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Abstract. We introduce a complexity measure of modal properties of finite struc-
tures which generalises the automaticity of languages. It is based on graph-auto-
mata like devices called labelling systems. We define a measure of the size of a
structure that we callrank, and show that any modal property of structures can be
approximated up to any fixed rankn by a labelling system. The function that takesn to the size of the smallest labelling system doing this is called thelabelling in-
dexof the property. We demonstrate that this is a useful and fine-grained measure
of complexity and show that it is especially well suited to characterise the expres-
sive power of modal fixed-point logics. From this we derive several separation
results of modal and non-modal fixed-point logics, some of which are already
known whereas others are new.

1 Introduction

Modal logics are widely used to express properties of finite (and infinite) state systems
for the purpose of automatic verification. In this context, propositional modal logic (also
known as Hennessy-Milner logic) is found to be weak in terms of its expressive power
and much attention has been devoted to extensions that allowsome form of recursion.
This may be in the form of path quantifiers as with the branching time temporal logics
CTL andCTL� or with a least fixed-point operator as with the�-calculus. Other ex-
tensions have been considered for the purpose of understanding a variety of fixed-point
operators or classifying their complexity. Examples includeL!� , the higher dimensional�-calculus introduced by Otto [6], and MIC, the modal iteration calculus, introduced
in [3]. The former was introduced specifically to demonstrate a logic that exactly char-
acterises the polynomial-time decidable bisimulation invariant properties of finite-state
systems, while the latter was studied in an investigation into the difference between
least and inflationary fixed points.

The study of these various extensions of propositional modal logic has thrown up a
variety of techniques for analysing their expressive power. One can often show that one
logic is at least as expressive as another by means of an explicit translation of formu-
lae of the first into the second. Establishing separations between logics is, in general,
more involved. This requires identifying a property expressible in one logic and proving? Research supported by EPSRC grant GR/N23028.



that it is not expressible in the other. Many specialised techniques have been deployed
for such proofs of inexpressibility, including diagonalisation, bisimulation and other
Ehrenfeucht-Fraı̈ssé style games, complexity hierarchies and automata-based methods
such as the pumping lemma.

In this paper, we introduce an alternative complexity measure for modal properties
of finite structures which we call thelabelling indexof the property and demonstrate its
usefulness in analysing the expressive power of modal fixed-point logics. The labelling
index generalises the notion of the automaticity of languages (see [7].) The automaticity
of a language (i.e. set of strings)L is the function that mapsn to the size of the least
deterministic finite automaton which agrees withL on all strings of lengthn or less. We
generalise this notion in two steps, first studying it for classes of finite trees and then
for classes of finite, possibly cyclic, transition systems.

We introduce automata-like devices called labelling systems and a measure on finite
structures that we callrank. We show that any modal property of finite structures (or
equivalently, any class of finite structures closed under bisimulation) can be approxi-
mated up to any fixed rankn by a labelling system. The function that takesn to the size
of the smallest labelling system that does this is the labelling index of the property. We
demonstrate that this is a useful and fine-grained measure ofthe complexity of modal
properties by deriving a number of separation results usingit, including some that were
previously known and some that are new. We show that any property that is definable
in propositional modal logic has constant labelling index.In contrast, any property that
is definable in the�-calculus has polynomial labelling index and moreover, there are
properties definable inL� whose labelling indices have a linear lower bound. Similarly
we obtain exponential upper and lower bounds on the labelling index of properties de-
finable in MIC. We demonstrate that MIC is not the bisimulation-invariant fragment of
monadic IFP. We also investigate the relationship between labelling index and conven-
tional time and space based notions of complexity. Finally,we investigate the labelling
index of the trace equivalence problem over specific classesof structures and deduce
interesting results about its expressibility in various fixed-point logics.

Due to lack of space, proofs of the results are only sketched.

2 Background

In this section, we give a brief introduction to modal logic and its various fixed-point
extensions. A detailed study of these logics can be found in [2, 1, 3].

