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Abstract. We study the boundedness problem for monadic least fixed points as a
decision problem. While this problem is known to be undecidable in general and
even for syntactically very restricted classes of underlying first-order formulae,
we here obtain a decidability result for the boundedness issue for monadic fixed
points over arbitrary first-order formulae in restriction to acyclic structures.

1 Introduction

The extension of first-order logic by least and greatest fixedpoints of monotone first-
order operators is one of the most natural remedies to some ofthe obvious limitations of
first-order logic when considered as a query language over relational structures. While
for instance the very basic graph query concerning reachability of a red node is well
known not to be first-order expressible, it possesses a straightforward formalisation in
terms of the monadic least fixed point associated with the positive, monotone first-order
operatorX 7→ {x : red(x) ∨ ∃y(Exy ∧ Xy)}. In a database context, the query lan-
guage DATALOG is the extension of positive existential first-order logic by least fixed
points. In the context of modal logics, the modalµ-calculus extends basic modal logic
by monadic least and greatest fixed points and provides one ofthe most prominent
frameworks for temporal and process logics. In the context of descriptive complexity
and finite model theory, the extension ofFO by least and greatest fixed points plays a
major role. In all these cases it is natural to ask which queries rely on fixed point recur-
sion in an essential way — as opposed to queries which, although they are presented as
fixed points, could also be formalised without.

Least fixed points of monotone operators are reached in a (transfinite) iteration of
the operator starting from the empty set and taking unions atlimit ordinals. The result-
ing monotone sequence of stages eventually reaches the fixedpoint. A fixed point pro-
cess isboundedif there is a finite bound on the number of iterations required, uniformly
across all input structures. As a decision problem, theboundedness problemasks, given
a monotone relational operator, whether the least fixed point process for this operator is
bounded. As a logical decision problem for first-order formulae, more specifically, we
want to decide whether the monotone operator specified by some first-order formula
ϕ(X,x) that is positive inX is bounded.

⋆ We gratefully acknowledge our participation in the 2006 Isaac Newton Institute programme on
Logic and Algorithms; this opportunity has greatly promoted our collaboration in this research.



The boundedness problem was first studied with a view to queryoptimisation, in
particular for variants of DATALOG. Clearly a bounded fixed point can be eliminated
in favour of an explicit unfolding of the iteration to the required depth. By a classical
theorem of Barwise and Moschovakis [3], cf. Theorem 2.1 below, boundedness of the
fixed point process associated withϕ(X,x) ∈ FO not just implies but is actually equiv-
alent to first-order definability of the fixed point. This reduces the question whether a
given fixed point can be eliminated in favour of any “static” first-order definition to the
boundedness issue.

The model theoretic link between the procedural behaviour of fixed point recursions
and FO-ness provides a source of interest in the boundedness problem that goes far
beyond the original motivation from query optimisation. The study of effective criteria
for FO-definability of MSO-definable properties has a long tradition in particular over
word and tree structures, cf. the handbook chapter [17]. We recall the characterisations
by McNaughton–Pappert and Schützenberger, and Beauquier–Pin, respectively, in the
word case; and the more recent work of Benedikt and Segoufin [4] for trees.

Not surprisingly, the boundedness problem as such is undecidable. In fact one can
show that the boundedness problem is at least as hard as the satisfiability problem (for
fragments ofFO satisfying some very mild closure conditions). But also formany frag-
ments ofFO that are decidable for satisfiability, like purely existential or purely universal
FO or two-variable first-order logicFO2, boundedness is known to be undecidable [10,
11, 13, 16]. On the positive side, boundedness is decidable for instance for monadic
DATALOG [7] (purely existential positiveFO) as well as for its universal counterpart
[16], and for the modal fragment ofFO [15]. But the decidability region is very narrow;
for instance binary DATALOG and monadic DATALOG with inequality are undecidable
[10, 11], and also monadic universalFO with equality or with mixed polarities in the
static relations [14, 16]. The boundedness problem may thusbe viewed as a critical
strengthening of the satisfiability issue for fragments ofFO; in fact unboundedness ofϕ
precisely corresponds to the satisfiability of the sequenceof formulae that express that
then-th stage ofϕ is non-trivial, for eachn.

