dimensional theory alsoyields a lower bound for the data complexity of the query evaluation problem. An uppercomplexity bound for the data complexity of boolean queries can also be derived from thecomplexity of the k-dimensional theories, if the complexity of all k-dimensional theoriesis known.Theorem 3.4. Let R be a resource, e.g. time or space, and fk : N ! N be a functionsuch that Ck := R(fk(n)) is an upper complexity bound for k-Th(A). Then R(fk(O(n)))is an upper bound for the data complexity of all boolean queries with at most k quanti�ers.Proof. We prove the theorem by showing that every boolean query  with k quanti�erscan be evaluated in R(fk(O(n))). Suppose B := (A; RB1 ; : : : ; RBk ) is a database. Let



3.1. OBTAINING COMPLEXITY BOUNDS 17 0 := unfold( ;B) be the unfolded query as de�ned in De�nition 2.9. As we considerdata complexity, the query  is �xed and therefore the size of  0 is O(jBj). Further,  0has k quanti�ers and therefore the truth of  0 in A and, with it, the truth of  B can bedecided in R(fk(j 0j)) = R(fk(O(jBj))).Thus if the complexity of all k-dimensional theories is known, we can derive an up-per data complexity bound for boolean queries. For example, if the complexity of all k-dimensional theories is Ptime, then also the data complexity of boolean queries is Ptime.Note the di�erence between the upper bound C for the data complexity of boolean queriesand the complexity of the theory of A. In the calculation of the Ck the number of quanti-�ers is considered as being �xed. Thus C is derived from the complexity of �xed dimensiontheories whereas in the calculation of the complexity of Th(A) the number of quanti�ersis variable. For example consider databases de�ned over the ordered �eld of reals. Thecomplexity of the theory of real closed �elds has a non-deterministic exponential lowertime bound (see for example [HU79]). But we will see in Section 4.2.3 that the datacomplexity of �rst-order queries is NC.One way to obtain lower bounds for �xed dimension theories is to study the complexityof pre�x classes.De�nition 3.5. Suppose Q 2 f8; 9g� is a �nite sequence of quanti�ers. The pre�x class[Q] of Th(A) is de�ned as the set of all sentences in prenex normal form with quanti�erpre�x Q which are true in A.Obviously a lower bound for the complexity of a pre�x class of A with k quanti�ersis also a lower bound for the complexity of the k-dimensional theory of A. We will usethis in Section 4.3.2 to prove that for each level of the polynomial time hierarchy there isa �rst-order query in the context of the Presburger arithmetic whose data complexity iscomplete for this level.So far all lemmas and theorems in this section dealt only with boolean queries. Clearly,the complexity of non-boolean queries is at least the complexity of boolean queries. There-fore the results for obtaining lower bounds can also be used for non-boolean queries. Toobtain upper bounds, the study of the complexity of Th(A) is not su�cient. Instead wehave to consider the complexity of quanti�er elimination in A. The next theorem relatesthe complexity of quanti�er elimination with the data complexity of �rst-order queryevaluation.Theorem 3.6. A lower or upper complexity bound for the elimination of a �xed numberof quanti�ers is also a lower or upper bound for the data complexity of �rst-order queries.Proof. Clearly, an upper bound for the complexity of eliminating a �xed number of quan-ti�ers is also an upper data complexity bound for �rst-order queries, because a quanti�erelimination algorithm can also be used for query evaluation.On the other hand, using the method presented in the proof of Theorem 3.3 one can easilyshow that the problem of eliminating a �xed number of quanti�ers can be reduced to theevaluation problem for �rst-order queries. Therefore a lower complexity bound for theformer problem is also a lower bound for the latter.



18 CHAPTER 3. PROOF METHODS FOR CONSTRAINT DATABASESIn this section we obtained complexity bounds for problems connected to the com-plexity of the theory of the context structure. In the next section we consider methodsto prove that a query language is too weak to de�ne particular properties of databases.3.2 Proving non-de�nability resultsIn [GS94] and [GS97a] Grumbach and Su examined which methods used to show non-de�nability results in classical or �nite model theory still work for the class of �nitelyrepresentable structures. They showed that the �nitely representable model theory di�ersboth from classical as well as �nite model theory. Among the few methods which stillwork in the context of �nitely representable structures are Ehrenfeucht-Fra��ss�e gamesand their variants, the pebble games. As an application of Ehrenfeucht-Fra��ss�e games weprove that, as in �nite model theory, on unordered structures even such expressive logicsas FO+PFP lack the power to count. Thus there are tasks which can be accomplishedby Logspace Turing machines which cannot be de�ned in FO+PFP.To prove this we need some theorems well known from �nite model theory (see forexample [EF95]). The �rst theorem states that the �xed-point logics introduced so farare all contained in the in�nitary logic L!1!.Theorem 3.7.(i) FO+LFP � L!1!.(ii) FO+PFP � L!1!.An implication of the theorem is that we can show non-de�nability results for thevarious �xed-point logics by showing that the properties in question are not de�nable inL!1!. To show non-de�nability results for L!1!we use a game theoretical characterizationof L!1!-equivalence.Theorem 3.8. Let A and B be � -structures. The following is equivalent:(i) A �Lk1! B.(ii) The duplicator wins the k-pebble game Gk1(A;B).We use this to prove the following theorem.Theorem 3.9. On unordered �nitely representable structures Logspace 6� L!1!:Proof. Let A be a structure with an empty signature whose universe is countably in�niteand � := fRg be a database signature containing only one unary relation symbol. Weuse an Ehrenfeucht-Fra��ss�e game to show that there is no L!1!-sentence ' which is truein a database B = (A; RB) if and only if RB is in�nite or of even cardinality. For thesake of contradiction suppose there would be such a sentence ' 2 L!1!. Recall that L!1!is de�ned as the union of Lk1! for all k 2 N . Thus there is a k 2 N such that ' 2 Lk1!.Let P be the set of constants occurring in '. Consider two databases B1 and B2 where



3.2. PROVING NON-DEFINABILITY RESULTS 19jRB1j = k and jRB2 j = k + 1 and no constant from P occurs in RB1 or RB2 . Obviouslythe duplicator wins the game Gk1(B1;B2), because, essentially, he has to ensure thatwhenever the spoiler places his pebble on an element of R in one structure, he has todo so in the other structure, and whenever the spoiler places his pebble on an elementwhich occurs as a constant in P , he has to do so as well. This is always possible becausethe spoiler can only place k pebbles and both relations contain at least k elements whichoccur not as a constant in P . Thus the duplicator wins the game Gk1(B1;B2) and, byTheorem 3.8, the structures B1 and B2 are Lk1!-equivalent. Therefore either ' holdsin both structures or in none of them. Clearly, one of RB1 and RB2 is of even and theother of odd cardinality. Thus ' cannot distinguish between relations of odd and evencardinality.Now we show that a Logspace Turing machine can decide whether a relation R is �niteand of even cardinality. Note that as R is unary it is represented by a quanti�er-freeformula 'R with only one variable x. We de�ne a set unbounded('R) by induction on thestructure of 'R.� If 'R := x = c, where c is a parameter, then unbounded('R) := ?.� If 'R := x 6= c then unbounded('R) := fx 6= cg.� If 'R := '1 ^ '2 then unbounded('R) := unbounded('1) \ unbounded('2).� If 'R := '1 _ '2 then unbounded('R) := unbounded('1) [ unbounded('2).By induction it can be shown that R is �nite if and only if unbounded('R) is empty.Although a Logspace Turing machine cannot explicitly generate the set unbounded('R),it can test for every negated atomic formula ' occurring in 'R if ' 2 unbounded('R).Thus �niteness of R can be decided in Logspace. Now we show that for every �nite R itcan be checked in Logspace whether R is of even cardinality. Clearly, if R is �nite, thenall elements satisfying 'R must occur as parameter in it. Thus the Turing machine cantest for every parameter if it satis�es 'R and decide whether the number of parametersfor which the test succeeded is even. Thus for every �nite relation R, the test whether Ris of even cardinality can be done in Logspace. This proves the lemma.In this chapter we considered proof methods which are independent of a particular con-text structure. In contrast we consider in the following chapters special context structuresand the data complexity of query languages de�ned for them.



20 CHAPTER 3. PROOF METHODS FOR CONSTRAINT DATABASES



Chapter 4An overview of data complexityboundsIn this chapter we give an overview of results about the complexity of query evaluation.The chapter is organized as follows. In each of the following sections we cover the resultsfound for a certain context structure. We begin with the simplest case, the extension of�nite databases to databases with an in�nite domain. In the sections thereafter we addsuccessively more arithmetical functions to the context structure. As we will see, there isa signi�cant di�erence between discrete and dense structures.4.1 Inequality constraints over an in�nite domainOne important restriction of �nite databases and their query languages is the restrictionto safe queries. Safe queries are those which are guaranteed to produce a �nite outputon a �nite database. To guarantee the safety of a query language for �nite databases, itssyntax is restricted so that all queries which can be formulated in the restricted languageare safe. For example predicate calculus is restricted to the safe calculus by prohibitingthe use of universal quanti�ers and allow negation only for certain \guarded" expressions.In the context of constraint databases, all these restrictions are unnecessary. The obviousextension of �nite databases to constraint databases is to allow an in�nite domain andconsider all �rst-order queries on the database, that is to allow negation and universalquanti�cation. Kanellakis, Kuper and Revesz proved in [KKR90] that the data complexityof �rst-order queries is still Logspace.Theorem 4.1. First-order logic with equality constraints over an in�nite domain hasLogspace data complexity.We give the proof explicitly because it demonstrates a common proof technique forconstraint databases. Consider a query with k free variables. The idea is to partition thek-dimensional space into a �nite number of sets, such that the points in one set cannotbe distinguished by �rst-order formulae and each set can be de�ned by a quanti�er-freeformula. A query can be evaluated by testing for each partition if one representative pointin it satis�es the query. The answer of the query consists of the union of all partitions21



22 CHAPTER 4. AN OVERVIEW OF DATA COMPLEXITY BOUNDSfor which the test succeeded. This answer can be represented by the disjunction of theformulae de�ning the partitions in the union.In the rest of this section we assume a database B = (N ; RB1 ; : : : ; RBk ), where A := Nis the context structure over the empty signature whose universe is the set of integers.Further, we assume a query  where all occurrences of database relation symbols R havebeen replaced by their representations 'BR in B. Let P be the set of parameters used in  or in the representation of B. Now we use the method outlined above to prove Theorem4.1. We de�ne a so called e-con�guration to represent a partition.De�nition 4.2. A k-dimensional e-con�guration � = (�; v) consists of an equivalencerelation � on f1; : : : ; kg and a sequence v = (v1; : : : ; vk), where each vi is in P [f�g, suchthat for all 1 � i; j � k,(i) if i � j, then vi = vj, and(ii) if vi = vj and vi; vj 6= �, then i � j.The idea behind the e-con�gurations is as follows. Consider two points a and b in Ak.The two points are distinguishable using inequality constraints and parameters from Pif and only if two elements of one tuple are equal and the corresponding elements of theother tuple are not or one element of a tuple equals a constant in P and the correspondingelement in the other tuple does not. We prove in Lemma 4.9 below that an e-con�gurationde�nes a set of indistinguishable points.The following two de�nitions relate points to e-con�gurations, the �rst de�ning theset of points contained in an e-con�guration and the second de�ning for a given point pan e-con�guration � containing it.De�nition 4.3. Suppose � = (�; v) is a k-dimensional e-con�guration. The formulaF (�) corresponding to � is de�ned as the conjunction of1. xi = xj, if i � j,2. xi 6= xj, if i 6� j,3. xi = vi, if vi 6= �, and4. xi 6= p for all p 2 P , if vi = �.The set of points contained in � is de�ned as the set of points satisfying F (�).The next de�nition explains how an e-con�guration � can be found for a given pointp such that p is contained in �.De�nition 4.4. Let a 2 Ak be a k-tuple. The e-con�guration e-conf (a) := (�; v) isde�ned as follows.� i � j if and only if ai = aj.� If ai 2 P then vi = ai. Otherwise vi = �.



