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Abstract est in these logics in finite model theory originates from the
close relationship between fixed-point logics and computa-
We study the relationship between least and inflationary tional complexity.
fixed-point logic. By results of Gurevich and Shelah from  This relationship is made precise in the remarkable re-
1986, it has been known that on finite structures both log- sults by Immerman [8] and Vardi [12] that, on finite ordered
ics have the same expressive power. On infinite structuresstructuresjeast fixed-point logi¢LFP) provides a logical
however, the question whether there is a formultFiRnot  characterisation of polynomial time computations, in the
equivalent to any.FP-formula was still open. sense that a class of finite ordered structures is decidable i
In this paper, we settle the question by showing that both polynomial time if, and only if, it is definable in least fixed-
logics are equally expressive on arbitrary structures. The point logic. Other complexity classes such as polynomial or
proof will also establish the strictness of the nestingtlep  |ogarithmic space can also be characterised in this way, us-
hierarchy forIFP on some infinite structures. Finally, we ing different fixed-point logics. Since the discovery ofshe
show that the alternation hierarchy féffP collapses to the  results, fixed-point logics play a fundamental role in finite
first level on all structures, i.e. the Complement of an infla- model theory, arguab|y even more important than first-order
tionary fixed-pointis an inflationary fixed-point itself. logic itself. One result of this development is that today a
lot more is known about fixed-point logics on finite than on
infinite structures.
1. Introduction The best known of these logics is the least fixed-point
logic (LFP), already mentioned above, which extends first-
The study of inductive definitions has a long history in order logic by an operator to form least fixed-points of posi-
logic and computer science. Beginning with the work of tive formulae (which define monotone operators.) But there
Kleene and others on inductive definitions on the structure are other fixed-pointlogics. Besides fragments of LFP, such
of arithmetic in recursion theory, inductive definitions on as transitive closure logic and existential or stratifieédix
abstract structures have been studied since the early-severpoint logic, which all have in common that they form fixed
ties, most notably by Moschovakis [9, 10], Aczel [1], and Points of monotone operators, there are also fixed-pointlog
others. ics that allow the use of non-monotone operators. The sim-
Whereas in the seventies the study of inductive defi- plest of these logics imflationary fixed-point logi¢IFP),
nitions focused on monotone or non-monotone inductionsWhich allows the definition of inflationary fixed-points of
of first-order formulae on infinite structures, the rise of arbitrary formulae. We give precise definitions in Section
database and finite model theory in the eighties gave birth to2. See [5] for an extensive study of fixed-point logics on
a renewed interest in such kinds of definitions in the more finite structures. A survey that also treats infinite streesu
coherent framework of fixed-point logics. But many of the can be found in [4].
methods proved important for fixed-pointlogics had already It follows from results by Knaster and Tarski that for
be obtained in the framework studied in the seventies. formulae defining monotone operators, the least and infla-
Although different in scope and focus, finite model the- tionary fixed-points coincide. Thus, we immediately get
ory and database theory both concentrate on finite structhat LFP C IFP. On the other hand, IFP provides a much
tures. In database theory, the interest in fixed-point lgic more liberal syntax than LFP and one might conjecture that
results from the desire to have more expressive query lan-IFP also provides more expressive power. For the case of
guages for databases than the relational calculus. The inte monadic inductions, inductions defining unary relatiores, i



sets, this is true indeed. This case has been studied in [3rganisation. In the next section we give precise defini-
for fixed-point extensions of modal logics where it has been tions of the fixed-point logics under consideration. In Sec-
shown that inflationary fixed-pointinductions have very dif tion 3 we explain the stage comparison relations and theo-
ferent properties and provide much more expressive powerrems. Stage comparison is the basis of the most important
than least fixed-point inductions. To some extent, these re-method for reasoning about fixed-point logics and provides
sults generalise to monadic fixed-point logics based on first the main tool used in the sections thereafter. In Section 4
order logic as well. we present our main result that least and inflationary fixed-
However, for formulae without arity restrictions, Gure- point logic have the same expressive power. Finally, we
vich and Shelah [7] showed that least and inflationary fixed- obtain as corollaries of this result that in general theingst
point logic have the same expressive power on finite struc-depth hierarchy of IFP does not collapse whereas the alter-
tures. nation hierarchy for IFP collapses on all structures. This
The most basic question concerning LFP and IFP on ar-Will be explained in Section 5.
bitrary structures is whether IFP is more expressive than
LFP, a question that has was left open since the study of2. Fixed-Point Logics
inflationary inductions in the seventies. As noted by Dawar

and Gurevich [4] this question comes in two forms: In this section we present the basic definitions for the

explorations in the later sections. Lebe a signature and

Question: Is there a formulap of IFP and a A := (A, 7) ar-structure. Letp(R, T) be a first-order for-

structure2 such that for every formula of mula with free variable¥ and a free relation symbdt not

