
Query Languages for Constraint Databases:First-Order Logi, Fixed-Points, and ConvexHulls?Stephan KreutzerLehrgebiet Mathematishe Grundlagen der Informatik,RWTH Aahen, D-52056 Aahen,kreutzer�informatik.rwth-aahen.deAbstrat. We de�ne various extensions of �rst-order logi on linear aswell as polynomial onstraint databases. First, we extend �rst-order logiby a onvex losure operator and show this logi, FO(onv), to be losedand to have Ptime data-omplexity. We also show that a weak form ofmultipliation is de�nable in this language and prove the equivalenebetween this language and the multipliation part of PFOL. We thenextend FO(onv) by �xed-point operators to get a query languages ex-pressive enough to apture Ptime. In the last part of the paper we liftthe results to polynomial onstraint databases.1 IntrodutionIn reent years new appliation areas have reahed the limits of the standardrelational database model. Espeially, geographial information systems, whihare of growing importane, exeed the power of the relational model with theirneed to store geometrial �gures, naturally viewed as in�nite sets of points.Therefore, new database models have been proposed to handle these needs. Onesuh data model is the framework of onstraint databases introdued by Kanel-lakis, Kuper, and Revesz in 1990 [KKR90℄. Essentially, onstraint databases arerelational databases apable of storing arbitrary elementary sets. These sets arenot stored tuple-wise but by an elementary formula de�ning them. We give apreise de�nition of the onstraint database model in Setion 2. See [KLP00℄ fora detailed study of onstraint databases.When applied to spatial databases, one usually onsiders either databasesstoring semi-algebrai sets, alled polynomial onstraint databases, or semi-linearsets, known as linear onstraint databases. Polynomial onstraint databases al-low the storage of spatial information in a natural way. The interest in thelinear model results from the rather high (pratial) omplexity of query evalu-ation on polynomial databases. Essentially, the evaluation of �rst-order queriesin the polynomial model onsists of quanti�er-elimination in the theory of or-dered real �elds, for whih a non-deterministi exponential-time lower bound has? Appeared in the Pro. of ICDT 2001, Springer-Verlag



2been proven. On the other hand, query evaluation on linear onstraint databasesan be done eÆiently. But �rst-order logi on these databases yields a querylanguage with rather poor expressive power.It is known that �rst-order logi laks the power to de�ne queries relying onreursion. A prominent example is onnetivity whih is not expressible in FO onalmost all interesting lasses of strutures. This lak of expressive power showsup on polynomial as well as linear onstraint databases. In �nite model theory,a standard method to solve this problem is to onsider least �xed-point logi, anextension of FO by a least �xed-point operator (see [EF95℄.) Although this logihas suessfully been used in the ontext of dense-order onstraint databases(see [KKR90,GS97,GK99℄), it is not suitable for the linear database model, as itis neither losed nor deidable on this lass of databases (see [KPSV96℄.) Logisextending FO by �xed-point onstruts an be found in [GK97℄ and [GK00℄.Deidability and losure of these languages was ahieved by inluding some kindof stop ondition for the �xed-point indution. In [Kre00℄, this problem has alsobeen attaked resulting in a language extending FO by �xed-points over a �niteset of regions in the input database.Besides queries based on reursion there are also other important queries thatare not �rst-order de�nable. In the ontext of linear databases a very importantexample of a query not expressible in FO is the onvex losure query. We addressthis problem in Setion 3. Unfortunately, any extension of FO by operatorsapable of de�ning onvex hulls for arbitrary sets leads to a non-losed language.Therefore, we an only hope to extend FO onsistently by a restrited onvexhull operator. In this paper we add an operator to ompute onvex hulls of�nite sets only. We show that this an be done in a onsistent way, resulting in alanguage that is losed and has Ptime data-omplexity. It is also shown that thislanguage and PFOL, an extension of FO by restrited multipliation de�ned byVandeurzen, Gyssens, and Van Guht [VGG98℄, have the same expressive power.As mentioned above, a language extending FO by reursion mehanisms hasbeen de�ned in [Kre00℄. Although this language turns out to be rather expressivefor boolean queries, it laks the power to de�ne broad lasses of non-booleanqueries. In Setion 4 we present two alternative approahes to de�ne �xed-pointlogis on linear onstraint databases. The �rst approah extends the logi de�nedin [Kre00℄ by the onvex losure operator mentioned above, whereas the seondapproah ombines onvex losure with �xed-point indution over �nite sets.It is shown that both approahes lead to query languages apturing Ptime onlinear onstraint databases.In Setion 5 we address the problem whether these results extend to the lassof polynomial onstraint databases. Clearly, extending �rst-order logi by a on-vex losure operator does not make sense, sine onvex losure is already de�n-able in FO+Poly, that is, �rst-order logi on polynomial onstraint databases.But it will be shown that the extension by �xed-point onstruts an be suit-ably adapted to the polynomial setting, resulting in a language stritly moreexpressive than FO+Poly.



