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Abstract. We introduce a complexity measure of modal properties d&fstruc-
tures which generalises the automaticity of languages.dased on graph-auto-
mata like devices called labelling systems. We define a meaxfithe size of a
structure that we cathnk, and show that any modal property of structures can be
approximated up to any fixed rankoy a labelling system. The function that takes
n to the size of the smallest labelling system doing this isedahelabelling in-
dexof the property. We demonstrate that this is a useful anddia@ed measure
of complexity and show that it is especially well suited tauicrcterise the expres-
sive power of modal fixed-point logics. From this we deriveesal separation
results of modal and non-modal fixed-point logics, some oichvtare already
known whereas others are new.

1 Introduction

Modal logics are widely used to express properties of firdated(infinite) state systems
for the purpose of automatic verification. In this contexgpositional modal logic (also
known as Hennessy-Milner logic) is found to be weak in terfigseexpressive power
and much attention has been devoted to extensions that sd¢lowe form of recursion.
This may be in the form of path quantifiers as with the brangtime temporal logics
CTL andCTL"* or with a least fixed-point operator as with thecalculus. Other ex-
tensions have been considered for the purpose of undensgpagariety of fixed-point
operators or classifying their complexity. Examples i@y, the higher dimensional
p-calculus introduced by Otto [6], and MIC, the modal itematicalculus, introduced
in [3]. The former was introduced specifically to demongtiatogic that exactly char-
acterises the polynomial-time decidable bisimulatioranant properties of finite-state
systems, while the latter was studied in an investigatidéa the difference between
least and inflationary fixed points.

The study of these various extensions of propositional iod& has thrown up a
variety of technigques for analysing their expressive po®ee can often show that one
logic is at least as expressive as another by means of arcigxgnslation of formu-
lae of the first into the second. Establishing separatiohsd®n logics is, in general,
more involved. This requires identifying a property exgikke in one logic and proving
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that it is not expressible in the other. Many specialisetitiéggques have been deployed
for such proofs of inexpressibility, including diagonali®n, bisimulation and other
Ehrenfeucht-Fraissé style games, complexity hieraschnd automata-based methods
such as the pumping lemma.

In this paper, we introduce an alternative complexity meagor modal properties
of finite structures which we call tHabelling indexof the property and demonstrate its
usefulness in analysing the expressive power of modal fipadt logics. The labelling
index generalises the notion of the automaticity of langsggee [7].) The automaticity
of a language (i.e. set of strings)is the function that maps to the size of the least
deterministic finite automaton which agrees witlon all strings of length. or less. We
generalise this notion in two steps, first studying it forsskes of finite trees and then
for classes of finite, possibly cyclic, transition systems.

We introduce automata-like devices called labelling systand a measure on finite
structures that we cathnk. We show that any modal property of finite structures (or
equivalently, any class of finite structures closed undsinhilation) can be approxi-
mated up to any fixed rank by a labelling system. The function that taketo the size
of the smallest labelling system that does this is the latgelhdex of the property. We
demonstrate that this is a useful and fine-grained measuhe @omplexity of modal
properties by deriving a number of separation results usimcluding some that were
previously known and some that are new. We show that any pxotteat is definable
in propositional modal logic has constant labelling indexcontrast, any property that
is definable in theu-calculus has polynomial labelling index and moreoverrahae
properties definable if,, whose labelling indices have a linear lower bound. Simylarl
we obtain exponential upper and lower bounds on the lalggitidex of properties de-
finable in MIC. We demonstrate that MIC is not the bisimulatiavariant fragment of
monadic IFP. We also investigate the relationship betwakelling index and conven-
tional time and space based notions of complexity. Finalyyjnvestigate the labelling
index of the trace equivalence problem over specific claséstuctures and deduce
interesting results about its expressibility in variougéixpoint logics.

Due to lack of space, proofs of the results are only sketched.

2 Background

In this section, we give a brief introduction to modal logi@ats various fixed-point
extensions. A detailed study of these logics can be found,im, 3].

Propositional Modal Logic. For the rest of the paper fix a sdtof actions and a sé?

of atomic propositions. Modal logics are interpretedtamsition systemsalso called
Kripke structureswhich are edge and node labelled graphs. The labels of thesed
come from the set{ of actions, whereas the nodes are labelled by sets of ptapcsi
fromP.