LFP, 2L = (o < ¢)? occurring int. The formulay defines an operator

Is there a formulag of IFP such that for every F,: P(A) — P(A)

. ¥
formulay of LFP, there is a structur® such R +— {a: (R yla}.

that2l £ (¢ <« ¥)?
A fixed point of the operatoFy, is any setk such that
It is clear that the method used by Gurevich and Shelah Fy(R) = R. Clearly, asp is arbitrary, the corresponding
on finite structures does not carry over to infinite structure pperatorF » need not to hfve any flxec_j pomts at all. For
as it relies crucially on the fact that on finite structuresrgy  Instance, the formula(R, z) := ZVy R?{c defines the op-
fixed-point induction is itself finite and thus only successo ©'alorF, mapping any sefz ¢ A® to A* and the setd
stages occur in the induction. itself to the empty set. Thug, has no fixed points.

The main coisbuton o s paper i o answer bth _ FOUELE I U clss of admissle omuaes e
guestions negatively, i.e. to show that for every formula in X P 9

IFP there is a formula in LFP equivalent to it on all struc- teed. A formulap(R, ) is monotonia mR,k if-for all 7-
tures. structure! := (4, 7) and all setsR, R’ C A,

As some simple implications of the method used to show R C R impliesF,(R) C F,(R').
this, we can also settle some hierarchy questions for IFP.
In particular, we will show that there is a negation normal  For a monotone operatdf,, it can be shown that fixed
form, i.e. every formula of IFP is equivalent to a formula points always exist and in fact even a least fixed point exists
where negation occurs only in front of atoms. Thus, the which can be defined as
alternation hierarchy for IFP, i.e. the hierarchy obtained
from the number of alternations between fixed-points and Ifp(F,) == [ J{R: F,(R) = R}.
negation in the formulae, collapses to the first level. This i o ) ] ) ) )
contrary to least fixed-point logic as it follows from result This gives rise to the first of our inductive logics, the
by Moschovakis [9, Chapter 5D] and Bradfield [2] that the Monotone fixed-point logic

alternation hierarchy for LFP is strict. 2.1 Definition (Monotone Fixed-Point Logic). Monotone
On the other hand, we will show that the nesting depth fixed-point logic(MFP) is defined as the extension of first-
hierarchy, i.e. the hierarchy obtained from the number of 5rger logic by the following formula building rule. If
fixed points nested inside each other, is strict in general.(p(R,f) is a formula with free first-order variableg :=
To be precise, this hierarchy is infinite on a structref, z1,...,2x and a free second-order variablg of arity &

2. This also differs from least fixed-point logic as in LFP | structures, then

nested positive applications of fixed-points can always be
eliminated. V= [fpg 5 ©](t)



is also a formula, wheré is a tuple of terms of the same is also a formula, where is a tuple of terms of the same
length asz. The free variables of are the variables oc-  length asz. The free variables of are the variables oc-

curring in t and the free variables af other thanz. curring in and the free variables af other thanz.

Let 2 be a structure providing an interpretation of the Let®l be a structure with universa providing an inter-
free variables ofy other thanz. Then for any tuplez, pretation of the free variables of other thanz. Consider
2 = [Ifpg 7 ¢](@) if, and only if,a € 1fp(F,). the following sequence of stages inducedyon 2.

