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Abstract. We define various extensions of first-order logic on linear as
well as polynomial constraint databases. First, we extend first-order logic
by a convex closure operator and show this logic, FO(conv), to be closed
and to have PTIME data-complexity. We also show that a weak form of
multiplication is definable in this language and prove the equivalence
between this language and the multiplication part of PFOL. We then
extend FO(conv) by fixed-point operators to get a query languages ex-
pressive enough to capture PTIME. In the last part of the paper we lift
the results to polynomial constraint databases.

1 Introduction

In recent years new application areas have reached the limits of the standard
relational database model. Especially, geographical information systems, which
are of growing importance, exceed the power of the relational model with their
need to store geometrical figures, naturally viewed as infinite sets of points.
Therefore, new database models have been proposed to handle these needs. One
such data model is the framework of constraint databases introduced by Kanel-
lakis, Kuper, and Revesz in 1990 [KKR90]. Essentially, constraint databases are
relational databases capable of storing arbitrary elementary sets. These sets are
not stored tuple-wise but by an elementary formula defining them. We give a
precise definition of the constraint database model in Section 2. See [KLP00] for
a detailed study of constraint databases.

When applied to spatial databases, one usually considers either databases
storing semi-algebraic sets, called polynomial constraint databases, or semi-linear
sets, known as linear constraint databases. Polynomial constraint databases al-
low the storage of spatial information in a natural way. The interest in the
linear model results from the rather high (practical) complexity of query evalu-
ation on polynomial databases. Essentially, the evaluation of first-order queries
in the polynomial model consists of quantifier-elimination in the theory of or-
dered real fields, for which a non-deterministic exponential-time lower bound has

* Appeared in the Proc. of ICDT 2001, (©Springer-Verlag



been proven. On the other hand, query evaluation on linear constraint databases
can be done efficiently. But first-order logic on these databases yields a query
language with rather poor expressive power.

It is known that first-order logic lacks the power to define queries relying on
recursion. A prominent example is connectivity which is not expressible in FO on
almost all interesting classes of structures. This lack of expressive power shows
up on polynomial as well as linear constraint databases. In finite model theory,
a standard method to solve this problem is to consider least fixed-point logic, an
extension of FO by a least fixed-point operator (see [EF95].) Although this logic
has successfully been used in the context of dense-order constraint databases
(see [KKR90,GS97,GK99]), it is not suitable for the linear database model, as it
is neither closed nor decidable on this class of databases (see [KPSV96].) Logics
extending FO by fixed-point constructs can be found in [GK97] and [GKO00].
Decidability and closure of these languages was achieved by including some kind
of stop condition for the fixed-point induction. In [Kre00], this problem has also
been attacked resulting in a language extending FO by fixed-points over a finite
set of regions in the input database.

Besides queries based on recursion there are also other important queries that
are not first-order definable. In the context of linear databases a very important
example of a query not expressible in FO is the convex closure query. We address
this problem in Section 3. Unfortunately, any extension of FO by operators
capable of defining convex hulls for arbitrary sets leads to a non-closed language.
Therefore, we can only hope to extend FO consistently by a restricted convex
hull operator. In this paper we add an operator to compute convex hulls of
finite sets only. We show that this can be done in a consistent way, resulting in a
language that is closed and has PTIME data-complexity. It is also shown that this
language and PFOL, an extension of FO by restricted multiplication defined by
Vandeurzen, Gyssens, and Van Gucht [VGG98], have the same expressive power.

As mentioned above, a language extending FO by recursion mechanisms has
been defined in [Kre00]. Although this language turns out to be rather expressive
for boolean queries, it lacks the power to define broad classes of non-boolean
queries. In Section 4 we present two alternative approaches to define fixed-point
logics on linear constraint databases. The first approach extends the logic defined
in [Kre00] by the convex closure operator mentioned above, whereas the second
approach combines convex closure with fixed-point induction over finite sets.
It is shown that both approaches lead to query languages capturing PTIME on
linear constraint databases.

In Section 5 we address the problem whether these results extend to the class
of polynomial constraint databases. Clearly, extending first-order logic by a con-
vex closure operator does not make sense, since convex closure is already defin-
able in FO+4PoLy, that is, first-order logic on polynomial constraint databases.
But it will be shown that the extension by fixed-point constructs can be suit-
ably adapted to the polynomial setting, resulting in a language strictly more
expressive than FO+Pory.



