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Abstract. We study the boundedness problem for monadic least fixedspasa
decision problem. While this problem is known to be undegielan general and
even for syntactically very restricted classes of undagyfirst-order formulae,
we here obtain a decidability result for the boundednesgifsr monadic fixed
points over arbitrary first-order formulae in restrictianecyclic structures.

1 Introduction

The extension of first-order logic by least and greatest fp@idts of monotone first-
order operators is one of the most natural remedies to sothe obvious limitations of
first-order logic when considered as a query language olagiaral structures. While
for instance the very basic graph query concerning realityabi a red node is well
known not to be first-order expressible, it possesses ajhtfarward formalisation in
terms of the monadic least fixed point associated with théipesmonotone first-order
operatorX — {z: red(x) vV Jy(Fzy A Xy)}. In a database context, the query lan-
guage ATALOG is the extension of positive existential first-order logiclbast fixed
points. In the context of modal logics, the mogatalculus extends basic modal logic
by monadic least and greatest fixed points and provides onleeofnost prominent
frameworks for temporal and process logics. In the contéxiescriptive complexity
and finite model theory, the extensionrib by least and greatest fixed points plays a
major role. In all these cases it is natural to ask which gsanély on fixed point recur-
sion in an essential way — as opposed to queries which, aththey are presented as
fixed points, could also be formalised without.

Least fixed points of monotone operators are reached in as{inite) iteration of
the operator starting from the empty set and taking uniofimétordinals. The result-
ing monotone sequence of stages eventually reaches thepfixetd A fixed point pro-
cess ivoundedf there is a finite bound on the number of iterations requitedformly
across all input structures. As a decision problempitnendedness probleasks, given
a monotone relational operator, whether the least fixedt poatess for this operator is
bounded. As a logical decision problem for first-order folae more specifically, we
want to decide whether the monotone operator specified b dwat-order formula
»(X, z) that is positive inX is bounded.

* We gratefully acknowledge our participation in the 200@tshlewton Institute programme on
Logic and Algorithms; this opportunity has greatly prontbteir collaboration in this research.



The boundedness problem was first studied with a view to goptinisation, in
particular for variants of BTALOG. Clearly a bounded fixed point can be eliminated
in favour of an explicit unfolding of the iteration to the rgged depth. By a classical
theorem of Barwise and Moschovakis [3], cf. Theorem 2.1Wwelmundedness of the
fixed point process associated withX, z) € FO not just implies but is actually equiv-
alent to first-order definability of the fixed point. This regs the question whether a
given fixed point can be eliminated in favour of any “statie$fiorder definition to the
boundedness issue.

The model theoretic link between the procedural behavibfixed point recursions
and Fo-ness provides a source of interest in the boundednessepnathlat goes far
beyond the original motivation from query optimisation.eT$tudy of effective criteria
for Fo-definability of Mso-definable properties has a long tradition in particularrove
word and tree structures, cf. the handbook chapter [17].atelirthe characterisations
by McNaughton—Pappert and Schitzenberger, and Beaufuierespectively, in the
word case; and the more recent work of Benedikt and Segolffoi{#rees.

Not surprisingly, the boundedness problem as such is uddelg. In fact one can
show that the boundedness problem is at least as hard adigfiakaity problem (for
fragments of 0 satisfying some very mild closure conditions). But alsorfany frag-
ments ofFOthat are decidable for satisfiability, like purely exisiahor purely universal
FO or two-variable first-order logieo?, boundedness is known to be undecidable [10,
11,13, 16]. On the positive side, boundedness is decidablemétance for monadic
DATALOG [7] (purely existential positive0) as well as for its universal counterpart
[16], and for the modal fragment &b [15]. But the decidability region is very narrow;
for instance binary BraALOG and monadic BTALOG with inequality are undecidable
[10,11], and also monadic universab with equality or with mixed polarities in the
static relations [14,16]. The boundedness problem may Ileugiewed as a critical
strengthening of the satisfiability issue for fragmentsafin fact unboundedness of
precisely corresponds to the satisfiability of the sequefiéermulae that express that
then-th stage ofp is non-trivial, for each.