As explained above, for any monotone operaibthe R = o
Igast fixed point ofF’ a_Iways e_xists. _Therefore the seman- R+! = RYUF,(R®) 1)
tics of the monotone fixed-point logic is well defined. N p o )

The problem with this definition of a fixed-point logic is, R = U R for limit ordinals \.
that the property of a formula to define a monotone operator B<A

onallstructures is undecidable. Thus, monotone fixedipoin cjeary this sequence of sets is increasing and thus leads to
logic has an undecidable syntax. a fixed pointR>. For any tuplez € A
To avoid this problem, one considers syntactical restric-

tions of MFP which guarantee monotonicity of the corre- 2 |= [ifpg 5 ¢](@) if, and only if,a € R*.

sponding operators. The most important such restriction is

to allow only formulae in the fixed-point rule, which are ~ As a corollary of the following theorem due to Knaster
positive in the relation variabl®&. It is clear, that if a for- ~ and Tarski we get that monotone is contained in inflationary
mulay(R,Z) is positive inR, then the corresponding op-  fixed-point logic.

erator F, is monotone. This leads to the definition of the

; . . 2.4 Theorem (Kn r and Tarski). Every monoton -
least fixed-point logic eorem (Knaster and Tarski). Every monotone op

erator F' : P(M) — P(M) has a least fixed-point which

2.2 Definition (Least Fixed-Point Logic). Least fixed- ~ May be written in the form

point logic (LFP) is defined as the extension of first-order

logic by the following formula building rule. Ib(R,T) is Ifp(F) = ﬂ{P : F(P) € P}
a formula with free first-order variabled := z1,..., 2%

Further, this fixed point can also be obtained by the fixed-

and a free second-order variable of arity &£ such thaty is point of the following sequence of sets

positive inR, then

- R = o
= [Ifpp 7 |(t
w [ pR,I SD]( ) Ra+1 — F(Roz) (2)
is also a formula, where is a tuple of terms of the same R — U RS for limit ordinals \.
length asz. The free variables of are the variables oc- Boa

curring in ¢ and the free variables af other thanz.
Let 2 be a structure providing an interpretation of the ~ As the sequence in the previous theorem is increasing
free variables ofp other thanz. Then for any tupleg, due to the monotonicity of”, the least fixed point reached
A k= [Ifpy - ¢](@) if, and only if,@ € 1fp(F,,). in this way must also be the inflationary fixed pointiof
’ Therefore it is clear, that regarding expressive power
Clearly, LFPC MFP. Monotone and least fixed-point
logic are examples of fixed-point logics defined by restrict- LFP C MFP C IFP.
ing the class of formulae so that the corresponding opesator
become monotone. To obtain more general fixed-point log-
ics, i.e. logics allowing non-monotone operators also, one
has to consider suitable semantics to guarantee the estisten

of meaningful fixed-points. The simplest such logic is the . ] ] )
inflationary fixed-point logic In this section we introduce the stage comparison

method which has been the key to many results about fixed-
2.3 Definition (Inflationary Fixed-Point Logic). Infla- point logics. (See [9, 5] for instance.) The method will
tionary fixed-point logic(IFP) is defined as the extension be essential for the explorations in the later sections. Let
of first-order logic by the following formula building rule. (R, ) be a formula, say in first-order logic. As mentioned

3. Comparing the stages of inductive defini-
tions

If o(R,T) is a formula with free first-order variables := above, ifp is positive inR, then its least fixed point is ob-

x1,...,x and a free second-order variable of arity &, tained as the fixed point of the sequence of sets as defined

then by (1). Thus we concentrate on such sequences of sets ap-
Y := [ifpg 5 ©](t) proximating least or inflationary fixed points.



Let := (A, 7) be ar-structure with universel. Right 1 defines the set of paif&,y) such thatz|, < « and
by definition, the sequence of stages definedlinis in- IZ], < |7le-
creasing and thus there is an ordimalk< |A|™ such that A detailed proof of the theorem will be given in the next
R* = R*t! = R>, where|A|* denotes the least infinite  section, where we show that the relatien, can be de-
cardinal greater than the cardinality df The individual fined in LFP, even if the formul& is not positive in its
sets occurring in the sequence induced by a formuéae free second-order variable.
called thestages of the induction op and the setR* is
called thea-th stage of the induction. Sometimes we also . . .
write ¢ to denote thex-th stage of the induction op. As 4. I_nflatlonary vs. Least Fixed-Point Induc-
a final bit of notation, we writeR<< or <% for the union tions
of all stages up tay, i.e., <% = Uﬁ<a ©?, and likewise

for R<~. In this section we establish the equivalence of IFP and
We now define the stage comparison relations for a least| Fp. Towards this goal, lep’(R,T) be in LFP, not nec-
or inflationary fixed-point induction. essarily positive inR, and consider the formula :=