The undecidability proofs for the boundedness problem of partly very weak frag-
ments ofFOsuggest that grid-like structures (or structures of unbounded treewidth) play
a crucial role in the reduction arguments (in [13, 14, 16], inparticular, tiling problems
are used). This would explain, for instance, why binary recursion almost inevitably
leads to undecidability: here the recursion itself can be used to generate grid-like struc-
tures into which other undecidable issues can be coded. Formonadicrecursion, on the
other hand, grid-like structure can only reside in the inputand not be built up in the fixed
point process. It therefore seems conceivable that boundedness of monadic fixed points
over certain classes oftree-likestructures, e.g., structures of bounded treewidth, could
be decidable. Such a decidability result, we hope, would provide a uniform framework
for most of the known decidability results for monadic boundedness — just as reduc-
tions of the tiling problem can provide a rather uniform viewof the negative cases,
explored in [14].

We therefore want to analyse the boundedness issue from a newperspective, in a
way orthogonal to the established approach: rather than looking at fragments of first-
order logic, we ask whether decidability can be regained forall monadic first-order



fixed pointsover suitably restricted classes of structures. This can be viewed as being
part of recent efforts towards developing a model theory for“well-behaved” classes of
structures [2, 1, 5].

As a first significant result in this direction concerning boundedness issues, we here
show the decidability of boundedness of monadic first-orderfixed points over the class
of acyclic structures, i.e., structures whose (undirected) Gaifman graph is acyclic (we
consider such tree-like structures rather than, say, directed acyclic graphs, since bound-
edness is undecidable over the class of directed acyclic graphs: the two-dimensional
grids that can be used to reduce the tiling problem to monadicboundedness issues can
clearly be cast as directed acyclic graphs in this sense). A major goal for the exten-
sion of the present paper’s approach would consist in a similar decidability result for
boundedness of monadic fixed points over classes of bounded treewidth.

2 Preliminaries

We denote first-order structures by German lettersA,B, ... and their universes by cor-
responding Roman lettersA,B, .... We useC, T , ... for classes of structures. We always
assume that classes of structures are closed under isomorphisms. If A is a structure,
U ⊆ A, andψ(X) is a formula with a free monadic second-order variableX , we write
(A, U) |= ψ, orA |= ψ[U ], whichever is more convenient, to denote that the expansion
of A byXA := U satisfiesψ. If ϑ(X,x) is a formula with a free monadic second-order
variableX and a free first-order variablex, we letϑA(U) := {a ∈ A : A |= ϑ[U, a]}.
We omit the index ifA is understood.

Let ϕ(X,x) be a first-order formula with a free first-order variablex and a free
second-order variableX , in which it is positive (i.e.,X only occurs within the scope
of an even number of negation symbols). On corresponding structuresA, ϕ defines an
operator

FA

ϕ : P(A) −→ P(A) with FA

ϕ (P ) = ϕA(P ) for eachP ∈ P(A),

whereP(A) denotes the power set ofA. Due to positivity inX , FA
ϕ is monotone and

hence has a least fixed point(µX.ϕ)A which we usually write asϕ∞(A). The fixed
point can also be obtained as the limit of the monotone sequence of stagesXα, with
α an ordinal, defined byX0 := ∅, Xα+1 := ϕA(Xα), Xλ :=

⋃

β<λX
β for limit

ordinalsλ. We usually writeϕα(A) to denote theα-th stageXα.
Note that each finite stageXn, n ∈ N, is uniformly first-order definable. We write

ϕn(x) for the formula that defines then-th stage ofϕ, which is obtained inductively by
substitutingϕn−1(x) for each atomXx in ϕ(X,x), whereϕ0(x) is meant to be false.

Fϕ (or the least fixed point ofϕ or also justϕ) is calledbounded(over a class of
structuresC) if there is somen ∈ N such thatϕ∞(A) = ϕn(A) for all A (for all A ∈ C).

Recall that a class of structures iselementaryif it is the class of models of some first-
order theory; a class is calledprojectiveif it is the class of models of some first-order
theory in a possibly extended vocabulary (cf., e.g., [12]).The notions ofFO-definability
(and similarly,projectiveFO-definability, as well asMSO-definability) refer to definabil-
ity in terms of single sentences rather than possibly infinite theories.



At various places throughout the paper we will use the following classical theo-
rem [3] on boundedness.

Theorem 2.1 (Barwise-Moschovakis)The following are equivalent for everyFO for-
mulaϕ(X,x) suitable for positive least fixed-point iteration (also in restriction to any
elementary or projective class of structures):

(i) ϕ(X,x) is bounded.
(ii) ϕ∞ is uniformlyFO-definable.
(iii) ϕ∞ is FO-definable in each structure (non-uniformly).

