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t. We de�ne various extensions of �rst-order logi
 on linear aswell as polynomial 
onstraint databases. First, we extend �rst-order logi
by a 
onvex 
losure operator and show this logi
, FO(
onv), to be 
losedand to have Ptime data-
omplexity. We also show that a weak form ofmultipli
ation is de�nable in this language and prove the equivalen
ebetween this language and the multipli
ation part of PFOL. We thenextend FO(
onv) by �xed-point operators to get a query languages ex-pressive enough to 
apture Ptime. In the last part of the paper we liftthe results to polynomial 
onstraint databases.1 Introdu
tionIn re
ent years new appli
ation areas have rea
hed the limits of the standardrelational database model. Espe
ially, geographi
al information systems, whi
hare of growing importan
e, ex
eed the power of the relational model with theirneed to store geometri
al �gures, naturally viewed as in�nite sets of points.Therefore, new database models have been proposed to handle these needs. Onesu
h data model is the framework of 
onstraint databases introdu
ed by Kanel-lakis, Kuper, and Revesz in 1990 [KKR90℄. Essentially, 
onstraint databases arerelational databases 
apable of storing arbitrary elementary sets. These sets arenot stored tuple-wise but by an elementary formula de�ning them. We give apre
ise de�nition of the 
onstraint database model in Se
tion 2. See [KLP00℄ fora detailed study of 
onstraint databases.When applied to spatial databases, one usually 
onsiders either databasesstoring semi-algebrai
 sets, 
alled polynomial 
onstraint databases, or semi-linearsets, known as linear 
onstraint databases. Polynomial 
onstraint databases al-low the storage of spatial information in a natural way. The interest in thelinear model results from the rather high (pra
ti
al) 
omplexity of query evalu-ation on polynomial databases. Essentially, the evaluation of �rst-order queriesin the polynomial model 
onsists of quanti�er-elimination in the theory of or-dered real �elds, for whi
h a non-deterministi
 exponential-time lower bound has? Appeared in the Pro
. of ICDT 2001, 
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2been proven. On the other hand, query evaluation on linear 
onstraint databases
an be done eÆ
iently. But �rst-order logi
 on these databases yields a querylanguage with rather poor expressive power.It is known that �rst-order logi
 la
ks the power to de�ne queries relying onre
ursion. A prominent example is 
onne
tivity whi
h is not expressible in FO onalmost all interesting 
lasses of stru
tures. This la
k of expressive power showsup on polynomial as well as linear 
onstraint databases. In �nite model theory,a standard method to solve this problem is to 
onsider least �xed-point logi
, anextension of FO by a least �xed-point operator (see [EF95℄.) Although this logi
has su

essfully been used in the 
ontext of dense-order 
onstraint databases(see [KKR90,GS97,GK99℄), it is not suitable for the linear database model, as itis neither 
losed nor de
idable on this 
lass of databases (see [KPSV96℄.) Logi
sextending FO by �xed-point 
onstru
ts 
an be found in [GK97℄ and [GK00℄.De
idability and 
losure of these languages was a
hieved by in
luding some kindof stop 
ondition for the �xed-point indu
tion. In [Kre00℄, this problem has alsobeen atta
ked resulting in a language extending FO by �xed-points over a �niteset of regions in the input database.Besides queries based on re
ursion there are also other important queries thatare not �rst-order de�nable. In the 
ontext of linear databases a very importantexample of a query not expressible in FO is the 
onvex 
losure query. We addressthis problem in Se
tion 3. Unfortunately, any extension of FO by operators
apable of de�ning 
onvex hulls for arbitrary sets leads to a non-
losed language.Therefore, we 
an only hope to extend FO 
onsistently by a restri
ted 
onvexhull operator. In this paper we add an operator to 
ompute 
onvex hulls of�nite sets only. We show that this 
an be done in a 
onsistent way, resulting in alanguage that is 
losed and has Ptime data-
omplexity. It is also shown that thislanguage and PFOL, an extension of FO by restri
ted multipli
ation de�ned byVandeurzen, Gyssens, and Van Gu
ht [VGG98℄, have the same expressive power.As mentioned above, a language extending FO by re
ursion me
hanisms hasbeen de�ned in [Kre00℄. Although this language turns out to be rather expressivefor boolean queries, it la
ks the power to de�ne broad 
lasses of non-booleanqueries. In Se
tion 4 we present two alternative approa
hes to de�ne �xed-pointlogi
s on linear 
onstraint databases. The �rst approa
h extends the logi
 de�nedin [Kre00℄ by the 
onvex 
losure operator mentioned above, whereas the se
ondapproa
h 
ombines 
onvex 
losure with �xed-point indu
tion over �nite sets.It is shown that both approa
hes lead to query languages 
apturing Ptime onlinear 
onstraint databases.In Se
tion 5 we address the problem whether these results extend to the 
lassof polynomial 
onstraint databases. Clearly, extending �rst-order logi
 by a 
on-vex 
losure operator does not make sense, sin
e 
onvex 
losure is already de�n-able in FO+Poly, that is, �rst-order logi
 on polynomial 
onstraint databases.But it will be shown that the extension by �xed-point 
onstru
ts 
an be suit-ably adapted to the polynomial setting, resulting in a language stri
tly moreexpressive than FO+Poly.