Rz Vv ¢'(z). Clearly,p and¢’ have the same inflationary

3.1 Definition. Let (R, ) be a formula andi € A. The fixed point. Fix, for the rest of this section.

rank [a|,, of @ with respect tap is defined as the least ordi-
nal a such thatz € o if such an ordinaky exists anc Notation. Let ¢ (u) andy;(u) be formulae, which may

otherwise. _ _ _ or may not containk, wherew and R have the same ar-
Thestage comparison relations, and <, are defined ity. We write o(z, Rt /v (@), ~Ru/1-(T)) to denote the

as - formula obtained fronp by replacing each positive occur-
T <,y < z,y €™ andzl, <|yl,, rence of atoms of the forrRw, wherew is a tuple of terms,
and by« (w) and each negative occurrence of atoms of the form
z <,y < ze®and|z|, < |y, Ru by —»(w). Clearly, the formula is positive both i,

andys and, thus, positive il if both ¢, andy, are. O
where we allowy|, = oco.

Clearly, for alla We aim at defining the stage comparison relationfor
’ ’ ¢ in LFP. By the stage comparison theorem, can be
aece> iffandonlyif, a<,a defined as the inflationary fixed-point of the formula

if, and only if, (A, {w:7 <, a}) = ¢[al.
¢ (=, 7,Y) =T, Ru/u <T,~Ru/-u <) A

The following theorem, due to Moschovakis shows that -p(y, Ru/u < 7,~Ru/—u < T),
if (R, ) is in LFP and positive irR, then these relations
can be defined in LFP itself and likewise for IFP. See [9] where< is a second-order variable of appropriate arity.
and references therein for the case of LFP and [10] for the  To turn this into a formulain LFP we have to replace the
IFP-version. formula—u < 7 by a definition positive in<. Essentially,
we aim at defining another formuli{ <, =, ), negative in
<, with free second-order variableg and <, such that if
< is interpreted by a given stage”, for some ordinaky,
then the least fixed-poirk > will be <*. We could then

(i) Let o(R,T) be a formula inlFP. Then<,, and <., use(lfp ¥] negatively to get the desired positive definition

are both definable itFP. of <.
Unfortunately, by definition, the relation defined by such

We only sketch the proof for the relatien, definingthe 3 formula must increase with increasing stagés On the
stages of an inflationary induction @i 2, 7). Considerthe  other hand, a8 was supposed to be negative - and therefore
formulaey defined as antitone - in<, the relation defined by must decrease with
increasing stagesg®. Thus, in general, we can not hope for
such a formulato exist. Instead we will use a formula defin-
ing a slightly different relation. But it might be helpful to
keep the original idea in mind.

Consider the following formulae:

3.2 Theorem (Stage Comparison Theorem).
(i) Lety(R,T) be aformulainLFP positive inR. Then
<, and=,, are both definable il.FP.

V(=,7,7) = (T, Ru/u < T) A ~¢(y, Ru/u < T),

where< is a second-order variable of arity twice the arity of
7 and the formulap(Z, Ru/u < T) is obtained fromp by
replacing each atom of the forRwz by the formulaz < 7.

We claim, that the inflationary fixed point af exactly
defines<,,. This is proved by induction oa showing that X(T,7) == [Up< 55 X' (@, 9)](z,7),



X' (Z,7) := (T, Ru/u < T,~Ru/-u<T) A
Va(u < TV -u<T) A
—¢(y, Ru/u < T, ~Ru/-u < T)

and

where

WT,7) = (T, Ru/u < T,~Ru/—u <T}) A
~Ju@<TA-(T<KTATLY)) A
—(7, R/ < T,~Ru/~(T < TAT<LT)).

Obviously, the formulay’ is positive in< and itself a
formulain LFP. Thus the least fixed point of exists. We
claim that this fixed point defines exactly the stage compar-
ison relation<, of . Before proving this we first have to
establish some facts about the sub-formuilaRecall from
the beginning of this section thatis supposed to be of the
form Rz V ¢’. This is important for the proofs below as it
ensures that whenever a tupiesatisfiesy at a stagey, it
satisfiesp at all higher stages also.

4.1 Lemma. Consider the fixed-point induction @éhwhere
< is interpreted by< <%, the strict stage comparison rela-
tion up to stagey, i.e.,z < ¥ if, and only if,z € ©<* and
Zlp < [Yle-

() f T € p*ory € @, then(z,y) € 9= if, and only

(i) For all 3 such thatly| > « there is anz such that
|Z| = aand(z,7) € 9°°.