We also remark that the Löwenheim–Skolem theorem forFO tells us that a first-
order fixed point is bounded (over some elementary or projective class) if, and only if,
it is bounded over all countable structures (in that class).

Recall that theGaifman graphG(A) of a first-order structureA := (A, τA) of
signatureτ is defined as the undirected graph with vertex setA and an edge between
two verticesa, b ∈ A, if a 6= b and there exists anR ∈ τ and a tuple(a1, . . . , ar) ∈ RA

such thata, b ∈ {a1, . . . , ar}.

Definition 2.1. A structure is called acyclic if its Gaifman graph is acyclic.
AC denotes the class of all acyclic structures.

Note thatAC is elementary so that the Barwise-Moschovakis theorem applies to it.
For the rest of this paper we work over a fixed finite relationalsignature of unary and
binary relation symbols. The restriction to at most binary signatures is w.l.o.g., as in this
paper we only work with acyclic structures and a structure containing a relationR of
arity> 2 can only be acyclic if every tuple inR contains at most two distinct elements.
Such relations can easily be coded in binary relations.

3 Locality

3.1 Syntactic locality and a positive variant of Gaifman’s theorem

In 1981, Gaifman [9] proved that any first-order formula is equivalent to a Boolean
combination of basic-local sentences and local formulae. We recall the necessary defi-
nitions.

Let A := (A, τA) be a first-order structure of signatureτ . ThedistancedA(a, b)
between two elementsa, b ∈ A is defined as the length of the shortest path in the
Gaifman graphG(A) connectinga and b. For r ≥ 0 anda ∈ A we define ther-
neighbourhoodof a in A asNA

r (a) := {b ∈ A : dA(a, b) ≤ r}. It is easily seen that
for anyr ≥ 0 there is a first-order formulaδr(x, y) ∈ FO[τ ] such thatA |= δr[a, b] iff
dA(a, b) ≤ r, for all τ -structuresA and alla, b ∈ A. For notational convenience we
write d(x, y) ≤ r for δr(x, y) andd(x, y) > r for ¬δr(x, y).

If ϕ(x) is a first-order formula, thenϕNr(x)(x) is the formula obtained fromϕ
by relativising all quantifiers inϕ to ther-neighbourhood ofx, i.e. replacing∀yψ by
∀y(d(x, y) ≤ r → ψ) and∃yψ by ∃y(d(x, y) ≤ r ∧ ψ). A formulaψ(x) of the form
ϕNr(x)(x) is calledr-local. A formulaψ(x) is local, or local in x, if it is r-local for
somer ≥ 0.



Theorem 3.1 (Gaifman [9]) Every first-order formulaϕ(x) is equivalent to a Boolean
combination of local formulaeχ(x), and basic local sentences, i.e., sentences of the
form

∃x1 . . . ∃xk

(

∧

1≤i<j≤k

d(xi, xj) > 2r ∧
∧

1≤i≤k

ϑ(xi)
)

for suitabler, k > 0 and anr-local formulaϑ(x).

The following theorem establishes a variant of Gaifman’s locality theorem for first-
order formulaeϕ(X,x) which are positive in the monadic second-order variableX .
The proof is an adaptation of the proof of the analogous statement for sentences as it
appears in [8]. Due to space limitations, we refrain from giving the proof here and refer
the reader to the full version of the paper.

Theorem 3.2 Every formulaϕ(X,x) ∈ FO that is positive in the monadic second-
order variableX is logically equivalent to a finite disjunction of formulaeϕi(X,x) ∧
ψi(X), where theϕi(X,x) are local inx and theψi are positive inX and conjunctions
of (possibly negated) basic local sentences. Furthermore,for every formulaϕ(X,x) ∈
FO that is positive inX , we can effectively compute a finite disjunction of formulae
ϕi(X,x) ∧ ψi(X) that is equivalent toϕ overAC.

In what follows we shall actually not even rely on the basic local nature of the
X-positive sentential componentsψi(X).