32 PreliminariesConstraint databases. We �rst give a preise de�nition of the onstraintdatabase model. See [KLP00℄ for a detailed introdution. The basi idea in thede�nition of onstraint databases is to allow in�nite relations whih have a �-nite presentation by a quanti�er-free formula. Let A be a � -struture, alled theontext struture, and '(x1; : : : ; xn) be a quanti�er-free formula of voabulary� . We say that a n-ary relation R � An is represented by '(x1; : : : ; xn) overA i� R equals f�a 2 An : A j= '[�a℄g. Let � := fR1; : : : ; Rkg be a relationalsignature. A �-onstraint database over the ontext struture A is a �-expansionB := (A; R1; : : : ; Rk) of A where all Ri are �nitely represented by formulae 'Riover A. The set � := f'R1 ; : : : ; 'Rkg is alled a �nite representation of B.To measure the omplexity of algorithms taking onstraint databases as in-puts we have to de�ne the size of a onstraint database. Unlike �nite databases,the size of onstraint databases annot be given in terms of the number of ele-ments stored in them but has to be based on a representation of the database.Note that equivalent representations of a database need not be of the same size.Thus, the size of a onstraint database depends on a partiular representation. Inthe following, whenever we speak of a onstraint database B, we have a partiu-lar representation � of B in mind. The size jBj of B is then de�ned as the sumof the length of the formulae in �. This orresponds to the standard enodingof onstraint databases by the formulae of their representation.Constraint queries. Fix a ontext strutureA. A onstraint query is a mappingQ from onstraint databases over A to �nitely representable relations over A.Note that queries are abstrat, i.e., they depend only on the database not on theirrepresentation. That is, any algorithm that omputes Q, taking a representation� of a database B as input and produing a representation of Q(B) as output,has to ompute on two equivalent representations � and �0 output formulae thatare not neessarily the same, but represent the same relation on A.In the sequel we are partiularly interested in queries de�ned by formu-lae of a given logi L. Let ' 2 L be a formula with k free variables. Then' de�nes the query Q' mapping a onstraint database B over A to the set'B := f(a1; : : : ; ak) : B j= '[�a℄g: In order for Q' to be well de�ned, this setmust be representable by a quanti�er-free formula. If ' is �rst-order, this meansthat A admits quanti�er elimination. For more powerful logis than �rst-orderlogi the additional operators must be eliminated as well. A logi L is losed fora lass C of onstraint databases over A, if for every ' 2 L and every B 2 C theset 'B an be de�ned by a quanti�er-free �rst-order formula over A.Typial questions that arise when dealing with onstraint query languages arethe omplexity of query evaluation for a ertain onstraint query language andthe de�nability of a query in a given language. For a �xed query formula ' 2 L,the data-omplexity of the query Q' is de�ned as the amount of resoures (e.g.time, spae, or number of proessors) needed to evaluate the funtion that takesa representation � of a database B to a representation of the answer relationQ'(B).



43 First-Order Logi and Convex HullsIn this setion we de�ne an extension of �rst-order logi on semi-linear databasessuh that with eah de�nable �nite set of points also its onvex hull beomesde�nable. De�ning onvex hulls is a very important onept when dealing withsemi-linear databases but �rst-order logi itself is not powerful enough to de�neit. Thus, adding an operator allowing the de�nition of onvex hulls results ina language stritly more expressive than FO. Note that allowing to de�ne theonvex losure of arbitrary point sets yields a non-losed query language, sinemultipliation - and thus sets whih are not semi-linear - beomes de�nable. Wetherefore allow the de�nition of onvex hulls for �nite sets of points only.Proviso. In the rest of this paper, whenever we speak about the interior of aset or a set being open, we always mean \interior" or \open" with respet to theset's aÆne support.De�nition 1 Let �xi; �x0i; �y denote sequenes of l variables eah and �z denote asequene of variables, suh that all variables are distint. The logi FO(onv) isde�ned as the extension of �rst-order logi by the following two rules:(i) If ' 2 FO(onv) is a formula with free variables f�x1; : : : ; �xk ; �zg then  :=[onv�x1;:::;�xk'℄(�y; �z) is also a formula, with free variables f�y; �zg.