32 PreliminariesConstraint databases. We �rst give a pre
ise de�nition of the 
onstraintdatabase model. See [KLP00℄ for a detailed introdu
tion. The basi
 idea in thede�nition of 
onstraint databases is to allow in�nite relations whi
h have a �-nite presentation by a quanti�er-free formula. Let A be a � -stru
ture, 
alled the
ontext stru
ture, and '(x1; : : : ; xn) be a quanti�er-free formula of vo
abulary� . We say that a n-ary relation R � An is represented by '(x1; : : : ; xn) overA i� R equals f�a 2 An : A j= '[�a℄g. Let � := fR1; : : : ; Rkg be a relationalsignature. A �-
onstraint database over the 
ontext stru
ture A is a �-expansionB := (A; R1; : : : ; Rk) of A where all Ri are �nitely represented by formulae 'Riover A. The set � := f'R1 ; : : : ; 'Rkg is 
alled a �nite representation of B.To measure the 
omplexity of algorithms taking 
onstraint databases as in-puts we have to de�ne the size of a 
onstraint database. Unlike �nite databases,the size of 
onstraint databases 
annot be given in terms of the number of ele-ments stored in them but has to be based on a representation of the database.Note that equivalent representations of a database need not be of the same size.Thus, the size of a 
onstraint database depends on a parti
ular representation. Inthe following, whenever we speak of a 
onstraint database B, we have a parti
u-lar representation � of B in mind. The size jBj of B is then de�ned as the sumof the length of the formulae in �. This 
orresponds to the standard en
odingof 
onstraint databases by the formulae of their representation.Constraint queries. Fix a 
ontext stru
tureA. A 
onstraint query is a mappingQ from 
onstraint databases over A to �nitely representable relations over A.Note that queries are abstra
t, i.e., they depend only on the database not on theirrepresentation. That is, any algorithm that 
omputes Q, taking a representation� of a database B as input and produ
ing a representation of Q(B) as output,has to 
ompute on two equivalent representations � and �0 output formulae thatare not ne
essarily the same, but represent the same relation on A.In the sequel we are parti
ularly interested in queries de�ned by formu-lae of a given logi
 L. Let ' 2 L be a formula with k free variables. Then' de�nes the query Q' mapping a 
onstraint database B over A to the set'B := f(a1; : : : ; ak) : B j= '[�a℄g: In order for Q' to be well de�ned, this setmust be representable by a quanti�er-free formula. If ' is �rst-order, this meansthat A admits quanti�er elimination. For more powerful logi
s than �rst-orderlogi
 the additional operators must be eliminated as well. A logi
 L is 
losed fora 
lass C of 
onstraint databases over A, if for every ' 2 L and every B 2 C theset 'B 
an be de�ned by a quanti�er-free �rst-order formula over A.Typi
al questions that arise when dealing with 
onstraint query languages arethe 
omplexity of query evaluation for a 
ertain 
onstraint query language andthe de�nability of a query in a given language. For a �xed query formula ' 2 L,the data-
omplexity of the query Q' is de�ned as the amount of resour
es (e.g.time, spa
e, or number of pro
essors) needed to evaluate the fun
tion that takesa representation � of a database B to a representation of the answer relationQ'(B).



43 First-Order Logi
 and Convex HullsIn this se
tion we de�ne an extension of �rst-order logi
 on semi-linear databasessu
h that with ea
h de�nable �nite set of points also its 
onvex hull be
omesde�nable. De�ning 
onvex hulls is a very important 
on
ept when dealing withsemi-linear databases but �rst-order logi
 itself is not powerful enough to de�neit. Thus, adding an operator allowing the de�nition of 
onvex hulls results ina language stri
tly more expressive than FO. Note that allowing to de�ne the
onvex 
losure of arbitrary point sets yields a non-
losed query language, sin
emultipli
ation - and thus sets whi
h are not semi-linear - be
omes de�nable. Wetherefore allow the de�nition of 
onvex hulls for �nite sets of points only.Proviso. In the rest of this paper, whenever we speak about the interior of aset or a set being open, we always mean \interior" or \open" with respe
t to theset's aÆne support.De�nition 1 Let �xi; �x0i; �y denote sequen
es of l variables ea
h and �z denote asequen
e of variables, su
h that all variables are distin
t. The logi
 FO(
onv) isde�ned as the extension of �rst-order logi
 by the following two rules:(i) If ' 2 FO(
onv) is a formula with free variables f�x1; : : : ; �xk ; �zg then  :=[
onv�x1;:::;�xk'℄(�y; �z) is also a formula, with free variables f�y; �zg.(ii) If ' 2 FO(
onv) is a formula with free variables f�x1; �x01; : : : ; �xk; �x0k; �zgthen  := [u
onv�x1;�x01;:::;�xk;�x0k'℄(�y; �z) is also a formula, with free variablesf�y; �zg.The semanti
s of the additional operators is de�ned as follows. Let B be theinput database and  and ' be as in Part (i) of the de�nition above. Let 'Bbe the result of evaluating the formula ' in B. If 'B is in�nite, then  B := ?.Otherwise,  B := f(�a;�b) : �a 2 S f
onvf�a1; : : : ; �akg : B j= '[�a1; : : : ; �ak;�b℄gg;where 
onvf�a1; : : : ; �akg denotes the interior (with respe
t to the aÆne support)of the 
onvex 
losure of f�a1; : : : ; �akg.The semanti
s of the u
onv operator is de�ned similarly. The motivation forthe u
onv operator is, that every set de�ned by the 
onv operator is bounded.To over
ome this restri
tion, the u
onv operator is designed to handle \points atin�nity". Let ' and  be as indi
ated in Part (ii) of the de�nition above and letBbe the input database. Again, if 'B is in�nite, then  B := ?. Otherwise, 'B :=f(�a;�b) : there are �a1; �a01; : : : ; �ak; �a0k su
h that B j= '[�a1; �a01; : : : ; �ak; �a0k;�b℄ and�a 2 
onv(Ski=1 line(�ai; �a0i))g, where line(�ai; �a0i) := f�x : (9b 2 R�0 ) su
h that�x = �ai + b(�a0i � �ai)g de�nes the half line with origin �ai going through �a0i.Intuitively, ea
h pair (�ai; �a0i) represents two points, the point �ai and the point\rea
hed" when starting at �ai and going in the dire
tion of �a0i to in�nite distan
e.Now u
onv returns the union of the open 
onvex 
losure (with respe
t to its aÆnesupport) of the 2k points represented by ea
h tuple ((�ai;1; �a0i;1); : : : ; (�ai;k; �a0i;k)).Note that the 
ondition on the formula ' to de�ne a �nite set is purelysemanti
al. Sin
e �niteness of a semi-linear set is �rst-order de�nable - 
onsider,for example, the formula �nite(') stating that there are �; Æ > 0 su
h that the