Modal logic (ML) is built up from atomic propositions € P using boolean con-
nectives and thaext-modalitiea), [a] for eacha € A. Formulaep € ML are always
evaluated at a particular node in a transition system. Weewiiv = ¢ if ¢ holds
at the nodev in the transition systen. The semantics oML-formulae is as usual



with K,v [= (a)yp if there is ana-successor of v such that’, u |= ¢ and, dually,
K,v [ [a]g if for all a-successors of v, K, u |= ¢.

Bisimulations. Bisimulation is a notion of behavioural equivalence fonsiion sys-
tems (see, e.g. [8] for a definition). Modal logics, like MLTG the u-calculus etc. do
not distinguish between transition systems that are bisitimn equivalent. We write
K,v ~ K', v' to denote that the two transition systems are equivalentdimhblation.

For a transition systent we write K, for its quotient under bisimulation. That
is, K~ is the transition system whose states are the equivaleassed of states of
K under bisimulation and, ifv] denotes the equivalence class containinthen(v] €
[p]*/~ if v € [p]* and there is am-transition from[u] to [v] in K, if, and only if,
there is aru-transition fromu to v in K. Itis easily verified thakC, v ~ KC, ., [v].

Modal Fixed-Point Logics. We now consider two fixed-point extensions of modal
logic: the modaj:-calculus and the modal iteration calcul@d4IC).

Syntactically they are defined as the closure of modal logden the following for-
mula building rules. Lep; , . .., ¢ be formulae with free proposition symbolg;, . ..,
X and letS := {X; + ¢1,..., X + ¢} be a system of rules. ThenX; : S and
vX,; : S are formulae ofL, and(ifp X; : S) is a formula ofMIC, where, in the case
of L, the rule is restricted to systemyswhere all formulaep; in .S are positive in all
fixed-point variablesy ;.

On any finite transition systerid with universeV’, such a systen$ of rules de-
fines an operatoFs taking a sequencgXy, ..., X}) of subsets oV to the sequence
(Fs(X1),..., Fs(Xk)), whereFg(X;) := {u: (K, (Xi)1<i<k),u |= ¢;}. This opera-
tor, again, inductively defines for each finite ordinah sequence of setXy, ..., X)
as follows. For ali, X? := ¢ and for0 < a < w, X2 := (Fs(X*™1);.

As the formulae in the@-calculus are required to be positive in their free fixedapoi
variables, the operatdrs induced by a system df ,-operators is monotone and thus
always has a least and a greatest fixed point. By a well knoaultref Knaster and
Tarski, the least fixed point is also reached as the fixed gaiift, ..., X °) of the
sequence of stages as defined above, and the greatest firetspeached as the limit
of a similar sequence of stages, where the induction is adest with the empty set but
with the entire universe, i.eX? := V. The semantics of a formujaX; : S is defined
asK,u = pX; : Sif, and only if, u occurs in thei-th component of the least fixed
point of Fg if, and only if, u € X/°. Analogously)C,u = vX; : S if, and only if, u
occurs in the-th component of the greatest fixed pointfaf. *

The next fixed-point extension of ML we consider is the motkdation calculus
introduced in [3]. It is designed to overcome the restriciid L, to positive formulae,
but still guarantee the existence of a meaningful fixed pdihts is achieved by tak-
ing at each induction step the union with the previous stiigeX;l+1 is defined as
X=X U (Fs(X™));. Thus, the stages of the induction are increasing and lead
to a fixed point(X¢°, ..., X°). Again, K, u |= ifp X; : Sif, and only if,u € X7°.

! In most presentations of thecalculus simultaneous inductions are not considerechiNgis
lost by such a restriction as the least fixed point of a sysferan also be obtained by nested
fixed points of simple inductions (see [1]).



Another fixed-point extension of modal logic that we consideL;,, the higher-
dimensionalu-calculus defined by Otto. We refer the reader to [6] for a iseedef-
inition. Here we only note that this logic permits the forioatof least fixed points
of positive formulaep defining not a seX, but a relationX of any arity. Otto shows
that, restricted to finite structures, this logic can expesctly the bisimulation-closed
properties that are polynomial-time decidable.

It is immediate from the definitions that, in terms of expiesgpower, we have
ML C L, C MIC C IFP, wherelFP denotes the extension of first-order logic by
inflationary fixed points. ASFP is equivalent to least fixed-point logic (LFP) afd
is the bisimulation invariant fragment of LFP, is followsatMIC C L. Indeed, all
of these inclusions are proper. The separationd if from L, and i were shown in
[3]. The analysis of the labelling index of properties exgsible in the logics provides
a uniform framework for both separations.