(ii) If ' 2 FO(onv) is a formula with free variables f�x1; �x01; : : : ; �xk; �x0k; �zgthen  := [uonv�x1;�x01;:::;�xk;�x0k'℄(�y; �z) is also a formula, with free variablesf�y; �zg.The semantis of the additional operators is de�ned as follows. Let B be theinput database and  and ' be as in Part (i) of the de�nition above. Let 'Bbe the result of evaluating the formula ' in B. If 'B is in�nite, then  B := ?.Otherwise,  B := f(�a;�b) : �a 2 S fonvf�a1; : : : ; �akg : B j= '[�a1; : : : ; �ak;�b℄gg;where onvf�a1; : : : ; �akg denotes the interior (with respet to the aÆne support)of the onvex losure of f�a1; : : : ; �akg.The semantis of the uonv operator is de�ned similarly. The motivation forthe uonv operator is, that every set de�ned by the onv operator is bounded.To overome this restrition, the uonv operator is designed to handle \points atin�nity". Let ' and  be as indiated in Part (ii) of the de�nition above and letBbe the input database. Again, if 'B is in�nite, then  B := ?. Otherwise, 'B :=f(�a;�b) : there are �a1; �a01; : : : ; �ak; �a0k suh that B j= '[�a1; �a01; : : : ; �ak; �a0k;�b℄ and�a 2 onv(Ski=1 line(�ai; �a0i))g, where line(�ai; �a0i) := f�x : (9b 2 R�0 ) suh that�x = �ai + b(�a0i � �ai)g de�nes the half line with origin �ai going through �a0i.Intuitively, eah pair (�ai; �a0i) represents two points, the point �ai and the point\reahed" when starting at �ai and going in the diretion of �a0i to in�nite distane.Now uonv returns the union of the open onvex losure (with respet to its aÆnesupport) of the 2k points represented by eah tuple ((�ai;1; �a0i;1); : : : ; (�ai;k; �a0i;k)).Note that the ondition on the formula ' to de�ne a �nite set is purelysemantial. Sine �niteness of a semi-linear set is �rst-order de�nable - onsider,for example, the formula �nite(') stating that there are �; Æ > 0 suh that the



5Manhattan-distane between any two points in 'B is greater than � and eahpoint in 'B is ontained in a hyperube of edge length Æ - this ondition an alsobe ensured on a syntati level, thus giving the language an e�etive syntax.We now give an example of a query de�nable in FO(onv).Example 2 Let '(x) be a formula de�ning a �nite set. The querymult'(x; y; z) := f(a; b; ) : a satis�es ' and a � b = gis de�nable in FO(onv). We give a formula for the ase x; y; z � 0. Let �x1 =(x1;1; x1;2) and �x2 := (x2;1; x2;2) be pairs of variables and  (�x1; �x2;x) := �x1 =(0; 0) ^ �x2 = (1; x) be a formula de�ning for eah x the two points (0; 0) and(1; x) in R2 . Then the formula (x; y; z) := [uonv�x1;�x2'(x) ^  (�x1; �x2; x)℄(y; z;x)de�nes the query mult'. The uonv operator de�nes - for the parameter x - thehalf line with origin (0; 0) and slope x. Thus the point (y; z) is on this line i�x � y = z.Theorem 3 FO(onv) is losed and has Ptime data-omplexity.The losure of the onv-operator follows from the �niteness of the sets, ofwhih the onvex losure is omputed. Ptime data-omplexity an easily beshown by indution on the struture of the queries.We now ompare the language to other extensions of FO for linear databases.Espeially, we will show that FO(onv) and the language PFOL as de�ned byVandeurzen et. al. [VGG98℄ have the same expressive power. We briey reallthe de�nition of PFOL (see [VGG98℄ and [Van99℄ for details.)There are two di�erent kinds of variables in PFOL, real variables and so-alled produt variables. A PFOL program onsists of a sequene of formulae('1(x); : : : ; 'k(x);'(�x)). Eah 'i is required to de�ne a �nite set Di � R. Theformulae are allowed to use multipliation between variables x � p, but at leastp must be a produt variable. All produt variables must be bound at somepoint by a quanti�er of the following form. In 'i the quanti�ers for the produtvariables are of the form 9p 2 Dj , where j < i. In ' all Di may be used. Thus,essentially, the formulae 'i de�ne suessively a sequene of �nite sets and thenat least one fator of eah multipliation is restrited to one of these sets. In theoriginal de�nition of PFOL there were also terms t = pjpj. We don't take thisterm building rule into aount and allow only multipliation. We believe this tobe the essential and important part of the language. But note that the squareroot operator stritly inreases the expressive power of the language. Thereforewe all the language onsidered here restrited PFOL.It is known that onvex losure an be de�ned in restrited PFOL. In Ex-ample 2 we already saw that multipliation with one fator bounded by a �niteset an be de�ned in FO(onv). Thus, the proof of the following theorem isstraightforward.