5Manhattan-distan
e between any two points in 'B is greater than � and ea
hpoint in 'B is 
ontained in a hyper
ube of edge length Æ - this 
ondition 
an alsobe ensured on a synta
ti
 level, thus giving the language an e�e
tive syntax.We now give an example of a query de�nable in FO(
onv).Example 2 Let '(x) be a formula de�ning a �nite set. The querymult'(x; y; z) := f(a; b; 
) : a satis�es ' and a � b = 
gis de�nable in FO(
onv). We give a formula for the 
ase x; y; z � 0. Let �x1 =(x1;1; x1;2) and �x2 := (x2;1; x2;2) be pairs of variables and  (�x1; �x2;x) := �x1 =(0; 0) ^ �x2 = (1; x) be a formula de�ning for ea
h x the two points (0; 0) and(1; x) in R2 . Then the formula (x; y; z) := [u
onv�x1;�x2'(x) ^  (�x1; �x2; x)℄(y; z;x)de�nes the query mult'. The u
onv operator de�nes - for the parameter x - thehalf line with origin (0; 0) and slope x. Thus the point (y; z) is on this line i�x � y = z.Theorem 3 FO(
onv) is 
losed and has Ptime data-
omplexity.The 
losure of the 
onv-operator follows from the �niteness of the sets, ofwhi
h the 
onvex 
losure is 
omputed. Ptime data-
omplexity 
an easily beshown by indu
tion on the stru
ture of the queries.We now 
ompare the language to other extensions of FO for linear databases.Espe
ially, we will show that FO(
onv) and the language PFOL as de�ned byVandeurzen et. al. [VGG98℄ have the same expressive power. We brie
y re
allthe de�nition of PFOL (see [VGG98℄ and [Van99℄ for details.)There are two di�erent kinds of variables in PFOL, real variables and so-
alled produ
t variables. A PFOL program 
onsists of a sequen
e of formulae('1(x); : : : ; 'k(x);'(�x)). Ea
h 'i is required to de�ne a �nite set Di � R. Theformulae are allowed to use multipli
ation between variables x � p, but at leastp must be a produ
t variable. All produ
t variables must be bound at somepoint by a quanti�er of the following form. In 'i the quanti�ers for the produ
tvariables are of the form 9p 2 Dj , where j < i. In ' all Di may be used. Thus,essentially, the formulae 'i de�ne su

essively a sequen
e of �nite sets and thenat least one fa
tor of ea
h multipli
ation is restri
ted to one of these sets. In theoriginal de�nition of PFOL there were also terms t = pjpj. We don't take thisterm building rule into a

ount and allow only multipli
ation. We believe this tobe the essential and important part of the language. But note that the squareroot operator stri
tly in
reases the expressive power of the language. Thereforewe 
all the language 
onsidered here restri
ted PFOL.It is known that 
onvex 
losure 
an be de�ned in restri
ted PFOL. In Ex-ample 2 we already saw that multipli
ation with one fa
tor bounded by a �niteset 
an be de�ned in FO(
onv). Thus, the proof of the following theorem isstraightforward.



6Theorem 4 Restri
ted PFOL = FO(
onv).Note 5 As the previous theorem shows, we 
an express atoms of the form x�'y =z in FO(
onv), with the semanti
s being that xy = z and '(x) holds, where 'is required to de�ne a �nite set. From now on, we allow atoms of this form inFO(
onv)-formulae.The previous theorem implies that the bounds on expressiveness proven forPFOL 
arry over to FO(
onv). Here we mention one result whi
h will be ofspe
ial importan
e in Se
tion 4.2.It has been shown in [Van99℄ that there is a PFOL query whi
h returns ona semi-linear set S � Rn a �nite relation Sen
 � Rn(n+1) of (n + 1)-tuples ofpoints in Rn , su
h that S = S(�a1;:::;�an+1)2Sen
 
onv(�a1; : : : ; �an+1). Thus, PFOL
an 
ompute a 
anoni
al �nite representation of the input database and re
overthe original input from it. This will be used below to de�ne a �xed-point querylanguage 
apturing Ptime.4 Query Languages Combining Convex Hulls andRe
ursionIn this se
tion we present two approa
hes to 
ombine the query language de�nedabove with �xed-point 
onstru
ts.4.1 The Logi
 RegLFP(
onv)Let S � Rd be a semi-linear set. An arrangement of S is a partition of Rd into�nitely many disjoint regions, i.e., 
onne
ted subsets of Rd , su
h that for ea
hregion R either R \ S = ? or R � S. It is known that for a �xed dimensionarrangements of semi-linear sets 
an be 
omputed in polynomial time. See e.g.[Ede87℄ or [GO97℄ for details.It follows from the de�nition that the input relation S 
an be written as a�nite union of regions in its arrangement. In this se
tion we 
onsider a querylanguage whi
h has a

