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Abstract. Gaifman’s locality theorem states that every first-ordertesece is
equivalent to a local sentence. We show that there is no elmebound on
the length of the local sentence in terms of the original.

The classical Los-Tarski theorem states that every fidémsentence preserved
under extensions is equivalent to an existential sent&fleeshow that there is no
elementary bound on the length of the existential sentem¢erins of the orig-
inal. Recently, variants of the Los-Tarski theorem haverbproved for certain
classes of finite structures, among them the class of finjteliacstructures and
more generally classes of structures of bounded tree witithlower bound also
applies to these variants.

We further prove that a version of the Feferman-Vaught ta@obased on a re-
striction by formula length necessarily entails a non-&atary blow-up in for-
mula size.

All these results are based on a similar technique of engddige numbers by
trees of small height in such a way that small formulas camlspdout these
numbers. Notably, our lower bounds do not apply to restnngiof the results
to structures of bounded degree. For such structures, \@adiementary upper
bounds in all cases. However, even there we can prove adeally exponential
lower bounds.

1 Introduction

Classical results of model theory provide syntactical redrforms for various seman-
tical properties of structures. For example, the LosHiafseorem states that every
first-order definable property that is preserved under sibes of structures is actually
definable by an existential first-order sentence. Gaifmiacality theorem provides a
normal form for all properties definable in first-order lodicstates that each first-order
definable property is definable by a local sentence, thatssngence where quantifica-
tion is basically restricted to local neighbourhoods ofedats.

Gaifman’s theorem has found various applications in athors and complexity [9,
4,16, 17]. In particular, there are very general algorithmeta-theorems stating that
first-order model-checking is fixed-parameter tractabtevéious classes of structures,
such as planar graphs or graphs with excluded minors, anditsiaorder definable
optimisation problems on such classes have polynomial éipproximation schemes.
These algorithms are heavily based on (an effective vemsipGaifman’s theorem:
First-order formulas are first translated into local forayland then these local formu-
las are algorithmically evaluated.



While it is known that the £os-Tarski theorem fails whertriesed to all finite struc-
tures, it has recently been proved [1] that the theorem dilblsadd when restricted to
specific “well-behaved” classes of finite structures sucacgyslic structures, structures
of bounded tree width, and structures of bounded degree.

In the context of algorithms, complexity, and finite modeddhy, questions about
the efficiency of the normal forms, which are usually negddh classical model the-
ory, are of fundamental importance. These are the questiereddress. By efficiency
we mean the size of the formulas in normal forsudcinctnegsand the existence of
efficient algorithms that translate formulas into theirmaf forms €omplexity of the
translatior). We shall prove nonelementary lower bounds for the sutoé@ss — ob-
viously, this implies nonelementary lower bounds on the glexity of the translation.
Specifically, we prove that there is no elementary funcficuch that every first-order
sentencep is equivalent to a local first-order sentengeof length ||| < F(|l¢l]),
not even on the class of all finite trees. Similarly, we prdvat there is no elemen-
tary functionf such that every first-order sentengé¢hat is preserved under extensions
(on arbitrary structures) is equivalent to an existentiatfdorder sentencg of length
[|12l] < £(ll¢l]), not even on the class of all finite trees. This provides ainatess
lower bound for both the classical £o§-Tarski theorem dad/ariants for classes of
finite forests and all classes of finite structures that doratthtrees (but not for classes
of finite structures of bounded degree).

We prove a further lower bound that is concerned with thesatas Feferman-
Vaught theorem. The classical theorem states that forinefidams of compositions
of structures the theory of a structure composed from singtactures is determined
by the theories of the simpler structures. In particulagrehis a functionf such that
if structuresA4; andB; (for ¢ = 1, 2) satisfy the same first-order sentences of length at
mostf(¢), then the disjoint union afl; and.4; satisfies the same first-order sentences
of size/ as the disjoint union oB; andB,. We prove a lower bound on the growth rate
of f showing thatf is not bounded above by an elementary function.