4.1. INEQUALITY CONSTRAINTS OVER AN INFINITE DOMAIN 23We illustrate the previous de�nition by an example. Let P be the set f1; 2g anda = (1; 1; 2; 4; 2; 4; 3). The e-con�guration e-conf (a) consists of the equivalence relatione = ff1; 2g; f3; 5g; f4; 6g; f7gg and the sequence v = (1; 1; 2; �; 2; �; �).The next lemma proves that for a given point a 2 Ak the e-con�guration e-conf (a)contains a. Moreover, it is the unique e-con�guration containing a.Lemma 4.5. Let (a1; : : : ; ak) be a point in Ak. There exists a unique e-con�guration �such that A j= F (�)(a1; : : : ; ak).Proof. Let � := e-conf (a) be the e-con�guration according to De�nition 4.4. Clearly, F (�)is satis�ed by a. Now suppose that �0 is an e-con�guration such that F (�0) is satis�ed by aas well. We show that � and �0 must be equal by proving that if � 6= �0 then F (�)^F (�0) isnot satis�able. For the sake of contradiction suppose that � 6= �0 but (a1; : : : ; ak) satis�esF (�) ^ F (�0). If � 6= �0, then �6=�0 or v 6= v0.If �6=�0 then there are i; j with i � j and i 6�0 j or i 6� j and i �0 j. Suppose w.l.o.g.that i � j and i 6�0 j. Thus F (�) contains xi = xj whereas F (�0) contains xi 6= xj andtherefore F (�) ^ F (�0) is not satis�able.On the other hand, if �=�0 but v 6= v0, then there is an 1 � i � k such that vi 6= v0i.If neither vi nor v0i equals � then F (�) contains xi = vi whereas F (�0) contains xi = v0i. Asvi 6= v0i, F (�) ^ F (�0) is not satis�able. Now suppose w.l.o.g. that vi = p 2 P and v0i = �.Then F (�) contains xi = p whereas F (�0) contains xi 6= p and again F (�) ^ F (�0) is notsatis�able.Before we can de�ne the evaluation algorithm for �rst-order queries on inequalityconstraint databases, we need some more technical de�nitions and lemmas. The �rstde�nition and the following lemma explain how a k-dimensional e-con�guration can beextended to a (k + 1)-dimensional one.De�nition 4.6. Suppose � = (�; v1; : : : ; vn) is a k-dimensional e-con�guration. A (k +1)-dimensional e-con�guration �0 = (�0; v0) is an extension of � if and only if for all1 � i; j � k i � j i� i �0 j and v0 = (v1; : : : ; vk; v0k+1) for some v0k+1 2 A.Lemma 4.7. Let � be a k-dimensional e-con�guration and �0 be a (k + 1)-dimensionalextension of �. Then for all a1; : : : ; ak 2 A;A j= F (�)(a) i� there is an a 2 A such that A j= F (�0)(a; a):Proof. For the backward direction note that F (�) is a conjunction of formulae occurringalso in F (�0). Thus A j= F (�0)(a; a) implies A j= F (�)(a).To prove the forth direction we show that there is an a 2 A such that (a1; : : : ; ak; a)satis�es F (�0). If (k + 1) � i for some 1 � i � k then set a = ai. Otherwise ifvk+1 = p 2 P set a = p. If none of both is the case set a = c for some c 2 AnP . Thisis possible as A is in�nite whereas P is always �nite. In all cases (a1; : : : ; ak; a) satis�esF (�0).The next lemma states that every e-con�guration de�nes a non-empty set of elements.



24 CHAPTER 4. AN OVERVIEW OF DATA COMPLEXITY BOUNDSLemma 4.8. For every k-dimensional e-con�guration � there are elements a1; : : : ; ak 2A such that A j= F (�)(a).Proof. The proof follows easily by induction on k using Lemma 4.7 and the fact that if �is 0-dimensional, then F (�) = true.The last lemma needed to de�ne the evaluation algorithm shows that to decide whetherthe points contained in an e-con�guration satisfy a formula  it su�ces to test whetherone of them satis�es  .Lemma 4.9. Suppose � = (�; v) is a k-dimensional e-con�guration and  is a formulawith at most k free variables x1; : : : ; xk using only parameters from P .(i) If A j= F (�)(a) and A j= F (�)(a0) then A j=  (a) i� A j=  (a0).(ii) F (�) ^  is satis�able in A if and only if F (�)!  is valid in A.Proof.(i) The �rst part of the lemma is proved by induction on the structure of  . SupposeA j= F (�)(a) and A j= F (�)(a0).� Suppose  := xi = c, where c 2 P . Obviously A j=  (a) if and only if ai = cand therefore vi = c. As A j= F (�)(a0), also a0i = c and thus A j=  (a0).� The proof of the boolean cases is straightforward.� Now suppose  := 9x 0. Then (a1; : : : ; ak) satis�es  if and only if for somea 2 A (a1; : : : ; ak; a) satis�es  0. By Lemma 4.5 there is a (k+1)-dimensional e-con�guration �0 such that A j= F (�0)(a; a). Obviously �0 extends � and because(a01; : : : ; a0k) satis�es F (�) there is by Lemma 4.7 an element a0 2 A such thatA j= F (�0)(a0; a0). As  0 is a sub-formula of  we get by induction that  0 issatis�ed by (a01; : : : ; a0k; a0) and thus  is satis�ed by (a01; : : : ; a0k).(ii) If F (�)!  is valid then, by Lemma 4.8, F (�) ^  is satis�able. For the backwarddirection suppose that A j= F (�) ^  (a) for some a 2 Ak. By the �rst part of thislemma we get that all tuples a0 satisfying F (�), satisfy  as well. Thus F (�) !  is valid.Now we are ready to de�ne the evaluation algorithm. The algorithm works as follows.Given a query formula  with k free variables as input it tests for every k-dimensionale-con�guration � whether F (�) !  is valid. This is done by a sub-algorithm TEST. Itthen outputs the disjunction of the formulae F (�) for every � such that F (�)!  is valid.Recall from the beginning of the section that the database relation symbols occurring inthe query have been replaced by the formulae representing the relations in the database.Algorithm 4.10. TEST( ; �)



4.1. INEQUALITY CONSTRAINTS OVER AN INFINITE DOMAIN 25Input: A formula  with k free variables and a k-dimensional e-con�guration � = (�; v).Output: true if F (�)!  is valid, false otherwise.The algorithm is de�ned inductively on the structure of  .� Suppose  is atomic of the form xi = xj.If i � j return true else return false.� Suppose  is atomic of the form xi = c.If vi = c return true else return false.� Suppose  is of the form  1 _  2.If TEST( 1; �) returns true return true, else return TEST( 2; �).� Suppose  is of the form : 0.If TEST( 0; �) returns false then return true else return false.� Suppose  is of the form 9x 0.For every extension �0 of � do TEST( ; �0). If one of these returns true then returntrue as well. Otherwise return false.The algorithm TEST is used in the following evaluation algorithm evaluate .Algorithm 4.11. evaluate (B)Input: A constraint database B.Output: A �nite representation of  B.We assume in the algorithm that the occurrences of the database relation symbols in  have been replaced by the formulae representing the relations in B. Further, let k be thenumber of free variables in  and P be the set of parameters used in B and  .for each k-dimensional e-con�guration � using parameters from P doexecute TEST( ; �)odoutput The disjunction of all F (�) so that TEST( ; �) returned true.Having de�ned the evaluation algorithm we have to prove its correctness. This is donein the following two lemmas, the �rst proving the correctness of the sub algorithm TESTand the second proving the correctness of evaluate.Lemma 4.12. The algorithm TEST( ; �) returns true if and only if F (�)!  is valid.Proof. The proof is by induction on the structure of  .� The atomic cases are trivial.



26 CHAPTER 4. AN OVERVIEW OF DATA COMPLEXITY BOUNDS� Suppose  is of the form  1 _  2. To prove the forth direction recall that TESTreturns true if at least one of the sub algorithms called for  1 and  2 returns true.Thus, by induction, F (�)!  1 or F (�)!  2 and therefore also F (�)! ( 1 _  2)is valid.Now suppose F (�) ! ( 1 _  2) is valid. Then, by Lemma 4.9, F (�) ^ ( 1 _  2) issatis�able. Thus F (�)^ 1 or F (�)^ 2 is satis�able and by Lemma 4.9 F (�)!  1or F (�) !  2 is valid. By induction we get that at least one of TEST( 1; �) orTEST( 2; �) and therefore also TEST( ; �) returns true.� Suppose  is of the form : 0. To prove the correctness of this case we show thatF (�) ! : 0 is valid if and only if F (�) !  0 is not. F (�) ! : 0 is equivalent to:(F (�) ^  0) and, by Lemma 4.9, to :(F (�) !  0). Thus F (�) ! : 0 is valid ifand only if F (�)!  0 is not.� Suppose  is of the form 9x 0. To prove this case we show that F (�)!  is valid ifand only if F (�0)!  0 is valid for some extension �0 of �. By Lemma 4.9 it su�cesto show that F (�) ^  is satis�able in A if and only if F (�0) ^  0 is satis�able forsome extension �0 of �.For the forth direction suppose that A j= F (�) ^  [a]. Because a satis�es  thereis an a 2 A such that A j=  0[a; a]. By Lemma 4.5 there is an e-con�guration �0containing (a; a). Clearly, �0 is an extension of � and therefore A j= F (�0) ^  0[a; a].For the backward direction suppose that A j= F (�0) ^  0[a; a] for some extension �0of � and elements a; a 2 A. As �0 extends �, Lemma 4.7 gives A j= F (�)[a] and,because (a; a) satis�es  0, A j=  [a]. Thus A j= F (�) ^  [a].This �nishes the proof.We use the previous result to show the correctness of the evaluation algorithm.Lemma 4.13. The result of evaluate (B) is equivalent to  B.Proof. Let C = f�1; : : : ; �ng be the set of all e-con�gurations such that F (�i)!  is valid.Thus the result of evaluate is W1�i�n F (�i). To prove the lemma we show that a tuple asatis�es  in B if and only if it satis�es W1�i�n F (�i).Clearly, (W1�i�n F (�i))!  is valid and therefore every tuple a satisfying (W1�i�n F (�i))satis�es  as well. For the converse let a be a tuple with A j=  (a). By Lemma 4.5there is an e-con�guration � containing a. Thus a satis�es F (�) ^  and, by Lemma 4.9,F (�)!  is valid. Therefore � 2 C and a satis�es (W1�i�n F (�i)).Having proven the correctness of the algorithm we still have to show that it runs inlogarithmic space.Lemma 4.14. evaluate is a Logspace-algorithm.Proof. Let  be a �rst-order query with k free variables and B := (A; RB1 ; : : : ; RBs ) bethe input database. To prove the lemma we show that both algorithms, TEST and



4.1. INEQUALITY CONSTRAINTS OVER AN INFINITE DOMAIN 27evaluate, are Logspace-algorithms. We begin with the sub-algorithm TEST. TEST iscalled by evaluate with the query  and a k-dimensional e-con�guration � as parameter.Recall that we assumed in the de�nition of the algorithms that the database relationsymbols occurring in  have been replaced by the formulae de�ning the relations in B.Let  0 :=  [Ri='BRi] be the result of the substitution. Clearly,  0 cannot be storedon the working tape as it consumes more than logarithmic space. Instead of explicitlycreating  0, the algorithm operates on the original query  and each time it comes to adatabase relation symbol R it remembers its current position in the query and continuesthe evaluation with the formula 'BR on the input tape. The Turing machine can rememberthe current position in the query in its states. Thus no extra space is used for therepresentation of  0.We now show that a k-dimensional e-con�guration � can be stored on the workingtape in logarithmic space. As  is �xed, the number k of free variables is independent ofthe input. Recall that an e-con�guration essentially consists of a k tuple of coe�cientsfrom the query or the database and the equivalence relation �. Clearly, the size ofthe equivalence relation depends only on k and is therefore �xed. The coe�cients in �occurring in the query are independent of the input and therefore �xed in size whereasthe coe�cients occurring in the database can be stored by pointers to their occurrenceon the input tape. Thus the e-con�guration � can be stored by at most k2 pointers, andwith this, in space logarithmic to the size of the input. We now show that TEST does notuse more than logarithmic space. The algorithm operates by induction on the structureof the query. Whenever it comes to a database relation symbol R it has to test whetherF (�) ^ 'BR is satis�able in A. This can clearly be done in Logspace.The only other interesting case is existential quanti�cation. Here TEST calls itself forevery extension �0 of �. Clearly there are only �nitely many extensions and an extensioncan also be stored in logarithmic space. As the space occupied by an extension canbe reused for the next one, the algorithm has only to store one of the extensions at atime. By induction we get that the recursive calls with one extension can also be done inLogspace. This proves that TEST is a Logspace-algorithm.Now consider the algorithm evaluate. All it does is to generate all possible e-con�gu-rations of dimension k with parameters form the query or the database and to executeTEST for each of it. As the space used for the e-con�gurations can be reused and TESTworks in Logspace, evaluate is itself a Logspace-algorithm. This �nishes the proof.The last two lemmas together prove Theorem 4.1 giving the Logspace upper com-plexity bound for �rst-order queries.Using the methods we develop in Chapter 5, complexity bounds for other logics like tran-sitive closure or least �xed-point logic can be proven. We already saw in Section 3.2 thatthese logics cannot express all Logspace computable queries. Table 4.1 gives an overviewof the complexity bounds for databases de�ned over countably in�nite sets.In the next sections we switch from unordered to ordered structures. As we will see,there is a signi�cant di�erence between structures with a discrete universe and densestructures. The next section deals with dense structures whereas the discrete structures



28 CHAPTER 4. AN OVERVIEW OF DATA COMPLEXITY BOUNDSFO+DTC � LogspaceFO+TC � NLogspaceFO+LFP � PtimeFO+PFP � PspaceTable 4.1: Logics and complexity classes in the context of inequality constraints.will be covered in the section thereafter.4.2 Structures with a densely ordered universeA straightforward extension of the databases considered in the previous section are denseorder constraint databases, that is databases over a context structure which is a denseorder. We consider such databases in the next section. In the sections thereafter we enrichthe context signature �rst by addition and then by addition and multiplication.4.2.1 Dense order databasesIn this section we consider databases over dense orders. Kanellakis, Kuper and Reveszconsidered dense order databases in [KKR90] and proved that �rst-order queries can beevaluated in Logspace.Theorem 4.15. First-order queries over dense order databases have Logspace datacomplexity.Their argument is very similar to the one presented above to prove the Logspaceupper bound for inequality constraints over an in�nite domain. The proof is based onr-con�gurations instead of the e-con�gurations used above. Again let P be the set ofparameters occurring in the query or the database.De�nition 4.16. A k-dimensional r-con�guration � = (f; l; u) consists of a sequencef = (f1; : : : ; fk), where ff1; : : : ; fkg = f1; : : : ; jg for some j � k, and two sequencesl = (l1; : : : ; lk) and u = (u1; : : : ; uk), where the li's are in P [ f�1g and the ui's are inP [ f1g, such that for all 1 � i; j � k:� li � ui.� There is no constant c 2 P with li < c < ui.� Whenever fi < fj, then li < uj.� Whenever fi = fj, then li = lj and ui = uj.The idea is that two points x and y can be distinguished using order constraints andthe available parameters if the relative order of the xi's and the yi's di�er or if for some i,xi and yi are in a di�erent relation to some element of P . Using r-con�gurations instead