The undecidability proofs for the boundedness problem dfiypgery weak frag-
ments ofFO suggest that grid-like structures (or structures of unidedrireewidth) play
a crucial role in the reduction arguments (in [13, 14, 16panticular, tiling problems
are used). This would explain, for instance, why binary rsicin almost inevitably
leads to undecidability: here the recursion itself can kealis generate grid-like struc-
tures into which other undecidable issues can be codednbBordicrecursion, on the
other hand, grid-like structure can only reside in the irgnd not be built up in the fixed
point process. It therefore seems conceivable that bounedsdf monadic fixed points
over certain classes triee-likestructures, e.qg., structures of bounded treewidth, could
be decidable. Such a decidability result, we hope, wouldigeoa uniform framework
for most of the known decidability results for monadic boeddess — just as reduc-
tions of the tiling problem can provide a rather uniform vieWthe negative cases,
explored in [14].

We therefore want to analyse the boundedness issue from pempective, in a
way orthogonal to the established approach: rather thakirigat fragments of first-
order logic, we ask whether decidability can be regainedafbmonadic first-order



fixed pointsover suitably restricted classes of structur&his can be viewed as being
part of recent efforts towards developing a model theory\iaall-behaved” classes of
structures [2, 1, 5].

As a first significant result in this direction concerning hdadness issues, we here
show the decidability of boundedness of monadic first-ofided points over the class
of acyclic structuresi.e., structures whose (undirected) Gaifman graph islecfuwe
consider such tree-like structures rather than, say, iidegcyclic graphs, since bound-
edness is undecidable over the class of directed acyclghgrahe two-dimensional
grids that can be used to reduce the tiling problem to monaalindedness issues can
clearly be cast as directed acyclic graphs in this sense)apmgoal for the exten-
sion of the present paper’s approach would consist in aairdiécidability result for
boundedness of monadic fixed points over classes of bouneaitith.

2 Preliminaries

We denote first-order structures by German letder®, ... and their universes by cor-
responding Roman letters B, .... We useC, 7, ... for classes of structures. We always
assume that classes of structures are closed under isoisromHf 2 is a structure,
U C A, andy(X) is a formula with a free monadic second-order variakileve write
(,U) E ¥, ord = ¢[U], whichever is more convenient, to denote that the expansion
of 2 by X := U satisfies). If 9(X, z) is a formula with a free monadic second-order
variableX and a free first-order variablg we lety®(U) := {a € A : 2 = 9[U, a]}.
We omit the index if( is understood.

Let (X, z) be a first-order formula with a free first-order variablend a free
second-order variabl&, in which it is positive (i.e., X only occurs within the scope
of an even number of negation symbols). On correspondingtsires2(, ¢ defines an
operator

F2X:P(A) — P(A) with F2(P)=*(P) foreachP € P(A),

whereP(A) denotes the power set df. Due to positivity inX, Fg is monotone and
hence has a least fixed poifitX.)* which we usually write ag> (). The fixed
point can also be obtained as the limit of the monotone semuehstagesy®, with
« an ordinal, defined byx? := §, X! := o*(X*), X* := (Jz_, X for limit
ordinals\. We usually writep®(2() to denote thew-th stageX ©.

Note that each finite stag€”™, n € N, is uniformly first-order definable. We write
©"(x) for the formula that defines theth stage ofp, which is obtained inductively by
substitutingy™ ! (x) for each atomX z in (X, z), wherep?(z) is meant to be false.

F, (or the least fixed point ap or also justy) is calledbounded(over a class of
structureg’) if there is some: € N such thatp> (2() = ™ (%) for all 2 (for all 2 € C).