Propositional Modal Logic. For the rest of the paper fix a setA of actions and a setP
of atomic propositions. Modal logics are interpreted ontransition systems, also called
Kripke structures, which are edge and node labelled graphs. The labels of the edges
come from the setA of actions, whereas the nodes are labelled by sets of propositions
fromP .

Modal logic (ML) is built up from atomic propositionsp 2 P using boolean con-
nectives and thenext-modalitieshai, [a℄ for eacha 2 A. Formulae' 2 ML are always
evaluated at a particular node in a transition system. We write K; v j= ' if ' holds
at the nodev in the transition systemK. The semantics ofML-formulae is as usual



with K; v j= hai' if there is ana-successoru of v such thatK; u j= ' and, dually,K; v j= [a℄' if for all a-successorsu of v, K; u j= '.

Bisimulations. Bisimulation is a notion of behavioural equivalence for transition sys-
tems (see, e.g. [8] for a definition). Modal logics, like ML, CTL, the�-calculus etc. do
not distinguish between transition systems that are bisimulation equivalent. We writeK; v � K0; v0 to denote that the two transition systems are equivalent by bisimulation.

For a transition systemK we writeK=� for its quotient under bisimulation. That
is, K=� is the transition system whose states are the equivalence classes of states ofK under bisimulation and, if[v℄ denotes the equivalence class containingv, then[v℄ 2[[p℄℄K=� if v 2 [[p℄℄K and there is ana-transition from[u℄ to [v℄ in K=� if, and only if,
there is ana-transition fromu to v in K. It is easily verified thatK; v � K=�; [v℄.
Modal Fixed-Point Logics. We now consider two fixed-point extensions of modal
logic: the modal�-calculus and the modal iteration calculus(MIC).

Syntactically they are defined as the closure of modal logic under the following for-
mula building rules. Let'1; : : : ; 'k be formulae with free proposition symbolsX1; : : : ;Xk and letS := fX1  '1; : : : ; Xk  'kg be a system of rules. Then�Xi : S and�Xi : S are formulae ofL� and(ifp Xi : S) is a formula ofMIC, where, in the case
of L�, the rule is restricted to systemsS where all formulae'i in S are positive in all
fixed-point variablesXj .

On any finite transition systemK with universeV , such a systemS of rules de-
fines an operatorFS taking a sequence(X1; : : : ; Xk) of subsets ofV to the sequence(FS(X1); : : : ; FS(Xk)), whereFS(Xi) := fu : (K; (Xi)1�i�k); u j= 'ig. This opera-
tor, again, inductively defines for each finite ordinal�, a sequence of sets(X�1 ; : : : ; X�k )
as follows. For alli,X0i := ; and for0 < � < !,X�i := (FS(X��1))i.

As the formulae in the�-calculus are required to be positive in their free fixed-point
variables, the operatorFS induced by a system ofL�-operators is monotone and thus
always has a least and a greatest fixed point. By a well known result of Knaster and
Tarski, the least fixed point is also reached as the fixed point(X11 ; : : : ; X1k ) of the
sequence of stages as defined above, and the greatest fixed point is reached as the limit
of a similar sequence of stages, where the induction is not started with the empty set but
with the entire universe, i.e.X0i := V . The semantics of a formula�Xi : S is defined
asK; u j= �Xi : S if, and only if, u occurs in thei-th component of the least fixed
point ofFS if, and only if, u 2 X1i . Analogously,K; u j= �Xi : S if, and only if,u
occurs in thei-th component of the greatest fixed point ofFS . 1

The next fixed-point extension of ML we consider is the modal iteration calculus
introduced in [3]. It is designed to overcome the restriction ofL� to positive formulae,
but still guarantee the existence of a meaningful fixed point. This is achieved by tak-
ing at each induction step the union with the previous stage,i.e.X�+1i is defined asX�+1i := X�i [ (FS(X�))i. Thus, the stages of the induction are increasing and lead
to a fixed point(X11 ; : : : ; X1k ). Again,K; u j= ifp Xi : S if, and only if,u 2 X1i .