2 Preliminaries

Constraint databases. We first give a precise definition of the constraint
database model. See [KLP0O] for a detailed introduction. The basic idea in the
definition of constraint databases is to allow infinite relations which have a fi-
nite presentation by a quantifier-free formula. Let 2 be a 7-structure, called the
contezt structure, and p(zq,...,z,) be a quantifier-free formula of vocabulary
7. We say that a n-ary relation R C A" is represented by o(z1,...,2,) over
2 iff R equals {a € A" : A = pla]}. Let 0 := {Ry,..., R} be a relational
signature. A o-constraint database over the context structure 2 is a o-expansion
B := (A, Ry,...,Ry) of A where all R; are finitely represented by formulae pg,
over A. The set & := {pR,,...,¢r,} is called a finite representation of B.

To measure the complexity of algorithms taking constraint databases as in-

puts we have to define the size of a constraint database. Unlike finite databases,
the size of constraint databases cannot be given in terms of the number of ele-
ments stored in them but has to be based on a representation of the database.
Note that equivalent representations of a database need not be of the same size.
Thus, the size of a constraint database depends on a particular representation. In
the following, whenever we speak of a constraint database 28, we have a particu-
lar representation @ of B in mind. The size |B| of B is then defined as the sum
of the length of the formulae in @. This corresponds to the standard encoding
of constraint databases by the formulae of their representation.
Constraint queries. Fix a context structure 2[. A constraint query is a mapping
Q@ from constraint databases over 2 to finitely representable relations over 2.
Note that queries are abstract, i.e., they depend only on the database not on their
representation. That is, any algorithm that computes @, taking a representation
& of a database B as input and producing a representation of Q(28) as output,
has to compute on two equivalent representations @ and @' output formulae that
are not necessarily the same, but represent the same relation on .

In the sequel we are particularly interested in queries defined by formu-
lae of a given logic £. Let ¢ € £ be a formula with k£ free variables. Then
¢ defines the query (), mapping a constraint database B over 2 to the set
©® = {(a1,...,ar) : B [ p[a]}. In order for Q, to be well defined, this set
must be representable by a quantifier-free formula. If ¢ is first-order, this means
that 2 admits quantifier elimination. For more powerful logics than first-order
logic the additional operators must be eliminated as well. A logic £ is closed for
a class C of constraint databases over 2, if for every ¢ € £ and every B € C the
set P can be defined by a quantifier-free first-order formula over 2.

Typical questions that arise when dealing with constraint query languages are
the complexity of query evaluation for a certain constraint query language and
the definability of a query in a given language. For a fixed query formula ¢ € L,
the data-complezity of the query @, is defined as the amount of resources (e.g.
time, space, or number of processors) needed to evaluate the function that takes
a representation @ of a database B to a representation of the answer relation

Qy(B).



3 First-Order Logic and Convex Hulls

In this section we define an extension of first-order logic on semi-linear databases
such that with each definable finite set of points also its convex hull becomes
definable. Defining convex hulls is a very important concept when dealing with
semi-linear databases but first-order logic itself is not powerful enough to define
it. Thus, adding an operator allowing the definition of convex hulls results in
a language strictly more expressive than FO. Note that allowing to define the
convex closure of arbitrary point sets yields a non-closed query language, since
multiplication - and thus sets which are not semi-linear - becomes definable. We
therefore allow the definition of convex hulls for finite sets of points only.

Proviso. In the rest of this paper, whenever we speak about the interior of a
set or a set being open, we always mean “interior” or “open” with respect to the
set’s affine support.

Definition 1 Let %;,%},§ denote sequences of I variables each and zZ denote a
sequence of variables, such that all variables are distinct. The logic FO(conv) is
defined as the extension of first-order logic by the following two rules:

(i) If ¢ € FO(conv) is a formula with free variables {Z1, ..., Tk, 2z} then ¢ :=
[convz,. . z,¢|(F, Z) is also a formula, with free variables {g,z}.

(it) If ¢ € FO(conv) is a formula with free variables {Z1,%,..., Tk, T}, 2}
then 1) := [UCOHVzl,z’l,...,ik,f;c80](?3,5) is also a formula, with free variables

{7.2}.