4.2. STRUCTURES WITH A DENSELY ORDERED UNIVERSE 29of e-con�gurations the proof of Theorem 4.15 is very similar to the proof given in theprevious section. We don't go into details here because dense order databases will beconsidered in detail in Chapter 5, where not only �rst-order logic but also its various�xed-point extensions will be considered.In other work, Kanellakis and Goldin [KG94] give an extension of Codd's relational algebrato dense order databases. This constraint algebra can be used to implement evaluationalgorithms for �rst-order queries on dense order databases which are based on circuits.By doing this an AC0 upper bound can be shown.4.2.2 Linear constraintsIn this section we consider linear constraint databases, that is, databases de�ned over thecontext structure (R; <;+). An example for the application of linear constraint databasesare databases used by CAD-systems. The data complexity of linear constraint queries hasbeen studied by Grumbach, Su, and Tollu in [GS97b] and [GST95]. In [GS97b] Grumbachand Su claim that \�rst-order queries on linear constraint databases have a NC1 datacomplexity." Unfortunately the proof is given only for the two dimensional case andcannot be extended to higher dimensions.We brie
y investigate the data complexity of more expressive logics than �rst-order.It turns out that adding a recursion mechanism to �rst-order logic leads to non-closed orundecidable languages. All �xed-point extensions of �rst-order logic considered so far arenot closed. For example, the following FO+DTC formulanat(x) := [DTCx;y(x + 1 = y)](0; x)de�nes the natural numbers. As the natural numbers are not even de�nable in the �eldof reals the result of the query nat cannot be represented by a quanti�er-free formulaover (R; <;+). The following theorem shows that there is no way to enrich the contextstructure by functions or relations such that FO+DTC-queries would be decidable andclosed.Theorem 4.17. Every query language over the context structure (R; <;+) which is atleast as expressive as existential FO+DTC is undecidable.Proof. To prove the theorem we reduce the decision problem for the existential theory ofarithmetic, which is known to be undecidable (see [EFT94]), to the evaluation problem ofboolean existential FO+DTC-queries. As we saw above the natural numbers are de�nablein FO+DTC. The graph of the multiplication for natural numbers can be de�ned by theFO+DTC-formulamult(a; b; c) := [DTCx;y;x0;y0(y + 1 = y0 ^ x+ a = x0)](0; 0; c; b):Now we reduce the decision problem for the existential theory of arithmetic to thequery evaluation problem for boolean FO+DTC-queries. For each sentence ' of theexistential theory of arithmetic let '0 be the result of relativizing each quanti�er in ' tonat and replacing each occurrence of multiplication by the formula mult. Note that as



30 CHAPTER 4. AN OVERVIEW OF DATA COMPLEXITY BOUNDSmultiplication occurs in ' as a function, we have to introduce new existential quanti�ersto replace it by the formula mult. These new quanti�ers are also relativized to nat.The formulae nat and mult are both existential FO+DTC-formulae. Therefore '0 is alsoexistential. Clearly, ' is true in the existential theory of arithmetic if and only if '0evaluates to true. Thus the undecidability of the evaluation problem follows from theundecidability of the existential theory of arithmetic.4.2.3 Real closed �eldsIn this subsection we consider databases de�ned over the �eld of reals. Databases likethis can be used to store geometrical objects, one of the most promising applications ofconstraint databases.In their seminal paper [KKR90], Kanellakis, Kuper and Revesz considered databasesover the �eld of reals and proved an NC upper data complexity bound.Theorem 4.18. First-order queries in the context of the �eld of reals have NC datacomplexity.The proof of the theorem is based on the following result by Ben-or, Kozen and Reif[BoKR86].Theorem 4.19. The theory of real closed �elds can be decided in deterministic exponen-tial space or parallel exponential time. In �xed dimension, the theory can be decided inNC.The main result of the previous section immediately implies that the various �xed-point extensions of �rst-order logic are undecidable over the �eld of reals.4.3 Structures with a discretely ordered universeIn the previous sections we analyzed the complexity of query languages in the contextstructures with a dense universe. Now we shift our attention to structures with a discreteuniverse. As we will see, there is a serious gap in complexity between dense and discreteorder query languages. We proceed as in the previous sections, beginning with a discreteorder as context structure and successively enriching the signature in the succeedingsections by addition and addition and multiplication.4.3.1 Discrete linear ordersIn Section 4.2.1 we saw that extending �nite databases to dense order databases still yieldse�cient query languages. As we will see in this section the situation changes drasticallyif discrete instead of dense orders are considered. We will show that FO+LFP is alreadyTuring complete. Throughout this section (N ; <) serves as an example of discrete linearorders.Grumbach and Su [GS97b] stated that the techniques used by Kanellakis and Goldinin [KG94] to prove an AC0 bound for dense linear orders could be extended to discrete



4.3. STRUCTURES WITH A DISCRETELY ORDERED UNIVERSE 31orders. Unfortunately this is not the case as the theory of discrete linear orders does notadmit quanti�er elimination. For example the formula '(x; y) := 9z x < z ^ z < y is notequivalent to any quanti�er-free formula. To obtain quanti�er elimination for (N ; <), thelanguage has to be enriched by a countable set of relations f<c : c 2 N [ f�1gg. Theintended meaning of x <c y is x+ c < y. These relations are called gap-orders. Using thissignature the formula ' above can be translated to an equivalent formula  (x; y) := x <1 ywhich is quanti�er-free. Note that <0 is the usual order and <�1 corresponds to �. Inthe following we consider the context structure (N ; (<c)c2N[f�1g).The complexity of �rst-order queries on gap-order databases will be considered in somedetail in Chapter 6. Here we consider the data complexity of more expressive logics. Wewill see in Chapter 5 that, because it captures Ptime, FO+LFP is an important logic forthe class of dense order databases. The next theorem by Revesz [Rev93] shows that it isalready too powerful over the class of discrete orders because it can express any Turingcomputable function.Theorem 4.20. Any Turing computable function is expressible by an FO+LFP formulaon discrete gap-order databases.Proof. The class of Turing computable functions coincides with the class of �-recursivefunctions. Thus is su�ces to show that every �-recursive function is expressible by anFO+LFP formula. These functions are built up from the initial functions zero, proj, andsucc by the operations of composition, primitive recursion, and the �-operator. In thefollowing we show that the graph of these (partial) functions is de�nable by FO+LFP-formulae.The functions zero(x), proji(x1; : : : ; xn; y), and succ(x; y) can be de�ned by'zero(x) := :9y y < x;'proji(x1; : : : ; xn; y) := xi = y; and'succ(x; y) := x < y ^ :9z x < z ^ z < y:Given formulae 'g; 'h1; : : : ; 'hk corresponding to �-recursive functions g and hi, the func-tion f = g(h1; : : : ; hk) derived by composing g and h1; : : : ; hk can be expressed by'f(x; y) := 9u 'g(u; y) ^ ^1�i�k'hi(x; ui):Recall that a function f : Nn+1 ! N is obtained by primitive recursion on g : Nn ! Nand h : Nn+2 ! N iff(x1; : : : ; xn; 0) = g(x1; : : : ; xn)f(x1; : : : ; xn; i + 1) = h(x1; : : : ; xn; f(x1; : : : ; xn; i); i):Let 'g and 'h be formulae corresponding to g and h. We de�ne an (n + 2)-ary relationR such that Ra; c; b holds if f(a; c) = b. The relation is used in the �xed-point formula'f (x; i; y) := [LFPR;x;i;y((i = 0 ^ 'g(x; y))_(i 6= 0 ^ 9y0Rx; i� 1; y0 ^ 'h(x; y0; i� 1; y)))](x; i; y)



32 CHAPTER 4. AN OVERVIEW OF DATA COMPLEXITY BOUNDSde�ning the graph of the function f . It states that \i = 0 and g(x) = y or i 6= 0 andthere is y0 such that f(x; i� 1) = y0 and h(x; y0; i) = y". The abbreviation i� 1 used inthe de�nition of 'f can be de�ned using the successor function.The last operation we have to consider is the �-operator. Recall that the �-operator isde�ned as follows. Let g : Nn+1 ! N be a �-recursive function. The function f : Nn !N ; f := �yg is derived from g by an application of the �-operator, iff(x) := 8<: the smallest y such that g(x; y) = 0 and for all z < yg(x; z) is de�ned and not 0unde�ned, if no such y exists.Let 'g(x1; : : : ; xn; xn+1; y) be a formula corresponding to the function g. The formula'f(x1; : : : ; xn; y) can be de�ned as'f(x1; : : : ; xn; y) := g(x; y; 0) ^ 8z < y9y0 > 0 ('g(x; z; y0)):Thus all �-recursive functions can be expressed by FO+LFP-formulae.We get from the theorem that FO+LFP is too expressive in the context of discreteorders. The reason for this is the combination of recursion and the de�nability of thesuccessor function. Leaving out recursion leads to �rst-order queries which are consideredin detail in Chapter 6, where it is shown that their data complexity is Logspace.If the formulae are restricted to positive ones, the successor function becomes unde�n-able. Revesz considered in [Rev90] and [Rev93] positive Datalog queries on gap-orderdatabases. He used a representation of constraints by graphs, so called gap-graphs, toset up an evaluation algorithm and proved the algorithm to terminate on every query.But nothing more is known of its complexity. Since positive Datalog is equivalent toexistential positive �xed-point logic, we get the following theorem.Theorem 4.21 ([Rev93]). Existential positive FO+LFP queries can be evaluated bot-tom up in closed form.In this section we saw that the combination of gap-orders as context structure andrecursive query languages leads to high data complexity. In the next section we addaddition to the natural numbers and see that even boolean �rst-order queries have a veryhigh data complexity.4.3.2 Presburger arithmeticIn the last section we saw that the structure (N ; <) does not admit quanti�er eliminationbut can be enriched by certain relations so that the expanded structure admits quanti�erelimination. The same happens if we consider the structure (N ; <;+), also known asPresburger arithmetic. An example that shows that the Presburger arithmetic does notadmit quanti�er elimination is the set of even numbers which can be de�ned by '(x) :=9z z + z = x but which cannot be de�ned without quanti�ers.



4.3. STRUCTURES WITH A DISCRETELY ORDERED UNIVERSE 33Grumbach and Su claimed in [GS97b] that �rst-order queries on (N ; <;+) as contextstructure could be evaluated in NC1 data complexity. We will prove this to be false usingthe methods of Section 3.1.The proof is based on the following theorem by Gr�adel [Gr�a88] and Sch�oning [Sch97].Theorem 4.22. (Gr�adel [Gr�a88], Sch�oning [Sch97])If m is odd, then(a) [9182 : : :9m83] is �pm-complete.(b) [8192 : : :8m93] is �pm-complete.If m is even, then(a) [9182 : : :8m93] is �pm-complete.(b) [8192 : : :9m83] is �pm-complete.We use this to prove the following theorem.Theorem 4.23. For each level �pk, resp. �pk, of the polynomial time hierarchy there is a�xed query such that the data complexity of the query is �pk-complete, resp. �pk-complete.Proof. A direct implication of Theorem 4.22 and Theorem 3.3 is that for each level �pk,or �pk resp., there are queries such that �pk, or �pk resp., is a lower bound for the datacomplexity of the queries. In the proof of Theorem 3.3 we reduced the decision problem fora k-dimensional theory to the evaluation problem for boolean queries. We can thereforereduce the decision problem for the pre�x classes mentioned above to the evaluationproblem for boolean queries. This proves that for each level of the polynomial timehierarchy there are queries whose data complexity is complete for that level.As a corollary of the theorem we get that FO captures PH on the class of constraintdatabases de�ned over the Presburger arithmetic.Corollary 4.24. First-order logic captures the polynomial time hierarchy on the class ofconstraint databases de�ned over the Presburger arithmetic.Proof. Clearly, FO � PH because every �rst-order query either already has a pre�x ofthe form as in Theorem 4.22 or it can be converted to such a form by adding quanti�ers.The corollary now follows immediately from Theorem 4.23.As we can see, �rst-order logic can express quite complex queries. A natural questionis to ask for sub-classes of �rst-order logic which can still be evaluated in polynomial time.We will see that existential and universal boolean queries are such classes. The followinglemma is due to Lenstra [Len83] and Scarpellini [Sca84].Lemma 4.25. For all �xed dimensions t 2 N, [9t] and [8t] are in Ptime.As an implication of this lemma and Theorem 3.4 we get the following theorem.



34 CHAPTER 4. AN OVERVIEW OF DATA COMPLEXITY BOUNDSTheorem 4.26. Existential and universal boolean queries have Ptime data complexity.Although �rst-order queries have a very high data complexity, boolean existentialor universal queries are still tractable. Sch�oning [Sch97] proved that the pre�x class[98]\ PA, that is the set of all sentences with quanti�er pre�x 98 true in the Presburgerarithmetic, is NP-complete. Thus, unless Ptime = NP, the above two classes are theonly sub-classes which can be evaluated in Ptime.In Section 4.2.2 we saw that the various �xed-point extensions of �rst-order logiclead to undecidable query languages over the context structure (R; <;+), because thenatural numbers with addition and multiplication become de�nable. The same happensin the context of the Presburger arithmetic because the formula mult given in Section4.2.2 can be used to de�ne multiplication in this context as well. Thus also with thePresburger arithmetic as context structure, adding �xed-points to �rst-order logic leadsto undecidable languages.4.3.3 The theory of arithmeticWe proved in the last section that using Presburger arithmetic as context structure re-sults in query languages with very high data complexity. Adding multiplication to thePresburger arithmetic leads to undecidable query languages as the �rst-order theory of(N ; <;+; �) is undecidable. In contrast, when the universe of the context structure isdensely ordered, we have been able to add multiplication to the signature and still endup in tractable query languages.4.4 SummaryThe results presented in this chapter are summarized in Table 4.2 and 4.3.inequality (R; <) (R; <;+) (R; <;+; �)FO Logspace Logspace ? NCex. FO+DTC - - undecidable undecidableTable 4.2: Overview, Part I, of the results presented in Chapter 4.(N ; <c) (N ; <;+) (N ; <;+; �)bool. univ. or ex. FO - Ptime -boolean FO - = PH undecidableex. pos. FO+LFP closed - -FO+LFP Turing complete undecidable undecidableTable 4.3: Overview, Part II, of the results presented in Chapter 4.