Note that theϕi(X,x) are local inx but not necessarily positive inX . The following
example demonstrates that the theorem fails if in addition we require theϕi(X,x) to
be positive inX . Let τ := {E,P,X}, whereE is binary andP andX are unary,
and consider the formulaϕ(X,x) := Px ∧ ∃y(x 6= y ∧ Xy ∧ Py). Suppose that
ϕ(X,x) is equivalent to a formulaψ :=

∨k
i=1

(

ϕi(X,x) ∧ ψi(X)
)

, where theϕi are
positive inX and local inx and theψi are positive inX . Let A := ({a, b}, τA) with
EA := ∅ andPA := {a, b} andXA := {b}. Clearly,A |= ϕ[a] and therefore there
exists ani ∈ {1, . . . , k} such thatA |= (ϕi ∧ ψi)[a]. The l-neighbourhoods ofa and
b are distinct for alll and their{E,P}-reducts are isomorphic. AsA |= ϕi[a] andϕi

is positive inX it follows that A |= ϕi[b]. Hence,A |= (ϕi ∧ ψi)[b] but A 6|= ϕ[b]
contradicting the equivalence ofϕ andψ.

3.2 Locality of queries

Definition 3.3 LetC be a class ofτ -structures.
(i) A monadic queryQ onC is a mapping which assigns to eachA ∈ C a setQA ⊆ A

so that for all isomorphismsπ : A ∼= B and alla ∈ A, a ∈ QA ⇐⇒ π(a) ∈ QB.
(ii) A monadic queryQ is MSO-definable, if there is anMSO-formulaϕ(x) ∈ MSO[τ ]

such thatQA = {a ∈ A : A |= ϕ[a]} for all A ∈ C.
(iii) Let l ∈ N. Q is l-local overC, if for all countable structuresA,B ∈ C anda ∈

A, b ∈ B such that(A|NA

l
(a), a)

∼= (B|NB

l
(b), b): a ∈ QA ⇐⇒ b ∈ QB.

Here,A|NA

l
(a) denotes the restriction ofA to thel-neighbourhood ofa.

(iv) Q is local, if it is l-local for somel ∈ N.



Note that locality for queries is a purely semantic property, as opposed to syntactic
locality of formulae discussed above. We refer to justcountablestructures in (iii), as
this will allow us to use interpretations of the relevant structures in theω-branching tree;
for our boundedness concerns we may always restrict attention to countable structures,
by the Löwenheim–Skolem theorem (cf., Section 2).

Lemma 3.4 Letϕ(x) ∈ MSO and letQ be the query defined byϕ over a classC ⊆ AC.
If Q is r-local for somer ∈ N, thenQ is FO-definable overC, in fact even by a local
first-order formula.

In other words, a local queryQ is MSO-definable if, and only if, it isFO-definable.

Proof (Sketch).The proof is obtained on the basis of a decomposition argument for
MSO-types and the observation thatMSO-formulas of quantifier rankq can count mul-
tiplicities of types only up to a thresholdg(q). This can be used to translater-local
MSO-formulae intoFO-formulae by induction on the locality radiusr. ⊓⊔

4 Boundedness over acyclic structures

The goal of this section is to prove the following theorem, the main result of the paper.
Recall Definition 2.1 for the class of acyclic structuresAC.

Theorem 4.1 Let C ⊆ AC be anFO-definable subclass ofAC and letϕ(X,x) be a
first-order formula positive in the monadic second-variableX . Then boundedness ofϕ
in C is decidable.

The main ingredients for the proof are the following. In Section 4.2, we use Theo-
rem 3.2 to show that deciding boundedness for arbitrary first-order formulaeϕ(X,x),
positive inX , can be decomposed into a sequence of boundedness tests for purely local
formulaeϕi(X,x) in certain projectivelyFO-definable subclassesC ⊆ AC.

To decide boundedness for local formulaeϕi(X,x), we show that this can further
be reduced to deciding whether the global relationϕ∞(x) defined byϕi(X,x) is local.
Locality of MSO-definable queries inMSO-definable subclasses ofAC can be decided
via reduction to theMSO-theory of theω-branching tree and Rabin’s theorem, see Sec-
tion 4.1.

4.1 Locality testing for MSO-queries

Theorem 4.2 Let C ⊆ AC be anMSO-definable subclass ofAC and letQ be a query
that is MSO-definable overC. Then locality ofQ over C is decidable. The decision
procedure is uniform in theMSO-formula defining the subclassC.

The remainder of this section is devoted to the proof of the theorem, which is based
on a reduction to Rabin’s following classical result.

Theorem 4.3 (Rabin) TheMSO-theory of the infiniteω-branching tree is decidable.