There is a natural translation &f, formulae into monadic second-order logic. In-
deed, Janin and Walukiewicz [5] show that a formula of mooaegicond-order logic
is bisimulation invariant if, and only if, it is equivalert & formula ofL,. Thus, the
separation of MIC fromL,, shows that MIC can express properties that are not defin-
able in monadic second-order logic. In [3], the question p@sed whether MIC could
be characterised as the bisimulation invariant fragmeingfnatural logic. The most
natural candidate for this appears to be the monadic fragofdirP—the extension
of first order predicate logic with inflationary fixed pointsowever, by an analysis of
the labelling index of properties definable in this logic, sleow that it can express
bisimulation-invariant properties that are notin MIC.

3 Automaticity on Strings and Trees

The automaticity of a language C X* is the function that maps to the size of the
minimal deterministic automaton that agrees witlon all strings of length at most.
This function is constant if, and only if, is regular and is at most exponential for any
languagel..

In [3] it was shown thaMIC is strictly less expressive thali;. The full version
of that paper makes it clear that the method used to sep&mtedics is a generali-
sation of the definition of automaticity from string langeago classes of finite trees,
closed under bisimulation. Automata that operate on trags been widely studied in
the literature (see, for instance, [4]). We consider “bottop” automata that have the
property that the class of trees accepted is necessargalonder bisimulation. For-
mally, a bottom-up tree automatonis= (Q, A, J, F, s), wheres € Q is a start state,
ands = 29%4 — (). We say such an automaton accepts aTrei there is a labelling
I : T — Q of the nodes off such that for every leaf, I(v) = s, the root of T is
labelledg € F, andl(v) = §({(I(w),a) : v = w}). We have, for simplicity, assumed
that7 is a transition system where the set of propositiBris empty. The automata are
easily generalised to the case where such propositiongesernt. Indeed the labelling
systems we introduce in Definition 4.6 below offer such a galigation.

For a bisimulation-closed clagsof trees, its automaticity can be defined (see the
full version of [3]) as the function mappingto the smallest bottom-up tree automaton



agreeing withC on all trees ofeightn. Height is the appropriate measure to use on
a tree since it bounds the number of steps the automaton fekissversion of auto-
maticity was used in particular to separate the expressivepof MIC from that of
L;. Indeed, one can establish the following facts about theraaticity of classes of
trees definable in modal fixed-point logics.

Proposition 3.1. 1. Every class of trees definableln, has constant automaticity.
2. Every class of trees definableNilC has at most exponential automaticity.
3. There is a class of strings definableNHC that has exponential automaticity.
4. There is a class of trees definablelifj that has non-elementary automaticity.

Statement (1) follows from the fact that for any formylaf L, we can construct
a bottom-up tree automaton which accepts exactly thoss thee satisfyp (see [11]).
Statements (2), (3) and (4) are shown in [3]. However, (2)alaa be derived as a spe-
cial case of Theorem 5.1 proved below. The particular cléasges used to establish (4)
is the bisimulation problemThis is the class of tre€E such that for any subtredg
andT5; rooted at children of the root @, we havel;, ~ Ts. It can be seen that the
automaticity of this class is the maximum possible.

Monadic Inflationary Fixed-Point Logic. We now look at the automaticity of the
bisimulation-invariant fragment of monadic IFP on treed ahow that there is no ele-
mentary lower bound for it. A consequence is thHC is not the bisimulation invariant
fragment of monadi€F P, something that could naturally be conjectured, giventtiat
u-calculus is the bisimulation-invariant fragment of moitddast fixed-point logic.

We first introduce monadic inflationary fixed-point logM-IFP) as the closure of
first-order logic under the following rule. I§( X, ) is a formula with a free unary re-
lational variableX and a free first-order variableg then for any ternt, [ifp x , »](t)
is also a formula. The semantics is defined asMa€, i.e. [ifp x , ¢] defines the infla-
tionary fixed point of the operator induced by

The properties we are going to construct that are definate iIRP and have high
automaticity are based on the use of trees to encode setsegkens in a number of
ways of increasing complexity. To be precise, for each mdturmberk, we inductively
define an equivalence relatiar, on trees as follows.