1 In most presentations of the�-calculus simultaneous inductions are not considered. Nothing is
lost by such a restriction as the least fixed point of a systemS can also be obtained by nested
fixed points of simple inductions (see [1]).



Another fixed-point extension of modal logic that we consider is L!� , the higher-
dimensional�-calculus defined by Otto. We refer the reader to [6] for a precise def-
inition. Here we only note that this logic permits the formation of least fixed points
of positive formulae' defining not a setX , but a relationX of any arity. Otto shows
that, restricted to finite structures, this logic can express exactly the bisimulation-closed
properties that are polynomial-time decidable.

It is immediate from the definitions that, in terms of expressive power, we haveML � L� � MIC � IFP, whereIFP denotes the extension of first-order logic by
inflationary fixed points. AsIFP is equivalent to least fixed-point logic (LFP) andL!�
is the bisimulation invariant fragment of LFP, is follows thatMIC � L!� . Indeed, all
of these inclusions are proper. The separations ofMIC fromL� andL!� were shown in
[3]. The analysis of the labelling index of properties expressible in the logics provides
a uniform framework for both separations.

There is a natural translation ofL� formulae into monadic second-order logic. In-
deed, Janin and Walukiewicz [5] show that a formula of monadic second-order logic
is bisimulation invariant if, and only if, it is equivalent to a formula ofL�. Thus, the
separation of MIC fromL� shows that MIC can express properties that are not defin-
able in monadic second-order logic. In [3], the question wasposed whether MIC could
be characterised as the bisimulation invariant fragment ofany natural logic. The most
natural candidate for this appears to be the monadic fragment of IFP—the extension
of first order predicate logic with inflationary fixed points.However, by an analysis of
the labelling index of properties definable in this logic, weshow that it can express
bisimulation-invariant properties that are not in MIC.

3 Automaticity on Strings and Trees

The automaticity of a languageL � �� is the function that mapsn to the size of the
minimal deterministic automaton that agrees withL on all strings of length at mostn.
This function is constant if, and only if,L is regular and is at most exponential for any
languageL.

In [3] it was shown thatMIC is strictly less expressive thanL!� . The full version
of that paper makes it clear that the method used to separate the logics is a generali-
sation of the definition of automaticity from string languages to classes of finite trees,
closed under bisimulation. Automata that operate on trees have been widely studied in
the literature (see, for instance, [4]). We consider “bottom-up” automata that have the
property that the class of trees accepted is necessarily closed under bisimulation. For-
mally, a bottom-up tree automaton isA = (Q;A; Æ; F; s), wheres 2 Q is a start state,
andÆ = 2Q�A ! Q. We say such an automaton accepts a treeT , if there is a labellingl : T ! Q of the nodes ofT such that for every leafv, l(v) = s, the root ofT is
labelledq 2 F , andl(v) = Æ(f(l(w); a) : v a! wg). We have, for simplicity, assumed
thatT is a transition system where the set of propositionsP is empty. The automata are
easily generalised to the case where such propositions are present. Indeed the labelling
systems we introduce in Definition 4.6 below offer such a generalisation.

For a bisimulation-closed classC of trees, its automaticity can be defined (see the
full version of [3]) as the function mappingn to the smallest bottom-up tree automaton



agreeing withC on all trees ofheightn. Height is the appropriate measure to use on
a tree since it bounds the number of steps the automaton takes. This version of auto-
maticity was used in particular to separate the expressive power ofMIC from that ofL!� . Indeed, one can establish the following facts about the automaticity of classes of
trees definable in modal fixed-point logics.

