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Abstract

We study the relationship between least and inflationary
fixed-point logic. By results of Gurevich and Shelah from
1986, it has been known that on finite structures both log-
ics have the same expressive power. On infinite structures
however, the question whether there is a formula inIFP not
equivalent to anyLFP-formula was still open.

In this paper, we settle the question by showing that both
logics are equally expressive on arbitrary structures. The
proof will also establish the strictness of the nesting-depth
hierarchy for IFP on some infinite structures. Finally, we
show that the alternation hierarchy forIFP collapses to the
first level on all structures, i.e. the complement of an infla-
tionary fixed-point is an inflationary fixed-point itself.

1. Introduction

The study of inductive definitions has a long history in
logic and computer science. Beginning with the work of
Kleene and others on inductive definitions on the structure
of arithmetic in recursion theory, inductive definitions on
abstract structures have been studied since the early seven-
ties, most notably by Moschovakis [9, 10], Aczel [1], and
others.

Whereas in the seventies the study of inductive defi-
nitions focused on monotone or non-monotone inductions
of first-order formulae on infinite structures, the rise of
database and finite model theory in the eighties gave birth to
a renewed interest in such kinds of definitions in the more
coherent framework of fixed-point logics. But many of the
methods proved important for fixed-point logics had already
be obtained in the framework studied in the seventies.

Although different in scope and focus, finite model the-
ory and database theory both concentrate on finite struc-
tures. In database theory, the interest in fixed-point logics
results from the desire to have more expressive query lan-
guages for databases than the relational calculus. The inter-

est in these logics in finite model theory originates from the
close relationship between fixed-point logics and computa-
tional complexity.

This relationship is made precise in the remarkable re-
sults by Immerman [8] and Vardi [12] that, on finite ordered
structures,least fixed-point logic(LFP) provides a logical
characterisation of polynomial time computations, in the
sense that a class of finite ordered structures is decidable in
polynomial time if, and only if, it is definable in least fixed-
point logic. Other complexity classes such as polynomial or
logarithmic space can also be characterised in this way, us-
ing different fixed-point logics. Since the discovery of these
results, fixed-point logics play a fundamental role in finite
model theory, arguably even more important than first-order
logic itself. One result of this development is that today a
lot more is known about fixed-point logics on finite than on
infinite structures.

The best known of these logics is the least fixed-point
logic (LFP), already mentioned above, which extends first-
order logic by an operator to form least fixed-points of posi-
tive formulae (which define monotone operators.) But there
are other fixed-point logics. Besides fragments of LFP, such
as transitive closure logic and existential or stratified fixed-
point logic, which all have in common that they form fixed
points of monotone operators, there are also fixed-point log-
ics that allow the use of non-monotone operators. The sim-
plest of these logics isinflationary fixed-point logic(IFP),
which allows the definition of inflationary fixed-points of
arbitrary formulae. We give precise definitions in Section
2. See [5] for an extensive study of fixed-point logics on
finite structures. A survey that also treats infinite structures
can be found in [4].

It follows from results by Knaster and Tarski that for
formulae defining monotone operators, the least and infla-
tionary fixed-points coincide. Thus, we immediately get
that LFP⊆ IFP. On the other hand, IFP provides a much
more liberal syntax than LFP and one might conjecture that
IFP also provides more expressive power. For the case of
monadic inductions, inductions defining unary relations, i.e.
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sets, this is true indeed. This case has been studied in [3]
for fixed-point extensions of modal logics where it has been
shown that inflationary fixed-point inductions have very dif-
ferent properties and provide much more expressive power
than least fixed-point inductions. To some extent, these re-
sults generalise to monadic fixed-point logics based on first-
order logic as well.

However, for formulae without arity restrictions, Gure-
vich and Shelah [7] showed that least and inflationary fixed-
point logic have the same expressive power on finite struc-
tures.

The most basic question concerning LFP and IFP on ar-
bitrary structures is whether IFP is more expressive than
LFP, a question that has was left open since the study of
inflationary inductions in the seventies. As noted by Dawar
and Gurevich [4] this question comes in two forms:

Question: Is there a formulaϕ of IFP and a
structureA such that for every formulaψ of
LFP,A 6|= (ϕ↔ ψ)?