Recall that a class of structuregiementaryf it is the class of models of some first-
order theory; a class is callgdojectiveif it is the class of models of some first-order
theory in a possibly extended vocabulary (cf., e.g., [IPfe notions ofo-definability
(and similarly,projectivero-definability, as well asvso-definability) refer to definabil-
ity in terms of single sentences rather than possibly irditkieories.



At various places throughout the paper we will use the foltlmgaclassical theo-
rem [3] on boundedness.

Theorem 2.1 (Barwise-Moschovakis)The following are equivalent for everp for-
mula (X, x) suitable for positive least fixed-point iteration (also &striction to any
elementary or projective class of structures):

() ¢(X, ) is bounded.
(i) ¢ is uniformlyFo-definable.
(iii) ¢ is Fo-definable in each structure (non-uniformly).

We also remark that the Lowenheim—Skolem theorenriotells us that a first-
order fixed point is bounded (over some elementary or priggctass) if, and only if,
it is bounded over all countable structures (in that class).

Recall that theGaifman graphG(2l) of a first-order structur@ := (A, 7%) of
signaturer is defined as the undirected graph with vertex4etnd an edge between
two verticesz, b € A, if a # b and there exists aR € 7 and atuplday,...,a,) € R®
such that, b € {a1,...,a.}.

Definition 2.1. A structure is called acyclic if its Gaifman graph is acyclic
AC denotes the class of all acyclic structures.

Note thatAC is elementary so that the Barwise-Moschovakis theoreniep it.
For the rest of this paper we work over a fixed finite relatisighature of unary and
binary relation symbols. The restriction to at most binagyatures is w.l.o.g., as in this
paper we only work with acyclic structures and a structunretaining a relationR of
arity > 2 can only be acyclic if every tuple iR contains at most two distinct elements.
Such relations can easily be coded in binary relations.

3 Locality

3.1 Syntactic locality and a positive variant of Gaifman’s heorem

In 1981, Gaifman [9] proved that any first-order formula isigglent to a Boolean
combination of basic-local sentences and local formuleeré¥all the necessary defi-
nitions.

Let2l := (A4,7%) be a first-order structure of signature The distanced® (a, b)
between two elements,b € A is defined as the length of the shortest path in the
Gaifman graphg(2() connectinge andb. Forr > 0 anda € A we define ther-
neighbourhoodf a in A asN?(a) := {b € A : d*(a,b) < r}. Itis easily seen that
for anyr > 0 there is a first-order formuld.(z,y) € FO[7] such tha®l |= §,[a, b] iff
d*(a,b) < r, for all r-structures2 and alla,b € A. For notational convenience we
write d(z,y) < r for 6,.(z, y) andd(z,y) > r for =6, (z,y).

If o(x) is a first-order formula, thep™(*)(z) is the formula obtained fronp
by relativising all quantifiers ip to ther-neighbourhood of, i.e. replacing’ysy by
Vy(d(z,y) < r — 1) and3yy by 3y(d(z,y) < r Av). Aformulay(z) of the form
©Nr(®)(z) is calledr-local. A formulas)(z) is local, or local in z, if it is r-local for
somer > 0.



Theorem 3.1 (Gaifman [9]) Every first-order formula(x) is equivalent to a Boolean
combination of local formulag/(x), and basic local sentences, i.e., sentences of the
form

Jz1 ...z ( /\ d(zi,xj) > 2r A /\ 19(561'))

1<i<j<k 1<i<k

for suitabler, k > 0 and anr-local formula?d(z).

The following theorem establishes a variant of Gaifmancaliy theorem for first-
order formulaep(X, x) which are positive in the monadic second-order variable
The proof is an adaptation of the proof of the analogous st for sentences as it
appears in [8]. Due to space limitations, we refrain fromrgivhe proof here and refer
the reader to the full version of the paper.

Theorem 3.2 Every formulap(X,z) € FO that is positive in the monadic second-
order variable X is logically equivalent to a finite disjunction of formulag(X, ) A

;i (X), where thep; (X, ) are local inz and they); are positive inX and conjunctions

of (possibly negated) basic local sentences. Furthernforevery formulap(X, z) €

FO that is positive inX, we can effectively compute a finite disjunction of formulae
©i(X, z) A ;(X) that is equivalent t over AC.