Technically, all our lower bound proofs rely on a suitableadting of large natural
numbers by trees of small height that can be controlled byi §irsé-order formulas. In
fact, we show — and use — that full arithmetic on a large ih&gment of the positive
integers can be simulated by comparably small first-ordentétas that operate on the
tree encodings of the numbers. It is worth mentioning thiatapproach can be applied
in various other contexts. For example, concerning thesilakdecision problem, it is
known that the first-order theory (and actually also the ndamsecond-order theory) of
trees is decidable [23, 19]; and in [2] (see also [7] for edatesults) it has been shown
that there is n@lementarydecision algorithm. A simple proof of this non-elementary
lower bound can easily be obtained using the methods in #sept paper (details of
this can be found in the full version of this paper).

A point to note, however, is that all our non-elementary lolveunds heavily rely
on the fact that the degree of the underlying structures unded. In fact, when
restricting attention to classes of structures of boundsgtet, we can show elemen-
tary upper bounds as counterparts of the non-elementagrlbaunds on classes of
structures of unbounded degree. In particular, in the bedmtbgree case we obtain a
4-fold exponential upper bound for Gaifman’s locality them; and we get a 5-fold ex-



ponential upper bound for the variant of the t.05-Tarskotieen on the class of acyclic
structures of bounded degree.

As far as we know, techniques similar to those applied herteagli to Stockmeyer
and Meyer [21]. Much later, such techniques have been eragloy[10,18,12,13] to
prove lower bounds in parameterised complexity, respelgtion the succinctness of
monadic logics. A related succinctness lower bound desenantion. It has recently
been proved by Rossman [20] that the homomorphism pregamdteorem (in con-
trast with the Lo&-Tarski theorem) holds in the class ofialte structures. Here, it is
known that there is no elementary bound on the length of treteaxial positive formula
obtained®

The rest of the paper is structured as follows. Section Dbbshees some definitions
and notation and Section 3 presents the encoding of numpéneds that is then used to
prove lower bounds on the size of formulas in Gaifman norimahf(Section 4) and the
failure of the Feferman-Vaught theorem for formula lengdledtion 5). Section 6 then
establishes the lower bound for the Lo§-Tarski theorenichvis based on a different
encoding of numbers by trees. Finally, Section 7 contaiegtbmentary upper bounds
on classes of structures of bounded degree. Due to spadations, many technical
details of the proofs are deferred to the full version of ffaper.

Acknowledgements: We would like to thank an anonymous referee for pointing us
to the references [2, 7]. We gratefully acknowledge the supgf the Isaac Newton In-
stitute through its 2006 programme on Logic and Algorithiitee opportunity afforded
by this programme greatly aided our collaboration.

2 Preliminaries

We useR to denote the set of reals ahdto denote the set of natural numbers, i.e., the
set of nonnegative integers. For natural numbers. n we write [m, n] to denote the
set{m,m+1,...,n}.

We say that a functiolfi : N — R is (1-fold) exponentiaf there is some polynomial
p such thatf(n) is eventually bounded b3?("™). For anyk > 2, a functionf is called
k-fold exponentialf there is somgk—1)-fold exponential functiory such thatf (n)
is eventually bounded bg9("™). A function f : N — R is calledelementaryif it can
be formed from the successor function, addition, subwactind multiplication using
compositions, projections, bounded additions, and bodinddtiplications (of the form
Y.<y 9(T, z) andIl.<,g(7, z)). The crucial fact for us is that a functighis bounded
by an elementary function if, and only if, there exists & 1 such thatf is bounded by
a k-fold exponential function (see, e.g., [3]).

One function of particular interest for the present papehés functionTower :
N — N, defined viaTower(0) := 1 and, for allh. > 1, Towerh) := 2Tweth=1) | e
Tower(h) is a tower of2s of heighth. Note that, e.g., none of the functiomewer(h),
Tower( /1), Towerlog h) is bounded by an elementary function.