Chapter 5Dense linear ordersThe focus of this chapter is the complexity of query evaluation in the context of denselinear orders. We prove a general result which allows us to give precise complexity boundsfor the data complexity of various logics such as transitive closure or �xed-point logic andto extend results on logics capturing complexity classes from the realm of �nite orderedstructures to constraint databases over dense linear orders. Given a �xed query, its evalu-ation in a database can be done by transforming the database into a �nite structure, calledits invariant, evaluating a slightly modi�ed version of the query in it, and transformingthe result of the evaluation to an answer of the original query. Although this evaluationmethod may seem to be a long way round, it will actually prove to be a shortcut.5.1 Evaluating queriesIn this chapter the context structure A := (R; <) serves as an example of a dense linearorder without endpoints, but the results hold for arbitrary dense linear orders, becauseno special features of the reals will be used. Throughout the chapter we consider a�xed query  with a set P  of parameters. The query has to be transformed so thatit can be evaluated in the invariant. This transformation is independent of a particulardatabase and can be seen as a compilation or preprocessing step. To set up the evaluationmethod outlined above, we de�ne two mappings. The �rst, inv, maps databases to theircorresponding invariants; the second, �, maps the answer of the query on the invariant tothe answer of the original query. Before the mappings are de�ned we �x some notationand prove a few facts about dense linear order databases.De�nition 5.1. Let � := fR1; : : : ; Rkg be a signature, B be a �-database over (R; <),P � R a set of elements, and b a tuple of real numbers.� The complete atomic type of b with respect to B, written as atpB(b), is the set of allatomic and negated atomic formulae '(x) over the signature f<;R1; : : : ; Rkg suchthat B j= '[b].� The complete atomic type of b over P with respect to B, atpBP (b); is de�ned in thesame way as atpB(b), but with formulae that may also use the parameters from P .35



36 CHAPTER 5. DENSE LINEAR ORDERS� The complete order type of b with respect to B, otpB(b), is de�ned as the completeatomic type of b over the signature f<g. The de�nition of a complete order type ofb over P is analogous.� A maximally consistent set of atomic and negated atomic � [ f<g-formulae '(x) isa complete atomic type (over P ) in the variables x, if it is a complete atomic type(over P ) of a tuple b with respect to a �-expansion of A. We write atpB(x), resp.atpBP (x), for a complete atomic type (over P ) in the variables x over the databasesignature � of B.A type is an n-type if it has n free variables. We omit B if it is clear from the con-text. When speaking about types we always mean complete atomic types throughout thischapter.We call complete atomic types over � [ f<g also complete database types. Databasetypes are of special interest here because the database type of a tuple b determines every-thing we can say about b in terms of the database, especially in which database relationsb stands.Suppose B is a database and P the set of parameters used in its de�nition. Recallfrom the introduction that there are di�erent ways to represent the database B. The setof parameters used in these representations will generally di�er from P . We de�ne a set ofparameters, called the canonical parameters, which can be extracted fromB independentof its representation.De�nition 5.2. Suppose B = (R; <; RB1 ; : : : ; RBk ) is a database. The set cp(B) � R ofcanonical parameters of B is the set of elements p satisfying the following condition.For at least one n-ary relation R 2 fRB1 ; : : : ; RBk g there are a1; : : : ; an 2 R, an " 2 R; " >0; and an "-neighbourhood � = (p� "; p+ ") of p such that one of the following holds.� For all q 2 �; q < p and for no q 2 �; q > p we have Ra[p=q].� For all q 2 �; q > p and for no q 2 �; q < p we have Ra[p=q].� Ra[p=q] holds for all q 2 �nfpg but not for q = p.� Ra[p=q] holds for q = p but not for any q 2 �nfpg.Ra[p=q] means that all components ai = p are replaced by q.One important property of cp(B) we need in the sequel is that cp(B) is �nite for alldense order constraint databases. This is proved in the following lemma.Lemma 5.3. The set cp(B) of canonical parameters is �nite for all databases B.Proof. We claim that all canonical parameters occur explicitly as constants in every rep-resentation of the database. The proof of the lemma then follows easily because as allrepresentations are �nite, only �nitely many parameters can occur in them and thus theset of canonical parameters must also be �nite.



5.1. EVALUATING QUERIES 37To prove the claim let p be a canonical parameter. There exists a relation R, an n-tuple a,and an "-neighbourhood � of p such that at least one of the four conditions of De�nition5.2 is met. We give the proof explicitly for the �rst condition. The other cases can betreated analogously.As the �rst condition is met, for all q 2 �; q < p and for no q 2 �; q > p, we haveRa[p=q]. Thus there is a boolean combination of atomic and negated atomic formulae inthe representation of R distinguishing between the two sets fa[p=q] : q 2 �; q < pg andfa[p=q] : q 2 �; q > pg. As the universe R is dense, we can always �nd an "0 > 0 suchthat no ai 6= p is an element of the "0-neighbourhood �0 := (p � "0; p + "0) of p. Clearly,no formula of the form xi < xj or xi = xj can distinguish between any two points b; b0,such that b 2 A� := fa[p=q] : q 2 �0; q < pg and b0 2 A+ := fa[p=q] : q 2 �0; q > pg.As for all b 2 A� and for no b 2 A+ we have Rb, there must be a boolean combinationof formulae of the form xi < c or xi = c, where c is a parameter, in the representation ofR, distinguishing between A� and A+. Obviously, the parameter p must occur in theseformulae. This proves the claim.The parameters in the previous de�nition have been called canonical, because theycan be de�ned in the database independent of a particular representation. We show inthe next lemma that an atomic order type over cp(B) uniquely determines a completedatabase type. It follows that every two tuples realizing the same atomic order type overcp(B) occur in the same database relations and thus the set cp(B) is su�cient to de�nea representation of B.Lemma 5.4. Suppose B is a database and a; b 2 Rk are two k-tuples.(i) If otpBcp(B)(a) = otpBcp(B)(b), then atpB(a) = atpB(b).(ii) If otpBcp(B)(ai) = otpBcp(B)(bi) for all 1 � i � k and otpB(a) = otpB(b), thenotpBcp(B)(b) = otpBcp(B)(a).Proof.(i) For the sake of contradiction suppose that atpB(b) and atpB(a) di�er. Then thereis an atomic or negated atomic formula ' such that B j= '[a] but B 6j= '[b]. If ' isof the form xi < xj, then ai < aj but not bi < bj, which contradicts the assumptionthat otpBcp(B)(b) = otpBcp(B)(a).Now suppose ' is of the formRx1; : : : ; xr, where r := ar(R). Let C := (c0; c1; : : : ; ck)be a sequence of points in Rk , such that for 0 � i � k, cij := bj for all 1 � j � iand cij := aj for all i < j � k. Thus c0 = a, ck = b, c1 = (b1; a2; : : : ; ak),c2 = (b1; b2; a3; : : : ; ak), and so on. Further, let L := (l1; : : : ; lk) be a sequence oflines such that for all 1 � i � k the endpoints of li are ci�1 and ci. As B j= '[a] butB 6j= '[b], there is 1 � j � k such that lj intersects both RB and RknRB. Assumew.l.o.g. that aj < bj. Let q := cj�1. Then there is p 2 R with aj < p � bj suchthat RBq but not RBq1; : : : ; qj�1; p; qj+1; : : : ; qk. We claim that there is at leastone canonical parameter d with aj � d � p. Thus a and b do not satisfy the same



38 CHAPTER 5. DENSE LINEAR ORDERScomplete order type over cp(B) which contradicts the assumption.To prove the claim, let A be a set of real numbers de�ned asA := fa 2 R : aj � a and RBq1; : : : ; qj�1a0qj+1; : : : ; qk for all aj � a0 � ag:If A is closed let d be the biggest element in A, otherwise let d be the upper boundaryof A. Then, by De�nition 5.2, c is a canonical parameter and aj � d � p. Thisproves the claim.The case where ' is negated atomic can be proven analogously.(ii) The proof follows from the fact that all formulae ' occurring in otpBcp(B)(x) forvariables x1; : : : ; xk either occur in otpB(x), if they are of the form xi < xj forsome 1 � i; j � k, or occur in otpBcp(B)(xi), if they are of the form xi = p forsome p 2 cp(B). Thus, because otpBcp(B)(ai) = otpBcp(B)(bi) for all 1 � i � k andotpB(a) = otpB(b), also otpBcp(B)(a) = otpBcp(B)(a).One implication of the lemma is the following. Suppose we want to decide if Ra holdsfor a tuple a := a1; : : : ; ak and a k-ary database relation R. The question can be answeredif we know whether Rb holds for a tuple b := b1; : : : ; bk such that a and b realize the sameorder type and each bi realizes the same 1-order type over cp(B) as ai. This will be thecentral idea in the de�nition of the invariant.The lemma also has some other useful corollaries.Corollary 5.5. Suppose B is a �-database and a; b 2 R are k-tuples. If otpBcp(B)(a) =otpBcp(B)(b) then a and b cannot be distinguished by a �rst-order formula using only pa-rameters from cp(B).Proof. Let ' 2 FO[� [ f<g] be a �rst-order formula and '0 := unfold(';B) be theunfolded query according to De�nition 2.9. As '0 is a �rst-order formula over the signaturef<g and the theory of dense linear orders admits quanti�er elimination, '0 is equivalentto a quanti�er-free formula  . It follows from Lemma 5.4(i) that  cannot distinguishbetween a and b. As also ' is equivalent to  , a and b cannot be distinguished by 'either.In De�nition 5.9 below the canonical parameters of a database will be used to de�neits invariant. Not only the parameters of the database but also the parameters P  usedin the query are needed. Thus it has to be shown that the preceding lemma holds even ifwe extend the set cp(B).Proposition 5.6. Suppose B is a database, a; b 2 Rk are two k-tuples, and P := cp(B)[P  [ f0; 1g. Then otpBcp(B)(a) = otpBcp(B)(b) if otpBP (b) = otpBP (a).Proof. The proof of the proposition follows immediately from the fact that all atomicformulae occurring in the atomic order type over cp(B) also occur in the atomic ordertype over P .



5.1. EVALUATING QUERIES 39For the rest of this chapter we de�ne P to be the set f0; 1g[cp(B)[P  . The constants0 and 1 are included because they are needed in the de�nition of the invariant. The lastthing we need for the de�nition of inv is that the set P is uniformly �rst-order de�nableover (R; <; 0; 1; P  ).Lemma 5.7. Suppose B = (A; RB1 ; : : : ; RBk ) is a database. For each 1 � i � k let ri bethe arity of Ri. Then P equals fa : B j= �[a]g, where �(x) is de�ned as�(x) := Wki=1(9y1 : : : yri Wrij=1 9u9v u < x ^ x < v^8z9y01 : : :9y0ri(Vril=1(yi = x! y0i = z) ^ (yi 6= x! y0i = yi))^[ (u � z < x! :Riy1 : : : yj�1zyj : : : yri^x < z � v ! Riy1 : : : yj�1zyj : : : yri)_(u � z < x! Riy1 : : : yj�1zyj : : : yri^x < z � v ! :Riy1 : : : yj�1zyj : : : yri)]_Riy1 : : : yj�1xyj : : : yri^(u � z ^ z � v ^ :z = x)! :Riy1 : : : yj�1zyj : : : yri_:Riy1 : : : yj�1xyj : : : yri(^u � z ^ z � v ^ :z = x)! Riy1 : : : yj�1zyj : : : yri ]_Wp2P x = p _ x = 0 _ x = 1:Proof. The proof should be clear as the formula � is essentially a �rst-order formalizationof De�nition 5.2 augmented with the formula including 0, 1, and the parameters from P  .We are now ready to de�ne the invariant. De�ne an equivalence relation � on R suchthat two elements a and b are �-equivalent if and only if they realize the same 1-order typeover P . As P is �rst-order de�nable the equivalence relation � is �rst-order de�nableas well. The set of equivalence classes R� serves as the universe of the invariant. Tocomplete the de�nition we have to specify the database relations.Before we give the detailed de�nition of the relations in the invariant, we illustrate theidea by an example. Consider a database B with a single binary relation S representedby 'S(x; y) := x > 4 ^ x < 8 ^ y > 3 ^ y < 6 ^ y < x. The relation is shown in Figure5.1. The set cp(B) consists of the four elements f3; 4; 6; 8g. Thus there are nine di�erent�-equivalence classes, namely the intervals (�1; 3); f3g; (3; 4); f4g; (4; 6); f6g; (6; 8); f8g;and (8;1). Recall that these equivalence classes form the universe of the invariant. Thusthe relation S has somehow to be de�ned in terms of these classes. Obviously it is notenough to factorize S by �, because as 5 � 5:1, the equivalence classes [5] and [5:1] areequal, but ([5:1]; [5]) 2 S and ([5]; [5]) 62 S. Thus S=� would not be well-de�ned.Instead of simply factorizing a k-ary relation R by � we consider the set CR of (k+1)-tuples ([a1]; : : : ; [ak]; �), where [ai] 2 R=� ; 1 � i � k and � denotes a k-order type, suchthat ([a1]; : : : ; [ak]; �) 2 CR if and only if there is a b 2 Rk realizing � such that Rb holdsand ai � bi for all 1 � i � k. In the example above, the set CS consists of the set of alltriples ([a1]; [a2]; �) such that [a1]� [a2] is in the rectangle marked by the dashed line inFigure 5.1 and � is the order type x < y.The idea behind the de�nition of the relation in the invariant is to use the set CRas a �nite relation carrying all the information necessary to restore the original database
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4Figure 5.1: Relation S represented by x > 4 ^ x < 8 ^ y > 3 ^ y < 6 ^ y < x.relation R. Note that the number of di�erent k-order types is �nite for all k. Thus wecan assign to each order type a �nite word �(p) over f0; 1g. Once such an injection � is�xed, the set CR can be rewritten to a set C 0R := f([a1]; : : : ; [ak]; t) : ([a1]; : : : ; [ak]; �) 2CR and �(�) = tg. This gives the de�nition of the relations in the invariant.De�nition 5.8. For each k 2 N let ord(k) be the set of k-order types and on(k) =dlog(jord(k)j)e. Fix for each k 2 N an injection �k taking ord(k) to the set f0; 1gon(k). Fork = 2 we de�ne �2 to be the injection taking x < y to 00, x = y to 01, and y < x to 10.De�nition 5.9. Let � := fR1; : : : ; Rkg be a relational signature where each Ri is of arityri. Suppose B is a �-database over A. The invariant B0 of B is a �nite structure withuniverse U over the signature f<;R01; : : : ; R0kg, where� U := R=� ,� [x] < [y] if and only if x < y and x 6� y, and� R0i is of arity ri + on(k) and de�ned as: R0B0i [a1] : : : [ak]t1 : : : ton(k) i� there areb1; : : : ; bk 2 R with �k(otp(b)) = t1; : : : ; ton(k) so that RBi b1 : : : bk and [ai] = [bi]for 1 � i � k.The mapping inv is de�ned as the function taking databases to their invariants.Note that this idea of a �nite encoding of �nitely representable relations is similarto the encoding given by Belegradek, Stolboushkin and Taitslin in [BST98]. The maindi�erence is that they only coded the relations but kept the in�nite universe, whereashere both, the relations and the universe are �nite.Having de�ned the invariant of a database, we have to explain how the query has tobe transformed for evaluation in the invariant. This translation of the formulae followsthe same ideas described above, namely to increase the arity of the relations to store the