Proposition 3.1. 1. Every class of trees definable inL� has constant automaticity.
2. Every class of trees definable inMIC has at most exponential automaticity.
3. There is a class of strings definable inMIC that has exponential automaticity.
4. There is a class of trees definable inL!� that has non-elementary automaticity.

Statement (1) follows from the fact that for any formula' of L� we can construct
a bottom-up tree automaton which accepts exactly those trees that satisfy' (see [11]).
Statements (2), (3) and (4) are shown in [3]. However, (2) canalso be derived as a spe-
cial case of Theorem 5.1 proved below. The particular class of trees used to establish (4)
is thebisimulation problem. This is the class of treesT such that for any subtreesT1
andT2 rooted at children of the root ofT , we haveT1 � T2. It can be seen that the
automaticity of this class is the maximum possible.

Monadic Inflationary Fixed-Point Logic. We now look at the automaticity of the
bisimulation-invariant fragment of monadic IFP on trees and show that there is no ele-
mentary lower bound for it. A consequence is thatMIC is not the bisimulation invariant
fragment of monadicIFP, something that could naturally be conjectured, given thatthe�-calculus is the bisimulation-invariant fragment of monadic least fixed-point logic.

We first introduce monadic inflationary fixed-point logic(M-IFP) as the closure of
first-order logic under the following rule. If'(X; x) is a formula with a free unary re-
lational variableX and a free first-order variablex, then for any termt, [ifpX;x '℄(t)
is also a formula. The semantics is defined as forMIC, i.e. [ifpX;x '℄ defines the infla-
tionary fixed point of the operator induced by'.

The properties we are going to construct that are definable inM-IFP and have high
automaticity are based on the use of trees to encode sets of integers in a number of
ways of increasing complexity. To be precise, for each natural numberk, we inductively
define an equivalence relation'k on trees as follows.

Definition 3.2. For any two treest ands, write t '0 s just in caset ands have the
same height andt 'k+1 s just in case the set of'k-equivalence classes of the subtrees
rooted at the children of the root oft is the same as the set of'k-equivalence classes
of the subtrees rooted at the children of the root ofs.

By abuse of notation, we will also think of these relations asrelations on the nodes
of a treeT . In this case, byu 'k v we meantu ' tv wheretu andtv are the trees
rooted atu andv respectively. A simple induction establishes the following lemma.

Lemma 3.3. The number of distinct'k equivalence classes of trees of heightn+ k or
less isk-fold exponential inn.

Now, letCk be the class of treesT ; v with rootv such that all successors of the root
are'k-equivalent. By Lemma 3.3, the automaticity ofCk is at leastk-fold exponen-
tial. Also it is easy to see that'k-equivalence is M-IFP-definable. This establishes the
following theorem.



Theorem 3.4. For every elementary functionf , there is a property with automaticity
(f) definable inM-IFP.

It follows from this that there are bisimulation invariant properties definable in
M-IFP that are not definable in MIC. This contrasts withL� whose expressive power
coincides precisely with the bisimulation invariant fragment of monadic LFP. This re-
sult dashes hopes of characterising MIC as the bisimulation-invariant fragment of a
natural predicate logic, a question that was posed in [3].

Corollary 3.5. MIC is strictly contained in the bisimulation invariant fragment of
M-IFP.

4 Labelling Index

We now generalise automaticity further to finite transitionsystems that are not necessar-
ily acyclic. This necessitates some changes. First, we haveto extend the automata model
to devices operating on arbitrary finite transition systems. As the structures may have
cycles, there is no natural starting or ending point for an automaton. For this reason,
we have refrained from calling the devices automata and adopted the termlabelling
systemsinstead. The systems are deterministic in that the label attached to a node is
completely determined by the labels at its successors and the propositions that hold at
the node. In this sense, the devices are also bottom-up. The formal definition is given in
Definition 4.6.

However, in order to have a meaningful measure of the growth rate of these devices,
we require a measure of the size of finite transitions systemsthat generalises the length
of a string and the height of a tree. We proceed to this first.