We denote the infiniteω-branching tree asTω, its root asλ. The first step towards
the proof of Theorem 4.2 is to show that there is a uniformMSO-interpretation that
interprets structuresA ∈ C in colourings ofTω in a suitable way. We can then use the
decidability of theMSO-theory ofTω to check if the query is local. This method follows
ideas from [15, 16] and in particular allows us to capture locality (boundedness) in
the framework ofMSO over trees through a regular analogue of König’s lemma thatis
available inTω.

Let C be anMSO-definable subclass ofAC over a signatureσ. Given aσ-structure
A ∈ AC and an elementa ∈ A we encodeA, a in a colouring ofTω by a suitable set
τ := τ(σ) of colours: every tree in the Gaifman graphG(A) is coded in a subtree rooted
at a successor of the rootλ so that the distinguished elementa is encoded by a direct
successor ofλ and marked by a special colour. We refrain from giving details here as
the encoding is straightforward. It is important, however,that the encoding preserves
the distance between elements of the structure within each component ofG(A).

The interpretation allows us to translateMSO-formulae over structures fromAC to
MSO-formulae over encodings inTω. In particular, there is anMSO-sentenceψ that is
true in aτ -expansionT of Tω if, and only if,T encodes some structureA ∈ C.

Letϕ(x) be anMSO-formula defining a queryQ overC (which again can be trans-
lated to a corresponding formulaϕ′(x) overτ -expansions ofTω). For an acyclic struc-
ture A with distinguished elementa ∈ A andr ≥ 1 we let A|r := A|NA

r
(a) denote

the initial segment of all nodes up to depthr. A setA′ ⊆ A is initial , if it containsa
and is connected (in the Gaifman graph).A′ is calledlocal, if A′ ⊆ A|r for somer.
It is path-finiteif it contains no infinite paths. Note that while it isMSO-definable that
a subset ofTω is initial or path-finite, locality is not (this follows fromKönig’s lemma
together with the fact that everyMSO-formula that is satisfiable inTω is also satisfiable
in a finitely branching tree).

A regularexpansion ofTω is one that realises only finitely many isomorphism types
of subtrees. The following regular analogue of König’s lemma is proved in [16].

Lemma 4.4 An initial subsetD in a regular expansion(Tω, D) of Tω is path-finite if,
and only if, it is local.

Let ϕlocal(Z) be anMSO-formula that says of an inital subsetZ of Tω rooted at some
immediate successorz of the rootλ, that whenever encodings of two structuresA,B ∈
C in Tω, whose distinguished elementsa ∈ A andb ∈ B are represented byz, agree on
Z, thenA |= ϕ[a] if, and only if,B |= ϕ[b]. Clearly, this isMSO-definable. Analogous
to the reasoning in [16], we can show the following lemma.

Lemma 4.5 Letλ be the root ofTω. The following are equivalent:
(i) ϕ(x) is local
(ii) for somer ∈ N and forD = Tω|r: Tω |= ϕlocal[D].
(iii) Tω |= ∃Z

(

Z is initial and path-finite∧ ϕlocal(Z)
)

.
(iv) there is a regular expansion(Tω, D) of Tω with an initial, path-finiteD such that

Tω |= ϕlocal[D].

Proof.(i) =⇒ (ii) =⇒ (iii) are obvious.(iii) =⇒ (iv) is a well-known fact about
MSO. For(iv) =⇒ (i) use Lemma 4.4. �



By Rabin’s theorem, part(iii) of the previous lemma, and hence locality ofϕ, is decid-
able. This completes the proof of Theorem 4.2.

4.2 Boundedness of arbitrary monadicFO-formulae

We show that the boundedness problem for arbitrary monadic first-order formulae over
acyclic structures can be reduced to the locality test forMSO-formulae as provided by
Theorem 4.2.

Let ϕ(X,x) ∈ FO be a formula, positive inX . By Theorem 3.2,ϕ is equivalent to
∨

i(ϕi(X,x) ∧ψi(X)), where theϕi(X,x) are local inx and theψi are positive inX .
To simplify the presentation, we only consider the case where

ϕ ≡
(

ϕ1(X,x) ∧ ψ1(X)
)

∨
(

ϕ2(X,x) ∧ ψ2(X)
)

.

We can treat theψi asguards, that enable or disable the contribution ofϕi to the fixed-
point induction, in the sense that certainψi may be true already at the initial stage
(and stay true for the whole induction process) whereas others may only become true at
later stages. In this case, the correspondingϕi only contribute to the induction process
beginning with these stages and can be neglected before.