(iii) If the fixed-point of< has already been reached, i.e.
if <¥=<<2 theny> =<,

Proof.

1. We first prove by induction op that for all 5 < «,
(z,7) € ¥9 if, and only if, 7 € ” and|Z| < [7].
This is clear for3 = 0. Now assume that for all
0 < v < @ the claim has been proved. We distin-
guish between the case whare ¢° andz ¢ ¢°.

e Supposer € ¢”. We show that(2, <<,
<<A) = 9(z,7), if, and only if, [7| < |7|.
We consider the three conjunctsib§eparately.
If T € ¢, then for allw, by induction hypothe-
sis,u <« Tiff |u|, < |Z|, and, by assumption,
—u < T iff [u|, > |7|,. Thus,

(A==, <)
©(Z, Ru/t < T, ~Ru/—u < T}).

Now consider. If 7|, > |Z|,, then for allz,
u < T Au < gif,and only if, w < T which in
turnistrue only ift < . Thus— (7 < TAT <
y) reduces to-u < Z. Therefore there is na
satisfying(i < ZA —~(T < TAT < 7)) and
the second conjunct ifi is satisfied. Furthef;
does not satisfy (g, Ru/u < T, ~Ru/—-(u <
T AU < 7)) as otherwisédy|, < |Z|,. Thus,
(z,7) € ¥°.

On the other hand, ify|, < |Z|,, then(z <
T Au < P) in the second conjunct reduces
tow < y and thus there is @ satisfyingu <
TA-(U <7 ATLTY)), u:=7 forinstance.
Finally, supposéz|, = [7|,. By the same argu-
ment as above we get that in this cé%e <<,
<<P) = o(7,Ru/u < T,~Ru/(-u < TV
— < 7)) and thus) is not satisfied.

e Supposer ¢ ¢°. We show thatp(Z, Ru/u <
T,~Ru/—u < Z}) is not satisfied. By induc-
tion hypothesisy <« 7 defines the sed/ :=
<8, Further, defineV := {@ : —u < T}. As,
by assumptiong ¢ ”, we getM O N, where
M denotes the complement of .

ThusA [~ ¢(F, Ru/u € M,-~Ru/u € M)
and, by monotonicity of» in M and M, it fol-
lows

(A, <<, << j£
o(T, Ru/u < T,~Ru/—u < T}.

Taken together we get thaf, <<* <<f) |=
J(z,y) for a pair (z,7) if, and only if, 7 € ©” and
1Zle < [¥le-

. From the first part of the proof we get that ) €

v<e,if, and only if, T € ¢<~ and|z| < [g|. Thus,
< <*=<<% Now consider the next induction step.
Again we distinguish between € p* andz ¢ .

e Supposer € ¢°. Clearly, (A, <<% <<%)
(T, Ru/u < T, ~Ru/—u < T}).
If |5l, > |Z|,, then(m < T AT < 7) re-
duces tou < 7 and thus(2A, <<% <<%)
—¢(y, Ru/u < Z,~Ru/-(t K TAT K 7))
if, and only if, |g|, > |T|,.
Now suppos€y|, < |Z|,. Then|yl, < «
and there is am satisfyingu < T A =(z <
T AT < g), againy being such a tuple itself.
Thusd(z,y) is not satisfied.

e Now assume& ¢ %, Then(2l, <<%, <« <) j£
¢(Z,Ru/u <« T,~Ru/-u < T})asu < T
defines the sett € <« and—w < T its com-
plement.



Taken togetheny® contains all pair§z,y) such that
T € ¢* and|z|, < [g|,. This also proves Pafti)
because if there is a tupig of rank greater thai
there must also be a tupieof rank exactlyx and this
pair would be ing®.

If the fixed-point of< has already been reached, i.e.
<%=<<% then there are no tuples of rank ex-
actly « and thus all the tuplegr,y) € 9¢ have al-
ready been in<* and the fixed-point ofl has been
reached. This proves Pdiitii) of the lemma. Thus,
from now on, we assume that<~*C <.

3. We show now that in no stage > « a pair (z,7)
such thatz,y € ¢~ and|y|, < |Z|, can enter the
fixed-point. Towards a contradiction let be the
smallest such stage and Iet,y) be as described.