Definition 4.1. Therankof a structureK; v is the largestn such that there is a sequence
of distinctnodesv1; : : : ; vn in K with v = v1 and there is a path fromvi to vi+1 for
eachi.
It is easy to see that the rank of a tree is indeed its height (taking the height of a tree
with a single node as being 1) and the rank of any acyclic structure is equal to the
length of the longest non-repeating path. This observationcan be further generalised by
the following equivalent characterisation of rank.

Definition 4.2. Theblock decompositionof a structureK is the acyclic graphG =(V;E) whose nodes are the strongly connected components ofK and(s; t) 2 E if, and
only if, for someu 2 s and somev 2 t, there is an actiona such thatu a! v. For each
nodes ofG, we writeweight(s) for the number of nodesu ofK such thatu 2 s. The
rank of a nodes ofG is defined inductively byrank(s) = weight(s) + maxfrank(t) :(s; t) 2 Eg:

Theblock rankof a rooted finite transition systemK; v is defined as the rank of the
block containingv in the block decomposition ofK.

Lemma 4.3. The block rank ofK; v is equal to its rank.



When relating tree-automata to fixed-point logics as in Proposition 3.1, the key
property of the height of the tree is that it bounds the lengthof any simple fixed point
induction that can be defined inL� or MIC. We show that this carries over to our
definition of rank.

Lemma 4.4. If '(X) is a formula ofMIC, andn is the rank ofK; v, thenK; v j=(ifp X : ') if, and only if,v 2 Xn.

Proof. The proof is by induction onn. The basis,n = 1 is trivial. For the induction
step, we show that fork � 1, if v 2 Xk+1 butv 62 Xk, then there must be au reachable
from v such thatu 2 Xk nXk�1. 2
While the rank of a structureK; v provides a combinatorial measure that bounds the
closure ordinals of simple inductions, it is not an exact characterisation. Nor can we
expect it to be exact because it is clear that the closure ordinals are invariant under
bisimulation while rank is not. It may be more appropriate therefore to consider the
rank, not of a structureK, but of its quotient under bisimulationK=�. With this, we do
indeed get the required converse to Lemma 4.4.

Lemma 4.5. If the rank ofK=� is n, there is a formula'(X), positive inX , whose
closure ordinal onK is n.

An immediate consequence of Lemmas 4.4 and 4.5 is that the maximal closure
ordinals of simple MIC and simpleL� formulae on any structure are the same.

We are now ready to introduce labelling systems, which generalise bottom-up tree
automata to transition systems that are not necessarily acyclic.

Definition 4.6. A labelling systemL is a quintupleL := (Q;A;P ; Æ;F), whereQ is a
finite set of labels,A a finite set of actions,P a finite set of proposition symbols,F � Q
a set ofaccepting labels, andÆ a total functionÆ : 2Q�A � 2P ! Q, the transition
function.

For every Kripke-structureK := (V; (Ea)a2A; (Pi)i2P) and nodev 2 V , the la-
belling systemL acceptsK; v, denotedK; v j= L, if, and only if, there is a functionf : V ! Q such that for eachs 2 V , f(s) = Æ(f(f(s0); a) : a 2 A and(s; s0) 2Eag; fi : i 2 P ands 2 Pig); andf(v) 2 F .

As Æ is functional, labelling systems are deterministic devices. Indeed, on well-
founded trees, labelling systems and bottom-up tree automata are equivalent. On the
other hand, if the structures may contain cycles, some form of nondeterminism is present
as acceptance is defined in terms of theexistenceof a labelling. Thus, for a given struc-
ture and a given labelling system, there may be more than one labelling functionf that
witnesses the fact thatL acceptsK; v.

The class of structures accepted by a labelling system is notnecessarily closed under
bisimulation. This can be seen in the following simple example.