A vocabularyis a finite set of relation symbols and constant symbols. éiased
with every relation symbaR is a positive integer called theity of R. In the following,

% This is mentioned by Rossman citing unpublished work of @ateand Shelah. As far as we
are aware, a proof of this lower bound has not yet been pugalish



7 always denotes a vocabulary. A vocabulaig calledrelationalif it does not contain
any constant symbol. A-structure.4 consists of a non-empty sdt called theuniverse
of A, an element# € A for each constant symbele 7, and a relatiol®* C A" for
eachr-ary relation symboR € 7. A is called aninduced substructuref a r-structure
Bif A C B, R* = RBn A", for each relation symbadk € 7 of arity r, andc? = 8
for each constant symbele 7.

TheGaifman graptof ar-structureA is the (undirected, loop-free) grapty with
vertex setA and an edge between two verticed € A iff there exists ank € 7
and a tuplgay, ..,a,) € R* such that, b € {ay,..,a,}. Thedistancebetween two
elementsu, b € A in A, denoted b)dist“(a,b), is defined to be the length (that is,
number of edges) of the shortest path freno b in the Gaifman graph ofl. Forr > 0
anda € A, ther-neighbourhood of, in A is the setNA(a) = {b € A : dist*(a, b) <
r}. The induced substructure gfwith universeN:*(a) is denoted bV (a). We omit
superscriptg! if A is clear from the context.

We write FQ7) to denote the class of all formulae of first-order logic oves t
vocabularyr, and we writegr (¢) to denote theyuantifier rankof an FQ(r)-formula
v. In a natural way, we view formulas as trees (to be precis¢heis syntax treeg
where leaves correspond to the atoms of the formulas, ard w@mtices correspond to
Boolean connectives or quantifiers. We definegtze(or, length ||¢|| of a first-order
formulay as the number of vertices in the syntax treeof

Whenever we writd, it denotes a binary relation symbol. We vigW '} -structures
as directed graphs. For a directed graph= (A, E4) and ana € A, we let A, be
the set of all vertices such there is a path from to b (this includesa), and we let
A, be the induced substructure dfwith universeA,. Unless we explicitly call them
undirected we view trees as being directed from the root to the leavefrdstis a
directed graph in which every vertex has indegree at mogértices of indegreé are
calledrootsof the forest. Atreeis a forest with exactly one root. The class of all finite
forests is denoted by and the class of all finite trees I3y Theheightof a tree7 is
the length of the longest path ih.

3 Encoding numbers by trees

In this section we introduce the technical machinery thaisisd for proving our main
theorems in sections 4 and 5. We use the following encodingatiral numbers by
trees, introduced in [8].

Definition 3.1 (Encoding numbers by trees)Fori,n € N we write bit(i, n) to denote
the i-th bit in the binary representation of. I.e., biti,n) = 0 if | 3] is even, and
bit(i,n) = 1if | & | is odd. Inductively we define a tré€(n) for each natural number
n as follows: 7(0) is the one-node tree. For> 1 the tree7 (n) is obtained by creating

a new root and attaching to it all tre@g:) for all ¢ such that biti, n) = 1.

lllustrations of these trees can be found in [8]. It is sti#figrward to see (cf. [8,
Lemma 10.20]) that for alh,n > 0, heigh{7 (n)) < h <= n < Towerh).

The next lemma from [8] shows that the tree encodings of nusnten be “controlled”
by small first-order formulas. (In [8], the statement of tamma is formulated for trees



instead of general structures. The proof given there, hewealso holds for general
structures and thus leads to the following lemma.)

Lemma 3.2 ([8, Lemma 10.21])For everyh > 0 there is arFO(E)-formula eq,(z, y)
of lengthO(h) such that for all structurest = (A, E4) andt,u € A we have: If there
arem,n < Towel(h) such that the structured, and.A,, are isomorphic taZ (m) and
7T (n), resp.,then A E=eq,(t,u) < m=n.