The semantics of the additional operators is defined as follows. Let B be the
input database and ¢ and ¢ be as in Part (i) of the definition above. Let ¢®
be the result of evaluating the formula ¢ in %B. If ¢ is infinite, then ¥® = @.
Otherwise, ¥* := {(a,b) : a € |J {conv{as,...,ar} : B = ¢la1,...,ax,b]}},
where conv{a,...,a} denotes the interior (with respect to the affine support)
of the convex closure of {a,...,ax}.

The semantics of the uconv operator is defined similarly. The motivation for
the uconv operator is, that every set defined by the conv operator is bounded.
To overcome this restriction, the uconv operator is designed to handle “points at
infinity”. Let ¢ and ¢ be as indicated in Part (i7) of the definition above and let B
be the input database. Again, if ¢ is infinite, then ¥® := @. Otherwise, ¢ :=
{(a,b) : there are ay,a,...,a,a) such that B = pla,,a,...,ar,a}, b and
a € conv(Ufleine(di,d;))}, where line(a;,a) == {z : (3b € RZ?) such that
Z = a; + b(a; — a;)} defines the half line with origin a; going through al.

Intuitively, each pair (@;,a;) represents two points, the point a; and the point
“reached” when starting at @; and going in the direction of @} to infinite distance.
Now uconv returns the union of the open convex closure (with respect to its affine
support) of the 2k points represented by each tuple ((a@i,1,a;,),. .., (@ik, @} )).

Note that the condition on the formula ¢ to define a finite set is purely
semantical. Since finiteness of a semi-linear set is first-order definable - consider,
for example, the formula finite(p) stating that there are €,d > 0 such that the



Manhattan-distance between any two points in ¢® is greater than € and each

point in ¢® is contained in a hypercube of edge length § - this condition can also

be ensured on a syntactic level, thus giving the language an effective syntax.
We now give an example of a query definable in FO(conv).

Example 2 Let p(z) be a formula defining a finite set. The query
mult,(z,y,2) := {(a,b,c) : a satisfies p and a-b=c}

is definable in FO(conv). We give a formula for the case x,y,z > 0. Let Ty =
(®1,1,21,2) and Za := (z21,222) be pairs of variables and Y(Z1,T2;2) 1= T1 =
(0,0) A Zo = (1,z) be a formula defining for each = the two points (0,0) and
(1,z) in R%. Then the formula

’QZJ(CU, Y, Z) = [uconvzl,@go(m) A I(rb(a?l , T2, a:)](y, Z; CU)

defines the query mult,. The uconv operator defines - for the parameter x - the
half line with origin (0,0) and slope x. Thus the point (y,z) is on this line iff
Ty =2z.

Theorem 3 FO(conv) is closed and has PTIME data-complezity.

The closure of the conv-operator follows from the finiteness of the sets, of
which the convex closure is computed. PTIME data-complexity can easily be
shown by induction on the structure of the queries.

We now compare the language to other extensions of FO for linear databases.
Especially, we will show that FO(conv) and the language PFOL as defined by
Vandeurzen et. al. [VGG98] have the same expressive power. We briefly recall
the definition of PFOL (see [VGG98] and [Van99] for details.)

There are two different kinds of variables in PFOL, real variables and so-
called product variables. A PFOL program consists of a sequence of formulae

formulae are allowed to use multiplication between variables z - p, but at least
p must be a product variable. All product variables must be bound at some
point by a quantifier of the following form. In ¢; the quantifiers for the product
variables are of the form dp € D;, where j < i. In ¢ all D; may be used. Thus,
essentially, the formulae ; define successively a sequence of finite sets and then
at least one factor of each multiplication is restricted to one of these sets. In the
original definition of PFOL there were also terms ¢ = /|p|. We don’t take this
term building rule into account and allow only multiplication. We believe this to
be the essential and important part of the language. But note that the square
root operator strictly increases the expressive power of the language. Therefore
we call the language considered here restricted PFOL.

It is known that convex closure can be defined in restricted PFOL. In Ex-
ample 2 we already saw that multiplication with one factor bounded by a finite
set can be defined in FO(conv). Thus, the proof of the following theorem is
straightforward.



Theorem 4 Restricted PFOL = FO(conw).