6Theorem 4 Restrited PFOL = FO(onv).Note 5 As the previous theorem shows, we an express atoms of the form x�'y =z in FO(onv), with the semantis being that xy = z and '(x) holds, where 'is required to de�ne a �nite set. From now on, we allow atoms of this form inFO(onv)-formulae.The previous theorem implies that the bounds on expressiveness proven forPFOL arry over to FO(onv). Here we mention one result whih will be ofspeial importane in Setion 4.2.It has been shown in [Van99℄ that there is a PFOL query whih returns ona semi-linear set S � Rn a �nite relation Sen � Rn(n+1) of (n + 1)-tuples ofpoints in Rn , suh that S = S(�a1;:::;�an+1)2Sen onv(�a1; : : : ; �an+1). Thus, PFOLan ompute a anonial �nite representation of the input database and reoverthe original input from it. This will be used below to de�ne a �xed-point querylanguage apturing Ptime.4 Query Languages Combining Convex Hulls andReursionIn this setion we present two approahes to ombine the query language de�nedabove with �xed-point onstruts.4.1 The Logi RegLFP(onv)Let S � Rd be a semi-linear set. An arrangement of S is a partition of Rd into�nitely many disjoint regions, i.e., onneted subsets of Rd , suh that for eahregion R either R \ S = ? or R � S. It is known that for a �xed dimensionarrangements of semi-linear sets an be omputed in polynomial time. See e.g.[Ede87℄ or [GO97℄ for details.It follows from the de�nition that the input relation S an be written as a�nite union of regions in its arrangement. In this setion we onsider a querylanguage whih has aess to the set of regions in suh an arrangement of theinput database. This gives the logi aess to the representation of the databaseinreasing, thus, its expressive power. Preisely, we onsider a �xed-point logiwhere the �xed-point indution is de�ned over the �nite set of regions. Thesemantis of the logi is de�ned in terms of ertain two-sorted strutures, alledregion extensions of linear onstraint databases. Let B := ((R; <;+); S) be adatabase and let A(S) be the set of regions in an arrangement of S. The logithen has separate variables and quanti�ers for the reals and the set of regions.We now give the preise de�nitions.De�nition 6 Let B := ((R; <;+); S) be a linear onstraint database, where S isa d-ary relation, and let A(S) be the set of regions of an arrangement of S. Thestruture B gives rise to a two-sorted struture BReg := ((R; <;+); S;Reg; adj),



7alled the region extension ofB, with sorts R and Reg := A(S) and the adjaenyrelation adj � Reg�Reg, where two regions are adjaent if there is a point p inone of them suh that every "-neighbourhood of p has a non-empty intersetionwith the other region.The dimension of a region is de�ned as the dimension of its aÆne support,i.e., the dimension of the smallest aÆne subspae it is ontained in. It is knownthat the number of regions in the arrangement is bounded polynomially in thesize of the representation of S. As arrangements an be omputed in polynomialtime, one an ompute the region extension of a given database in polynomialtime as well.We now de�ne the logi RegLFP(onv) whih is FO(onv) extended by aleast �xed-point operator on the set of regions in the region extensions. In thede�nition of the logi we deal with three types of variables, so-alled element-,region-, and relation variables. Element variables will be interpreted by realnumbers, region variables by regions in the region extension of the database.Eah relation variable is equipped with a pair (k; l) 2 N2 of arities. Relationvariables of arity (k; l) are interpreted by subsets M � Regk � Rl , suh that foreah �R 2 Regk the set f�x : ( �R; �x) 2Mg is �nitely representable.De�nition 7 The logi RegLFP(onv) is de�ned as extension of FO(onv) onregion extensions by a least �xed-point operator. Preisely, the logi extendsFO(onv) by the following rules.{ If R is a region variable and �x is a sequene of element variables, then R�xis a formula.{ If ' is a formula and R a region variable, then 9R' is also a formula.{ If M is a relation variable of arity (k; l), �R := R1; : : : ; Rk is a sequene ofregion variables, and �x := x1; : : : ; xl is a sequene of element variables, thenM �R�x is a formula.{ If '(M; �R; �x) is a formula with free element variables �x, free region variables�R := R1; : : : ; Rk, and a free (k; l)-ary relation variable M , suh that Mours only positively in ', then [tLFPM; �R;�x'℄( �R; �x) is a formula.{ If '(x) is a formula and x; y; z are element variables, then x �' y = z is aformula.RegLFP(onv)-queries are de�ned by RegLFP(onv)-formulae without free regionor relation variables.The semantis of the new rules is de�ned as follows. An atom R�x states thatthe point �x is ontained in the region R; an atom M �R�x states that the tuple( �R; �x) is ontained in M ; a formula 9R' states that there is a region R 2 Regsatisfying '. The semantis of onv, uonv, and �' is de�ned as in the previoussetion.Let M be a (k; l)-ary relation variable, �R := R1; : : : ; Rk be a sequene of re-gion variables, �x := x1; : : : ; xl be a sequene of element variables, and '(M; �R; �x)be a formula positive in M . The result of the formula  := [tLFPM; �R;�x'℄( �R; �x)