Inductions overϕ can therefore be decomposed into a sequence ofphases. LetA be
a structure. We distinguish between several cases:
(0) A 6|= ψ1[∅] andA 6|= ψ2[∅]. Thenϕ∞(A) = ∅, so we can ignore this case.
(1) A |= ψ1[∅] andA |= ψ2[∅]. In this case, the induction onϕ in A is equivalent to the

induction on(ϕ1 ∨ ϕ2), which is purely local.
(2) A |= ψ1[∅] andA 6|= ψ2[ϕ

∞(A)]. In this case, the induction onϕ in A is equivalent
to the induction onϕ1, as the guardψ2 for ϕ2 will never become true.

(3) A |= ψ1[∅] andA |= ψ2[ϕ
∞(A)]. OverA, the induction has two phases. It starts

with an induction onϕ1. As soon asψ2(X
α) is satisfied for a stageα, the induction

continues onϕ1 ∨ ϕ2.
There are two more cases, just like(2) and(3) but with the roles ofϕ1/ψ1 andϕ2/ψ2

exchanged (we suppress this duplication in the following).

To illustrate the possible interplay between the various phases, let us consider for-
mulae in positive Gaifman form of the kind

ϕ(X,x) = ψ0 ∧
[

Px∨
(

ϕ1(X,x)∧∃x(Xx∧Q1x)
)

∨
(

ϕ2(X,x)∧∃x(Xx∧Q2x)
)]

,

with local formulaeϕi(X,x), and with extra unary predicatesP andQi, which serve
to initialise the fixed point process and to trigger phases driven byϕ1, ϕ2 or their com-
binationϕ1 ∨ ϕ2. Static side conditions inψ0 and the local formulaeϕi may be such
that, for instance, the induction starts onϕ1 (e.g.,ψ0 may forceQ2 ∩ P = ∅), and that
the induction onϕ1 alone would be unbounded while the induction onϕ2 alone would
be bounded, but such that the unbounded induction onϕ1 always triggers the induction
on ϕ2 (due toQ2-elements in the17-th stage ofϕ1 in any model ofψ0 in which ϕ1

is unbounded, say). The interplay betweenϕ1 andϕ2 could now still be such that the
overall process is bounded or unbounded. It should be clear from this naive analysis of a
very simple family of examples that the full variety of phasepatterns needs to be taken



into account and that several boundedness issues for purelylocal processes determine
the overall boundedness in a non-trival manner.

Let us proceed with the proof of Theorem 4.1. Considering thepossible sources for
unboundedness ofϕ, it is clear thatϕ is unbounded if, and only if, at least one of the
following applies:

Case 1: ϕ1 ∨ ϕ2 is unbounded overC1 := {A ∈ AC : A |= (ψ1 ∧ ψ2)[∅]}.
Case 2: ϕ1 is unbounded overC2 := {A ∈ AC : A |= ψ1[∅] andA 6|= ψ2[ϕ

∞(A)]}.
Case 3: a)ϕ1 ∨ ψ2 is unbounded overC3 := {A ∈ AC : A |= ψ1[∅]}, or

b) ϕ1 ∨ ψ2 is bounded overC3, with some boundn ∈ N, andϕ1 ∨ ϕ2 is
unbounded overC4 := {A ∈ AC : A |= ψ1[∅] andA |= ψ2[ϕ

n(A)]}.
Case 4: like 2 and3 with the roles ofϕ1/ψ1 andϕ2/ψ2 exchanged.

We further reduce the number of the cases that need to be considered.

Lemma 4.6 (1) ϕ1 is unbounded overC2 if, and only if,ϕ1 is unbounded over
C′
2 := {A ∈ AC : (A, ∅) |= ψ1 and(A, P ) 6|= ψ2 for some fixed pointP ofϕ1}.

(2) If ϕ1 ∨ ψ2 is unbounded overC3, thenϕ1 is unbounded overC2.
(3) If ϕ1 ∨ ψ2 is bounded overC3, thenϕ is unbounded overC3 if, and only if,

ϕ′ := ϕ1 ∨ ϕ2 ∨ Px is unbounded over
C′
3 := {(A, P ) : A ∈ AC,A |= ψ1[∅],A |= ψ2[P ], P ⊆ ϕ∞[A]}.

Note thatC′
2 is projectivelyFO-definable, as the fact thatP is a fixed point ofϕ1 is

FO-definable with a new relation forP . BothC′
3 andC′

2 are clearlyMSO-definable.