Note 5 As the previous theorem shows, we can express atoms of the form z-,y =
z in FO(conv), with the semantics being that xy = z and (x) holds, where ¢
is required to define a finite set. From now on, we allow atoms of this form in
FO(conv)-formulae.

The previous theorem implies that the bounds on expressiveness proven for
PFOL carry over to FO(conv). Here we mention one result which will be of
special importance in Section 4.2.

It has been shown in [Van99] that there is a PFOL query which returns on
a semi-linear set S C R” a finite relation S"¢ C R™"+1) of (n + 1)-tuples of
points in R", such that S = U(al,...@n“)esenc conv(@y,...,dn4+1). Thus, PFOL
can compute a canonical finite representation of the input database and recover
the original input from it. This will be used below to define a fixed-point query
language capturing PTIME.

4 Query Languages Combining Convex Hulls and
Recursion

In this section we present two approaches to combine the query language defined
above with fixed-point constructs.

4.1 The Logic RegLFP (conv)

Let S C R? be a semi-linear set. An arrangement of S is a partition of R? into
finitely many disjoint regions, i.e., connected subsets of R?, such that for each
region R either RN S = @ or R C S. It is known that for a fixed dimension
arrangements of semi-linear sets can be computed in polynomial time. See e.g.
[Ede87] or [GO97] for details.

It follows from the definition that the input relation S can be written as a
finite union of regions in its arrangement. In this section we consider a query
language which has access to the set of regions in such an arrangement of the
input database. This gives the logic access to the representation of the database
increasing, thus, its expressive power. Precisely, we consider a fixed-point logic
where the fixed-point induction is defined over the finite set of regions. The
semantics of the logic is defined in terms of certain two-sorted structures, called
region extensions of linear constraint databases. Let B := ((R,<,+),S) be a
database and let A(S) be the set of regions in an arrangement of S. The logic
then has separate variables and quantifiers for the reals and the set of regions.

We now give the precise definitions.

Definition 6 Let B := ((R,<,+),S) be a linear constraint database, where S is
a d-ary relation, and let A(S) be the set of regions of an arrangement of S. The
structure B gives rise to a two-sorted structure B9 .= (R, <, +), S; Reg, adj),



called the region extension of B, with sorts R and Reg := A(S) and the adjacency
relation adj C Reg X Reg, where two regions are adjacent if there is a point p in
one of them such that every e-neighbourhood of p has a non-empty intersection
with the other region.

The dimension of a region is defined as the dimension of its affine support,
i.e., the dimension of the smallest affine subspace it is contained in. It is known
that the number of regions in the arrangement is bounded polynomially in the
size of the representation of S. As arrangements can be computed in polynomial
time, one can compute the region extension of a given database in polynomial
time as well.

We now define the logic RegLFP(conv) which is FO(conv) extended by a
least fixed-point operator on the set of regions in the region extensions. In the
definition of the logic we deal with three types of variables, so-called element-,
region-, and relation variables. Element variables will be interpreted by real
numbers, region variables by regions in the region extension of the database.
Each relation variable is equipped with a pair (k,I) € N? of arities. Relation
variables of arity (k,l) are interpreted by subsets M C Reg® x R!, such that for
each R € Reg® the set {Z : (R,Z) € M} is finitely representable.

Definition 7 The logic RegLFP(conv) is defined as extension of FO(conv) on
region extensions by a least fixed-point operator. Precisely, the logic extends
FO(conv) by the following rules.

— If R is a region variable and T is a sequence of element variables, then RT
is a formula.

— If ¢ is a formula and R a region variable, then ARy is also a formula.

— If M is a relation variable of arity (k,1), R := Ry,..., Ry is a sequence of
region variables, and T := x1,...,x; is a sequence of element variables, then
MRZ is a formula.

— If o(M, R, %) is a formula with free element variables T, free region variables
R := Ry,...,Ry, and a free (k,l)-ary relation variable M, such that M
occurs only positively in o, then [tLFPM’chp](R,a’:) is a formula.

— If p(z) is a formula and x,y,z are element variables, then © -, y = z is a
formula.

RegLFP(conv)-queries are defined by RegLFP (conv)-formulae without free region
or relation variables.

The semantics of the new rules is defined as follows. An atom RZ states that
the point Z is contained in the region R; an atom M RZ states that the tuple
(R, %) is contained in M; a formula IRy states that there is a region R € Reg
satisfying ¢. The semantics of conv, uconv, and -, is defined as in the previous
section.