In what follows we shall actually not even rely on the basicalonature of the
X -positive sentential components(X).

Note that thep; (X, ) are local iz but not necessarily positive ii. The following
example demonstrates that the theorem fails if in additierr@quire thep; (X, z) to
be positive inX. Let 7 := {E, P, X}, whereF is binary andP and X are unary,
and consider the formul@(X,z) := Pz A Jy(z # y A Xy A Py). Suppose that
(X, x) is equivalent to a formulg := \/f:1 (¢i(X,2) A (X)), where thep; are
positive in X and local inz and they; are positive inX. Let A := ({a, b}, ™) with
E* .= () andP* := {a,b} and X* := {b}. Clearly,2l |= y[a] and therefore there
exists ani € {1,...,k} such thatl = (y; A ¥;)[a]. Thel-neighbourhoods of and
b are distinct for all and their{ E/, P}-reducts are isomorphic. A% = ¢;[a] andy;
is positive in X it follows that? = ¢;[b]. Hence 2l = (p; A 1;)[b] butA = ¢[b]
contradicting the equivalence gfandq.

3.2 Locality of queries

Definition 3.3 LetC be a class of-structures.

(i) Amonadic query onC is a mapping which assigns to eafihc C a setQ® C A
so that for allisomorphisms : 20 = Bandalla € A, a € Q* <= =(a) € Q®.

(i) A monadic query) is mso-definable, if there is amso-formulay(z) € MSO[T]
such thatQ® = {a € A : 2 |= pla]} for all A € C.

(i) Let! € N. Q is l-localover(, if for all countable structure€(,®8 € C anda €
A,b € B such that(®| ya (o), a) = (Blyz 1), b): a € Q* <= be Q>.
Here, 2| v,y denotes the restriction & to thel-neighbourhood ofi.

(iv) Qis Iocal,l if itis /-local for somd € N.



Note that locality for queries is a purely semantic propextyopposed to syntactic
locality of formulae discussed above. We refer to jestintablestructures in (iii), as
this will allow us to use interpretations of the relevantistures in thev-branching tree;
for our boundedness concerns we may always restrict aitetticountable structures,
by the Lowenheim—-Skolem theorem (cf., Section 2).

Lemma 3.4 Letp(z) € Msoand let@ be the query defined lyover a clas€ C AC.
If Q is r-local for somer € N, then( is FO-definable oveC, in fact even by a local
first-order formula.

In other words, a local querg) is Mso-definable if, and only if, it iFO-definable.

Proof (Sketch)The proof is obtained on the basis of a decomposition argtifioen
MSO-types and the observation thaso-formulas of quantifier rank can count mul-
tiplicities of types only up to a thresholg(¢). This can be used to translatdocal
mMso-formulae intoFo-formulae by induction on the locality radius O

4 Boundedness over acyclic structures

The goal of this section is to prove the following theorene, thain result of the paper.
Recall Definition 2.1 for the class of acyclic structurs.

Theorem 4.1 LetC C AC be anFo-definable subclass odC and letp(X, z) be a
first-order formula positive in the monadic second-var&aBll. Then boundedness of
in C is decidable.

The main ingredients for the proof are the following. In $&té.2, we use Theo-
rem 3.2 to show that deciding boundedness for arbitrarydidér formulaep (X, z),
positive inX, can be decomposed into a sequence of boundedness tesisdigripcal
formulaey; (X, z) in certain projectivelyro-definable subclass€sC AC.

To decide boundedness for local formulag X, ), we show that this can further
be reduced to deciding whether the global relatiéh(x) defined byy; (X, x) is local.
Locality of Mso-definable queries imso-definable subclasses gfC can be decided
via reduction to theaso-theory of thew-branching tree and Rabin’s theorem, see Sec-
tion 4.1.