Proof.(1) is trivial. For (2), assumeϕ1 ∨ ψ2 is unbounded overC3 butϕ1 is bounded
overC2. Consider the theoriesT0 :=

{

∃x
(

ϕn+1(x) ∧ ¬ϕn(x)
)

: n ∈ N
}

and

T := T0 ∪ {¬ψ2(ϕ
n) : n ∈ N} ∪ (axiomatisation ofC3).

T is consistent, asϕ1 ∨ ψ2 is unbounded overC3. Note thatT speaks aboutϕ, not
ϕ1, but ϕn ≡ ϕn

1 in models ofT asT impliesψ1 and¬ψ2(ϕ
n) for all n ∈ N. By

assumption,ϕ is bounded overC2 and henceT0 is not satisfiable inC2. Therefore,

every model ofT satisfiesψ2(ϕ
∞), (∗)

as¬ψ2(ϕ
∞) is the defining condition of the subclassC2 of C3. But in every model

A of ψ2(ϕ
∞), (ϕ ∨ ψ2)

∞(A) = (ϕ1 ∨ ψ2)
∞(A) = A and with (4.2), therefore,

(ϕ ∨ ψ2)
∞(A) = (ϕ1 ∨ ψ2)

∞(A) = A in every modelA of T . Furthermore, the
equivalence between the first and the second induction is even stage-by-stage.

Hence, in the model class ofT , the fixed point(ϕ ∨ ψ2)
∞ is trivially first-order

definable – it is defined bytrue. Therefore, by the Barwise-Moschovakis Theorem,
(ϕ ∨ ψ2) is bounded in models ofT , contradictingT0.

(3) Note that the phase in the generation ofϕ∞ over someA ∈ C3 that is driven
by ϕ1 ∨ ϕ2 is stage-by-stage equivalent to the fixed point generation of (ϕ′)∞ over
(A, ϕn(A)) ∈ C′

3, for the minimaln such thatA |= ψ2[ϕ
n(A)]. Therefore boundedness

of ϕ overC3 trivially implies boundedness ofϕ′ overC′
3. Conversely, by decomposition

into corresponding phases, boundedness ofϕ1 ∨ ψ2 and ofϕ′ overC′
3 together imply

thatϕ is bounded overC3. �



The desired decision procedure for boundedness ofϕ is built on a sequence of
applications of decision procedures that detect (un)boundedness in the form of (non)lo-
cality. Consider the individual boundedness issues in cases 1–3 above in the light of
their reformulation in Lemma 4.6:

– Case 1 corresponds to a boundedness test for a purely local fixed point:ϕ1 ∨ ϕ2 is
purely local, and stage-by-stage equivalent withϕ over the FO-definable subclass
C1 of AC. As C1 is elementary, by the Barwise-Moschovakis Theorem, bounded-
ness is equivalent toFO-definability of the fixed point. Further, as a bounded fixed
point over a purely local formula is local itself, boundedness ofϕ1 ∨ ϕ2 is equiv-
alent tolocal FO-definability. Finally, asC1 and the fixed point areMSO-definable,
local FO-definability of the fixed point is decidable according to Theorem 4.2 and
Lemma 3.4.

– Case 2 is similarly reduced to a boundedness test for a purelylocal fixed point over
the projective andMSO-definable classC′

2 in part 1 of the lemma.
– Case 3a) is in fact subsumed by case 2, according to part 2 of the lemma.

For what remains (case 3b) we may restrict attention to the situation whereϕ1 ∨ ψ2 is
bounded overC3. The corresponding decision issue obtained in part 3 of Lemma 4.6
is further reduced to a locality issue that can be decided according to Theorem 4.2,
through condition (iii) in the following.

Claim 4.7 Letϕ1 ∨ ψ2 be bounded overC3. Then the following are equivalent:
(i) ϕ is bounded overC3.
(ii) ϕ′ is bounded overC′

3.
(iii) (ϕ′)∞ is local overC′

3.