Let M be a (k,1)-ary relation variable, R := Ry, ..., R}, be a sequence of re-
gion variables, Z := x1,...,2; be a sequence of element variables, and p(M, R, 7)
be a formula positive in M. The result of the formula ¢ := [{LFPy; z ;¢](R, Z)



evaluated in a database B is defined as the least fixed-point of the function f,
defined as

fo : Pow(Reg" x R') —s Pow(Reg" x R!)
M — {(R.a) € Reg" xR : (3y(R,y) € M A (R,a) € M) V
(—37(R,9) € M AB |= ¢(M, R,a))}.

Clearly, the least fixed-point of the function exists and can be computed
inductively in time polynomially in the number of regions and thus also in the
size of the database.

Intuitively, we can think of the stages of the fixed-point induction as a set
of tuples of regions R, where to each R there is a formula ¢z (z) attached to it
defining a set of points in R'. But once a tuple of regions is contained in some
stage of the fixed-point induction, the formula attached to it cannot be changed
anymore. This is ensured by the first disjunct in the definition of f,. An example
motivating this definition of the fixed-point operator is given below.

Note that there are different decompositions of R? satisfying the conditions
of an arrangement as presented above. Thus, the semantics of the logic depends
on a particular decomposition chosen. But the results we prove below stay true
for most decompositions, as long as the input can be recovered from them. Thus,
for a given application area, one should choose a decomposition which is more
intuitive to use.

Having defined the logic, we now give a motivating example for it.

Example 8 Suppose we are given a road map with cities and the highways con-
necting them. Typically, the maps contain information about the distance between
any two adjacent cities directly connected by a section of a highway. In this set-
up a useful decomposition of the input into regions would be to have a region for
each city, one for each section of a highway between two cities, as well as regions
for the other parts of the map.

Now suppose we want to travel from one city to another on a certain high-
way and we want to know the distance between these two cities. Let the con-
stants s,t denote the regions of the source and target city and assume a formula
dist(C,C",d), stating that C and C' are regions of adjacent cities and d is the
distance between both on the chosen highway. Then the formula

o(x) := [tLFPar,04,05,a dist(C1,Ca,d) vV (3C 3dy Idy M(Cy,Cydy) A
diSt(C, Cg,dg) A d= d1 + dg) ](S,t,:ﬂ)

defines the distance between the two cities. Here the real variable d in the fized-
point induction is used to sum up the distances.

We now show that the logic is expressive enough to capture all PTIME-queries
on linear constraint databases.

Definition 9 A linear constraint database B has the small coordinate property
if the absolute values of the coordinates of all points contained in a 0-dimensional
region, are bounded by 2°("), where n is the number of regions in the region
extension of B.



Theorem 10 RegLFP(conv) captures PTIME on the class of linear constraint
databases having the small coordinate property.

Sketch. As an arrangement of a semi-linear set can be computed in polynomial
time, the region extension of the input database can be computed in PTIME
as well. Now the PTIME data-complexity of RegLFP(conv) can be shown by
induction on the structure of the queries. To prove that each PTIME-query can
be defined by a RegLFP(conv)-query, we show that the run of a Turing-machine
M computing the query can be simulated. The crucial point is that, given the
input relation S C R?, a finite set R C R4 4*+1) of tuples of points such that S =

Further, given such a set R C R4 for some | € N, the set {# : Z €
conv(ay,...,a;4+1) for some (ai,...,a+1) € R} can be defined using the conv
and uconv operators. This can be used to encode the input of a Turing-machine
and to decode its output. The run of the Turing-machine can be simulated as
usual in finite model theory, using region variables to denote positions on the
Turing-tape. The restriction to databases with small coordinates comes from the
fact, that in order to simulate the Turing-machine, coordinates of points have to
be encoded by (tuples of) region variables. Thus, only polynomially many bits
can be used to represent a coordinate of a point, restricting it to exponential
size. g

4.2 Finitary Fixed-Point Logic

The query language introduced in the previous section depends on a specific
decomposition of the input database. Thus, its usability relies on the existence
of a decomposition which can easily be understood by the user. Although this
is the case in some application areas, it will be a problem in others. In this
section we present a way to overcome this dependency on a specific, intuitive
decomposition.