ess to the set of regions in su
h an arrangement of theinput database. This gives the logi
 a

ess to the representation of the databasein
reasing, thus, its expressive power. Pre
isely, we 
onsider a �xed-point logi
where the �xed-point indu
tion is de�ned over the �nite set of regions. Thesemanti
s of the logi
 is de�ned in terms of 
ertain two-sorted stru
tures, 
alledregion extensions of linear 
onstraint databases. Let B := ((R; <;+); S) be adatabase and let A(S) be the set of regions in an arrangement of S. The logi
then has separate variables and quanti�ers for the reals and the set of regions.We now give the pre
ise de�nitions.De�nition 6 Let B := ((R; <;+); S) be a linear 
onstraint database, where S isa d-ary relation, and let A(S) be the set of regions of an arrangement of S. Thestru
ture B gives rise to a two-sorted stru
ture BReg := ((R; <;+); S;Reg; adj),



7
alled the region extension ofB, with sorts R and Reg := A(S) and the adja
en
yrelation adj � Reg�Reg, where two regions are adja
ent if there is a point p inone of them su
h that every "-neighbourhood of p has a non-empty interse
tionwith the other region.The dimension of a region is de�ned as the dimension of its aÆne support,i.e., the dimension of the smallest aÆne subspa
e it is 
ontained in. It is knownthat the number of regions in the arrangement is bounded polynomially in thesize of the representation of S. As arrangements 
an be 
omputed in polynomialtime, one 
an 
ompute the region extension of a given database in polynomialtime as well.We now de�ne the logi
 RegLFP(
onv) whi
h is FO(
onv) extended by aleast �xed-point operator on the set of regions in the region extensions. In thede�nition of the logi
 we deal with three types of variables, so-
alled element-,region-, and relation variables. Element variables will be interpreted by realnumbers, region variables by regions in the region extension of the database.Ea
h relation variable is equipped with a pair (k; l) 2 N2 of arities. Relationvariables of arity (k; l) are interpreted by subsets M � Regk � Rl , su
h that forea
h �R 2 Regk the set f�x : ( �R; �x) 2Mg is �nitely representable.De�nition 7 The logi
 RegLFP(
onv) is de�ned as extension of FO(
onv) onregion extensions by a least �xed-point operator. Pre
isely, the logi
 extendsFO(
onv) by the following rules.{ If R is a region variable and �x is a sequen
e of element variables, then R�xis a formula.{ If ' is a formula and R a region variable, then 9R' is also a formula.{ If M is a relation variable of arity (k; l), �R := R1; : : : ; Rk is a sequen
e ofregion variables, and �x := x1; : : : ; xl is a sequen
e of element variables, thenM �R�x is a formula.{ If '(M; �R; �x) is a formula with free element variables �x, free region variables�R := R1; : : : ; Rk, and a free (k; l)-ary relation variable M , su
h that Mo

urs only positively in ', then [tLFPM; �R;�x'℄( �R; �x) is a formula.{ If '(x) is a formula and x; y; z are element variables, then x �' y = z is aformula.RegLFP(
onv)-queries are de�ned by RegLFP(
onv)-formulae without free regionor relation variables.The semanti
s of the new rules is de�ned as follows. An atom R�x states thatthe point �x is 
ontained in the region R; an atom M �R�x states that the tuple( �R; �x) is 
ontained in M ; a formula 9R' states that there is a region R 2 Regsatisfying '. The semanti
s of 
onv, u
onv, and �' is de�ned as in the previousse
tion.Let M be a (k; l)-ary relation variable, �R := R1; : : : ; Rk be a sequen
e of re-gion variables, �x := x1; : : : ; xl be a sequen
e of element variables, and '(M; �R; �x)be a formula positive in M . The result of the formula  := [tLFPM; �R;�x'℄( �R; �x)