Using this, one easily obtains the following two lemmas vatpeovide formulas of
length polynomial inh that recognise tree encodings and define arithmetic on ¢lee tr
encodings of numbers of size upTowerh).

Lemma 3.3. For everyh > 0 there is aFO( E)-formula encoding(x) of lengthO(h?)
such that for all structurest = (T, E4) andt € A we have:A = encoding (t) <=
thereis ani € {0, .., Towerh)—1} such that4, is isomorphic to7 (7) .

Lemma 3.4. For everyh > 0 there areFO(FE)-formulas bif,(x,y) of size O(h),
less,(z,y) of sizeO(h?), min(z) of constant size (not depending b} sucg,(z,y)
of sizeO(h?), and max(x) of sizeO(h?) such that for all structuresA = (A, E4)
andt,u € A we have: If there aren,n < Towel(h) such that the structured, and
A, are isomorphic taZ (m) and7 (n), respectively, then we have:

() AEDbit,(t,u) <= bitlm,n)=1

() AEless(t,u) < m<n

(¢) AEmin(t) < A, isisomorphic to7 (0)

(d) AlEsucg(t,u) <= m+1l=n

(e) AEmax(t) <= A, isisomorphictdl (Tower(h)—1).

4 Lower bounds for the size of formulas in Gaifman normal form

The aim of this section is to prove a non-elementary success gap for Gaifman’s
theorem. To give a precise formulation of Gaifman’s theoesd our new bounds on
formula length, we need to fix some (standard) notation.

For everyr > 0, we letdist<,(z,y) be an F@r)-formula expressing that the
distance between and y is at mostr. We often writedist(z,y) < r instead of
dist<,(z,y) anddist(x,y) > r or dist.,(x,y) instead of—-dist<, (x,y). An FO(7)-
formula () is calledr-local if for every 7-structure4 and everya € A we have
A E ¥(a) <= NA(a) = ¥(a). A basic local sentenc@vith parameterg, 7) is a
sentence of the form

Hxl---ﬂxk( /\ dist(x;, z;) > 2r A /\ ¢($i)),

1<i<j<k 1<i<k

wherey (z) is r-local.

For an FQr)-sentence we say thaty is in Gaifman normal fornif ¢ is a Boolean
combination of basic local sentences. Gaifman’s well-kndlaeorem [11] states that
every first-order sentence over a relational vocabulargisvalent to a first-order sen-
tence in Gaifman normal form. The proof in [11] proceeds kguiction on the length



of the given first-order sentengeand leads to an effective algorithm that transforms a
givenp into an equivalent sentengein Gaifman normal form. A closer look at Gaif-
man’s proof shows that the size of the constructed sent¢meay be non-elementary in
the size of the original sentenge The main result of the present section shows that this
huge increase in formula size is not just an artifact of Gaifim proof, but that indeed
there are first-order formulas for which the shortest equivalent formula in Gaifman
normal form is non-elementarily larger than

Theorem 4.1. For everyh > 1 there is anFO(E)-sentencep;, of sizeO(h*) such that
everyFO(E)-sentence in Gaifman normal form that is equivalenptoon the class
of finite trees has size at least Towey.

Here, we show the following variant that speaks about thesabd allforestsrather
thantrees The proof of Theorem 4.2 avoids some of the unpleasantlsiet@éded in
the proof of Theorem 4.1 while still exposing the main iddat tare crucial for the
proof of Theorem 4.1. The proof of Theorem 4.1 can be fountderfull version of this
paper.

Theorem 4.2. For everyh > 1 there is anFO(E)-sentencep,, of sizeO(h*) such that
everyFO(FE)-sentence in Gaifman normal form that is equivaleniipon the class
F<», of finite forests of height & has size at least Towgr).

Proof. We use the tree encodings of natural numbers introducectitioBe3. Forh > 1
we define the structurg), to be the forest that consists of the disjoint union of akktre
7 (j)forallj € {0, .., Towelh)—1}. Furthermore, for everyc {0, .., Towelh)—1},
we Iet}‘,ji be the forest that consists of the disjoint union of all tré€g) for all j with
j#iandj € {0,.., Towerlh)—1}.