Below we define finitary fized-point logic as the extension of FO(conv) by a
least fixed-point operator over arbitrary definable finite sets. The idea is that,
as mentioned in Section 3, the language FO(conwv) is capable of defining a finite
representation of the input database. Using this one can replace the fixed-point
induction on the regions by a fixed-point induction on the finite representation.

We already mentioned that finiteness of a semi-linear set is first-order defin-
able. Therefore we use formulae finite(y), which, given a formula ¢, evaluate to
true if the set defined by ¢ is finite and false otherwise.

Definition 11 Finitary Fixed-Point Logic (FFP) is defined as the extension of
FO(conv) by a finitary LFP operator. Precisely, if T := x1,...,x and Z :=
21,...,2; are sequences of first-order variables, R is a (k + l)-ary second-order
variable, (%) and ¥(R, T, Z) are formulae, such that R occurs only positively in
Y and does not occur in @, then also [tLFP g z (¢, )] (1, D) is a formula with free
variables {u,0}, where @, 0 are sequences of variables of arity k and .
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The semantics of a formula x := [tLFPg z(p,¢)](a,?) is defined as the least
fixed-point of the function

fy @ Pow(REH) — Pow(RE+!)
R — {(z,2) : (3y (z,5) e RA(Z,Z) € R) V
(=37 (2,9) € R) AB = finite(p) A o(Z) A P(R, T, 2)))},

where B is the input database. Intuitively, the formula ¢ serves as a guard,
ensuring that the fixed-point induction runs over the finite set defined by ¢
only. As before, the variables Z can be used to attach some information to a
tuple Z contained in a induction stage.

Regarding the expressive power of this language, one can easily show that the
languages RegLFP(conv) and FFP are equivalent. Thus, FFP captures PTIME
on the class of linear constraint databases.

Theorem 12 (i) FFP captures PTIME on the class of linear constraint da-
tabases having the small coordinate property.
(i) RegLFP(conv) and FFP have the same expressive power on the class of
linear constraint databases.

5 Polynomial Constraint Databases

In this section we extend the approach taken in Section 4 to polynomial con-
straint databases. Clearly, it does not make sense to add a convex closure opera-
tor to first-order logic, as convex closure is already definable in FO on polynomial
constraint databases. Thus, the logic PolyLFP is defined as the least fixed-point
logic over region extensions, but the regions will now be defined by a cylindrical
algebraic decomposition of the input space.

In Section 5.1 we give a (very brief) overview of cylindrical algebraic de-
compositions (CADs). See [Col75] or the monograph [CJ98] for details. We then
define the region extension of polynomial constraint databases and introduce the
logic PolyLFP.

The data-complexity and expressive power of the logic is considered there-
after. When dealing with complexity issues for constraint databases, one can
base the examination on the Turing-model and restrict oneself to representing
formulae with rational or real algebraic coefficients. Another approach is to ig-
nore the complexity of the storage and manipulation of real numbers and use
a computation model capable of storing arbitrary real numbers. These models
have built-in functions for operations like multiplication and addition which can
be executed in one time step. This approach puts more focus on the complexity
of the underlying logic than on the complexity of manipulating numbers. There-
fore we take this approach here and base our analysis of the complexity on the
Blum-Shub-Smale (BSS) model. A brief introduction to BSS-machines can be
found in Appendix A.
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5.1 Cylindrical algebraic decomposition

Fix a dimension d. A region is defined as a connected subset of R?. The cylinder
Z(R) over a region R is defined as R x R. If R is a region and f : R — R is
a continuous function, then the f-section of Z(R) is defined as the graph of f,
that is, the set {(@,b) : @ € R and b = fa}.

% fo-section

(f1, f2)-sector

= fi-section

stack over R "51.‘_‘_

Region R

Fig. 1. Tllustration of some concepts used in CADs.

Now, let fi,f2 : R — R be continuous functions over R such that for all
€ R fi(a) < fa(a). The (f1, f2)-sector of Z(R) is defined as the set {(a, b)
a € Rand f1(a) < b < fa(a)}. We allow fi, f> to be the constant functions
—0Q, 00.