8evaluated in a database B is de�ned as the least �xed-point of the fun
tion f'de�ned asf' : Pow(Regk � Rl ) �! Pow(Regk � Rl )M 7�! f( �R; �a) 2 Regk � Rl : (9�y ( �R; �y) 2M ^ ( �R; �a) 2M) _(:9�y( �R; �y) 2M ^B j= '(M; �R; �a))g:Clearly, the least �xed-point of the fun
tion exists and 
an be 
omputedindu
tively in time polynomially in the number of regions and thus also in thesize of the database.Intuitively, we 
an think of the stages of the �xed-point indu
tion as a setof tuples of regions R, where to ea
h �R there is a formula ' �R(�x) atta
hed to itde�ning a set of points in Rl . But on
e a tuple of regions is 
ontained in somestage of the �xed-point indu
tion, the formula atta
hed to it 
annot be 
hangedanymore. This is ensured by the �rst disjun
t in the de�nition of f'. An examplemotivating this de�nition of the �xed-point operator is given below.Note that there are di�erent de
ompositions of Rd satisfying the 
onditionsof an arrangement as presented above. Thus, the semanti
s of the logi
 dependson a parti
ular de
omposition 
hosen. But the results we prove below stay truefor most de
ompositions, as long as the input 
an be re
overed from them. Thus,for a given appli
ation area, one should 
hoose a de
omposition whi
h is moreintuitive to use.Having de�ned the logi
, we now give a motivating example for it.Example 8 Suppose we are given a road map with 
ities and the highways 
on-ne
ting them. Typi
ally, the maps 
ontain information about the distan
e betweenany two adja
ent 
ities dire
tly 
onne
ted by a se
tion of a highway. In this set-up a useful de
omposition of the input into regions would be to have a region forea
h 
ity, one for ea
h se
tion of a highway between two 
ities, as well as regionsfor the other parts of the map.Now suppose we want to travel from one 
ity to another on a 
ertain high-way and we want to know the distan
e between these two 
ities. Let the 
on-stants s; t denote the regions of the sour
e and target 
ity and assume a formuladist(C;C 0; d), stating that C and C 0 are regions of adja
ent 
ities and d is thedistan
e between both on the 
hosen highway. Then the formula'(x) := [tLFPM;C1;C2;d dist(C1; C2; d) _ (9C 9d1 9d2 M(C1; C; d1) ^dist(C;C2; d2) ^ d = d1 + d2) ℄(s; t; x)de�nes the distan
e between the two 
ities. Here the real variable d in the �xed-point indu
tion is used to sum up the distan
es.We now show that the logi
 is expressive enough to 
apture all Ptime-querieson linear 
onstraint databases.De�nition 9 A linear 
onstraint database B has the small 
oordinate propertyif the absolute values of the 
oordinates of all points 
ontained in a 0-dimensionalregion, are bounded by 2O(n), where n is the number of regions in the regionextension of B.



9Theorem 10 RegLFP(
onv) 
aptures Ptime on the 
lass of linear 
onstraintdatabases having the small 
oordinate property.Sket
h. As an arrangement of a semi-linear set 
an be 
omputed in polynomialtime, the region extension of the input database 
an be 
omputed in Ptimeas well. Now the Ptime data-
omplexity of RegLFP(
onv) 
an be shown byindu
tion on the stru
ture of the queries. To prove that ea
h Ptime-query 
anbe de�ned by a RegLFP(
onv)-query, we show that the run of a Turing-ma
hineM 
omputing the query 
an be simulated. The 
ru
ial point is that, given theinput relation S � Rd , a �nite set R � Rd(d+1) of tuples of points su
h that S =Sf
onv(�a1; : : : ; �ad+1) : (�a1; : : : ; �ad+1) 2 Rg 
an be de�ned in RegLFP(
onv).Further, given su
h a set R � Rl(l+1) for some l 2 N, the set f�x : �x 2
onv(�a1; : : : ; �al+1) for some (�a1; : : : ; �al+1) 2 Rg 
an be de�ned using the 
onvand u
onv operators. This 
an be used to en
ode the input of a Turing-ma
hineand to de
ode its output. The run of the Turing-ma
hine 
an be simulated asusual in �nite model theory, using region variables to denote positions on theTuring-tape. The restri
tion to databases with small 
oordinates 
omes from thefa
t, that in order to simulate the Turing-ma
hine, 
oordinates of points have tobe en
oded by (tuples of) region variables. Thus, only polynomially many bits
an be used to represent a 
oordinate of a point, restri
ting it to exponentialsize. �4.2 Finitary Fixed-Point Logi
The query language introdu
ed in the previous se
tion depends on a spe
i�
de
omposition of the input database. Thus, its usability relies on the existen
eof a de
omposition whi
h 
an easily be understood by the user. Although thisis the 
ase in some appli
ation areas, it will be a problem in others. In thisse
tion we present a way to over
ome this dependen
y on a spe
i�
, intuitivede
omposition.Below we de�ne �nitary �xed-point logi
 as the extension of FO(
onv) by aleast �xed-point operator over arbitrary de�nable �nite sets. The idea is that,as mentioned in Se
tion 3, the language FO(
onv) is 
apable of de�ning a �niterepresentation of the input database. Using this one 
an repla
e the �xed-pointindu
tion on the regions by a �xed-point indu
tion on the �nite representation.We already mentioned that �niteness of a semi-linear set is �rst-order de�n-able. Therefore we use formulae �nite('), whi
h, given a formula ', evaluate totrue if the set de�ned by ' is �nite and false otherwise.De�nition 11 Finitary Fixed-Point Logi
 (FFP) is de�ned as the extension ofFO(
onv) by a �nitary LFP operator. Pre
isely, if �x := x1; : : : ; xk and �z :=z1; : : : ; zl are sequen
es of �rst-order variables, R is a (k + l)-ary se
ond-ordervariable, '(�x) and  (R; �x; �z) are formulae, su
h that R o

urs only positively in and does not o

ur in ', then also [tLFPR;�x(';  )℄(�u; �v) is a formula with freevariables f�u; �vg, where �u; �v are sequen
es of variables of arity k and l.