We letroot(z) be a formula which expresses that a nadbas in-degre@, i.e.,
root(x) := -3y E(y,x). We choose the F@)-sentencep,, as follows: ¢, :=

Jz (root(z) Amin(z)) A Vy((root(y)/\ﬂmanl(y)) — Ez(root(z)/\sucq(y,z)))) :

Using Lemma 3.4, it is straightforward to see that,|| = O(h*) and
FnlEwn  and, foreach < Towerh), F, ‘= on. (1)

Now lets) be an FQFE)-sentence irGaifman normal formthat is equivalent tgy,
onthe clasg <. In particular, since;, as well as all theF, * belong to§ <, we obtain
from (1) that

FrnlEv  and, foreach < Towerh), F; ‘. 2)

Our aim is to show thaff := ||¢)|| > Towel(h). Aiming at a contradiction, let us now
assume thall < Tower(h).

Since is in Gaifman normal form, it is a Boolean combinationtmsic local
sentencess, - ., x, where each, (for ¢ € {1, .., L}) is of the form

Xe = 3xy--- T, ( /\ dist(z;, z;) > 2rg A /\ 1[14(171-)),

1<i<j<k, 1<i<ke



with kg, 7, > 1 andi,(x) a formula that isy-local. In particular,
H = [[Y| > k14 +kg. 3)
We can assume w.l.0.g. that there existd.amith 0 < L < L such that
foreach! < L, Fy = xe, and foreach > L, Fnlxe. (4)

For all¢ < L we know thatF, E xv, i.e., there are nodeéé), .. ,t,(f;) in F, such that
the formula

N distzi ) >2m AN\ de(x) (5)

1<i<j<ke 1<i<ke

is satjsfied inF;, when interpreting each variahig with the nodetl(f). The set{ tz(.é) :

¢ < Landi < k¢} consists of at most; + --- 4+ k; < H nodes (see (3)). Since
we assume thatl < Tower(h), and sinceF;, consists offower(h) disjoint trees, there
must be at least one compondnbf 7, in which none of the nodes fronf tgl) 4 <
Landi <k} ispresent. Lej € {0,..,Towerh)—1} be such thaf’ = 7 ().

Now, of course, the foreéﬂl—j, which is obtained fronf;, by removing the compo-
nent7 (j), still contains all the nodes if tE‘“}) . ¢ < Landi < k; }. Considering (5),
note that each formulgy(x;) is r,-local aroundz;. Thus, when interpreting; with
the nodetz(.é), the formula can only “speak” about the-neighbourhood ofz(.é), which
is the same i, 7 as inF;,. We thus obtain from (5) thak, ’ = x, for each? < L.

Let us now consider the formulas with ¢ > L. From (4) we know thaF;, F~ ¢,
i.e.,Fr E —xe, where the formulary, is of the following form:

ﬂxl..a%( N distzi, ) > 2 AN we(:vi))-

1<i<j<ke 1<i<ky
Since the formula),(z;) is r¢-local and sinceS’-',:j is obtained fromF;, by removing
an entire component df;,, it is straightforward to see that als§, ’ = —x,. In total,
we now know the following:

foreacht <L, F,”}=x;, and foreacl >1L, F,/ xe. (6)

From (6) and (4) we obtain thefk, 7 satisfies exactly the same basic local sentences

from{x1,...,xr} asF,. Sincey is a Boolean combination of the sentenges. ., x 1.,
we thus have thatF, ’ = ¢ <= F}, =1 . This, however, is a contradiction to (2).
Altogether, the proof of Theorem 4.2 is complete. a

To conclude this section let us mention that an easy redustimws that Theo-
rem 4.1 and Theorem 4.2 still hold when replaciignd3<;, by the classe§* and
¢, of undirectedrees andindirectedforests of height at most, respectively.