8evaluated in a database B is de�ned as the least �xed-point of the funtion f'de�ned asf' : Pow(Regk � Rl ) �! Pow(Regk � Rl )M 7�! f( �R; �a) 2 Regk � Rl : (9�y ( �R; �y) 2M ^ ( �R; �a) 2M) _(:9�y( �R; �y) 2M ^B j= '(M; �R; �a))g:Clearly, the least �xed-point of the funtion exists and an be omputedindutively in time polynomially in the number of regions and thus also in thesize of the database.Intuitively, we an think of the stages of the �xed-point indution as a setof tuples of regions R, where to eah �R there is a formula ' �R(�x) attahed to itde�ning a set of points in Rl . But one a tuple of regions is ontained in somestage of the �xed-point indution, the formula attahed to it annot be hangedanymore. This is ensured by the �rst disjunt in the de�nition of f'. An examplemotivating this de�nition of the �xed-point operator is given below.Note that there are di�erent deompositions of Rd satisfying the onditionsof an arrangement as presented above. Thus, the semantis of the logi dependson a partiular deomposition hosen. But the results we prove below stay truefor most deompositions, as long as the input an be reovered from them. Thus,for a given appliation area, one should hoose a deomposition whih is moreintuitive to use.Having de�ned the logi, we now give a motivating example for it.Example 8 Suppose we are given a road map with ities and the highways on-neting them. Typially, the maps ontain information about the distane betweenany two adjaent ities diretly onneted by a setion of a highway. In this set-up a useful deomposition of the input into regions would be to have a region foreah ity, one for eah setion of a highway between two ities, as well as regionsfor the other parts of the map.Now suppose we want to travel from one ity to another on a ertain high-way and we want to know the distane between these two ities. Let the on-stants s; t denote the regions of the soure and target ity and assume a formuladist(C;C 0; d), stating that C and C 0 are regions of adjaent ities and d is thedistane between both on the hosen highway. Then the formula'(x) := [tLFPM;C1;C2;d dist(C1; C2; d) _ (9C 9d1 9d2 M(C1; C; d1) ^dist(C;C2; d2) ^ d = d1 + d2) ℄(s; t; x)de�nes the distane between the two ities. Here the real variable d in the �xed-point indution is used to sum up the distanes.We now show that the logi is expressive enough to apture all Ptime-querieson linear onstraint databases.De�nition 9 A linear onstraint database B has the small oordinate propertyif the absolute values of the oordinates of all points ontained in a 0-dimensionalregion, are bounded by 2O(n), where n is the number of regions in the regionextension of B.



9Theorem 10 RegLFP(onv) aptures Ptime on the lass of linear onstraintdatabases having the small oordinate property.Sketh. As an arrangement of a semi-linear set an be omputed in polynomialtime, the region extension of the input database an be omputed in Ptimeas well. Now the Ptime data-omplexity of RegLFP(onv) an be shown byindution on the struture of the queries. To prove that eah Ptime-query anbe de�ned by a RegLFP(onv)-query, we show that the run of a Turing-mahineM omputing the query an be simulated. The ruial point is that, given theinput relation S � Rd , a �nite set R � Rd(d+1) of tuples of points suh that S =Sfonv(�a1; : : : ; �ad+1) : (�a1; : : : ; �ad+1) 2 Rg an be de�ned in RegLFP(onv).Further, given suh a set R � Rl(l+1) for some l 2 N, the set f�x : �x 2onv(�a1; : : : ; �al+1) for some (�a1; : : : ; �al+1) 2 Rg an be de�ned using the onvand uonv operators. This an be used to enode the input of a Turing-mahineand to deode its output. The run of the Turing-mahine an be simulated asusual in �nite model theory, using region variables to denote positions on theTuring-tape. The restrition to databases with small oordinates omes from thefat, that in order to simulate the Turing-mahine, oordinates of points have tobe enoded by (tuples of) region variables. Thus, only polynomially many bitsan be used to represent a oordinate of a point, restriting it to exponentialsize. �4.2 Finitary Fixed-Point LogiThe query language introdued in the previous setion depends on a spei�deomposition of the input database. Thus, its usability relies on the existeneof a deomposition whih an easily be understood by the user. Although thisis the ase in some appliation areas, it will be a problem in others. In thissetion we present a way to overome this dependeny on a spei�, intuitivedeomposition.Below we de�ne �nitary �xed-point logi as the extension of FO(onv) by aleast �xed-point operator over arbitrary de�nable �nite sets. The idea is that,as mentioned in Setion 3, the language FO(onv) is apable of de�ning a �niterepresentation of the input database. Using this one an replae the �xed-pointindution on the regions by a �xed-point indution on the �nite representation.We already mentioned that �niteness of a semi-linear set is �rst-order de�n-able. Therefore we use formulae �nite('), whih, given a formula ', evaluate totrue if the set de�ned by ' is �nite and false otherwise.De�nition 11 Finitary Fixed-Point Logi (FFP) is de�ned as the extension ofFO(onv) by a �nitary LFP operator. Preisely, if �x := x1; : : : ; xk and �z :=z1; : : : ; zl are sequenes of �rst-order variables, R is a (k + l)-ary seond-ordervariable, '(�x) and  (R; �x; �z) are formulae, suh that R ours only positively in and does not our in ', then also [tLFPR;�x(';  )℄(�u; �v) is a formula with freevariables f�u; �vg, where �u; �v are sequenes of variables of arity k and l.