10The semanti
s of a formula � := [tLFPR;�x(';  )℄(�u; �v) is de�ned as the least�xed-point of the fun
tionf� : Pow(Rk+l ) �! Pow(Rk+l )R 7�! f(�x; �z) : (9�y (�x; �y) 2 R ^ (�x; �z) 2 R) _((:9�y (�x; �y) 2 R) ^B j= �nite(') ^ '(�x) ^  (R; �x; �z)))g;where B is the input database. Intuitively, the formula ' serves as a guard,ensuring that the �xed-point indu
tion runs over the �nite set de�ned by 'only. As before, the variables �z 
an be used to atta
h some information to atuple �x 
ontained in a indu
tion stage.Regarding the expressive power of this language, one 
an easily show that thelanguages RegLFP(
onv) and FFP are equivalent. Thus, FFP 
aptures Ptimeon the 
lass of linear 
onstraint databases.Theorem 12 (i) FFP 
aptures Ptime on the 
lass of linear 
onstraint da-tabases having the small 
oordinate property.(ii) RegLFP(
onv) and FFP have the same expressive power on the 
lass oflinear 
onstraint databases.5 Polynomial Constraint DatabasesIn this se
tion we extend the approa
h taken in Se
tion 4 to polynomial 
on-straint databases. Clearly, it does not make sense to add a 
onvex 
losure opera-tor to �rst-order logi
, as 
onvex 
losure is already de�nable in FO on polynomial
onstraint databases. Thus, the logi
 PolyLFP is de�ned as the least �xed-pointlogi
 over region extensions, but the regions will now be de�ned by a 
ylindri
alalgebrai
 de
omposition of the input spa
e.In Se
tion 5.1 we give a (very brief) overview of 
ylindri
al algebrai
 de-
ompositions (CADs). See [Col75℄ or the monograph [CJ98℄ for details. We thende�ne the region extension of polynomial 
onstraint databases and introdu
e thelogi
 PolyLFP .The data-
omplexity and expressive power of the logi
 is 
onsidered there-after. When dealing with 
omplexity issues for 
onstraint databases, one 
anbase the examination on the Turing-model and restri
t oneself to representingformulae with rational or real algebrai
 
oeÆ
ients. Another approa
h is to ig-nore the 
omplexity of the storage and manipulation of real numbers and usea 
omputation model 
apable of storing arbitrary real numbers. These modelshave built-in fun
tions for operations like multipli
ation and addition whi
h 
anbe exe
uted in one time step. This approa
h puts more fo
us on the 
omplexityof the underlying logi
 than on the 
omplexity of manipulating numbers. There-fore we take this approa
h here and base our analysis of the 
omplexity on theBlum-Shub-Smale (BSS) model. A brief introdu
tion to BSS-ma
hines 
an befound in Appendix A.



115.1 Cylindri
al algebrai
 de
ompositionFix a dimension d. A region is de�ned as a 
onne
ted subset of Rd . The 
ylinderZ(R) over a region R is de�ned as R � R. If R is a region and f : R ! R isa 
ontinuous fun
tion, then the f-se
tion of Z(R) is de�ned as the graph of f ,that is, the set f(�a; b) : �a 2 R and b = f�ag. (f1; f2)-se
torsta
k over R Region R f1-se
tionf2-se
tion
Fig. 1. Illustration of some 
on
epts used in CADs.Now, let f1; f2 : R ! R be 
ontinuous fun
tions over R su
h that for all�a 2 R f1(�a) < f2(�a). The (f1; f2)-se
tor of Z(R) is de�ned as the set f(�a; b) :�a 2 R and f1(�a) < b < f2(�a)g. We allow f1; f2 to be the 
onstant fun
tions�1;1.Let X � Rd be a set. A de
omposition of X is a �nite 
olle
tion of disjointregions whose union is X . Let R be a region and let f1; : : : ; fk : R ! R be asequen
e of 
ontinuous fun
tions from R to R, su
h that fi(�x) < fi+1(�x) forall �x 2 R. This sequen
e de�nes a de
omposition of the 
ylinder Z(R) intothe regions de�ned by 1) the fi-se
tions, 2) the (fi; fi+1)-se
tors where i 2f0; : : : ; k + 1g and f0(�x) = �1 and fk+1(�x) = 1. Su
h a de
omposition is
alled a sta
k over R (determined by f1; : : : ; fk). See Figure 1 for an illustrationof these 
on
epts.A de
omposition D of Rd is 
alled 
ylindri
al if i) d = 1 and D is a sta
kover R0 , i.e. a �nite number of singletons and intervals, or ii) d � 2 and there isa 
ylindri
al de
omposition D0 of Rd�1 su
h that for ea
h region R 2 D0 thereis a subset S � D forming a sta
k over R. Clearly, a 
ylindri
al de
ompositionof Rd determines a unique 
ylindri
al de
omposition of Rd�1 , 
alled the indu
edde
omposition.A de
omposition of Rd is 
alled algebrai
, if every region is a semi-algebrai
set. A 
ylindri
al algebrai
 de
omposition (CAD) of Rd is a de
omposition of Rdwhi
h is both 
ylindri
al and algebrai
.Let A := ff1; : : : ; fmg be a set of polynomials from Rd to R. A de
ompositionD of Rd is 
alled A-invariant, if for ea
h fi 2 A and all regions R 2 D, eitherfor all �x 2 R fi(�x) > 0, fi(�x) = 0, or fi(�x) < 0.