Definition 3.2. For any two treeg and s, write ¢t ~, s just in caset and s have the
same height antl~;,, s justin case the set at;-equivalence classes of the subtrees
rooted at the children of the root afis the same as the set of,-equivalence classes
of the subtrees rooted at the children of the roos of

By abuse of notation, we will also think of these relationsedations on the nodes
of a tree7. In this case, by ~; v we meant, ~ t, wheret,, andt, are the trees
rooted atu andwv respectively. A simple induction establishes the follogiemma.

Lemma 3.3. The number of distinet;, equivalence classes of trees of height & or
less isk-fold exponential im.

Now, letC,. be the class of treeE, v with rootv such that all successors of the root
are ~,-equivalent. By Lemma 3.3, the automaticity @f is at leastk-fold exponen-
tial. Also it is easy to see that,-equivalence is M-IFP-definable. This establishes the
following theorem.



Theorem 3.4. For every elementary functiofy, there is a property with automaticity
£2(f) definable inM-1FP.

It follows from this that there are bisimulation invariantoperties definable in
M-IFP that are not definable in MIC. This contrasts with whose expressive power
coincides precisely with the bisimulation invariant fragmh of monadic LFP. This re-
sult dashes hopes of characterising MIC as the bisimulatieeriant fragment of a
natural predicate logic, a question that was posed in [3].

Corollary 3.5. MIC is strictly contained in the bisimulation invariant fragnteof
M-IFP.

4 Labelling Index

We now generalise automaticity further to finite transitsystems that are not necessar-
ily acyclic. This necessitates some changes. First, wetoemeend the automata model
to devices operating on arbitrary finite transition systeAssthe structures may have
cycles, there is no natural starting or ending point for atomaton. For this reason,
we have refrained from calling the devices automata and taddpe termlabelling
systemgnstead. The systems are deterministic in that the labatladid to a node is
completely determined by the labels at its successors angrtpositions that hold at
the node. In this sense, the devices are also bottom-up ofimaf definition is given in
Definition 4.6.

However, in order to have a meaningful measure of the groatthof these devices,
we require a measure of the size of finite transitions systeatgeneralises the length
of a string and the height of a tree. We proceed to this first.

Definition 4.1. Therankof a structurelC, v is the largesi such that there is a sequence
of distinctnodesvy, ..., v, in K withv = v, and there is a path from; to v;1 for
eachi.

It is easy to see that the rank of a tree is indeed its heigkinahe height of a tree
with a single node as being 1) and the rank of any acyclic strads equal to the
length of the longest non-repeating path. This observatarbe further generalised by
the following equivalent characterisation of rank.

Definition 4.2. The block decompositiorf a structurek is the acyclic graphG =
(V, E) whose nodes are the strongly connected componeftsofl (s, t) € E if, and
only if, for someu € s and some € t, there is an actiom such that, % v. For each
nodes of G, we writeweight(s) for the number of nodes of K such that: € s. The
rank of a nodes of G is defined inductively byank(s) = weight(s) + max{rank(t) :
(s,t) € E}.
Theblock rankof a rooted finite transition systef, v is defined as the rank of the

block containing in the block decomposition &f.

Lemma 4.3. The block rank ofC, v is equal to its rank.



When relating tree-automata to fixed-point logics as in Bsitipn 3.1, the key
property of the height of the tree is that it bounds the lerdtany simple fixed point
induction that can be defined ih, or MIC. We show that this carries over to our
definition of rank.

Lemma4.4.If o(X) is a formula ofMIC, andn is the rank ofKC,v, thenK,v |
(ifp X : @) if, and only if,v € X™.

Proof. The proof is by induction om. The basisp = 1 is trivial. For the induction
step, we show that fdr > 1, if v € X**+! butv ¢ X*, then there must bexareachable
fromv such that: € X*\ X#-1, O

While the rank of a structur&, v provides a combinatorial measure that bounds the
closure ordinals of simple inductions, it is not an exactrahterisation. Nor can we
expect it to be exact because it is clear that the closurenalsiare invariant under
bisimulation while rank is not. It may be more appropriateréfore to consider the
rank, not of a structuré&, but of its quotient under bisimulatiofi, .. With this, we do
indeed get the required converse to Lemma 4.4.

Lemma 4.5. If the rank ofC, . is n, there is a formulap(X), positive in X, whose
closure ordinal onfC is n.