10The semantis of a formula � := [tLFPR;�x(';  )℄(�u; �v) is de�ned as the least�xed-point of the funtionf� : Pow(Rk+l ) �! Pow(Rk+l )R 7�! f(�x; �z) : (9�y (�x; �y) 2 R ^ (�x; �z) 2 R) _((:9�y (�x; �y) 2 R) ^B j= �nite(') ^ '(�x) ^  (R; �x; �z)))g;where B is the input database. Intuitively, the formula ' serves as a guard,ensuring that the �xed-point indution runs over the �nite set de�ned by 'only. As before, the variables �z an be used to attah some information to atuple �x ontained in a indution stage.Regarding the expressive power of this language, one an easily show that thelanguages RegLFP(onv) and FFP are equivalent. Thus, FFP aptures Ptimeon the lass of linear onstraint databases.Theorem 12 (i) FFP aptures Ptime on the lass of linear onstraint da-tabases having the small oordinate property.(ii) RegLFP(onv) and FFP have the same expressive power on the lass oflinear onstraint databases.5 Polynomial Constraint DatabasesIn this setion we extend the approah taken in Setion 4 to polynomial on-straint databases. Clearly, it does not make sense to add a onvex losure opera-tor to �rst-order logi, as onvex losure is already de�nable in FO on polynomialonstraint databases. Thus, the logi PolyLFP is de�ned as the least �xed-pointlogi over region extensions, but the regions will now be de�ned by a ylindrialalgebrai deomposition of the input spae.In Setion 5.1 we give a (very brief) overview of ylindrial algebrai de-ompositions (CADs). See [Col75℄ or the monograph [CJ98℄ for details. We thende�ne the region extension of polynomial onstraint databases and introdue thelogi PolyLFP .The data-omplexity and expressive power of the logi is onsidered there-after. When dealing with omplexity issues for onstraint databases, one anbase the examination on the Turing-model and restrit oneself to representingformulae with rational or real algebrai oeÆients. Another approah is to ig-nore the omplexity of the storage and manipulation of real numbers and usea omputation model apable of storing arbitrary real numbers. These modelshave built-in funtions for operations like multipliation and addition whih anbe exeuted in one time step. This approah puts more fous on the omplexityof the underlying logi than on the omplexity of manipulating numbers. There-fore we take this approah here and base our analysis of the omplexity on theBlum-Shub-Smale (BSS) model. A brief introdution to BSS-mahines an befound in Appendix A.



115.1 Cylindrial algebrai deompositionFix a dimension d. A region is de�ned as a onneted subset of Rd . The ylinderZ(R) over a region R is de�ned as R � R. If R is a region and f : R ! R isa ontinuous funtion, then the f-setion of Z(R) is de�ned as the graph of f ,that is, the set f(�a; b) : �a 2 R and b = f�ag. (f1; f2)-setorstak over R Region R f1-setionf2-setion
Fig. 1. Illustration of some onepts used in CADs.Now, let f1; f2 : R ! R be ontinuous funtions over R suh that for all�a 2 R f1(�a) < f2(�a). The (f1; f2)-setor of Z(R) is de�ned as the set f(�a; b) :�a 2 R and f1(�a) < b < f2(�a)g. We allow f1; f2 to be the onstant funtions�1;1.Let X � Rd be a set. A deomposition of X is a �nite olletion of disjointregions whose union is X . Let R be a region and let f1; : : : ; fk : R ! R be asequene of ontinuous funtions from R to R, suh that fi(�x) < fi+1(�x) forall �x 2 R. This sequene de�nes a deomposition of the ylinder Z(R) intothe regions de�ned by 1) the fi-setions, 2) the (fi; fi+1)-setors where i 2f0; : : : ; k + 1g and f0(�x) = �1 and fk+1(�x) = 1. Suh a deomposition isalled a stak over R (determined by f1; : : : ; fk). See Figure 1 for an illustrationof these onepts.A deomposition D of Rd is alled ylindrial if i) d = 1 and D is a stakover R0 , i.e. a �nite number of singletons and intervals, or ii) d � 2 and there isa ylindrial deomposition D0 of Rd�1 suh that for eah region R 2 D0 thereis a subset S � D forming a stak over R. Clearly, a ylindrial deompositionof Rd determines a unique ylindrial deomposition of Rd�1 , alled the indueddeomposition.A deomposition of Rd is alled algebrai, if every region is a semi-algebraiset. A ylindrial algebrai deomposition (CAD) of Rd is a deomposition of Rdwhih is both ylindrial and algebrai.Let A := ff1; : : : ; fmg be a set of polynomials from Rd to R. A deompositionD of Rd is alled A-invariant, if for eah fi 2 A and all regions R 2 D, eitherfor all �x 2 R fi(�x) > 0, fi(�x) = 0, or fi(�x) < 0.