12 Let B := (R; <;+; �; S) be a database, where S is d-ary. A CAD D of Rdis invariant for B, if it is invariant for the set of polynomials o

urring in therepresentation of S. Thus, for ea
h region R 2 D either R \ S = ? or R � S.It is known that a CAD of Rd invariant for a given set A of polynomials
an be 
omputed in double exponential time in the dimension d and polynomialtime in the size of A. Sin
e the dimension is �xed, the algorithm operates inpolynomial time in the size of A, resp. in the size of a database B, if A is theset of polynomials o

urring in the representation of B.Further, a 
lose analysis of the algorithms shows, that if D is a CAD of Rdinvariant for a given set of polynomials of degree at most n, then, for d �xed,the degree of the polynomials de�ning the regions in D is polynomially boundedin n. See [Col75℄ for details.5.2 A �xed-point logi
 for polynomial 
onstraint databasesWe de�ne a �xed-point query language for polynomial 
onstraint databases. Inanalogy to Se
tion 4 this language is based on region extensions of databases.De�nition 13 Let B := ((R; <;+; �); S) be a polynomial 
onstraint database.The region extension BReg of B is de�ned as a two-sorted stru
ture BReg :=((R; <;+; �); S;Reg). The �rst sort 
onsists of the reals with order, addition,and multipli
ation, whereas the se
ond sort 
onsists of the set Reg of regionsde
omposing Rd in a CAD invariant for B.We now de�ne the language PolyLFP as least �xed-point logi
 on regionextensions. As before, the �xed-point indu
tion is de�ned on the (�nite) setof regions only. Sin
e every database has a unique region extension we don'tdistinguish between databases and their region extensions and freely speak abouta database being a model of a PolyLFP formula instead of expli
itly mentioningits region extension.De�nition 14 The logi
 PolyLFP is de�ned as the extension of �rst-order logi
by the following rules. As in De�nition 6 there are element, region, and relationvariables.{ If R is a region variable and �x is a sequen
e of element variables, then R�xis a formula.{ If ' is a formula and R a region variable, then 9R' is also a formula.{ If M is a relation variable of arity (k; l), �R := R1; : : : ; Rk are region vari-ables, and �x := x1; : : : ; xl are element variables, then M �R�x is a formula.{ If '(M; �R; �x) is a formula with free element variables �x, free region variables�R := R1; : : : ; Rk, and a free (k; l)-ary relation variable M , su
h that ' ispositive in M , then [tLFPM; �R;�x'℄( �R; �x) is a formula.PolyLFP-queries are de�ned by PolyLFP-formulae without free region or relationvariables.



13The semanti
s of the logi
 is de�ned analogously to RegLFP(
onv), withthe region variables ranging over the set of regions in the region extension ofa database and relation variables being interpreted as subsets of Regk � Rl .Sin
e the region extension of a database 
an be 
omputed in polynomial timeand �rst-order logi
 on polynomial 
onstraint databases has polynomial timedata-
omplexity, the polynomial time data-
omplexity of PolyLFP follows im-mediately.We now show that PR - the set of queries 
omputable in polynomial time on aBSS-ma
hine - 
an be 
aptured by PolyLFP for a restri
ted 
lass of polynomial
onstraint databases.De�nition 15 A polynomial 
onstraint database B is said to be a k-degreedatabase, if the highest degree of any variable of a polynomial in the representa-tion of the database is at most k.Note that, as mentioned in Se
tion 5.1, by bounding the degree of the poly-nomials in the input database, we also get a polynomial bound on the degree ofthe polynomials bounding the regions.Theorem 16 For ea
h k 2 N, PolyLFP 
aptures PR on the 
lass of k-degreedatabases.Sket
h. Again, the theorem is proved by showing that the run of a BSS-ma
hine
omputing a PR-query 
an be simulated, the 
ru
ial point being the represen-tation of the input database. Re
all from above, that the regions are eitherf -se
tors or (f1; f2)-se
tions, for some polynomial fun
tions f; f1; f2. We de�nea representation of the database by a disjun
tion of formulae de�ning the re-gions 
ontained in it. Let region R be a f -se
tion. Sin
e, for some k 2 N, theinput is restri
ted to be a k-degree database and thus the degree of f is boundedby k, the polynomial f 
an be de�ned as f := Pi2f0;:::;kgd �ai�xi, where, fori := (i0; : : : ; id) 2 f0; : : : ; kgd, �xi denotes the produ
t Qdj=0 xijj . The 
oeÆ
ientsai in the sum 
an be de�ned by a formula '(�a) := 8�x9y (Pi2f0;:::;kgd ai�xi = y $R�xy), if the region R 
ontains more than one point. The 
ase where R 
ontainsonly one point is trivial. The se
tors 
an be de�ned similarly, sin
e they arebounded by one or two se
tions. These se
tions are again regions and 
an thusbe de�ned as des
ribed above. �6 Con
lusionWe introdu
ed logi
s extending �rst-order logi
 by re
ursion me
hanisms onlinear as well as polynomial 
onstraint databases. For linear 
onstraint databaseswe also introdu
ed a logi
 extending FO by the ability to 
ompute 
onvex 
losureand showed that regarding expressive power this 
on
ept equals the logi
 PFOL,where multipli
ation with one fa
tor bounded by a �nite set is permitted.