Example 4.7.Consider the labelling systemL = (Q;A; P; Æ;F) given by:Q = fq; q0g,A = fag,P = ;;F = fqg and whereÆ is given by the rulesÆ(;) = q, Æ(f(q; a)g) = q0,Æ(fq0; ag) = q andÆ(f(q; a); (q0; a)g) = q, where we have dropped the second argu-
ment toÆ as it is always;.

This labelling system accepts a simple cycle if, and only if,it is of even length.



As we are especially interested in labelling systems that define bisimulation-closed
classes of structures, we consider the following definition.

Definition 4.8. A labelling systemL is�-consistent, if for all Kripke-structuresK; v,
wheneverK; v j= L then there is a labellingf witnessing this and for alls; s0, K; s �K; s0 impliesf(s) = f(s0):

It might seem that a more natural condition would be obtainedjust by requiring the
class of structures defined byL to be closed under bisimulation, as in the following
definition.

Definition 4.9. A labelling systemL is�-invariantif, wheneverK; v j= L andK; v �K0; v0 thenK0; v0 j= L.

As it happens, these two definitions are equivalent for the structures that are of
interest to us. CallK; v connectedif, for every nodeu, there is a path fromv to u in K.

Lemma 4.10. On connected structures, a labelling system is�-consistent if, and only
if, it is �-invariant.

While any�-consistent labelling systemsL defines a class of�-invariant struc-
tures, not every bisimulation-closed classC of structures is given by such a labelling
system. However, as we see below,C is defined by a family of systems. In order to
define the family we use the rank of a structure as a measure of its size.

We show now that every bisimulation closed class of transition systems can be ac-
cepted by a family of labelling systems as follows. For this,note that the rank is trivially
bounded by the size of the transition system and that there are only finitely many bisim-
ulation equivalence classes of structures of a given rankn. Taking a state for each such
class yields the desired labelling system.

Lemma 4.11. LetC be a bisimulation closed class of finite structures. For eachn there
is a�-consistent labelling systemLn such that for any structureA with rank(A) � n,Ln acceptsA if, and only if,A 2 C.

The minimal size in terms ofn of the labelling systems in a family such as that in
Lemma 4.11 can be seen as a measure of the complexity of the classC. This leads to
the definition of the labelling index of classes of transition systems, which generalises
the automaticity of languages and classes of trees.

Definition 4.12. LetC be a bisimulation closed class of finite structures. Thelabelling
index ofC is defined as the functionf : n 7! jLnj mapping natural numbersn to the
number of labels of the smallest labelling system such that for anyK; v of rankn or
less,(K; v) 2 C if, and only if,K; v j= Ln.

A comparison of labelling systems with other automata models on graphs, such as
tiling systems [9, 10] is instructive. Significant differences are that tiling systems are
generally nondeterministic and the label attached to a nodedepends on its predecessors
as well as its successors.



5 Labelling Indices of Modal Logics

In this section, we aim to establish upper and lower bounds onthe labelling index of
classes of structures definable in modal logics such as ML andits various fixed-point
extensions.

The modal iteration calculus. It was shown by Dawar, Grädel, and Kreutzer in [3]
that any class of trees definable inMIC has at most exponential automaticity. The proof
translates easily to the labelling index on arbitrary structures, as sketched below.

Let ' be a formula inMIC and let� be the set of sub-formulae of'. Further letX1; : : : ; Xk be the fixed-point variables occurring in'. Clearly, for every transition
systemK; v of rankn the fixed point of each inflationary induction must be reached
after at mostn stages.

For every transition systemK; v of rankn we define the'-type ofK; v as the func-
tion f : f0; : : : ; k � ngk ! 2� such that 2 � occurs inf(i) if, and only if, holds at
the rootv of K if the variables occurring free in are interpreted by the stagesX ijj . A
functionf : f0; : : : ; k � ngk ! 2� is a'-typeif it is a '-type of a transition system.

We are able to define for each formula inMIC a family of labelling systems accept-
ing the class of its models, where the'-types serve as labels. This gives us the following
theorem.