12 Let B := (R; <;+; �; S) be a database, where S is d-ary. A CAD D of Rdis invariant for B, if it is invariant for the set of polynomials ourring in therepresentation of S. Thus, for eah region R 2 D either R \ S = ? or R � S.It is known that a CAD of Rd invariant for a given set A of polynomialsan be omputed in double exponential time in the dimension d and polynomialtime in the size of A. Sine the dimension is �xed, the algorithm operates inpolynomial time in the size of A, resp. in the size of a database B, if A is theset of polynomials ourring in the representation of B.Further, a lose analysis of the algorithms shows, that if D is a CAD of Rdinvariant for a given set of polynomials of degree at most n, then, for d �xed,the degree of the polynomials de�ning the regions in D is polynomially boundedin n. See [Col75℄ for details.5.2 A �xed-point logi for polynomial onstraint databasesWe de�ne a �xed-point query language for polynomial onstraint databases. Inanalogy to Setion 4 this language is based on region extensions of databases.De�nition 13 Let B := ((R; <;+; �); S) be a polynomial onstraint database.The region extension BReg of B is de�ned as a two-sorted struture BReg :=((R; <;+; �); S;Reg). The �rst sort onsists of the reals with order, addition,and multipliation, whereas the seond sort onsists of the set Reg of regionsdeomposing Rd in a CAD invariant for B.We now de�ne the language PolyLFP as least �xed-point logi on regionextensions. As before, the �xed-point indution is de�ned on the (�nite) setof regions only. Sine every database has a unique region extension we don'tdistinguish between databases and their region extensions and freely speak abouta database being a model of a PolyLFP formula instead of expliitly mentioningits region extension.De�nition 14 The logi PolyLFP is de�ned as the extension of �rst-order logiby the following rules. As in De�nition 6 there are element, region, and relationvariables.{ If R is a region variable and �x is a sequene of element variables, then R�xis a formula.{ If ' is a formula and R a region variable, then 9R' is also a formula.{ If M is a relation variable of arity (k; l), �R := R1; : : : ; Rk are region vari-ables, and �x := x1; : : : ; xl are element variables, then M �R�x is a formula.{ If '(M; �R; �x) is a formula with free element variables �x, free region variables�R := R1; : : : ; Rk, and a free (k; l)-ary relation variable M , suh that ' ispositive in M , then [tLFPM; �R;�x'℄( �R; �x) is a formula.PolyLFP-queries are de�ned by PolyLFP-formulae without free region or relationvariables.



13The semantis of the logi is de�ned analogously to RegLFP(onv), withthe region variables ranging over the set of regions in the region extension ofa database and relation variables being interpreted as subsets of Regk � Rl .Sine the region extension of a database an be omputed in polynomial timeand �rst-order logi on polynomial onstraint databases has polynomial timedata-omplexity, the polynomial time data-omplexity of PolyLFP follows im-mediately.We now show that PR - the set of queries omputable in polynomial time on aBSS-mahine - an be aptured by PolyLFP for a restrited lass of polynomialonstraint databases.De�nition 15 A polynomial onstraint database B is said to be a k-degreedatabase, if the highest degree of any variable of a polynomial in the representa-tion of the database is at most k.Note that, as mentioned in Setion 5.1, by bounding the degree of the poly-nomials in the input database, we also get a polynomial bound on the degree ofthe polynomials bounding the regions.Theorem 16 For eah k 2 N, PolyLFP aptures PR on the lass of k-degreedatabases.Sketh. Again, the theorem is proved by showing that the run of a BSS-mahineomputing a PR-query an be simulated, the ruial point being the represen-tation of the input database. Reall from above, that the regions are eitherf -setors or (f1; f2)-setions, for some polynomial funtions f; f1; f2. We de�nea representation of the database by a disjuntion of formulae de�ning the re-gions ontained in it. Let region R be a f -setion. Sine, for some k 2 N, theinput is restrited to be a k-degree database and thus the degree of f is boundedby k, the polynomial f an be de�ned as f := Pi2f0;:::;kgd �ai�xi, where, fori := (i0; : : : ; id) 2 f0; : : : ; kgd, �xi denotes the produt Qdj=0 xijj . The oeÆientsai in the sum an be de�ned by a formula '(�a) := 8�x9y (Pi2f0;:::;kgd ai�xi = y $R�xy), if the region R ontains more than one point. The ase where R ontainsonly one point is trivial. The setors an be de�ned similarly, sine they arebounded by one or two setions. These setions are again regions and an thusbe de�ned as desribed above. �6 ConlusionWe introdued logis extending �rst-order logi by reursion mehanisms onlinear as well as polynomial onstraint databases. For linear onstraint databaseswe also introdued a logi extending FO by the ability to ompute onvex losureand showed that regarding expressive power this onept equals the logi PFOL,where multipliation with one fator bounded by a �nite set is permitted.