I

Let X C R? be a set. A decomposition of X is a finite collection of disjoint
regions whose union is X. Let R be a region and let fi,...,fr : R = R be a
sequence of continuous functions from R to R, such that f;(Z) < fit+1(Z) for
all Z € R. This sequence defines a decomposition of the cylinder Z(R) into
the regions defined by 1) the f;-sections, 2) the (f;, fi+1)-sectors where i €
{0,...,k 4+ 1} and fo(Z) = —oo and fr+1(Z) = oo. Such a decomposition is
called a stack over R (determined by fi,..., fr). See Figure 1 for an illustration
of these concepts.

A decomposition D of R? is called cylindrical if i) d = 1 and D is a stack
over R?, i.e. a finite number of singletons and intervals, or ii) d > 2 and there is
a cylindrical decomposition D' of R¥~! such that for each region R € D' there
is a subset S C D forming a stack over R. Clearly, a cylindrical decomposition
of R? determines a unique cylindrical decomposition of R?~!, called the induced
decomposition.

A decomposition of R? is called algebraic, if every region is a semi-algebraic
set. A cylindrical algebraic decomposition (CAD) of R is a decomposition of R?
which is both cylindrical and algebraic.

Let A := {fi,..., fm} be aset of polynomials from R? to R. A decomposition
D of R? is called A-invariant, if for each f; € A and all regions R € D, either
forall Z € R f;(Z) > 0, f;(Z) =0, or f;(Z) <O0.
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Let B := (R, <,+,-,S) be a database, where S is d-ary. A CAD D of R?
is invariant for B, if it is invariant for the set of polynomials occurring in the
representation of S. Thus, for each region R € D either RNS =& or RC S.

It is known that a CAD of R? invariant for a given set A of polynomials
can be computed in double exponential time in the dimension d and polynomial
time in the size of A. Since the dimension is fixed, the algorithm operates in
polynomial time in the size of A, resp. in the size of a database B, if A is the
set of polynomials occurring in the representation of ‘8.

Further, a close analysis of the algorithms shows, that if D is a CAD of R?
invariant for a given set of polynomials of degree at most n, then, for d fixed,
the degree of the polynomials defining the regions in D is polynomially bounded
in n. See [Col75] for details.

5.2 A fixed-point logic for polynomial constraint databases

We define a fixed-point query language for polynomial constraint databases. In
analogy to Section 4 this language is based on region extensions of databases.

Definition 13 Let B := ((R,<,+,-),S) be a polynomial constraint database.
The region extension B9 of B is defined as a two-sorted structure BFI =
((R,<,+,),S; Reg). The first sort consists of the reals with order, addition,
and multiplication, whereas the second sort consists of the set Reg of regions
decomposing R? in a CAD invariant for 8.

We now define the language PolyLFP as least fixed-point logic on region
extensions. As before, the fixed-point induction is defined on the (finite) set
of regions only. Since every database has a unique region extension we don’t
distinguish between databases and their region extensions and freely speak about
a database being a model of a PolyLFP formula instead of explicitly mentioning
its region extension.

Definition 14 The logic PolyLFP is defined as the extension of first-order logic
by the following rules. As in Definition 6 there are element, region, and relation
variables.

— If R is a region variable and T is a sequence of element variables, then RT
is a formula.

— If ¢ is a formula and R a region variable, then ARy is also a formula.

— If M is a relation variable of arity (k,1), R := Ry,..., Ry are region vari-
ables, and T := x1,...,x; are element variables, then M RZ is a formula.

— If o(M, R, Z) is a formula with free element variables T, free region variables
R := Ry,...,Ry, and a free (k,1)-ary relation variable M, such that o is
positive in M, then [tLFP y p - ¢|(R, E) is a formula.

PolyLFP-queries are defined by PolyLFP-formulae without free region or relation
variables.
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The semantics of the logic is defined analogously to RegLFP(conv), with
the region variables ranging over the set of regions in the region extension of
a database and relation variables being interpreted as subsets of Reg® x R'.
Since the region extension of a database can be computed in polynomial time
and first-order logic on polynomial constraint databases has polynomial time
data-complexity, the polynomial time data-complexity of PolyLFP follows im-
mediately.

We now show that Pg - the set of queries computable in polynomial time on a
BSS-machine - can be captured by PolyLFP for a restricted class of polynomial
constraint databases.

Definition 15 A polynomial constraint database B is said to be a k-degree
database, if the highest degree of any variable of a polynomial in the representa-
tion of the database is at most k.