Theorem 5.1. EveryMIC definable class of transition systems has at most exponential
labelling index.

There is a corresponding lower bound, as it is shown in [3] that there areMIC-
definable classes of structures with exponential labellingindex.

Another corollary of the results refers to modal logic. As ML-formulae can be seen
asMIC-formulae without any fixed-point operators, the number of'-types for a ML-
formula' depends only on' and is therefore constant. Thus we immediately get the
following.

Corollary 5.2. Every property definable inML has constant labelling index.

The modal�-calculus.The main difference between the argument for MIC considered
above andL� is monotonicity. This has a major impact on the definition of labelling
systems acceptingL� definable classes of structures. Consider the labelling systems as
defined forMIC-formulae'. In each nodeu of the structures we remembered for the
sub-formulae of' every tuple(i1; : : : ; ik) of induction stages where the sub-formula
becomes true atu. AsL� formulae are monotone, if a sub-formula is true at a tuple of
stages(i1; : : : ; ik) it will also be true at all higher stages of� and all lower stages of�-operators. Thus, if we only had one fixed-point operator, say �X , it would suffice to
mark each nodeu of the structure by the number of the stage at which it is included into
the fixed point ofX , or to give it a special label if it is not included at all. We would
thus only have linearly many labels in the labelling system.

But monotonicity also helps if there are more than one fixed-point operator. The
reason is that if a formula is true at a nodeu and a tuple of stages{, then it is also true
at u if all or some of its free fixed-point variables are interpreted by their respective



fixed points. With this, it turns out to be sufficient to consider in each nodeu of the
transition system only those tuples{ of stages where at most one fixed-point induction
has not reached its fixed point. As there are only polynomially many such tuples we get
a polynomial upper bound on the size of the labelling systems. We omit a detailed proof
for lack of space.

Theorem 5.3. Every class of transition systems definable inL� has at most polynomial
labelling index.

A consequence of the proof is that if aL�-formula does not use any�-operators, the
class of structures defined by it has constant labelling index. Thus, to give an example
of a L� definable class of structures with non-constant labelling index, the exclusive
use of�-operators is not sufficient. But it can easily be seen, usingpumping arguments,
that to express reachability, constant size labelling systems are not sufficient.

Lemma 5.4. There is aL�-definable classC of structures that has a linear lower bound
on its labelling index.

Proof. Let C be the class of transition systems such that there is a node reachable from
the root labelled by the propositionp. Obviously,C can be accepted by a family of
labelling systems with linear growth function.

On the other hand, each family of labelling systems accepting C must have at least
linear size. Assume otherwise and suppose that for somen > 2 there is a labelling
systemL of size less thann accepting the classCn of structures fromC of rank at mostn. Consider the structureK := (f0; : : : n� 1g; E; P ) with E := f(i; i+ 1) : 0 � i <n � 1g andP := fn � 1g. ObviouslyK; 0 2 Cn and thusK; 0 is accepted byL. As
there are less thann labels, there must be two different nodesu < v inK labelled by the
same labelq in L. But then the same labelling by label fromL also witnesses that the
systemK0 := (f0; : : : ; vg; E0; P 0) whereE0 := f(i; i+1) : 0 � i < vg[ f(v; u+1)g
andP 0 := ;, would be accepted byL. AsK0; 0 62 C we get a contradiction. 2

Thus, the�-calculus has a polynomial labelling index in the sense thateveryL�
definable property has polynomial labelling index and thereareL�-definable properties
with a linear lower bound on the labelling index.

This also shows that various ML extensions like LTL, CTL, or CTL� have non-
constant labelling index, as they can express reachability.

6 Labelling Index and Complexity

We begin by contrasting labelling index with the usual notion of computational com-
plexity in terms of machine time measured as a function of thesize of the structure. We
demonstrate that the two measures are not really comparableby exhibiting a class of
structures that is decidable in polynomial time but has non-elementary labelling index
and on the other hand an NP-complete problem that has exponential labelling index.