5.1. EVALUATING QUERIES 41order type. While translating a formula with free variables fx1; : : : ; xkg we introduce newfree variables i to hold the order type.In De�nition 5.11 below we de�ne the transformation of formulae according to theirstructure. In this transformation we need to compare order types over a di�erent numberof variables. In particular we need to check if for two order types �1 and �2, �1 � �2 holds.De�nition 5.10. Suppose �1 is a k1-order type in the variables x1; : : : ; xk1 and �2 ak2-order type in the variables x1; : : : ; xk2 , where k1 < k2. �2 extends �1, if �1 � �2.This means that the order type �2 behaves on x1; : : : ; xk1 in the same way as �1. In thequery transformation we need a formula extendsk1k2(i; j) stating that i := i1; : : : ; ion(k1)codes a k1-order type �1, j := j1; : : : ; jon(k2) a k2-order type �2, and �2 extends �1. Theformula is de�ned asextendsk1k2(i; j) := _�22ord(k2)(�k2(�2) = j ! _�12ord(k1)�2 extends �1 �k1(�1) = i):We are now ready to de�ne the transformation of queries.De�nition 5.11. Suppose � is a database schema and � the signature of the invariantscorresponding to �-databases. Further, let L be a logic from fFO, FO+DTC, FO+TC,FO+LFP, FO+PFPg. Suppose  (x1; : : : ; xk) 2 L[�] is a query. The map f : L[�]! L[� ]is de�ned inductively as follows.�  (x; y) := x < y.(f )(x; y; i1; i2) := x � y ^ i1 = 0 ^ i2 = 0.�  (x; y) := x = y.(f )(x; y; i1; i2) := x = y ^ i1 = 0 ^ i2 = 1.�  (x) := x = c.(f )(x; i) := x = [c] ^ i = 0.�  (x) := x < c.(f )(x; i) := x < [c] ^ i = 0.�  (x1; : : : ; xl) := Riu1 : : : uk, where k = ar(Ri). The ui are either constants orvariables from fx1; : : : ; xlg and all xi occur in fu1; : : : ; ukg.(f )(x1; : : : ; xl; i1; : : : ; ion(l)) := Riv1 : : : vki, where vr := (xs if ur = xs;[c] if ur = c:�  (x1; : : : ; xk) :=  1(y1; : : : ; yk1) ^  2(z1; : : : ; zk2), where all yi and zi occur in x.Let i := i1; : : : ; ion(k), j := j1; : : : ; jon(k1), and j 0 := j 01; : : : ; j 0on(k2). Then(f )(x; i) := 9j9j 0 extendsk1k(j; i) ^ extendsk2k(j 0; i) ^ (f 1)(y; j) ^ (f 2)(z; j 0).� The disjunction case is de�ned analogously.



42 CHAPTER 5. DENSE LINEAR ORDERS�  := :'.(f ) := :(f').�  (x1; : : : ; xk) := 9y '(x; y):(f )(x1; : : : ; xk; i) := 9y9j1; : : : ; 9jon(k+1)extendk(k+1)(i; j) ^ (f')(x; y; j):�  (u; v) := [DTCx;y'(x; y)](u; v).(f )(u; v; i) := [DTCx;y;j(f')(x; y; j)](u; v; i).� The rule for the TC-operator is de�ned analogously.�  (u) := [LFPR;x'(R; x)](u).(f )(u; i) := [LFPR0;x;j(f')(R0; x; j)](u; i).� The rules for the IFP - and PFP -operators are de�ned analogously.Now almost all parts of the query evaluation method are de�ned. A query formula 'on a database B can be evaluated by evaluating f(') in inv(B) using the methods for�nite databases. What is left to be done is to de�ne the way back.De�nition 5.12. Suppose S is a (k+ on(k))-ary answer of a query on an invariant. Themap �̂ maps S to a formula 'S representing the corresponding relation on the originaldatabase. �̂ is de�ned as�̂ : S 7! 'S(x1; : : : ; xk) := _at2S(�k(x; t) ^ k̂j=1(xj � aj));where �k(x; i) is a formula stating that x satis�es the order type speci�ed by i. The map� mapping relations to �nitely representable relations is de�ned as� : S 7! fa : A j= �̂(S)[a]g:All parts of the evaluation algorithm have now been de�ned. The next theorem provesits correctness.Theorem 5.13. Suppose B is a database over A and  is a query. Let B0 := inv(B) bethe invariant corresponding to B. Then B = �((f )B0):Proof. The proof is by induction on the structure of the query.� Suppose  (x; y) := x < y.  B is the set of pairs (a; b) 2 R2 such that a < b. ByDe�nition 5.11, f( ) is de�ned as x � y^ i1 = 0^ i2 = 0. Evaluating (f )B0 resultsin the set C := f(a; b; i1; i2) : a � b; i1 = 0; i2 = 0g. Transforming this set with themapping �̂ yields the formula 'C(x; y) := W(a;b;i1;i2)2C(�2(x; y; i1; i2)^x � a^y � b).As i1 and i2 are 0 for all tuples (a; b; i1; i2) 2 C, �2(x; y; i1; i2) reduces to x < y andthus �(C) equals f(a; b) 2 R2 : a < bg.



5.1. EVALUATING QUERIES 43� The case where  is of the form  (x; y) := x = y can be treated analogously.� Suppose  (x) := x = c. Then (f )(x; i) := x = [c] ^ i = 0 and (f )B0 evaluates tothe set C := f([c]; 0)g. Thus �̂(C) results in the formula '(x) := �1(x; 0)^x � c. 'is satis�ed only by c because c 2 P and therefore the only member of [c] is c itself.We get �(C) := fcg =  B.� The case  (x) := x < c can be treated in the same way.� Suppose  (x1; : : : ; xl) := Rsu1 : : : uk as in De�nition 5.11. We assume w.l.o.g. thatthe �rst arguments of the relation are the variables and the parameters come there-after, that is u1 = x1; : : : ; ul = xl and ul+1 = c1; : : : ; uk = ck�l. The transformedquery is (f )(x1; : : : ; xl; i) := R0sx1 : : : xl[c1] : : : [ck�l]i. Evaluating f( ) in B0 yieldsthe set C := f([a1]; : : : ; [al]; [c1]; : : : ; [ck�l]; i) 2 R0B0s g. Now we have to show that�(C) =  B.For the forth direction suppose that (a1; : : : ; ak) 2 �(C). Then there is a disjunct' := �k(x1; : : : ; xk; i) ^ Vr(xr � br) in �̂(C) with (b; i) 2 C and B j= '(a). As(b; i) 2 R0B0 and therefore, by De�nition 5.9, (a1; : : : ; ak) 2 RB we get a 2  B.For the back direction suppose that (a1; : : : ; ak) 2 RB. Then ([a1]; : : : ; [ak]; i) is inR0B0 , where �k(otp(a)) = i, and �k(x; i) ^ Vr ar � xr occurs as a disjunct in �̂(C).Obviously this formula is satis�ed by a and therefore a 2 �(C).� Suppose  (x) :=  1(y)^ 2(z), where all yi and zi occur in x. The set  B consists ofall tuples a so that the corresponding parts of a are in  B1 and  B2 . By induction wehave �((f 1)B0) =  B1 and �((f 2)B0) =  B2 . It follows that also  B = �((f )B0).� The other boolean cases can be proven analogously.� Suppose  (x1; : : : ; xk) := 9y '(x; y). The transformed formula (f ) is de�ned as(f )(x; i) := 9y9j1; : : : ; jon(k+1)extendk(k+1)(i; j) ^ (f')(x; y; j).Suppose that (a1; : : : ; ak) 2  B. This is the case if and only in there is an ak+1with (a1; : : : ; ak; ak+1) 2 'B. By induction 'B = �((f')B0). Thus there is a tuple([a1]; : : : ; [ak+1]; j) 2 (f')B0 and (a1; : : : ; ak+1) satis�es the (k + 1)-order type �denoted by j. This is the case if and only if there is a tuple ([a1]; : : : ; [ak]; i) 2 (f )B0such that � extends the order type denoted by i. Thus we get that (a1; : : : ; ak) 2  Bif and only if ([a1]; : : : ; [ak]; i) 2 (f )B0, where (a1; : : : ; ak) satis�es the order typedenoted by i. This implies  B = �((f )B0).�  (u) := [LFPR;x'(R; x)](u).f( )(u; i) := [LFPR0;x;j(f')(R0; x; j)](u; i).We assume in the proof that ' does not include an LFP-operator. This is norestriction of generality because the number of LFP-operators occurring in the queryis �xed. Thus they can be eliminated one by one starting with the innermost.The proof is by induction on the steps of the �xed-point evaluation. We denoteby Ri the value of R after the ith induction step and show that after each stepRi = �(R0i) holds.The proof for the 0-th induction step is straightforward, because ' can be seen as a



44 CHAPTER 5. DENSE LINEAR ORDERSquery on an expansion of B by the empty relation R. It follows from the inductionon the structure of ' that R0 = �(R00).Now suppose that after the n-th step Rn = �(R0n). Again ' can be seen as a query onthe expansion ofB by Rn and f(') as a query on the invariant expanded by R0n. Byinduction assumption we have Rn = �(R0n) and therefore the expanded invariant isagain the invariant of the expanded database. Now the induction hypothesis followsby the induction on the structure of '.� The other cases can be proven in the same way.Now that we have given an evaluation method for queries on dense linear orderdatabases we are interested in the data complexity of such queries. In the next sec-tion we will prove upper complexity bounds; we show them to be optimal in the sectionthereafter.5.2 Data complexityThe complexity of the evaluation method de�ned above depends on the three di�erenttasks involved in the algorithm. First of all the invariant is created. We will show this tobe in Logspace. This done, the query can be evaluated in the invariant. The complexityof this task is well understood as it is just a query on a �nite ordered database. Thuswe can use the results of descriptive complexity theory for this part of the evaluationprocess. The third task in the algorithm is to transform the answer of the evaluation inthe invariant back to the answer on the database. We will show this to be in Logspaceas well. Taken together, the complexity of the complete algorithm is determined by thecomplexity of the second task, because all the logics we are interested in have a datacomplexity on �nite databases of at least Logspace. We get that the change from �niteto dense order databases does not increase the evaluation complexity. The next lemmasprove the Logspace results for the �rst and the last part. The following theorem givesthe complexity of the whole evaluation process.Lemma 5.14. The map inv can be calculated in Logspace, that is given a representa-tion of a constraint database, its invariant can be constructed in logarithmic space.Proof. We split the construction of the invariant in two separate algorithms. In the �rstthe invariant's universe and in the second the relations are constructed.In Lemma 5.7 it is proven that the set P can be de�ned by a �rst-order formula.The set of canonical parameters is extracted from the input database in the followingway. For every parameter p occurring in the input we use the formula �(x)[x=p] as aboolean query on the database. If the query evaluation returns true then p is a canonicalparameter. As �rst-order queries can be evaluated in Logspace (see [KKR90]), we getthat the set P can be constructed in Logspaceas well. To set up the universe U of theinvariant we assume that our Turing machines have an operation mean taking the mean



5.3. CAPTURING COMPLEXITY CLASSES 45of two elements. Besides this we need two other operations +1 and �1 with the obvioussemantic. Now we use these operations to construct the invariant's universe. The Turingmachine takes every pair u; v from P such that v is the successor of u in P and uses meanto �nd an element mu;v between u and v. The universe of the invariant consists of allthese new elements mu;v together with the set P and the elements l� 1 and b+ 1, wherel is the smallest and b the biggest element in P . Obviously all the operations involved,and thus the construction of the universe, can be done in Logspace.Now that the universe has been constructed, the relations have to be built up. Arelation R0 in the invariant of arity k + on(k) can be constructed by taking the set oftuples a; i, where a 2 Uk and i codes a k-order type, such that the query9x( k̂i=1xi � ai ^ �k(x; i) ^ Rx)on the database evaluates to true. Each query is �rst-order and can be evaluated inLogspace. As the space can be reused, the whole relation can be constructed inLogspace. Thus the second sub-algorithm a Logspace-algorithm.As the composition of Logspace-algorithms is also in Logspace, we get that thecombined algorithm constructing the invariant is also in Logspace.Lemma 5.15. The map �̂ can be calculated in Logspace.Proof. Suppose B0 is the invariant of a dense linear order database and R an answerrelation obtained by a query ' on B0. All the algorithm to calculate �̂(R) has to do is tooutput the disjunction of the formulae (�k(x; i) ^Vkj=1(xj � aj)) for every tuple ai 2 R.Clearly, this can be done in Logspace.Now we have the complexity of the three parts of the evaluation algorithm. Thefollowing theorem puts the parts together and gives an upper bound for the complexityof various dense order query languages.Theorem 5.16. Suppose L 2 fFO;FO+DTC, FO+TC, FO+LFP, FO+IFP, FO+PFPgis a logic and C a complexity class so that the evaluation problem for L on �nite databasesis in C. Then the evaluation problem for L on dense linear order databases is also in C.The theorem above gives us the upper data complexity bounds for query evaluation.In the next section we show them to be optimal.5.3 Capturing complexity classesAs in the previous sections we use the invariant to lift the capturing results for �nitestructures from descriptive complexity theory to dense linear order databases. In theproof of the capturing results a transformation of formulae over the invariant to formulaeover the database is needed. In a way this forms the opposite direction we took in the �rstsection of this chapter. We will de�ne this mapping by means of a �rst-order interpretation� of the invariant in the database (see [Hod97]).