4.1 Locality testing for Mso-queries

Theorem 4.2 LetC C AC be anmso-definable subclass oAC and let@ be a query
that is Mso-definable overC. Then locality of@ overC is decidable. The decision
procedure is uniform in the1so-formula defining the subclags

The remainder of this section is devoted to the proof of teetém, which is based
on a reduction to Rabin’s following classical result.

Theorem 4.3 (Rabin) TheMso-theory of the infinitev-branching tree is decidable.



We denote the infinites-branching tree aS,,,, its root as\. The first step towards
the proof of Theorem 4.2 is to show that there is a uniforso-interpretation that
interprets structure® < C in colourings of%,, in a suitable way. We can then use the
decidability of thewso-theory of %, to check if the query is local. This method follows
ideas from [15,16] and in particular allows us to capturealitg (boundedness) in
the framework oSO over trees through a regular analogue of Konig’'s lemmaithat
available in%,.

Let C be anmso-definable subclass 0AC over a signature. Given ao-structure
2A € AC and an element € A we encodél, a in a colouring of%,, by a suitable set
7 := 7(o) of colours: every tree in the Gaifman gra@{®!) is coded in a subtree rooted
at a successor of the roatso that the distinguished elements encoded by a direct
successor ok and marked by a special colour. We refrain from giving dethére as
the encoding is straightforward. It is important, howevteat the encoding preserves
the distance between elements of the structure within eatiponent o7 ().

The interpretation allows us to translatso-formulae over structures frotdC to
mMso-formulae over encodings i®,,. In particular, there is amso-sentence) that is
true in ar-expansior®¥ of ¥, if, and only if, T encodes some structutec C.

Let o(z) be anmso-formula defining a query) overC (which again can be trans-

lated to a corresponding formuld(z) overr-expansions of ). For an acyclic struc-
ture A with distinguished element € A andr > 1 we let2l], := A|yx(,) denote
the initial segment of all nodes up to depthA set A’ C A is initial, if it containsa
and is connected (in the Gaifman grapH}.is calledlocal, if A’ C 2l|,. for somer-.
It is path-finiteif it contains no infinite paths. Note that while it igsSO-definable that
a subset of/, is initial or path-finite, locality is not (this follows frorKonig’s lemma
together with the fact that everyso-formula that is satisfiable i®,, is also satisfiable
in a finitely branching tree).

A regularexpansion off, is one that realises only finitely many isomorphism types
of subtrees. The following regular analogue of Kdnig'’s feanis proved in [16].

Lemma 4.4 An initial subsetD in a regular expansioni¥,,, D) of ¥, is path-finite if,
and only if, it is local.

Let piocal(Z) be anmso-formula that says of an inital subsg&tof T, rooted at some
immediate successerof the root)\, that whenever encodings of two structugess €
Cin %, whose distinguished elements A andb € B are represented by agree on
Z,then2l = ¢[a] if, and only if, B |= ¢[b]. Clearly, this isvuso-definable. Analogous
to the reasoning in [16], we can show the following lemma.

Lemma 4.5 Let A be the root off,,. The following are equivalent:
(i) ¢(x)islocal
(i) forsomer e NandforD =%,|,: Tu E ©iocalD]-
(i) T, E HZ(Z is initial and path-finiten 90|oca|(Z)).
(iv) there is a regular expansiof®¥.,, D) of T, with an initial, path-finiteD such that
T ': <PlocaI[D]-

Proof.(i) = (ii) = (i4i) are obvious(iii) = (iv) is a well-known fact about
MSO. For (iv) = (i) use Lemma 4.4. O



By Rabin’s theorem, paf(tii) of the previous lemma, and hence localityfis decid-
able. This completes the proof of Theorem 4.2.

4.2 Boundedness of arbitrary monadicco-formulae

We show that the boundedness problem for arbitrary monastedider formulae over
acyclic structures can be reduced to the locality testM®®d-formulae as provided by
Theorem 4.2.