Then the same argument as in the first item of Step

1 yields a contradiction.

4. What is left to be shown is that for no ¢ ¢“ and
7 € ¢ the pair(Z,y) enters the fixed-point at some
higher stage. Towards a contradiction, {ebe the

Now, (A, <<%) = ¢(7, Ru/u < T, ~Ru/-u < T)
if, and only if, |g|, > |Z|,.

Thus, (2, <<%) E X/(z,y) if, and only if, [y], >
7],

e Supposer ¢ *. Thenwu < T defines the set
{w:u e p=*}. If => = p°, i.e. if the fixed-point
of ¢ has been reached, then, by Raft) of Lemma
4.1, we getd =< and (A, <<%) £ o(T, Ru/u <
Z,~Ru/-u < T). Thereforey’ is not satisfied.

Otherwise, i.e. ifp<® C ¢, then, by Par{ii) of
Lemma 4.1, there is a tupteof ranka witha < 7.
Thus, the conjunctu(u < = V —-u< < 7) is not
satisfied a® <1 = buta A .

This finishes the proof of the lemma. O

As corollary of this we get that the relation, is defin-
able in LFP.

4.3 Corollary. Lety(R,7) be a formula in LFP. Then the
stage comparison relatior,, of the inflationary fixed point
of ¢ is definable in LFP.

least such stage, i.e. the least stage such that there is

a pair(z,y) € 9" with T & ¢* andy € o*.

Now, asT ¢ ¢%, u < T defines justp<®. As~y

is supposed to be the least such stage, we get tha

-(u < T AT < 7) defines the set of tupl@ssuch
that|a|, > [7|,. Thus, if|y], < « then thereis a
tuplew satisfyingu < T A -(t < TAT < ) and
thus® is not satisfied byz,y). On the other hand,
if 7], = «, then(A, <<, <<%) & ¢(y, Ru/u <
T, ~Ru/-(u < T AT < 7)) and again} is not sat-
isfied.

This finishes the proof of the lemma. O

We now prove a technical lemma which will establish the
induction step in the proof that the fixed pointgfdefines
<o

4.2 Lemma. Let << be the strict stage comparison rela-
tion up to stagey, i.e.,z <<% g if, and only if,x € ©<¢
and|Z|, < |7le-

Then(2, <<%) & x/(7,7), if, and only if,7 € ¢* and
Zle < [Yle-

Proof. We distinguish between the cases where o
andz ¢ p°.

e Supposer € % By assumptionu < T de-
fines the sef{w : |u|, < |Z|,} and, by Parti) of
Lemma 4.1,-u < T defines its complement. Thus,
(A, <<*) = (T, Ru/u < T,~Ru/-u < ) and all
u satisfyu < TV —u < T.

Proof. A simple induction on the stages using the previ-
ous lemma shows thak, is defined by the formula
t':lbove. O

The equivalence of LFP and IFP follows immediately.

4.4 Theorem. For every formula inFP there is a formula
in LFP equivalent to it on all structures.

Proof. By Corollary 4.3, the relatior, is definable in LFP
for everyp(R,T) € LFP. Thus, for alz, T € ¢ if, and
onlyif, 2 = (%, Ru/x(u,T)). Thus, the inflationary fixed
point of a LFP-formula can be defined in LFP.

For arbitrary formulaep < IFP, the theorem follows
by induction on the number of inflationary fixed points
in ¢ converting them to least fixed points from the inside
out. O

The theorem shows that also on infinite structures, least
and inflationary fixed-point logic have the same expressive
power. But, contrary to the case of finite structures where
the translation of IFP-formulae to equivalent LFP-fornaula
does not alter the fixed-point structure - although the re-
sulting formulae often become more complicated and less
understandable - in the general case also their structure in
terms of alternations betweéfp-operators and negation as
well as the nesting depth of fixed-point operators becomes
more complicated. In the next section we show that this
cannot be avoided. Although it might be possible to lower
the increase in nesting depth of the resulting LFP-formulae
we will show that in general an increase in the number of
alternations is necessary.