46 CHAPTER 5. DENSE LINEAR ORDERSDe�nition 5.17. To ease notation we denote by B the database B := (A; RB1 ; : : : ; RBk ),by � its signature, by B0 its invariant inv(B), and by � the signature of the invariant.The interpretation � interpreting B0 in B is given by� the domain formula ��(x) := true,� a surjective map f� : R ! U de�ned as f�(x) := [x], and� for each atomic formula  2 FO[� ] a formula  � 2 FO[�].A formula u = v 2 FO[� ] corresponds to u � v, where u; v denote either variablesor parameters from P . The formulae for all other atomic formulae can be givenaccording to De�nition 5.9. That is, a formula u < v 2 FO[� ] corresponds tou < v ^ :u � v and R0sxi to 9y Rsy ^ �ar(Rs)(y; i) ^ Vj(xj � yj). Recall thede�nition of �k from De�nition 5.12.Clearly, for all atomic formulae  2 FO[� ], B0 j=  [f�a] if and only if B0 j=  �[a],because the correspondence between formulae given in the previous de�nition is only aformalization of De�nition 5.9. The last thing needed to prove the capturing results isa generalization of the reduction lemma given in [Hod97] to transitive closure and �xed-point logic.Lemma 5.18 (generalized reduction lemma). Suppose B is a �-structure, B0 a � -structure and � a 1-dimensional interpretation of B0 in B. Let L be a logic from fFO,FO+DTC, FO+TC, FO+LFP, FO+IFP, FO+PFPg. Then for every formula  (y) of thelanguage L[� ] there is a formula  �(x) of the language L[�], such that for all a 2 (��(A))n,B0 j=  (f�a)() B j=  �(a):Proof. We extend  � given in De�nition 5.17 by the following rules:� (: )� = :( �).� ( 1 ^  2)� = ( 1)� ^ ( 2)�.� (9y )� = 9x(��(x) ^  �).� ([LFPR;x1;::: ;xk )� = [LFPR;x1;::: ;xk �].The rules for the other operators like the DTC or PFP operator are analogous to theLFP case. The �rst-order cases are already proven in the reduction lemma, whereas theLFP case follows from the same argument as in Theorem 5.13.We are now ready to prove the theorem lifting the capturing results over �nite struc-tures to dense linear order databases. We state the theorem explicitly only for FO+LFPbut the proof works exactly the same way for FO+DTC, FO+TC, FO+IFP, and FO+PFP.Theorem 5.19. FO+LFP captures Ptime in the context of dense linear orders.



5.3. CAPTURING COMPLEXITY CLASSES 47FO+DTC = LogspaceFO+TC = NLogspaceFO+LFP = PtimeFO+PFP = PspaceTable 5.1: Logics and complexity classes in the context of dense linear orders.Proof. We have already proven that FO+LFP � Ptime. To show the other directionsuppose that B is a dense linear order database and Q a Ptime query. Then there isa Ptime-algorithm MQ which takes a database B as input and returns Q(B) as an-swer. Again let � be the database signature and � be the signature of the correspondinginvariants. We now show that there is an FO+LFP [�]-formula  Q de�ning Q.We de�ne an algorithmM which takes an invariant inv(B) of a database B as inputand returns Q(B) as output. The algorithm M operates as follows. First it reconstructsa representation of the database B whose invariant is given as input. Afterwards itexecutes the algorithm MQ on the representation. M operates in Ptime, because therepresentation of the database can be constructed in polynomial time and the algorithmMQ is by assumption a Ptime-algorithm. Note that in contrast to the algorithm of theprevious section this algorithm constructs the database from the invariant and evaluatesthe query in the database, whereas the algorithm in the previous section constructs theinvariant from the database and then operates on the invariant.Note that M takes a �nite structure as input and is itself a Ptime-algorithm. Thus,by the result of Immerman [Imm86] and Vardi [Var82], there is an FO+LFP [� ]-formula' equivalent to M . Further, we proved in Lemma 5.18 that there is a formula '� 2FO+LFP [�] such that for all a 2 Rn inv(B) j= '([a]) i� B j= '�(a). Thus B j= '�(a) ifand only if a 2 Q(B). This proves the theorem.As stated above the proof of the theorem works in exactly the same way for the otherlogics mentioned above. Thus we get the relations between logics and complexity classesin the context of dense linear orders summarized in Table 5.1.
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Chapter 6Discrete linear ordersIn this chapter we examine the complexity of �rst-order queries on discrete linear orderdatabases. Recall from Section 4.3.1 that (N ; <) does not admit quanti�er elimination andis therefore not suitable as a context structure. As explained there, quanti�er eliminationcan be obtained by adding a countable set of relations f<c : c 2 Ng, where the intendedinterpretation of x <c y is x + c < y. For convenience we add the relation <�1 as anabbreviation for �. Note that <0 is simply the usual order relation.In Section 4.3.1 we examined the evaluation complexity for di�erent logics on gap-order databases but left open the �rst-order case which is the topic of this chapter. Wewill prove a Logspace upper bound for the evaluation complexity of �rst-order queries.6.1 First-order query evaluationLet � := f<c : c 2 N [ f�1gg be the signature of gap-orders. For the rest of thischapter assume a �xed query  (x1; : : : ; xs) and a database B = (A; RB1 ; : : : ; RBk ) overthe � -structure A = (Z; (<c)c2N[f�1g). Further, we assume that the representation of Bis in disjunctive normal form whereas the query does not have to be in some normal form.We consider databases over the integers instead of the natural numbers because it makesthe notation for the algorithms easier. But the main result also holds for databases withthe natural numbers as universe because N is de�nable in Z by the formula x � 0.We assume w.l.o.g. that every atomic formula occurring in the representation of B isof the form x <c y, x = y, x < a, a < x, or x = a, where a is a parameter. Formulaeof the kind x � a, x <c a, or a <c x, where c 6= 0, can easily be converted to equivalentformulae of the type x < a0 or a0 < x.The goal of this chapter is to prove the following theorem.Theorem. First-order queries on gap-order constraint databases can be evaluated inLogspace.At the end of this section we de�ne an algorithm to evaluate �rst-order queries in-ductively over the structure of the query. The algorithm evaluates the query from theinside out. As explained above it is only called on databases whose representations are indisjunctive normal form. While evaluating the query it keeps the evaluation results in dnf.49



50 CHAPTER 6. DISCRETE LINEAR ORDERSTherefore the following algorithms dealing with the di�erent logical operations supposethat their input is also in disjunctive normal form. As we will see, the only complicatedoperations are existential quanti�cation and negation. We �rst give two sub-algorithmsdealing with these cases.6.1.1 Handling quanti�cationThe next algorithm will be used to eliminate one existential quanti�er. It takes a con-junction 	 of atomic or negated atomic formulae together with a variable z as input andreturns a quanti�er-free formula equivalent to 9z	 in which z does not occur. The al-gorithm is only called on conjunctions of literals because the evaluation algorithm dealsonly with formulae in dnf and, as 9z(Wi 'i) � Wi(9z'i), the quanti�er can independentlybe eliminated in the disjuncts. The resulting formula is also a conjunction of literals. Toease notation we neglect the di�erence between a conjunction of literals and the set of allliterals occurring in it.Algorithm 6.1. eliminate(	; z)Input: A variable z and a conjunction 	 of atomic or negated atomic formulae over thesignature � .Output: A conjunction 	0 of atomic or negated atomic formulae equivalent to 9z	.� If there is no literal in 	 containing z return 	0 := 	.� If there is a formula of the type z = a in 	, where a 2 Z, then do the following. Ifthere is a formula z = b with a 6= b, a formula z < b with b � a, or a formula b < zwith a � b in 	, then return false. Otherwise return 	0 := 	[z=a].� If there is only one literal ' 2 	 containing z, then check whether ' is satis�ablein A. Return 	0 := false if not and 	nf'g if it is.� If there is more than one literal in 	 containing z do the following three steps.(i) Let �0 be the set of formulae of the type z < a or a < z. If 9z�0 is false in Athen return 	0 := false.(ii) Let �z be the set of literals in 	 containing z. We build a set � containingthe literals of 	 together with some new literals generated as follows. For eachpair of formulae (';  ) 2 �z do the following steps.� If ' = z <c x then do one of the following.{ If  is of the form y <c0 z add a new formula y <c+c0+1 x to �.{ If  = :z <c0 y then if c0 > c add a formula :x <c0�c�2 y to �.Otherwise add y <c0�c x.� If ' = x <c z and  = :y <c0 z add a formula :y <c0�c�2 x to � if c0 > c.If c0 � c add x <c�c0+1 y.



6.1. FIRST-ORDER QUERY EVALUATION 51� If ' = :z <c x and  = :y <c0 z add a formula :y <c+c0�1 x to �.� If ' = z < a, where a 2 Z, then do one of the following. If  = x <c zadd x < a� c� 1 to �. If  = :z <c x add x < a+ c to �.� If ' = a < z then if  = z <c x add a + c + 1 < x to �. Otherwise if = :x <c z add a� c < x.� If ' and  are not of one of the above forms, do nothing.(iii) For every ' 2 ��	 is satis�able in A return 	0 := ���z. Otherwise return	0 := false.The steps in part (ii) of the algorithm are used to eliminate the atomic formulaecontaining z. In the sequel they are therefore called elimination steps. Note that theelimination steps do not cover all pairs of formulae (';  ) 2 �z, that is there are pairsof formulae where no elimination step is de�ned for. We explain later why this is notnecessary.Having de�ned the algorithm we have to prove its correctness. This is done in thefollowing lemma.Lemma 6.2. Suppose 	 is a conjunction of atomic or negated atomic formulae in thevariables x; z and 	0 := eliminate(	; z). Then9z	 �A 	0;where �A means equivalence in A.To prove the lemma we need a few technical sub-lemmas. The �rst two lemmas provethat the elimination steps are correct. This is done in two steps. In the �rst we provethat if  1 and  2 are eliminated to ' then 9z( 1 ^ 2) �A '. In the second step we showthat if no elimination step is de�ned for the pair ( 1;  2) then all pairs of elements satisfy9z( 1 ^  2).Lemma 6.3. Suppose  1 and  2 are two literals containing z and ' is the result of anelimination step on  1 and  2. Then for all a1; a2 2 Z,A j= 9z( 1 ^  2)[a1; a2] i� A j= '[a1; a2]:Proof. We demonstrate the proof for the various sub-cases by two examples. The othercases can be proven analogously.� If  1 := z <c x and  2 := y <c0 z then the new formula ' = y <c+c0+1 x is added.Suppose A j= 9z( 1 ^  2)[x=a1; y=a2]. Then there is an element a 2 Z such thatA j=  1[x=a1; z=a] and A j=  2[y=a2; z=a]. Thus, by de�nition, we have a2 + c0 < aand a + c < a1 which is equivalent to a2 + c0 < a and a � a1 � c� 1. This impliesa2 + c0 < a1 � c� 1 which gives a2 + c0 + c+ 1 < a1. Thus A j= '[x=a1; y=a2].For the converse suppose A j= '[x=a1; y=a2]. Then, by de�nition, a2+c0+c+1 < a1.Let a := a2+c0+1. Clearly, a2+c0 < a and a+c < a1 and therefore A j=  1[x=a1; z=a]and A j=  2[y=a2; z=a]. Thus A j= 9z( 1 ^  2)[x=a1; y=a2].