14 We showed that the �xed-point logi
s o�er query languages with rather highexpressive power, while still having tra
table data-
omplexity. For pra
ti
al im-plementations of these query languages, arrangements or 
ylindri
al algebrai
de
ompositions probably o�er not the most intuitive de�nition of the region do-main. But note that the results are independent of the pre
ise de�nition of theregion de
omposition, as long as the database 
an be represented by a unionof regions and the region de
omposition 
an be 
omputed in polynomial time.Thus, in a spatial database system, where spatial information is 
ombined withnon-spatial information giving a meaning to part of the spatial image, one 
oulduse a de
omposition 
onsistent with this semanti
al part.Referen
es[BCSS98℄ L. Blum, F. Cu
ker, M. Shub, and S. Smale. Complexity and Real Compu-tation. Springer, 1998.[BSS89℄ L. Blum, M. Shub, and S.Smale. On a theory of 
omputation and 
omplexityover the real numbers: NP-
ompleteness, re
ursive fun
tions and universalma
hines. Bulletin of the Ameri
an Mathmati
al So
iety, 21:1{46, 1989.[CJ98℄ B.F. Caviness and J.R.Johnson, editors. Quanti�er Elimination and Cylin-dri
 Algebrai
 De
omposition. Springer, 1998.[Col75℄ George E. Collins. Quanti�er elimination for real 
losed �elds by 
ylindri-
al algebrai
 de
omposition. In Automata Theory and Formal Languages,number 33 in LNCS, pages 134{183, Berlin, 1975. Springer-Verlag.[Ede87℄ H. Edelsbrunner. Algorithms in Combinatorial Geometry. EATCS Mono-graphs on Theoreti
al Computer S
ien
e. Springer, 1987.[EF95℄ H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.[GK97℄ S. Grumba
h and G. M. Kuper. Tra
table re
ursion over geometri
 data. InPrin
iples and Pra
ti
e of Constraint Programming, number 1330 in LNCS,pages 450 { 462. Springer, 1997.[GK99℄ E. Gr�adel and S. Kreutzer. Des
riptive 
omplexity theory for 
onstraintdatabases. In Computer S
ien
e Logi
, number 1683 in LNCS, pages 67 {82. Springer, 1999.[GK00℄ F. Geerts and B. Kuijpers. Linear approximation of planar spatial databasesusing transitive-
losure logi
. In PODS 2000, pages 126{135. ACM Press,2000.[GO97℄ Ja
ob E. Goodman and Joseph O'Rourke, editors. Handbook of Dis
rete andComputational Geometry. CRC Press, 1997.[GS97℄ S. Grumba
h and J. Su. Finitely representable databases. Journal of Com-puter and System S
ien
es, 55:273{298, 1997.[KKR90℄ P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages.In PODS 1990, pages 299{313, 1990.[KLP00℄ G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases.Springer, 2000.[KPSV96℄ B. Kuijpers, J. Paredaens, M. Smits, and J. Van den Buss
he. Terminationproperties of spatial datalog programs. In Logi
 in Databases, number 1154in LNCS, pages 101 { 116, 1996.[Kre00℄ S. Kreutzer. Fixed-point query languages for linear 
onstraint databases. InPODS 2000, pages 116{125. ACM press, 2000.



15[Van99℄ L. Vandeurzen. Logi
-Based Query Languages for the Linear ConstraintDatabase Model. PhD thesis, Limburgs Universitair Centrum, 1999.[VGG98℄ L. Vandeurzen, M. Gyssens, and D. Van Gu
ht. An expressive language forlinear spatial database queries. In PODS 1998, pages 109{118, 1998.A Blum-Shub-Smale-Ma
hinesBlum-Shub-Smale (BSS) ma
hines have been introdu
ed by Blum, Shub, andSmale in 1989 [BSS89℄. We give a brief review of the 
omputation model here.For a detailed introdu
tion see [BSS89℄ and the monograph on real 
omputation[BCSS98℄. Note that we use a slightly di�erent presentation of BSS ma
hinesthan the presentation given by Blum, Shub, and Smale.Intuitively, a BSS ma
hine is a random a

ess ma
hine with real registersand built-in operations for addition, subtra
tion, multipli
ation, and division. Apre
ise de�nition is given below.De�nition 17 We de�ne R1 as the set of all in�nite sequen
es (a0; a1; : : : ) ofreal numbers su
h that there is k 2 N with ai = 0 for all i � k.De�nition 18 A BSS ma
hine 
onsists of the input spa
e R1 , the state spa
eS := N � N � N � R1 , the output spa
e R1 and a dire
ted 
onne
ted graphG := (f0; : : : ; Ng; V ) for some N 2 N. Ea
h vertex has at most two 
hildren andone of the following �ve types of operations assigned to it. The graph representsthe program of the ma
hine, where verti
es 
an be thought of as 
ommands andsu

essors of nodes as the possible su

essive 
ommands.{ The node 0 is the input node. An input (y1; y2; : : : ; yk; 0; : : : ) 2 R1 ismapped to (1; 1; 1; y1; y2; : : : ) 2 S. Thus the node 0 has the su

essor 1.{ N is the output node. The ma
hine stops in the position (N; i; j; x1; x2; : : : )and outputs (x1; x2; : : : ). The node N has no su

essors.{ Computation nodes: An operation of this type transforms a state (n; i; j;x1; x2; : : : ) 2 S to (n+1; i0; j0; gn(x1; x2; : : : )) 2 S, where n+1 is the su

es-sive 
ommand, i0 2 fi+ 1; 1g; j0 2 fj + 1; 1g, and gn is one of the followingbasi
 operations:� Two registers xr ; xs are added, subtra
ted, multiplied, or divided and theresult is stored in xr.� A register xr is set to a real 
onstant.The registers xi with i 62 fr; sg are not altered.{ Test nodes: A test node n has exa
tly two su

essors n+ 1 and �(n). On astate (n; i; j; x1; : : : ) 2 S the ma
hine tests whether x1 � 0 and 
ontinues innode n+ 1 if the answer is yes and in node �(n) otherwise.{ Copy nodes: In state (n; i; j; x1; : : : ), the ma
hine sets xj := xi and 
ontinuesat node n+ 1.Based on BSS ma
hines one 
an de�ne 
omplexity 
lasses like PR as the 
lassof all problems 
omputable on a BSS ma
hine in polynomially many steps. See[BCSS98℄ for details.