Is there a formulaϕ of IFP such that for every
formulaψ of LFP, there is a structureA such
thatA 6|= (ϕ↔ ψ)?

It is clear that the method used by Gurevich and Shelah
on finite structures does not carry over to infinite structures
as it relies crucially on the fact that on finite structures every
fixed-point induction is itself finite and thus only successor
stages occur in the induction.

The main contribution of this paper is to answer both
questions negatively, i.e. to show that for every formula in
IFP there is a formula in LFP equivalent to it on all struc-
tures.

As some simple implications of the method used to show
this, we can also settle some hierarchy questions for IFP.
In particular, we will show that there is a negation normal
form, i.e. every formula of IFP is equivalent to a formula
where negation occurs only in front of atoms. Thus, the
alternation hierarchy for IFP, i.e. the hierarchy obtained
from the number of alternations between fixed-points and
negation in the formulae, collapses to the first level. This is
contrary to least fixed-point logic as it follows from results
by Moschovakis [9, Chapter 5D] and Bradfield [2] that the
alternation hierarchy for LFP is strict.

On the other hand, we will show that the nesting depth
hierarchy, i.e. the hierarchy obtained from the number of
fixed points nested inside each other, is strict in general.
To be precise, this hierarchy is infinite on a structureA, if,
and only if, the alternation hierarchy for LFP is infinite on
A. This also differs from least fixed-point logic as in LFP
nested positive applications of fixed-points can always be
eliminated.

Organisation. In the next section we give precise defini-
tions of the fixed-point logics under consideration. In Sec-
tion 3 we explain the stage comparison relations and theo-
rems. Stage comparison is the basis of the most important
method for reasoning about fixed-point logics and provides
the main tool used in the sections thereafter. In Section 4
we present our main result that least and inflationary fixed-
point logic have the same expressive power. Finally, we
obtain as corollaries of this result that in general the nesting
depth hierarchy of IFP does not collapse whereas the alter-
nation hierarchy for IFP collapses on all structures. This
will be explained in Section 5.

2. Fixed-Point Logics

In this section we present the basic definitions for the
explorations in the later sections. Letτ be a signature and
A := (A, τ) a τ -structure. Letϕ(R, x) be a first-order for-
mula with free variablesx and a free relation symbolR not
occurring inτ . The formulaϕ defines an operator

Fϕ : P(A) −→ P(A)
R 7−→ {a : (A, R) |= ϕ[a]}.

A fixed point of the operatorFϕ is any setR such that
Fϕ(R) = R. Clearly, asϕ is arbitrary, the corresponding
operatorFϕ need not to have any fixed points at all. For
instance, the formulaϕ(R, x) := ¬∀y Ry defines the op-
eratorFϕ mapping any setR ( Ak to Ak and the setAk

itself to the empty set. ThusFϕ has no fixed points.
However, if the class of admissible formulaeϕ is re-

stricted, then the existence of fixed points can be guaran-
teed. A formulaϕ(R, x) is monotone inR, if for all τ -
structuresA := (A, τ) and all setsR,R′ ⊆ Ak,

R ⊆ R′ impliesFϕ(R) ⊆ Fϕ(R′).

For a monotone operatorFϕ it can be shown that fixed
points always exist and in fact even a least fixed point exists
which can be defined as

lfp(Fϕ) :=
⋂

{R : Fϕ(R) = R}.

This gives rise to the first of our inductive logics, the
monotone fixed-point logic.

2.1 Definition (Monotone Fixed-Point Logic). Monotone
fixed-point logic(MFP) is defined as the extension of first-
order logic by the following formula building rule. If
ϕ(R, x) is a formula with free first-order variablesx :=
x1, . . . , xk and a free second-order variableR of arity k
such that the corresponding operatorFϕ is monotone on
all structures, then

ψ := [lfpR,x ϕ](t)
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is also a formula, wheret is a tuple of terms of the same
length asx. The free variables ofψ are the variables oc-
curring in t and the free variables ofϕ other thanx.