14 We showed that the �xed-point logis o�er query languages with rather highexpressive power, while still having tratable data-omplexity. For pratial im-plementations of these query languages, arrangements or ylindrial algebraideompositions probably o�er not the most intuitive de�nition of the region do-main. But note that the results are independent of the preise de�nition of theregion deomposition, as long as the database an be represented by a unionof regions and the region deomposition an be omputed in polynomial time.Thus, in a spatial database system, where spatial information is ombined withnon-spatial information giving a meaning to part of the spatial image, one oulduse a deomposition onsistent with this semantial part.Referenes[BCSS98℄ L. Blum, F. Cuker, M. Shub, and S. Smale. Complexity and Real Compu-tation. Springer, 1998.[BSS89℄ L. Blum, M. Shub, and S.Smale. On a theory of omputation and omplexityover the real numbers: NP-ompleteness, reursive funtions and universalmahines. Bulletin of the Amerian Mathmatial Soiety, 21:1{46, 1989.[CJ98℄ B.F. Caviness and J.R.Johnson, editors. Quanti�er Elimination and Cylin-dri Algebrai Deomposition. Springer, 1998.[Col75℄ George E. Collins. Quanti�er elimination for real losed �elds by ylindri-al algebrai deomposition. In Automata Theory and Formal Languages,number 33 in LNCS, pages 134{183, Berlin, 1975. Springer-Verlag.[Ede87℄ H. Edelsbrunner. Algorithms in Combinatorial Geometry. EATCS Mono-graphs on Theoretial Computer Siene. Springer, 1987.[EF95℄ H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.[GK97℄ S. Grumbah and G. M. Kuper. Tratable reursion over geometri data. InPriniples and Pratie of Constraint Programming, number 1330 in LNCS,pages 450 { 462. Springer, 1997.[GK99℄ E. Gr�adel and S. Kreutzer. Desriptive omplexity theory for onstraintdatabases. In Computer Siene Logi, number 1683 in LNCS, pages 67 {82. Springer, 1999.[GK00℄ F. Geerts and B. Kuijpers. Linear approximation of planar spatial databasesusing transitive-losure logi. In PODS 2000, pages 126{135. ACM Press,2000.[GO97℄ Jaob E. Goodman and Joseph O'Rourke, editors. Handbook of Disrete andComputational Geometry. CRC Press, 1997.[GS97℄ S. Grumbah and J. Su. Finitely representable databases. Journal of Com-puter and System Sienes, 55:273{298, 1997.[KKR90℄ P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages.In PODS 1990, pages 299{313, 1990.[KLP00℄ G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases.Springer, 2000.[KPSV96℄ B. Kuijpers, J. Paredaens, M. Smits, and J. Van den Busshe. Terminationproperties of spatial datalog programs. In Logi in Databases, number 1154in LNCS, pages 101 { 116, 1996.[Kre00℄ S. Kreutzer. Fixed-point query languages for linear onstraint databases. InPODS 2000, pages 116{125. ACM press, 2000.



15[Van99℄ L. Vandeurzen. Logi-Based Query Languages for the Linear ConstraintDatabase Model. PhD thesis, Limburgs Universitair Centrum, 1999.[VGG98℄ L. Vandeurzen, M. Gyssens, and D. Van Guht. An expressive language forlinear spatial database queries. In PODS 1998, pages 109{118, 1998.A Blum-Shub-Smale-MahinesBlum-Shub-Smale (BSS) mahines have been introdued by Blum, Shub, andSmale in 1989 [BSS89℄. We give a brief review of the omputation model here.For a detailed introdution see [BSS89℄ and the monograph on real omputation[BCSS98℄. Note that we use a slightly di�erent presentation of BSS mahinesthan the presentation given by Blum, Shub, and Smale.Intuitively, a BSS mahine is a random aess mahine with real registersand built-in operations for addition, subtration, multipliation, and division. Apreise de�nition is given below.De�nition 17 We de�ne R1 as the set of all in�nite sequenes (a0; a1; : : : ) ofreal numbers suh that there is k 2 N with ai = 0 for all i � k.De�nition 18 A BSS mahine onsists of the input spae R1 , the state spaeS := N � N � N � R1 , the output spae R1 and a direted onneted graphG := (f0; : : : ; Ng; V ) for some N 2 N. Eah vertex has at most two hildren andone of the following �ve types of operations assigned to it. The graph representsthe program of the mahine, where verties an be thought of as ommands andsuessors of nodes as the possible suessive ommands.{ The node 0 is the input node. An input (y1; y2; : : : ; yk; 0; : : : ) 2 R1 ismapped to (1; 1; 1; y1; y2; : : : ) 2 S. Thus the node 0 has the suessor 1.{ N is the output node. The mahine stops in the position (N; i; j; x1; x2; : : : )and outputs (x1; x2; : : : ). The node N has no suessors.{ Computation nodes: An operation of this type transforms a state (n; i; j;x1; x2; : : : ) 2 S to (n+1; i0; j0; gn(x1; x2; : : : )) 2 S, where n+1 is the sues-sive ommand, i0 2 fi+ 1; 1g; j0 2 fj + 1; 1g, and gn is one of the followingbasi operations:� Two registers xr ; xs are added, subtrated, multiplied, or divided and theresult is stored in xr.� A register xr is set to a real onstant.The registers xi with i 62 fr; sg are not altered.{ Test nodes: A test node n has exatly two suessors n+ 1 and �(n). On astate (n; i; j; x1; : : : ) 2 S the mahine tests whether x1 � 0 and ontinues innode n+ 1 if the answer is yes and in node �(n) otherwise.{ Copy nodes: In state (n; i; j; x1; : : : ), the mahine sets xj := xi and ontinuesat node n+ 1.Based on BSS mahines one an de�ne omplexity lasses like PR as the lassof all problems omputable on a BSS mahine in polynomially many steps. See[BCSS98℄ for details.