The first of these is the class of finite treesF such that iftu aretv are subtrees rooted
at a successor of the root, thentu � tv. As was shown in [3], there is no elementary
bound on the automaticity of this class, but it is decidable in time polynomial in thesize
of the tree. This yields the following result.



Proposition 6.1. There is a polynomial-time decidable class of Kripke structures with
non-elementary labelling index.

In contrast, we can construct an NP-complete problem of muchlower labelling
index. We obtain this by encoding propositional satisfiability as a class of structuresS
closed under bisimulation, and demonstrate that it is accepted by an exponential family
of labelling systems.

Theorem 6.2. There areNP-complete classes with exponential labelling index.

It is an open question whether the exponential bound in Theorem 6.2 can be lowered.

The trace-equivalence problem.We now apply our methods to a particular problem
that is of interest from the point of view of verification—thetrace-equivalenceproblem.
We determine exactly the labelling index of a number of variations of the problem and
thereby derive results about their expressibility in various modal fixed-point logics.

Consider a Kripke structureK; v with set of actionsA and a distinguished proposi-
tion symbolF denoting accepting nodes. We define the set oftracesof the structures
to be the setT � A� such thatt 2 T just in case there is a path labelledt from v to
a node inF . Two structures are said to betrace equivalentif they have the same set of
traces.

To define the decision problem of trace equivalence as a bisimulation-closed class of
structures, we considerE = fK; v : if v ! u andv ! w thenK; u andK; w are trace
equivalentg: The unary trace-equivalence problem isE restricted to structures over a
vocabulary with a single action, i.e.A = fag. Similarly, we define binary trace equiva-
lence to be the class of structures over a vocabulary with action setfa; bg that are also
in E .

Theorem 6.3. (i) On acyclic structures, unary trace equivalence has exponential
labelling index.

(ii) On acyclic structures, binary trace equivalence has double exponential labelling
index.

(iii) On arbitrary structures, unary trace equivalence hasdouble exponential la-
belling index.

(iv) On arbitrary structures, binary trace equivalence hasa treble exponential la-
belling index.

Proof. The proofs of the four statements are fairly similar, and we establish them all at
once. In each case, we identify with each nodev in a structure adiscriminating setDv
which is a finite set of traces available fromv such that ifu andv are not trace equivalent
thenDu 6= Dv. It is easy to see that if two nodes in an acyclic structure of rankn are
trace inequivalent, then there is a trace of length at mostn that distinguishes them. It
can also be shown that in an arbitrary structure of rankn, two inequivalent nodes are
distinguished by a trace of length at most2n. Thus, ifD is the set of all discriminating
sets,D is exponential inn in case 1; double exponential in cases 2 and 3; and treble
exponential in case 4. This allows us to construct the labelling systems establishing the
upper bounds.

For the lower bounds, note that, in the case of acyclic structures, for every setD 2 D
we can easily construct a rooted structureKD ; v of rankn such that its discriminating



set is exactlyD. For the case of structures with cycles, the construction isnot as straight-
forward but, it can be shown that there is a polynomialp such that there is a collection

of 22n unary structures (and222n binary structures) of rankp(n) with pairwise distinct
discriminating sets. 2

It follows that none of these properties is definable inL�. However, it can be shown
that unary trace equivalence on acyclic structures is definable in MIC, giving another
example of a property separating these two logics. Moreover, it also follows that binary
trace equivalence on acyclic structures is not definable in MIC. Since this property is
polynomial time decidable and bisimulation invariant, it gives us another instance of a
property separating MIC fromL!� . Finally, we note that on arbitrary structures, neither
the unary nor the binary trace equivalence problem is definable in MIC. Since the former
problem is co-NP-complete and the latter is PSPACE-complete, we do not expect that
either is definable inL!� , but it would be difficult to prove that they are not.
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