Note that, as mentioned in Section 5.1, by bounding the degree of the poly-
nomials in the input database, we also get a polynomial bound on the degree of
the polynomials bounding the regions.

Theorem 16 For each k € N, PolyLFP captures Pr on the class of k-degree
databases.

Sketch. Again, the theorem is proved by showing that the run of a BSS-machine
computing a Pr-query can be simulated, the crucial point being the represen-
tation of the input database. Recall from above, that the regions are either
f-sectors or (f1, f2)-sections, for some polynomial functions f, f1, fo. We define
a representation of the database by a disjunction of formulae defining the re-
gions contained in it. Let region R be a f-section. Since, for some k& € N, the
input is restricted to be a k-degree database and thus the degree of f is bounded
by k, the polynomial f can be defined as f := Zz’e{07...,k}d a,%', where, for
i:= (ig,-..,iq) € {0,...,k}?, 3 denotes the product H}i:o ;. The coefficients
RZzy), if the region R contains more than one point. The case where R contains
only one point is trivial. The sectors can be defined similarly, since they are
bounded by one or two sections. These sections are again regions and can thus
be defined as described above. O

6 Conclusion

We introduced logics extending first-order logic by recursion mechanisms on
linear as well as polynomial constraint databases. For linear constraint databases
we also introduced a logic extending FO by the ability to compute convex closure
and showed that regarding expressive power this concept equals the logic PFOL,
where multiplication with one factor bounded by a finite set is permitted.
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We showed that the fixed-point logics offer query languages with rather high
expressive power, while still having tractable data-complexity. For practical im-
plementations of these query languages, arrangements or cylindrical algebraic
decompositions probably offer not the most intuitive definition of the region do-
main. But note that the results are independent of the precise definition of the
region decomposition, as long as the database can be represented by a union
of regions and the region decomposition can be computed in polynomial time.
Thus, in a spatial database system, where spatial information is combined with
non-spatial information giving a meaning to part of the spatial image, one could
use a decomposition consistent with this semantical part.
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A Blum-Shub-Smale-Machines

Blum-Shub-Smale (BSS) machines have been introduced by Blum, Shub, and
Smale in 1989 [BSS89]. We give a brief review of the computation model here.
For a detailed introduction see [BSS89] and the monograph on real computation
[BCSS98]. Note that we use a slightly different presentation of BSS machines
than the presentation given by Blum, Shub, and Smale.

Intuitively, a BSS machine is a random access machine with real registers
and built-in operations for addition, subtraction, multiplication, and division. A
precise definition is given below.

Definition 17 We define R® as the set of all infinite sequences (ag,a1,...) of
real numbers such that there is k € N with a; = 0 for all i > k.

Definition 18 A BSS machine consists of the input space R, the state space
S = NxNx N x R*, the output space R and a directed connected graph
G:=({0,...,N},V) for some N € N. Each vertez has at most two children and
one of the following five types of operations assigned to it. The graph represents
the program of the machine, where vertices can be thought of as commands and
successors of nodes as the possible successive commands.

— The node 0 is the input node. An input (y1,y2,...,Y%,0,...) € R® is
mapped to (1,1,1,y1,y2,...) € S. Thus the node 0 has the successor 1.

— N is the output node. The machine stops in the position (N,i,j, x1,22,...)
and outputs (x1,a,...). The node N has no successors.

— Computation nodes: An operation of this type transforms a state (n,i,j,
Z1,%2,...) € Sto(n+1,4, 5, gn(x1,22,...)) €S, where n+1 is the succes-
sive command, i' € {i +1,1},7' € {j + 1,1}, and g, is one of the following
basic operations:

o Two registers x,,xs are added, subtracted, multiplied, or divided and the
result is stored in x,.
e A register x, is set to a real constant.
The registers x; with i & {r,s} are not altered.

— Test nodes: A test node n has exactly two successors n+ 1 and B(n). On a
state (n,i,j,21,...) € S the machine tests whether x1 > 0 and continues in
node n + 1 if the answer is yes and in node $(n) otherwise.

— Copy nodes: In state (n,i,j,21,...), the machine sets x; := x; and continues
at node n + 1.

Based on BSS machines one can define complexity classes like Pr as the class
of all problems computable on a BSS machine in polynomially many steps. See
[BCSS98] for details.