5 Failure of Feferman-Vaught theorems for formula size

The classical Feferman-Vaught theorem [6] states thaEitam forms of compositions

of structures the theory of a structure composed from singbtactures is determined
by the theories of the simpler structures. The plainest farcomposition is thalisjoint
union denoted byp in the following. The Feferman-Vaught theorem for disjainion
and first-order logic states that for all structurs A-, B1, Bs, if the structures4; and

B; (for : = 1,2) satisfy the same first-order sentences, their disjoinbnsid; & A
andB; @ B, also satisfy the same first-order sentences. This can kdisttdy the
quantifier rank, that is, if4; andB; satisfy the same first-order sentences of quantifier
rank at mosy;, thenA; & A; andB; @ B, also satisfy the same first-order sentences
of quantifier rank at mosg. This result is an immensely useful tool in analysing the
expressivity of first order logic, and for deriving boundstba quantifier rank.

To derive bounds on the formula size, it would be similarlgfusto have an analo-
gous result for formula size instead of quantifier rank. As & fixed, finite vocabulary)
there are only finitely many first-order sentences of quantifank ¢, up to logical
equivalence, we immediately get the following: There is action f such that if the
structuresA; andB; (for i = 1,2) satisfy the same first-order sentences of length at
mostf(¢), thenA; & A2 andB; @ B, satisfy the same first-order sentences of length
at most/. It is not hard to derive an upper bound Tower(O(¢)) on the functionf.
Maybe surprisingly, this upper bound is essentially tight:

Theorem 5.1. There is no elementary functighsuch that the following holds for all
treesA, B,C € T: If A and B satisfy the same first-order sentences of length at most
f(0),thenA @ C andB @ C satisfy the same first-order sentences of length at fost

Proof. We use the encoding and the formulas from Section 3. For dveryl, let
¢ = Vz(encoding(z) — (max,(z) V Iy sucg,(z,y))).

Then there is a constaat> 1 such that|y|| < ¢- h* for all h.

Suppose for contradiction thitis an elementary function with the desired property.
We may assume thgt¢) > ¢ for all ¢ > 1. As there are only exponentially many first-
order sentenceg of a given length, there is alh > 1 such that there are less than
Tower h—1) first-order sentences of length at mgsgt-h*) (up to equivalence). Let us
fix such am, and let = c-h* andn = Tower(h)—1. For every; € [0, n], letF; denote
the forest consisting of the tre€9j), ..., 7 (n), and letl{; be the tree obtained from
JF; by connecting a new root with the roots of all treesfip Then there are numbers
j,k such thatl < j < k < n, and the trees{; andl{, satisfy the same first-order
sentences of length at magtl). Observe that

FieT(-1)Een and Fy@T(j-1) }~ @n.

Now let A = U;, B = Uy, andC = T (j—1). As the new roots of4, B are not nodes
satisfyingencoding (=) (becaused and3 are isomorphic to tree® (n_4) and7 (ng)
with n_4,ng > Tower(h)), we haveAd & C |= ), andB @ C [~ ¢y. Since the length
of ¢}, is at most and.A, B satisfy the same sentences of length at nf@é}, this is a
contradiction. O



6 Existential preservation on forests

A structureB is called anextensiorof A if A is an induced substructure 8t Let 7

be a vocabulary and let be a class of finite-structures that is closed under induced
substructures. An F@)-sentence is preserved under extensions &iif the following

is true for all structurest, B € €: If A = ¢ andB3 is an extension ofd, then3 = ¢.

The well-knownt.os-Tarski Theorer(see e.g. [15]) states that every first-order sen-
tence that is preserved under extensions on the clagssifuctures (i.e., finite as well
as infinite structures), is equivalent to existentialfirst-order sentence. Here, the class
of existential first-order formulags obtained by closing the atomic formulas and the
negated atomic formulas under conjunction, disjunctiowl, @xistential quantification.
While the Los-Tarski theorenfiails when shifting the attention from the class af
structures to the class of dihite structures ([22, 14]), it was shown in [1] that the to&-
Tarski theorem holds when restricted to certain “well-hedti classes of finite struc-
tures, among them the class of all finite acyclic structuras.main result of the present
section, Theorem 6.1, shows that a translation of formulasgrved under extensions
into equivalent existential formulas may increase the fdensize non-elementarily.