Proof.The equivalence between (i) and (ii) was dealt with in part 3 of Lemma 4.6. As
ϕ′ is purely local, boundedness clearly implies locality for the fixed point, i.e., (ii)⇒
(iii). Assume now (iii). Obviously,(ϕ′)∞ is MSO-definable and thereforeFO-definable
due to locality, by Lemma 3.4. Asϕ1 ∨ ψ2 is bounded overC3, there is somen such
that forA ∈ C3, A |= ψ2[ϕ

∞(A)] ⇐⇒ A |= ψ2[ϕ
n(A)]. Further,ϕ′ is stage-by-stage

equivalent toϕ∨Px overC′
3 and hence(ϕ∨Px)∞ is FO-definable over the elementary

subclassC′′
3 := {(A, P ) : A ∈ AC,A |= ψ1[∅],A |= ψ2[P ], P = ϕn(A)} ⊆ C′

3. By the
Barwise-Moschovakis theorem, therefore,ϕ ∨ Px is bounded overC′′

3 , which implies
thatϕ is bounded overC3, since alsoϕ1 ∨ ψ2 is bounded. �

It follows that testing for unboundedness ofϕ1 ∨ ϕ2 overC1;

else, for unboundedness of3 ϕ1 overC′
2;

else, for unboundedness of3 ϕ′ overC′
3,

fails if, and only if, ϕ is bounded overAC. In the given format, each one of these
unboundedness tests can be realised as a (non)locality test, which is effective through
Theorem 4.2. This cascade of locality tests can be adapted tothe (more complex) phase
pattern of a formula in positive Gaifman form with more than two disjuncts. We also

3 and the mirror symmetric case withϕ1/ψ1 exchanged forϕ2/ψ2



point out that all the arguments used relativise toFO-definable subclasses ofAC. This
concludes the proof of Theorem 4.1. ⊓⊔

Theorem 4.1 yields a decision procedure for the boundednessproblem ofFO on
acyclic structures. However, the running time of the procedure grows non-elementarily
with the formula size. There is no hope for an algorithm whoserunning time is bounded
by an elementary function. As the first-order satisfiabilityproblem overAC is reducible
to the boundedness problem overAC, the non-elementary lower bound for satisfiability
onAC established in [6] gives us a non-elementary lower bound here.

5 Outlook

Given the decidability of the boundedness problem on acyclic structures, it is natural to
ask whether, for instance, the result also holds for the class of trees or extends to the
class of structures of treewidth at mostk, for fixed k. We collect a few observations
to indicate that the results and the methods used here are indeed rather sensitive to the
underlying class of structures.

Remark 5.1 (a) Boundedness over trees (connected acyclic structures) does not imply
boundedness over all acyclic structures; similarly, boundedness over finite acyclic
structures does not imply boundedness over all acyclic structures.

(b) The Barwise-Moschovakis theorem is well known to fail over the class of all finite
structures. It also fails over the class of finite acyclic structures, over the class of
trees and over the class of finite trees.

(c) The connection between locality andFO-definability of Lemma 3.4. fails over simple
FO-definable classes of graphs of bounded treewidth.

Proof.For (a) consider, over acyclic structures or over trees, a reachability query (in it-
self unbounded) modified by side a condition that renders theprocess trivial unless there
are at least two nodes of degree0 (impossible over trees), or unless there is precisely
one vertex of degree1 (impossible infiniteacyclic structures).

For (b) consider over finite forests the fixed point process that evaluates to the well-
founded part; while this process is unbounded, it evaluatesto the full vertex set. Over
(finite or infinite) trees, the unbounded fixed point based onred(x)∨∃y(Exy ∧Xy)∨
∃y(root(y) ∧Xy) is in FO (equivalent to∃x red(x)).

For (c) consider connectivity over theFO-definable class of graphs that are disjoint
unions of cycles and two-way infinite successor chains (treewidth 2). Clearly this query
is in MSO but neither local norFO. Joining all the nodes in such graphs to one new
central vertex, one obtains anFO-definable class of graphs of treewidth3, which isFO-
bi-interpretable with the original class. As all structures in this class have diameter2,
any query is trivially local here. �

Clearly, these observations do not imply that boundedness is undecidable over cor-
responding classes. However, we need to develop new tools toshow decidability. This
is part of ongoing work.

As pointed out above, classes of bounded treewidth in particular provide an inter-
esting wider framework for the analysis of the boundedness problem, because of its



relevance for other known decidable cases. Here, argumentsbased on compactness and
the Barwise-Moschovakis theorem are still available, and so is in principle the phase
analysis of Section 4.2. However, as indicated in (c) above,the direct link with locality
is lost (at a more technical level, distances and locality are not preserved in the pas-
sage between the structures themselves and their tree representations). The search for
alternative methods to decideFO-definability or boundedness in this context remains of
particular interest.
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