Let (X, z) € FObe a formula, positive itX. By Theorem 3.2y is equivalent to
V(@i (X, ) Api(X)), where thep; (X, x) are local inx and they; are positive inX.
To simplify the presentation, we only consider the case wher

e = (1(X,2) A1 (X)) V (92X, ) Aa(X)).

We can treat the); asguards that enable or disable the contributiongfto the fixed-
point induction, in the sense that certaifh may be true already at the initial stage
(and stay true for the whole induction process) whereag®thay only become true at
later stages. In this case, the correspondipgnly contribute to the induction process
beginning with these stages and can be neglected before.

Inductions overp can therefore be decomposed into a sequenpbadesLet be

a structure. We distinguish between several cases:

(0) 2 b~ 1 [0] and2A [~ ¢2[0]. Theny™ (A) = (), so we can ignore this case.

(1) A = ¢1[0] andA |= ¥2[0]. In this case, the induction anin 2 is equivalent to the
induction on(p; V ¢2), which is purely local.

(2) A = 1 [0] andA £ 12 [p>()]. In this case, the induction anin 2 is equivalent
to the induction orpy, as the guard, for 5 will never become true.

(3) A = ¢1[0] andA = o[> (A)]. Over, the induction has two phases. It starts
with an induction orp; . As soon ag (X @) is satisfied for a stage, the induction
continues onp; V ;.

There are two more cases, just lik® and(3) but with the roles ofp; /1)1 andps /12

exchanged (we suppress this duplication in the following).

To illustrate the possible interplay between the varioussgls, let us consider for-
mulae in positive Gaifman form of the kind

(X, z) = o A [PV (e1(X,2) AJz(Xa A Q1)) V (p2(X, ) Az (X A Qax))],

with local formulaey; (X, x), and with extra unary predicatésand@);, which serve
to initialise the fixed point process and to trigger phasegdrby 1, @2 or their com-
binationy; V ¢o. Static side conditions igyy and the local formulae,; may be such
that, for instance, the induction starts @n (e.g.,109 may forceQ, N P = (), and that
the induction onp; alone would be unbounded while the inductiongnalone would
be bounded, but such that the unbounded inductiop;cslways triggers the induction
on ¢9 (due toQ,-elements in thd 7-th stage ofp; in any model ofyy in which ¢,

is unbounded, say). The interplay betwesnandy- could now still be such that the
overall process is bounded or unbounded. It should be dlearthis naive analysis of a
very simple family of examples that the full variety of phgsdterns needs to be taken



into account and that several boundedness issues for dooalyprocesses determine
the overall boundedness in a non-trival manner.

Let us proceed with the proof of Theorem 4.1. Consideringthesible sources for
unboundedness df, it is clear thatp is unbounded if, and only if, at least one of the
following applies:

Case 1: @1 V 2 is unbounded ovef; := {A € AC : A = (1 A )2)[0]}.
Case 2: ¢ is unbounded ovef; := {2 € AC : A = 1 [(] and2A = o[> (A)]}.
Case 3: a)p; V 9 is unbounded ovefs := {A € AC : A = ¢ [0]}, or
b) ¢1 V 19 is bounded ove€s, with some boundr € N, andy; V @2 IS
unbounded ovef, := {A € AC : A = ¥ [0] andA = o[ (A)]}.
Case 4: like 2 and3 with the roles ofp; /41 andy, /12 exchanged.

We further reduce the number of the cases that need to bedevadi

Lemma 4.6 (1) ; is unbounded ovefs if, and only if,o; is unbounded over
Ch:={Ae AC: (AU,D) = ¢, and (A, P) }~ ¢, for some fixed poinP of 1 }.
(2) If p1 V19 is unbounded ovefs, theny; is unbounded ovels.
(3) If p1 V1o is bounded ovefs, theny is unbounded ovefs if, and only if,
¢’ := 1V s V Pz is unbounded over
Cy={(2,P): A€ AC,A | 1 [0], A | ¢2[P], P C ¢ [A]}.