In the following, we letZ, andX be two unary relation symbols. A, X }-labelled
treeis an{E, L, X }-structureT = (T, E7, L7, X7) where(T, E7) is a tree.

Theorem 6.1. Let r be a vocabulary that consists of a binary relation symbahnd
two unary relation symbolg and X . For everyh > 1 there is aFO(r)-sentencey,, of
size29(™") with the following properties:

1. oy is preserved under extensions on the class of-@liructures, and

2. every existentidrO(7)-sentence) that is equivalent t;, on the clas <, of alll
{L, X }-labelled trees of height at mohtis of size at least Towéi—1).

Using the same approach as in the previous sections, ieeertboding of natural
numbers by trees introduced in Section 3, it is not difficoltbnstruct a sentencs,
of small size which meets requirement 2. We were, howeveahlarto find a sentence
based on this encoding which also meets requirement 1 (elien wonsidering <,
instead of the class of all-structures). To prove Theorem 6.1, we therefore introduce
the following encoding of numbers by, X }-labelled trees. The remainder of this
section is devoted to the proof of Theorem 6.1.

From now on, until the end of this section, wetedenote a vocabulary that consists
of a binary relation symbal and two unary relation symbolsand.X .

Definition 6.2. For each natural numbér> 1 and each € {0, 1, .., Towe(h)—1},
we define the L, X }-labelled tree7;, (n) as follows:

— 7:(0) consists of two nodes andwv such that there is an edge framto v, andv
is labelled to be &eaf (which is encoded by € L") andv is labelled0 (which is
encoded byt ¢ X").

— T7:(1) consists of two nodes andwv such that there is an edge framto v, andv
is labelled to be &eaf (which is encoded by € L") andv is labelledl (which is
encoded byt € X).



—for h > 1 andn € {0,.., Towe(h+1)—1} = {0,..,2™we") 1} the {L, X }-
labelled tree7;, 1 (n) is obtained by creating a new root, attaching to it one copy
of 7,(i), for eachi € {0,.., Towe(h)—1}, and labelling the root of}, (i) with 1
if bit(¢, n) = 1, andO otherwise.

Note that for every fixed, the trees7;, (n) for n < Towerh) all have the same
shape and only vary in the labelling (w.ftand2) of the children of the root. Further-
more, each path from the root @ (n) to a leaf has exactly length(i.e., consists o,
edges), and the nodes that are labellegte exactly théeavesof fh(n).

Unlike in the previous sections, it does not suffice to resaitention to structures
that are obtained as disjoint unions or similar, easy coathins of the treeg;, (n).
Instead, we will consider a suitable notion where a nbithean arbitraryr-structure4
is called ‘h-good' if the substructured, is “sufficiently similar” to the treef'h(n), for
a numbem < Tower(h). The precise definition of this notion is given below. Before
introducing it, however, we need the following (easy) lemma

Lemma 6.3. For everyh/ > 1 there is a universaFO(7)-sentence forest,, of length
O(K) such that for every finite-structure A = (A, E4, LA, X4) the following is
true: A |= forest. ), <= (A, E*) is a disjoint union of trees such that every node in
LA is a leaf, and for every roat in A (i.e., for every node in A that has in-degree 0
in E4) the following is true: every path inl that starts in- has length at most’.

Definition 6.4 (h-good nodesr, and the numbersRep;j‘(a:) represented by them).
Leth’ > 1 and letA be a structure wit! |= forest ,,. By inductionom: € {1,..,A'}
we define the following notion:

A nodez of A is called1-good in A iff it has at least one chilg with L (y), and for

all childreny’ of z in A the following is true: ifL4(y'), thenX4(y') « X4 (y).
Every1-good nodex in A represents a numb&ep(z) € {0, 1} as follows:

Ren'(z) =0 <= z has a child that belongs % but not toX*
Rep'(z) =1 <= z has a child that belongs " and toX .