An immediate consequence of Lemmas 4.4 and 4.5 is that thémahglosure
ordinals of simple MIC and simpl&, formulae on any structure are the same.

We are now ready to introduce labelling systems, which gaiserbottom-up tree
automata to transition systems that are not necessaritfiacy

Definition 4.6. Alabelling systent is a quintuplel := (Q, A, P, 4, F), whereQ is a
finite set of labelsd a finite set of actions? a finite set of proposition symbolg, C @
a set ofaccepting labelsandd a total functions : 29*A x 27 — (Q, thetransition
function

For every Kripke-structurdC := (V, (E,)qc 4, (P;)icp) and nodev € V, the la-
belling system_ acceptsk, v, denotedC,v = L, if, and only if, there is a function
f:V — @ such that for eacls € V, f(s) = 6({(f(s'),a) : a € Aand(s,s') €
E,},{i:iePands e P}),andf(v) € F.

As § is functional, labelling systems are deterministic desidadeed, on well-
founded trees, labelling systems and bottom-up tree autoara equivalent. On the
other hand, if the structures may contain cycles, some fémomdeterminism is present
as acceptance is defined in terms of¢histencef a labelling. Thus, for a given struc-
ture and a given labelling system, there may be more thanatmeling functionf that
witnesses the fact that acceptsC, v.

The class of structures accepted by a labelling system isaugissarily closed under
bisimulation. This can be seen in the following simple examnp

Example 4.7.Consider the labelling systeth= (Q, A, P, 6, F) givenby:Q = {q,¢'},
A ={a},P=0,F = {q} and wheré is given by the ruled(§) = ¢,0({(¢,a)}) = ¢,
0({q',a}) = gandi({(q,a),(q',a)}) = ¢, where we have dropped the second argu-
ment tod as it is alwayd).

This labelling system accepts a simple cycle if, and onlit i§ of even length.



As we are especially interested in labelling systems thimedisimulation-closed
classes of structures, we consider the following definition

Definition 4.8. A labelling systent is ~-consistentif for all Kripke-structuresiC, v,
whenevel, v |= £ then there is a labelling’ witnessing this and for al}, s’, K, s ~
K, s' impliesf(s) = f(s').

It might seem that a more natural condition would be obtajastby requiring the
class of structures defined l/to be closed under bisimulation, as in the following
definition.

Definition 4.9. A labelling systent is ~-invariantif, whenevelC, v = £ andXC,v ~
K',v' thenK',v' |= L.

As it happens, these two definitions are equivalent for thecsires that are of
interest to us. Calk, v connectedf, for every nodeu, there is a path from to u in .

Lemma 4.10. On connected structures, a labelling system-isonsistent if, and only
if, it is ~-invariant.

While any ~-consistent labelling system’ defines a class of-invariant struc-
tures, not every bisimulation-closed clas®f structures is given by such a labelling
system. However, as we see bel@nis defined by a family of systems. In order to
define the family we use the rank of a structure as a measutg size.

We show now that every bisimulation closed class of tramsitystems can be ac-
cepted by a family of labelling systems as follows. For thigte that the rank is trivially
bounded by the size of the transition system and that thererdy finitely many bisim-
ulation equivalence classes of structures of a given rarlaking a state for each such
class yields the desired labelling system.

Lemma 4.11. LetC be a bisimulation closed class of finite structures. For eathere
is a ~-consistent labelling systesy, such that for any structurd with rank(2() < n,
L, accept if, and only if,2 € C.

The minimal size in terms af of the labelling systems in a family such as that in
Lemma 4.11 can be seen as a measure of the complexity of t&Ccl@his leads to
the definition of the labelling index of classes of transitgystems, which generalises
the automaticity of languages and classes of trees.

Definition 4.12. LetC be a bisimulation closed class of finite structures. Tielling
index of C is defined as the functiofi: n — |£,,| mapping natural numbers to the
number of labels of the smallest labelling system such traary K, v of rankn or
less,(KC,v) € Cif, and only if,C, v |= L,,.

A comparison of labelling systems with other automata m®©dalgraphs, such as
tiling systems [9, 10] is instructive. Significant diffeics are that tiling systems are
generally nondeterministic and the label attached to a degends on its predecessors
as well as its successors.



5 Labelling Indices of Modal Logics

In this section, we aim to establish upper and lower boundhenabelling index of
classes of structures definable in modal logics such as MLitandrious fixed-point
extensions.