52 CHAPTER 6. DISCRETE LINEAR ORDERS� Suppose  1 := z <c x and  2 := :z <c0 y. We consider two sub-cases. For the �rstcase suppose that c0 > c. We illustrate this in the following �gure.
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y xThe �gure illustrates the sets of numbers valid for x and y for a particular z. Thevalues for y are marked by the lines from the upper left to the lower right, whereasthe values for x are marked by the lines from the lower left to the upper right. Aswe can see the formula is satis�ed if y < x or if y � x but x+ c0 � c� 2 � y. Thus9z( 1 ^  2) is satis�ed by all pairs (a; b) so that a+ c0 � c� 2 � b, which is the setof pairs satisfying the formula :x <c0�c�2 y.For the second sub-case suppose that c0 � c. Again we illustrate this by a �gure.
�����
�����
�����
�����
��
��

�����
�����
�����
�����

��
��y x

z z+cz+c’

z+c+1As we can see, the set of pairs (a; b) such that A j= 9z( 1 ^  2)[x=a; y=b] is exactlythe set f(a; b) : b+ c� c0 < ag. Thus the formula is equivalent to y <c�c0 x.The next lemma proves that the elimination steps cover all pairs of formulae  1;  2 2 	such that 9z( 1 ^  2) restricts the set of tuples satisfying 	.Lemma 6.4. Suppose  1 and  2 are two literals containing z such that no eliminationstep is de�ned for the pair ( 1;  2). Then for all a1; a2 2 Z,A j= 9z( 1 ^  2)[a1; a2]:Proof. To prove the lemma we consider all pairs ( 1;  2) of literals such that no eliminationstep is possible on them. Let a1; a2 be two arbitrary elements of Z. Obviously if  1 and 2 are both of the same type, say for example,  1 := x1 <c z and  2 := x2 <c0 z, then wecan always choose z so that a1 and a2 satisfy both formulae. In the example we choose zso that a1 + c < z and a2 + c0 < z.The case where both formulae are of the types z < a or a < z is dealt with at thebeginning of the algorithm. Now suppose that  1 := z <c x1 and  2 := :x2 <c0 z. In thiscase we can choose z so that it is both smaller than a1 � c and a2.What is left to show are the cases where one formula is of the type a < z and the otheris either of the type x <c z or :z <c x, or one formula is of the type z < a and theother is either :x <c z or z <c x. If  1 := a < z and  2 := xi <c z then we choose z sothat it is larger than the maximum of a and ai + c. The other three cases can be provenanalogously. All cases together give the proof of the lemma.



6.1. FIRST-ORDER QUERY EVALUATION 53The last lemma needed for the proof of Lemma 6.2 proves that 9z� and 	0 are satis�edin A by the same tuples a, where � and 	 are de�ned as in Algorithm 6.1.Lemma 6.5. Let 	 be a conjunction of atomic or negated atomic formulae in the vari-ables x; z and 	0 := eliminate(	; z). Further, let � be as de�ned in Algorithm 6.1. Then� and 	0 are equivalent in A. In other words, for all a,A j= 9z�[a] i� A j= 	0[a]:Proof. The forth direction is trivial because � contains all formulae occurring in 	0. Forthe opposite direction let �z := f'1; : : : ; 'ng be de�ned as in Algorithm 6.1. SupposeA j= 	0[a]. Let Z and Zi for 1 � i � n be sets of elements de�ned as Z := fa : A j=(Vni=1 'i)[x=a; z=a]g and Zi := fa : A j= 'i[x=a; z=a]g. We show that Z is not empty.Obviously Z = Tni=1 Zi. Note that each Zi either consists of a single point, if 'i is z = a,a closed interval of elements, or an interval open on one side. Therefore Z is empty if andonly if there are two formulae 'r; 's 2 �z such that Zr \ Zs = ?.Now suppose that there exist two such formulae 'r; 's 2 �z with Zr \ Zs = ?. Lemma6.4 proves that if no elimination step is de�ned for ('r; 's), then the intersection of Zrand Zs is not empty. Thus, as 'r and 's contain z, there is an elimination step de�nedfor the pair ('r; 's) and the result  of the elimination step is a sub-formula of 	0. ByLemma we get 6.3 that A j= 9z('r ^ 's)[a] i� A j=  [a]. Therefore if Zr \ Zs is emptythen a does not satisfy  which contradicts the assumption that A j= 	0[a]. Thus no suchpair ('r; 's) exists. This proves the lemma.Now we are ready to prove Lemma 6.2.Proof of Lemma 6.2. We consider the di�erent cases of the algorithm eliminate. If thereis no literal in 	 containing z, then 9z	 is equivalent to 	 which is the output of thealgorithm.To prove the second sub-case suppose there is a formula of the type z = a in 	. Clearly,if there is also a formula z = b with b 6= a, a formula z < b with b � a, or a formula b < zwith a � b in 	, then 9	 is not satis�able and therefore equivalent to false. If no formulaof these kinds occurs in 	, then 9z	 is equivalent to 	0 := 	[z=a].The proof of the third sub-case is straightforward, because if 	 contains only one literal' containing z, then 9z	 is false if ' is not satis�able, for example ' := z < z, or it isequivalent to 	0 := 	nf'g.The proof of the fourth sub-case is slightly more complicated. The �rst step in this sub-case is to test whether the set �0 of formulae z < a or a < z occurring in 	 is satis�able.Clearly, if 9�0 is not satis�able, then also 9z	 is not satis�able and therefore equivalentto 	0 := false. Now suppose that �0 is satis�able. The next step in the algorithm is toeliminate the formulae containing z. In each elimination step new formulae are addedto �. Clearly, as � is a conjunction of formulae, the set of tuples satisfying � cannotincrease. Let ' be a formula added to � by an elimination step on  1 and  2. By Lemma6.3 we get that ' is satis�ed by all pairs (a1; a2) 2 Z�Z satisfying 9z( 1^ 2). Therefore9z(	^') is equivalent in A to 9z	 and by induction on the number of elimination stepswe get 9z� �A 9z	. In the third step of this sub-case the set 	0 is obtained from �



54 CHAPTER 6. DISCRETE LINEAR ORDERSby removing the formulae in � containing z. We proved in Lemma 6.5 that 9z� �A 	0.Thus we have 9z� �A 	0 and 9z� �A 9z	 and therefore 9z	 �A 	0.6.1.2 Handling negationThe next algorithm negate takes a quanti�er-free formula as input and returns a quanti�er-free formula which is equivalent to the negation of the input formula. Note that wecannot simply convert the input formula �rst to negation normal form and then backto disjunctive normal form again, because the size of the resulting formula could beexponential in the size of the input formula. Instead we de�ne an algorithm based oncomplete atomic types to obtain Logspace complexity.De�nition 6.6. Let P and C be non-empty sets of elements such that c � �1 for allc 2 C. Let a be a tuple of elements.� The signature �C induced by C is de�ned as �C := f<c : c 2 Cg.� The complete atomic type of a over P and C with respect to A, written as atpAP;C(a),is de�ned as the set of all atomic or negated atomic formulae '(x) over the signature�C such that A j= '[a].� A maximally consistent set of atomic and negated atomic �C -formulae is a completeatomic type over P and C in the variables x, atpAP;C(x), if it is the complete atomictype of a tuple a over P and C.Clearly, each tuple a realizes exactly one complete atomic type over P and C andelements realizing the same complete atomic type over P and C cannot be distinguishedby quanti�er-free formulae over the signature �C using only parameters from P .We use this to de�ne the algorithm negate. The idea is to successively generate all di�erentcomplete atomic types over P and C, where P is the set of parameters occurring in theinput formula  and C := fc : <c occurs in  g, and test for each type whether a pointrealizing it satis�es  . The algorithm then outputs the disjunction of all types the testfailed for.To implement the algorithm sketched above we need some technical de�nitions andlemmas.De�nition 6.7. Let � be a complete atomic type over P and C in the variables x :=x1; : : : ; xk. The reduced type representation rtr(�) of � is de�ned as follows.(i) If there is a formula ' := xi = p in �, where 1 � i � k and p 2 P , then ' 2 rtr(�).(ii) For each 1 � i � k, if there is a formula ' := xi < p and no formula xi < p0 in �,where p; p0 2 P and p0 < p, then ' 2 rtr (�).(iii) For each 1 � i � k, if there is a formula ' := p < xi and no formula p0 < xi in �,where p; p0 2 P and p < p0, then ' 2 rtr (�).



6.1. FIRST-ORDER QUERY EVALUATION 55(iv) For every 1 � i 6= j � k, if there is a formula ' := xi <c xj and no formula xi <c0 xjin �, where c; c0 2 C and c < c0, then ' 2 rtr(�).(v) For every 1 � i 6= j � k, if there is a formula ' := :xi <c xj and no formula:xi <c0 xj in �, where c; c0 2 C and c0 < c, then ' 2 rtr (�).(vi) For every 1 � i; j � k, if there is a formula xi = xj or :xi = xj in �, then it is alsoin rtr(�).(vii) rtr (�) is the smallest set of formulae satisfying (i)� (vi).The set k-rtr(P;C) is de�ned as frtr(�) : � is a complete atomic type over P and C inthe variables x1; : : : ; xkg.The next lemma proves that each complete atomic type � is equivalent to its reducedtype representation rtr(�).Lemma 6.8. Let � be a complete atomic type over P and C in the variables x1; : : : ; xk.Then for all a := a1; : : : ; ak 2 Zk,A j= �[a] i� A j= rtr(�)[a]:Proof. The forth direction is straightforward, because every formula in rtr(�) occurs alsoin �. To prove the back direction let a be a tuple such that A j= rtr(�)[a]. We show thata satis�es every atomic and negated atomic formulae occurring in �. Let ' 2 � be atomicor negated atomic. We consider the di�erent possible cases for '.(i) If ' := xi = p, where 1 � i � k and p 2 P , then ' occurs also in rtr(�) and istherefore satis�ed in A by a.(ii) If ' := xi < p, where 1 � i � k and p 2 P , then there is a formula '0 := xi < p0 inrtr(�) with p0 � p. Clearly, '0 implies ' and therefore ' is satis�ed by a.(iii) The proof for ' := p < xi is analogous.(iv) If ' := xi <c xj, where 1 � i 6= j � k, then there is a formula '0 := xi <c0 xj inrtr(�) with c0 � c. Again, '0 implies ' and therefore a satis�es '.(v) The case where ' := :xi <c xj, 1 � i 6= j � k, can be treated analogously.(vi) Formulae of the type xi = xj or :xi = xj occurring in � also occur in rtr(�) and aretherefore satis�ed by a.Thus every formula occurring in � is satis�ed by a and therefore A j= �[a].Let � be a complete atomic type and rtr(�) be its reduced type representation. To�nd a tuple realizing �, we �nd a tuple satisfying the set of equalities and inequalities



56 CHAPTER 6. DISCRETE LINEAR ORDERScontained in rtr(�). The (in)equalities occurring there can be rewritten according to thefollowing equivalences.p < xi � �xi � �p� 1xi < p � xi � p� 1xi = pxi = xj �� xi � p ^�xi � �pxi � xj ^�xi � �xjxi <c xj � xi + c+ 1 � xj � xi � xj � �c� 1:xi <c xj � xi + c � xj � xj � xi � cThus we get that in order to �nd a tuple realizing � we have to solve the following set ofinequalities. For all 1 � i 6= j � k and p 2 P ,�xi � �p� 1; for every formula p < xi 2 �,x1 � p� 1; for every formula xi < p 2 �,xi�xi �� p;�p; � for every formula xi = p 2 �,xi�xi �� xj;�xj; � for every formula xi = xj 2 �,xi � xj � �c� 1; for every formula xi <c xj 2 �,�xi + xj � c; for every formula :xi <c xj 2 �. (6.1)
Let m be the number of inequalities in (6.1). The set can be written in the form Ax � b,where A is a (m� k)-matrix, all of whose coe�cients are either 0, 1, or �1. We use theFourier-Motzkin elimination method to solve the inequality Ax � b (see [Sch86]). In themethod the variables are eliminated one after another. To do this we write the systemof inequalities in the following form, where x0 := (x2; : : : ; xk) and a0i is the i-th row of Awith the �rst entry removed.x1 + (a0i)Tx0 � bi; 1 � i � m1�x1 + (a0j)Tx0 � bj; m1 + 1 � j � m2(a0l)Tx0 � bl; m2 + 1 � l � m3 (6.2)m1 is the number of inequalities in which the coe�cient of x1 is 1, m2 the number ofinequalities in which the coe�cient is �1, and m3 the number of inequalities in which thecoe�cient is 0. The �rst two lines of (6.2) are equivalent tomaxm1+1�j�m2((a0j)Tx0 � bj) � x1 � min1�i�m1(bi � (a0i)Tx0): (6.3)Therefore the variable x1 can be eliminated. We get that (6.2) is equivalent to thefollowing system of inequalities.(a0j)Tx0 � bj � bi � (a0i)Tx0; 1 � i � m1; m1 + 1 � j � m2(a0l)Tx0 � bl; m2 + 1 � l � m3 (6.4)