Note thatC} is projectivelyro-definable, as the fact th#t is a fixed point ofp; is
Fo-definable with a new relation fd?P. BothC; andC;, are clearlymso-definable.

Proof.(1) is trivial. For (2), assume; V v, is unbounded ovets but ¢, is bounded
overC,. Consider the theoriek) := {3z (¢" ™ (z) A —¢"(2)) : n € N} and

T =Ty U{-2(e™): n € N} U (axiomatisation o€s).

T is consistent, ag; V 5 is unbounded ovefs;. Note thatT speaks aboup, not
1, butp™ = ¢ in models ofT" asT impliesvy; and -2 (¢™) for all n € N. By
assumptiony is bounded ovef, and hencd is not satisfiable irfs. Therefore,

every model ofl" satisfies (¢>), (%)

as 2 (¢>) is the defining condition of the subclas of C5. But in every model
A of P2(p™=), (e V 2)®(A) = (1 V2)*(A) = A and with (4.2), therefore,
(p V1)) = (p1 V2)*®(A) = A in every modekl of T'. Furthermore, the
equivalence between the first and the second induction is @age-by-stage.

Hence, in the model class @f, the fixed point( V 2)° is trivially first-order
definable — it is defined byrue. Therefore, by the Barwise-Moschovakis Theorem,
(p V 1h9) is bounded in models &F, contradictingl.

(3) Note that the phase in the generations6f over somel € Cs that is driven
by ¢1 V ¢ is stage-by-stage equivalent to the fixed point generatfofp9°>° over
(A, o™ (2A)) € C4, for the minimal: such tha®l = ¢, [¢™ (2)]. Therefore boundedness
of ¢ overCs trivially implies boundedness af’ overCj. Conversely, by decomposition
into corresponding phases, boundedness;of ¢, and ofy’ overC) together imply
thaty is bounded ovefs. O



The desired decision procedure for boundednesg &f built on a sequence of
applications of decision procedures that detect (un)bednéss in the form of (non)lo-
cality. Consider the individual boundedness issues inc&as& above in the light of
their reformulation in Lemma 4.6:

— Case 1 corresponds to a boundedness test for a purely loedidoint:o, V @2 is
purely local, and stage-by-stage equivalent withver the FO-definable subclass
C, of AC. As(C; is elementary, by the Barwise-Moschovakis Theorem, bodnde
ness is equivalent teo-definability of the fixed point. Further, as a bounded fixed
point over a purely local formula is local itself, boundegsefy; \V - is equiv-
alent tolocal Fo-definability. Finally, ag”; and the fixed point areiso-definable,
local Fo-definability of the fixed point is decidable according to ®hem 4.2 and
Lemma 3.4.

— Case 2 is similarly reduced to a boundedness test for a ploey/fixed point over
the projective ansiso-definable clas€), in part 1 of the lemma.

— Case 3a) is in fact subsumed by case 2, according to part 2 ¢értma.

For what remains (case 3b) we may restrict attention to tatsbn wherep; V 15 is
bounded oveCs. The corresponding decision issue obtained in part 3 of Lamrf
is further reduced to a locality issue that can be decidedrdatgy to Theorem 4.2,
through condition (iii) in the following.

Claim 4.7 Letys V 12 be bounded ovefs. Then the following are equivalent:
(i) ¢ is bounded ovefs.

(i) ¢ is bounded ovefy.

(i) (¢’)*° is local overcs.