The modal iteration calculus. It was shown by Dawar, Gradel, and Kreutzer in [3]
that any class of trees definableNfiC has at most exponential automaticity. The proof
translates easily to the labelling index on arbitrary dtites, as sketched below.

Let ¢ be a formula inMIC and let® be the set of sub-formulae gf. Further let
X1,..., X}, be the fixed-point variables occurring in Clearly, for every transition
system/C, v of rankn the fixed point of each inflationary induction must be reached
after at most stages.

For every transition systeii, v of rankn we define thes-type ofK, v as the func-
tion f : {0,...,k-n}* — 2% such that) € ® occurs inf (i) if, and only if, s> holds at
the rootv of K if the variables occurring free i are interpreted by the stagé(g”. A
functionf : {0,..., k- n}* — 2% is ap-typeif it is a -type of a transition system.

We are able to define for each formulaNHC a family of labelling systems accept-
ing the class of its models, where theypes serve as labels. This gives us the following
theorem.

Theorem 5.1. EveryMIC definable class of transition systems has at most expohentia
labelling index.

There is a corresponding lower bound, as it is shown in [3] thare areMIC-
definable classes of structures with exponential labeilidgx.

Another corollary of the results refers to modal logic. As ¥tirmulae can be seen
asMIC-formulae without any fixed-point operators, the numbepdjpes for a ML-
formulap depends only o and is therefore constant. Thus we immediately get the
following.

Corollary 5.2. Every property definable iNL has constant labelling index.

The modal u-calculus.The main difference between the argument for MIC considered
above andL,, is monotonicity. This has a major impact on the definitionaidelling
systems accepting, definable classes of structures. Consider the labellingsysas
defined forMIC-formulaey. In each node: of the structures we remembered for the
sub-formulae ofp every tuple(is, ..., i) of induction stages where the sub-formula
becomes true at. As L,, formulae are monotone, if a sub-formula is true at a tuple of
stageq(iy, . . ., i) it will also be true at all higher stages pfand all lower stages of
v-operators. Thus, if we only had one fixed-point operator,s&, it would suffice to
mark each node of the structure by the number of the stage at which it is idetlinto
the fixed point ofX, or to give it a special label if it is not included at all. We wad
thus only have linearly many labels in the labelling system.

But monotonicity also helps if there are more than one fixeuitpoperator. The
reason is that if a formula is true at a nodand a tuple of stagesthen it is also true
at » if all or some of its free fixed-point variables are intergeby their respective



fixed points. With this, it turns out to be sufficient to coresidn each node of the
transition system only those tuplesf stages where at most one fixed-point induction
has not reached its fixed point. As there are only polynognraliny such tuples we get
a polynomial upper bound on the size of the labelling syst&uesomit a detailed proof
for lack of space.

Theorem 5.3. Every class of transition systems definabl&jphas at most polynomial
labelling index.

A consequence of the proof is that ifg-formula does not use amyoperators, the
class of structures defined by it has constant labellingxn@lus, to give an example
of a L, definable class of structures with non-constant labellimex, the exclusive
use ofv-operators is not sufficient. But it can easily be seen, ugimgping arguments,
that to express reachability, constant size labellingesystare not sufficient.

Lemma 5.4. There is aL,-definable clas§ of structures that has a linear lower bound
on its labelling index.

Proof. LetC be the class of transition systems such that there is a nadbable from
the root labelled by the propositigh Obviously,C can be accepted by a family of
labelling systems with linear growth function.

On the other hand, each family of labelling systems accgjgtimust have at least
linear size. Assume otherwise and suppose that for some 2 there is a labelling
system. of size less tham accepting the clag$, of structures front of rank at most
n. Consider the structur€ := ({0,...n — 1}, E,P)with E:={(i,i+1): 0<i <
n —1} andP := {n — 1}. ObviouslyK,0 € C,, and thus, 0 is accepted by_. As
there are less thanlabels, there must be two different nodes: v in K labelled by the
same label in £. But then the same labelling by label frafhalso witnesses that the
system’ := ({0,...,v}, E', P")whereE' := {(i,i+1): 0 <i <ov}U{(v,u+1)}
andP’ := ), would be accepted bg. AsK', 0 ¢ C we get a contradiction. |

Thus, thep-calculus has a polynomial labelling index in the sense d¢vaty L,
definable property has polynomial labelling index and ttaeed. ,-definable properties
with a linear lower bound on the labelling index.