6.1. FIRST-ORDER QUERY EVALUATION 57The system can be rewritten as follows.(ai + aj)Tx0 � bi + bj; 1 � i � m1; m1 + 1 � j � m2(al)Tx0 � bl; m2 + 1 � l � m3 (6.5)In the last system of inequalities the variable x1 is eliminated. A solution for x1 canbe derived from a solution for (6.5) by choosing a value for x1 satisfying (6.3). If no suchvalue exists then obviously (6.2) has no integer solution.We use this to de�ne an algorithm which outputs on a given reduced type represen-tation a tuple satisfying it. Given a reduced type representation rtr(�), we �nd a tuplerealizing the type � by successively eliminating the variables as described above until onlyone variable is left. We then choose a solution for this last variable and use it to computesolutions for the other variables.Having de�ned the algorithm, we now consider its data complexity. In our setup thenumber k of variables is �xed and the number of inequalities in the initial system (6.1) isbounded by 3k2+3k. We have to iterate the method only k times and if ni is the numberof inequalities after the i-th step then the number of inequalities after the (i+ 1)-th stepis bounded by n2i + ni. Therefore the number of inequalities after the k iterations is alsobounded by a constant and independent of the input. To measure the complexity of thealgorithm we must take into account the size of the coe�cients which have to be storedon the working tape. We prove that the coe�cients generated by the algorithm can bestored in logarithmic space. The proof is by induction on the number of iterations usingthe following lemma.Lemma 6.9. Any integer a which can be calculated by a �xed number of additions ofconstants or parameters occurring in the input can be stored in space logarithmic to thesize of the input.Proof. Suppose a := p1 + : : : + pr + c1 + : : : cs, where the pi are parameters from theinput and the ci are constants. The parameters can be stored by a pointer to theiroccurrences on the input tape. Thus the parameters and constants used to calculate acan be stored on the working tape in logarithmic space. Now a can be stored as the tuple(+; p1; : : : ; pr; c1; : : : ; cs).Each time a is needed by the Turing machine, the value of a is calculated by addingthe parameters and constants. Clearly, the addition of a �xed number of integers is inLogspace. As the composition of Logspace-algorithms is also in Logspace, we getthat a can be stored and accessed in logarithmic space.We now show by induction on the number of elimination steps in the Fourier-Motzkinmethod that the coe�cients generated by the algorithm are either constants, occur inthe reduced type representation, or can be obtained from those by a �xed number ofadditions.As explained above, all coe�cients of a variable in the initial system (6.2) are either 0,1, or �1. The bi's on the right side of the inequalities either occur in the input or theycan be obtained by decreasing a parameter from the input by one. By Lemma 6.9 weget that these decreased parameters can be stored on the working tape using only space



58 CHAPTER 6. DISCRETE LINEAR ORDERSlogarithmic in the size of the input. In the induction step suppose that all coe�cients inthe previous steps can be stored in logarithmic space. Note that the coe�cients in (6.5)can be obtained by addition of two coe�cients from the previous elimination step. Thus,using Lemma 6.9 again, we get that these coe�cients can also be stored in logarithmicspace. As the total number of elimination steps is �xed we get the following corollary.Corollary 6.10. For every complete atomic type, a tuple realizing it can be computed inspace logarithmic to the size of its reduced type representation.We are now ready to de�ne the algorithm negate.Algorithm 6.11. negate( )Input: A quanti�er-free formula  (x1; : : : ; xk) in dnf.Output: A formula in dnf equivalent to : .The algorithm proceeds as follows.Extract from the input the set P of parameters occurring in  .If P is empty, add 0 to it.Extract the set C := fc 2 N : c = 0 or <c occurs in  g.for each � 2 k-rtr(P;C) dochoose a tuple z� satisfying �.test if z� satis�es  .odoutput the disjunction of all � such that z� does not satisfy  .The next lemma proves the correctness of the previous algorithm.Lemma 6.12. Suppose  (x1; : : : ; xk) is a quanti�er-free formula in disjunctive normalform and ' := negate( ). Then : � '.Proof. To prove the forth direction let a be a tuple satisfying : . Let � be the completeatomic type realized by a. In the for -loop of the algorithm all possible reduced typerepresentations in k variables are enumerated. Thus also rtr(�) is generated in an iterationstep of the for -loop. The algorithm chooses a tuple z and tests whether it satis�es  .As a does not satisfy  ,  is quanti�er-free, and by Lemma 6.8 a and z realize the samecomplete atomic type, also z does not satisfy  . Thus rtr(�) is a disjunct in ' andtherefore ' is satis�ed by a.For the back direction let a be a tuple satisfying '. Because ' consists of a disjunctionof reduced type representations, there is a complete atomic type � such that � :=rtr(�)occurs as a disjunct in ' and is satis�ed by a. As rtr(�) occurs in the output, the point z�chosen by the algorithm does not satisfy  . Thus, as a and z� realize the same completeatomic type � and  is quanti�er-free, a does also not satisfy  . This proves the lemma.Now we are ready to de�ne the evaluation algorithm.



6.2. COMPLEXITY OF FIRST-ORDER QUERIES 59Algorithm 6.13. gap-evaluate (B)Input: A gap-order constraint database B = (A; RB1 ; : : : ; RBk ).Output: A �nite representation of  B.The algorithm is de�ned by induction on the structure of the query.� If  is atomic and does not contain a database relation symbol, then output  .� If  is of the form Ru1; : : : ; uar(R), where R is a database relation symbol andthe ui are either variables or parameters, then the output consists of the formula'BR [x1=u1; : : : ; xar(R)=uar(R)], where 'BR (x) is the formula de�ning RB in B.� Suppose  is a conjunction of two formulae  1 and  2. First, the algorithm cal-culates '1 := gap-evaluate 1(B) and '2 := gap-evaluate 2(B). Then it returns asoutput the disjunction of each '01 ^ '02 such that '01 is a disjunct in '1 and '02 is adisjunct in '2.� Suppose  is a disjunction of two formulae  1 and  2. Then the output consists of'1 _ '2, where '1 := gap-evaluate 1(B) and '2 :=gap-evaluate 2(B).� Suppose  (x1; : : : ; xk) := : 0(x). First gap-evaluate 0(B) is called. The output isthen obtained by applying the algorithm negate to the resulting formula.� Suppose  (x1; : : : ; xk) := 9z 0(x; z). First � :=gap-evaluate 0(B) is calculated.Then the disjunction of '0 := eliminate('; z) for every disjunct ' in � is returnedas output.Having de�ned the evaluation algorithm we now prove its correctness.Theorem 6.14. Suppose B is a �-database over A and  a �rst-order query. Thengap-evaluate (B) is a �nite representation of  B.Proof. The theorem can be proven by induction on the structure of the query. The prooffor the negation and existential quanti�cation cases follow from the Lemmas 6.12 and 6.2respectively. The atomic and boolean cases are straightforward.The previous theorem proves the correctness of the evaluation algorithm. We investi-gate its complexity in the next section.6.2 Complexity of �rst-order queriesThe aim of this section is to prove a Logspace upper bound for the evaluation algorithmof the previous section. We do this by proving that the two sub-algorithms negate andeliminate are Logspace-algorithms. The Logspace-bound for gap-evaluate then followseasily.



60 CHAPTER 6. DISCRETE LINEAR ORDERSLemma 6.15. The algorithm eliminate has a Logspace upper complexity bound.Proof. To prove the lemma we have to consider the four sub-cases of the algorithm. Theproof of the Logspace-bound of the �rst three sub-cases is straightforward. We nowprove the Logspace-bound of the fourth sub-case. The input of the algorithm consistsof a conjunction of atomic or negated atomic formulae. For each pair ('1; '2) of theseformulae the algorithm checks whether an elimination step can be applied to them. If so,then the result of the elimination step is calculated. Clearly, each elimination step can bedone in Logspace, because only the addition of a �xed number of integers is involved.As the elimination steps are only de�ned for sub-formulae of the input, the output of onestep does not have to be considered for further elimination steps. Therefore it does nothave to be stored on the working tape but can directly be written on the output tape.We get that all elimination steps together can be done in Logspace. After all steps havebeen done, the algorithm copies all input formulae which do not contain z to the output.This is clearly in Logspace. Thus eliminate is a Logspace-algorithm.The next lemma proves the Logspace upper bound for the algorithm negate.Lemma 6.16. The algorithm negate has a Logspace upper complexity bound.Proof. The algorithm starts by extracting the sets P and C. These sets do not have tobe stored on a Turing tape but can be looked up in the input each time an element ofa set gets used. Clearly, this is in Logspace. In the following for -loop, the algorithmgenerates one after another all reduced type representations for complete atomic types �in the variables x1; : : : ; xk. Each reduced type representation consists of at most 3k2+3katoms or negated atoms. All gap-orders occurring in a reduced type representation occuralso on the input tape and can therefore be stored by pointers to the input. Thus areduced type representation can be stored in space logarithmic to the input size.Once a reduced type information is generated, a tuple z satisfying it is computed. ByCorollary 6.10 this is in Logspace. Finally it is checked whether z satis�es  . Clearly,this can also be done in Logspace. As the space used in one iteration step of the for -loopcan be reused in the next iteration step, the space needed by negate is logarithmic in thesize of the input. This proves the lemma.We can now prove the main result of this chapter.Theorem 6.17. First-order queries on gap-order constraint databases can be evaluatedin Logspace.Proof. Suppose  is a �rst-order query. We show that the algorithm gap-evaluate canbe evaluated in logarithmic space by induction on the structure of the query. The atomiccases are simple. If  is atomic and does not contain a database relation symbol, thenthe output consists of  itself. Otherwise if  contains a database relation symbol, then,essentially, the algorithm copies the representation of the relation in the database asoutput. Both can be done in Logspace.Now suppose  consists of a conjunction of two formulae  1 and  2. First, gap-evaluateis called recursively on  1 and  2 resulting in two formulae '1 and '2. By induction, the



6.2. COMPLEXITY OF FIRST-ORDER QUERIES 61recursive calls to gap-evaluate are in Logspace. Then the conjunction of each pair ofdisjuncts from '1 and '2 is generated and the disjunction of these is returned as output.Clearly, this can also be done in Logspace. The case where  :=  1 _ 2 can be treatedanalogously.Lemma 6.16 and 6.15 prove the negation and quanti�cation cases. As the compo-sition of Logspace algorithms is also in Logspace, the complete algorithm works inLogspace. This proves the theorem.
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Chapter 7ConclusionIn this work we investigated the complexity of query languages for constraint databases.The main interest was in the data complexity of query languages based on �xed-pointextensions of �rst-order logic. In most cases arithmetical structures served as contextstructures, either dense structures with the real numbers as universe, or discrete structuresover the naturals or integers.7.1 Summary of resultsWe began our investigations in Chapter 3 with methods to �nd complexity bounds forquery languages. These bounds have been derived from known complexity bounds forproblems related to the decision problem for the theory of the context structure. Asan application of these methods we proved that for each level of the polynomial timehierarchy there are �rst-order queries on databases de�ned over Presburger arithmeticwhose data complexity is complete for this level.In the remaining three chapters we considered the data complexity of query languagesfor particular context structures. Chapter 4 gave an overview of complexity results forvarious context structures whereas in Chapter 5 and Chapter 6 we considered in detailtwo special context structures, namely dense and discrete linear orders.In the main result of this work we presented a general method to prove complexitybounds for query languages over dense order databases. The idea was to code the �nitelyrepresented database as a �nite database and then use the evaluation algorithms availablefor the query language on �nite databases. It turned out that this encoding can bede�ned by �rst-order formulae using only the order predicate and some very limited kindof arithmetic. It can therefore be done with very low data complexity. This methodenabled us to evaluate queries for various query languages within the same complexityclasses as for �nite databases.This method also works for databases de�ned by inequality constraints over a count-able in�nite set. Therefore queries de�ned over inequality constraints can be computedwithin complexity bounds as for �nite databases. We also proved that the various �xed-point logics considered here are too weak to express all Logspace-computable queries.The proof was an application of Ehrenfeucht-Fra��ss�e games, one of the few methods from63



64 CHAPTER 7. CONCLUSIONinequality (R; <) (R; <;+) (R; <;+; �)FO � AC0 � AC0 ? NCFO+DTC � Logspace = Logspace undecidable undecidableFO+TC � NLogspace = NLogspace undecidable undecidableFO+LFP � Ptime = Ptime undecidable undecidableFO+PFP � Pspace = Pspace undecidable undecidableTable 7.1: Data complexity bounds for query languages on dense structures.(N ; <c) (N; <;+) (N; <;+; �)FO � Logspace = PH undecidableFO+DTC ex. pos. FO+LFPclosed undecidable undecidableFO+TC undecidable undecidableFO+LFP undecidable undecidable undecidableFO+PFP undecidable undecidable undecidableTable 7.2: Data complexity bounds for query languages on discrete structures.�nite or classical model theory that still work for �nitely representable databases.We saw in Chapter 4 that adding arithmetical functions to a dense order as contextstructure still yields e�cient query languages. In particular it has been shown that �rst-order queries have NC data complexity over real closed �elds. The situation changesdrastically if discrete instead of dense orders are under consideration. Although the datacomplexity of �rst-order queries on gap-order constraints was in Chapter 6 shown to beLogspace, the complexity of more expressive logics increases enormously. Least �xed-point logic is Turing-complete and the only thing known about positive Datalog, whichis equivalent to positive existential FO+LFP, is that it can be evaluated in closed form.But nothing more is known about its complexity.Also adding arithmetical functions to discrete orders yields very complex query lan-guages. It was shown that �rst-order logic captures the polynomial time hierarchy onthe class of databases de�ned over the Presburger arithmetic. First-order queries on thenaturals with order, addition, and multiplication are even undecidable.Thus it seems that using dense structures as context structures is more promising thanthe usage of discrete structures. Unfortunately this is only true for �rst-order queries. Ifnot �rst-order but, for example, FO+TC-queries are considered, we end up in undecidablequery languages if the context structure includes addition.Table 7.1 and 7.2 give an overview of the complexity results presented in this work.7.2 Open problemsWhen studying Table 7.1 one encounters undecidability results for many interesting querylanguages and context structures. The reason for this is that the combination of recursion



7.2. OPEN PROBLEMS 65and addition make the natural numbers with their addition and multiplication de�nablein the reals. One question is to �nd query languages that allow a useful form of recursionand addition but are still decidable and computable in closed form. Another open entryin the table is the complexity of �rst-order queries on (R; <;+).Generally, there is a lack of methods to prove complexity bounds or (un)de�nabilityresults for �nitely representable structures. One of the most powerful ways to �nd uppercomplexity bounds seems to be to code a �nitely representable database as a �nite set ofobjects, evaluate the query there and transform the result back. Examples of this can befound in the proofs of the Logspace-complexity for inequality constraints over countablein�nite sets and in the proof for dense order databases given in Chapter 5. RecentlyBenedict and Libkin [BL98] as well as Vandeurzen, Gyssens, and Van Gucht [VGG98]considered this idea in a broader sense.
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