Proof.The equivalence between (i) and (ii) was dealt with in parf Beanma 4.6. As
¢ is purely local, boundedness clearly implies locality foe fixed point, i.e., (ii}=
(iii). Assume now (iii). Obviously(y')> is Mso-definable and thereforro-definable
due to locality, by Lemma 3.4. Ag; V v, is bounded ove€s, there is some: such
that for € Cs, A = 2> (A)] < A | ¥2[e™(A)]. Further,y’ is stage-by-stage
equivalenttop vV Pz overCs and hencép Vv Pz)> is FO-definable over the elementary
subclas€y := {(A, P) : A € AC,A |= ¢ [0],2 = ¢2[P], P = ¢"(A)} C C5. By the
Barwise-Moschovakis theorem, therefopey Px is bounded ove€?, which implies
thaty is bounded ovefs, since alsap; V v, is bounded. O

It follows that testing for unboundednessof VV 2 overCy;
else, for unboundedness®p, overCh;
else, for unboundedness®f’ overcCj,
fails if, and only if, ¢ is bounded over4C. In the given format, each one of these
unboundedness tests can be realised as a (non)localitytgsh is effective through

Theorem 4.2. This cascade of locality tests can be adaptbd {more complex) phase
pattern of a formula in positive Gaifman form with more thamtdisjuncts. We also

3 and the mirror symmetric case with /11 exchanged fops /12



point out that all the arguments used relativis&tedefinable subclasses &fC. This
concludes the proof of Theorem 4.1. a

Theorem 4.1 yields a decision procedure for the boundedmresdem of FO on
acyclic structures. However, the running time of the praredjrows non-elementarily
with the formula size. There is no hope for an algorithm whosming time is bounded
by an elementary function. As the first-order satisfiabpitgblem overAC is reducible
to the boundedness problem o, the non-elementary lower bound for satisfiability
on AC established in [6] gives us a non-elementary lower bound.her

5 Outlook

Given the decidability of the boundedness problem on acgtiuctures, it is natural to
ask whether, for instance, the result also holds for thesaldidrees or extends to the
class of structures of treewidth at mdstfor fixed k. We collect a few observations
to indicate that the results and the methods used here aredndther sensitive to the
underlying class of structures.

Remark 5.1 (a) Boundedness over trees (connected acyclic structures)rmemply
boundedness over all acyclic structures; similarly, boghgless over finite acyclic
structures does not imply boundedness over all acyclictiras.

(b) The Barwise-Moschovakis theorem is well known to fail okerdass of all finite
structures. It also fails over the class of finite acycliaustures, over the class of
trees and over the class of finite trees.

(c) The connection between locality aro-definability of Lemma 3.4. fails over simple
Fo-definable classes of graphs of bounded treewidth.

Proof.For (a) consider, over acyclic structures or over treesaahability query (in it-
self unbounded) modified by side a condition that renderpttbeess trivial unless there
are at least two nodes of degre€impossible over trees), or unless there is precisely
one vertex of degrek (impossible infinite acyclic structures).

For (b) consider over finite forests the fixed point proceasdhaluates to the well-
founded part; while this process is unbounded, it evaluatéise full vertex set. Over
(finite or infinite) trees, the unbounded fixed point basedltz) vV Jy(Exy A Xy) V
Jy(root(y) A Xy) isinFO (equivalent todz red(x)).

For (c) consider connectivity over tir@-definable class of graphs that are disjoint
unions of cycles and two-way infinite successor chains\ictl 2). Clearly this query
is in MSO but neither local norFo. Joining all the nodes in such graphs to one new
central vertex, one obtains &-definable class of graphs of treewidthwhich isFo-
bi-interpretable with the original class. As all structaiie this class have diametey
any query is trivially local here. O

Clearly, these observations do not imply that boundedsassdecidable over cor-
responding classes. However, we need to develop new tostsotw decidability. This
is part of ongoing work.

As pointed out above, classes of bounded treewidth in pdatiprovide an inter-
esting wider framework for the analysis of the boundednesblpm, because of its



relevance for other known decidable cases. Here, argurbasésl on compactness and
the Barwise-Moschovakis theorem are still available, am@ssn principle the phase
analysis of Section 4.2. However, as indicated in (c) abiveedirect link with locality

is lost (at a more technical level, distances and localigyrast preserved in the pas-
sage between the structures themselves and their treesseapaons). The search for
alternative methods to decide-definability or boundedness in this context remains of
particular interest.
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