This also shows that various ML extensions like LTL, CTL, oFLC have non-
constant labelling index, as they can express reachability

6 Labelling Index and Complexity

We begin by contrasting labelling index with the usual notidd computational com-
plexity in terms of machine time measured as a function obthe of the structure. We
demonstrate that the two measures are not really compavgl#ghibiting a class of
structures that is decidable in polynomial time but has alementary labelling index
and on the other hand an NP-complete problem that has expareabelling index.

The first of these is the class of finite treEsuch that ift,, aret, are subtrees rooted
at a successor of the root, then ~ ¢,. As was shown in [3], there is no elementary
bound on the automaticity of this class, but it is decidablégme polynomial in thesize
of the tree. This yields the following result.



Proposition 6.1. There is a polynomial-time decidable class of Kripke sttt with
non-elementary labelling index.

In contrast, we can construct an NP-complete problem of niowler labelling
index. We obtain this by encoding propositional satisfigbids a class of structures
closed under bisimulation, and demonstrate that it is eeddpy an exponential family
of labelling systems.

Theorem 6.2. There areNP-complete classes with exponential labelling index.
It is an open question whether the exponential bound in Témad@.2 can be lowered.

The trace-equivalence problemWe now apply our methods to a particular problem
that is of interest from the point of view of verification—ttrace-equivalencproblem.
We determine exactly the labelling index of a number of v#tes of the problem and
thereby derive results about their expressibility in vasionodal fixed-point logics.

Consider a Kripke structur€, v with set of actions4 and a distinguished proposi-
tion symbolF denoting accepting nodes. We define the sdtaifesof the structures
to be the sef” C A* such thatt € 7 just in case there is a path labelleffom v to
a node inF. Two structures are said to b@ace equivalenif they have the same set of
traces.

To define the decision problem of trace equivalence as a blation-closed class of
structures, we considér= {K,v : if v = v andv — w thenk’, v and/C, w are trace
equivalen}. The unary trace-equivalence problen¥isestricted to structures over a
vocabulary with a single action, i.el = {a}. Similarly, we define binary trace equiva-
lence to be the class of structures over a vocabulary wifbraset{a, b} that are also
in&.

Theorem 6.3. (i) On acyclic structures, unary trace equivalence has equial

labelling index.

(i) On acyclic structures, binary trace equivalence hasiblie exponential labelling
index.

(iii) On arbitrary structures, unary trace equivalence hdsuble exponential la-
belling index.

(iv) On arbitrary structures, binary trace equivalence hasreble exponential la-
belling index.

Proof. The proofs of the four statements are fairly similar, and gtafelish them all at
once. In each case, we identify with each nede a structure aliscriminating setD,
which is afinite set of traces available fransuch that ifu andv are not trace equivalent
thenD, # D,. Itis easy to see that if two nodes in an acyclic structureaakin are
trace inequivalent, then there is a trace of length at mdsiat distinguishes them. It
can also be shown that in an arbitrary structure of rantwo inequivalent nodes are
distinguished by a trace of length at m@st Thus, if D is the set of all discriminating
sets,D is exponential inn in case 1; double exponential in cases 2 and 3; and treble
exponential in case 4. This allows us to construct the latgeflystems establishing the
upper bounds.

For the lower bounds, note that, in the case of acyclic strast for every seéb € D
we can easily construct a rooted structiiirg, v of rankn such that its discriminating



setis exacthyD. For the case of structures with cycles, the constructiontigs straight-
forward but, it can be shown that there is a polynomialich that there is a collection
of 22" unary structures (arﬂ?z" binary structures) of rang(n) with pairwise distinct
discriminating sets. |

It follows that none of these properties is definablé jn However, it can be shown
that unary trace equivalence on acyclic structures is dafinia MIC, giving another
example of a property separating these two logics. Moredadso follows that binary
trace equivalence on acyclic structures is not definable li@.Ndince this property is
polynomial time decidable and bisimulation invariant,iites us another instance of a
property separating MIC from;,. Finally, we note that on arbitrary structures, neither
the unary nor the binary trace equivalence problem is ddriaiIC. Since the former
problem is co-NP-complete and the latter isSPRCEcomplete, we do not expect that
either is definable idl,;, but it would be difficult to prove that they are not.
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