5. Normal Forms and Hierarchies

In this section we investigate on the question whether al-
lowing to nesifp-operators inside each other or to use them

By definition, LFF' consists of all LFP-formulae where
no Ifp-operator occurs negatively, whereas gFd LFI%
are just the class of first-order formulae.
Theorem 5.1 above shows that the alternation hierarchy

negatively increases the expressive power of the resultingof IFP collapses to level one. It follows from results by

logic. In particular, we will show that using of fixed-point

Moschovakis [9] and Bradfield [2] that in general the alter-

operators negatively does not increase the expressiverpowenation hierarchy for LFP is strict on infinite structurese th

of IFP whereas nestindp-operators does.

5.1 Theorem. EachIFP-formula is equivalent to amhFP-
formula where negation occurs only in front of atoms.

Proof. The theorem is proved by induction on the structure
of the IFP-formula. For the case of thifp-operator note
that a formula-[ifpp o]t is equivalent to the simultane-
ous fixed poinfifp Q : St of the system

Rz

S =
it

On structures with at least two elements this is equivatent t
the inflationary fixed point of a single formula whereas on

— p(R,T)
— Vy (¢(R,y) — Ry) N -~R=z.

structure of arithmetic being an example. Note that this def
inition of the alternation hierarchy is the simplest poksib
and does not capture the true nature of alternation. There-
fore more sophisticated definitions of the alternationdnier
chy have been proposed in the literature. (See [6, 11, 2] and
references therein.) Here we use the alternation hierarchy
only to establish the next theorem showing that in inflation-
ary fixed-point logic, nested fixed points cannot be elimi-
nated in favour of a single one. Therefore we stick to the
simplest possible definition of alternation. But the result
below can easily be adapted to the other definitions as well.
We now prove the main result of this section.

5.3 Theorem. For everyn > 0,

structures with only one element IFP collapses to FO any-

way and the theorem is trivial. O

We now turn to the question whether nestéfgh-
operators can be reduced to a single one as it can be done
LFP. For this we first need some technical definitions.

5.2 Definition (Alternation and nesting-depth hierar-
chy). Lety € LFP be a formula such that no fixed-point
variable is bound twice in it and leX,..., X, be the
fixed-point variables occurring ip. Let for all 4, p; be
the formula bindingX; in ¢, i.e. @; := [Ifpy, 7. ;] for
suitablez; and /. '

We define a partial orderC, on the variables
Xq,..., X, as

X; T, X; if, and only if,¢; is a sub-formula of;

(i) The nesting-depth ofy is defined as the maximal
cardinality of a subset of X1, ..., Xx} which can
be linearly ordered by_,.

(i) The alternation-level ofp is defined as the maximal
cardinality of a subsetM of {X3,..., Xx} which
can be linearly ordered bz, such that in addition
for all X;, X; € M, if X, is a direct predecessor of
X with respect ta_,, theny; occurs negatively in
Pj-

The n-th level of the alternation hierarchyLFP.. ), c.
consists of all formulae ofFP with alternation-leveln.
Analogously, theu-th level of the nesting-depth hierarchy
(LFPﬁ)nEw of LFP is defined as the class of formulae in
LFP of nesting-deptt.

The alternation and nesting-depth hierarchy f6P are

defined analogously.

LFP? C IFPY C LFP4,

_Proof. Lety € LFP,, be aformula with alternation depth

'} is known that nestedifp-operators which all occur posi-
tively can be contracted to a sindlfp-operator increasing
the arity. Thus, every formula in LEPis equivalent to a
formula withn nested fixed-points. By Theorem 5.1 above,
this formula again is equivalent to an IFP formula with nest-
ing depthn.

Towards the second containment, note that using the
method of Theorem 4.4 to convert an IFP-formula to an
equivalent LFP-formula, the translation of each individua
ifp-operator at most triples the alternation depth. The theo-
rem now follows by induction. O

We immediately get the following corollaries.

5.4 Corollary. For any structure, the alternation depth hi-
erarchy for LFP collapses if, and only if, the nesting depth
hierarchy for IFP collapses.

An example of a class of structures where the hierarchies
are strict is the class of acceptable structures (see [$for
stance.)

5.5 Corollary. Let2 be acceptable. Then the nesting depth
hierarchy for IFP is strict. The same holds2fis not ac-
ceptable but allows the definition of a coding scheme in IFP.

Proof. This follows immediately from Corollary 5.5 and
the results of Moschovakis [9] and Bradfield [2] on the al-
ternation hierarchy of LFP on acceptable structures. [
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