Leth < k' be such that the notion éf-goodness as well as the numbBey (y), for
all h-good nodeg in A, are already defined. Then, a naglef A is called(h+1)-good
in A iff the following is true: For each numbeére {0, .., Towerfh)—1} there exists a
h-good childy; of = in A with Rep’(y;) = i, and for allh-good children: of z in A
with Reg!(z) = i the following is true: X4 (z) < X4A(y;).

Every(h+1)-good noder in A represents the (uniquely defined) number

Repl,;(z) =n € {0,1,..,2™" M 1} = {0, 1,.., Towe(h+1)—1}
which satisfies the following: for every< Tower(h), bit(i,n) =1 <= X4(y;).
The following notion ofh-inconsistencgan be viewed as a counterpart to the notion

of h-goodness. Note, however, thiatgoodness is a property of modewhereash-
inconsistency is a property of a whole structure.



Definition 6.5 (h-inconsistency).Let A’ > 1 and let.A be a structure with4 =

forest ,,. By induction onh € {1,.., '}, we define the following notion:

We say thafd is 1-inconsistenif there exist nodes, y, 3y’ such thay andy’ are children
of 2 with the following propertiesy andy’ both belong toL+, and we haveX “(y)
and—-X4(y").

Leth < h' be such that the notion @finconsistency is already defined.

We say thatA is (h+1)-inconsistentf there exist nodes:, y,y’ such thaty andy’
are children ofr with the following propertiesy andy’ both areh-good in.A with
Rep'(y) = Reg*(y/), and we havex*(y) and—X4(y/).

Furthermore, we say thad is (<h)-inconsistentf there exists & € {1,..,h} such
that.A is h-inconsistent. It is straightforward (but tedious) to shibe following:

Lemma 6.6. For everyh > 1 there is aFO(r)-sentencey;, of size29(M such that the
following is true for every--structure A: A |= ¢, <= A= -forest;, or Ais
(<h)-inconsistent or there exists a nogde¢hat ish-good in.A.

Furthermore, it can be shown that this sentepgés preserved under extensions.
This finally enables us to prove Theorem 6.1.

7 Structures of bounded degree — elementary upper bounds

All the non-elementary lower bounds in previous sectiorsete heavily on the fact
that we consider classes of structures of unbounded degreelasses of structures of
boundeddegree, the picture looks entirely different as we can pedementary upper
bounds as counterparts to Theorems 4.1, 5.1, and 6.1. Thoatithe remainder of this
section we letr be a fixed finite relational vocabulary, and we debe a fixed natu-
ral number. We writeD,; to denote the class of attstructures whose Gaifman graph
has degree at mogt By an easy adaption of the model theoretic proof of Gaifrman’
theorem given in [5], one obtains the following elementapperbound:

Theorem 7.1. There is a 4-fold exponential functign: N — N such that for every
FO(7)-sentence there is a sentencg of size< g(||]||) with the following properties:
1 is a Boolean combination of basic local sentences and equivalent top on all
structures i 4.

By similar techniques we can prove an elementary upper béamtie Feferman-
Vaught theorem stratified by formula length. Furthermdrere are elementary decision
algorithms for the first-order theories of classes of trddsooinded arity, in particular
for the class of binary trees. Refining the methods of [1],@re obtains an elementary
upper bound for the following variant of the £.o5-Tarski Dhem.

Theorem 7.2. There is a 5-fold exponential functigh: N — N such that anyrO(r)-
sentence that is preserved under extensions on the class of acydlictstes in®D; is
equivalent, on this class, to an existential first-orderteane of length at mogt(||¢||).

In all the above cases for structures of bounded degree walsaprove at least 2-fold
exponential lower bounds.
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