Let A be a structure providing an interpretation of the
free variables ofϕ other thanx. Then for any tuplea,
A |= [lfpR,x ϕ](a) if, and only if,a ∈ lfp(Fϕ).

As explained above, for any monotone operatorF the
least fixed point ofF always exists. Therefore the seman-
tics of the monotone fixed-point logic is well defined.

The problem with this definition of a fixed-point logic is,
that the property of a formula to define a monotone operator
on all structures is undecidable. Thus, monotone fixed-point
logic has an undecidable syntax.

To avoid this problem, one considers syntactical restric-
tions ofMFP which guarantee monotonicity of the corre-
sponding operators. The most important such restriction is
to allow only formulae in the fixed-point rule, which are
positive in the relation variableR. It is clear, that if a for-
mulaϕ(R, x) is positive inR, then the corresponding op-
eratorFϕ is monotone. This leads to the definition of the
least fixed-point logic.

2.2 Definition (Least Fixed-Point Logic). Least fixed-
point logic (LFP) is defined as the extension of first-order
logic by the following formula building rule. Ifϕ(R, x) is
a formula with free first-order variablesx := x1, . . . , xk

and a free second-order variableR of arity k such thatϕ is
positive inR, then

ψ := [lfpR,x ϕ](t)

is also a formula, wheret is a tuple of terms of the same
length asx. The free variables ofψ are the variables oc-
curring in t and the free variables ofϕ other thanx.

Let A be a structure providing an interpretation of the
free variables ofϕ other thanx. Then for any tuplea,
A |= [lfpR,x ϕ](a) if, and only if,a ∈ lfp(Fϕ).

Clearly, LFP⊆ MFP. Monotone and least fixed-point
logic are examples of fixed-point logics defined by restrict-
ing the class of formulae so that the corresponding operators
become monotone. To obtain more general fixed-point log-
ics, i.e. logics allowing non-monotone operators also, one
has to consider suitable semantics to guarantee the existence
of meaningful fixed-points. The simplest such logic is the
inflationary fixed-point logic.

2.3 Definition (Inflationary Fixed-Point Logic). Infla-
tionary fixed-point logic(IFP) is defined as the extension
of first-order logic by the following formula building rule.
If ϕ(R, x) is a formula with free first-order variablesx :=
x1, . . . , xk and a free second-order variableR of arity k,
then

ψ := [ifpR,x ϕ](t)

is also a formula, wheret is a tuple of terms of the same
length asx. The free variables ofψ are the variables oc-
curring in t and the free variables ofϕ other thanx.

LetA be a structure with universeA providing an inter-
pretation of the free variables ofϕ other thanx. Consider
the following sequence of stages induced byϕ onA.

R0 := ∅

Rα+1 := Rα ∪ Fϕ(Rα) (1)

Rλ :=
⋃

β<λ

Rβ for limit ordinalsλ.

Clearly this sequence of sets is increasing and thus leads to
a fixed pointR∞. For any tuplea ∈ A,

A |= [ifpR,x ϕ](a) if, and only if,a ∈ R∞.

As a corollary of the following theorem due to Knaster
and Tarski we get that monotone is contained in inflationary
fixed-point logic.

2.4 Theorem (Knaster and Tarski). Every monotone op-
eratorF : P(M) → P(M) has a least fixed-point which
may be written in the form

lfp(F ) =
⋂

{P : F (P ) ⊆ P}.

Further, this fixed point can also be obtained by the fixed-
point of the following sequence of sets

R0 := ∅

Rα+1 := F (Rα) (2)

Rλ :=
⋃

β<λ

Rβ for limit ordinalsλ.

As the sequence in the previous theorem is increasing
due to the monotonicity ofF , the least fixed point reached
in this way must also be the inflationary fixed point ofF .
Therefore it is clear, that regarding expressive power

LFP ⊆ MFP ⊆ IFP.

3. Comparing the stages of inductive defini-
tions

In this section we introduce the stage comparison
method which has been the key to many results about fixed-
point logics. (See [9, 5] for instance.) The method will
be essential for the explorations in the later sections. Let
ϕ(R, x) be a formula, say in first-order logic. As mentioned
above, ifϕ is positive inR, then its least fixed point is ob-
tained as the fixed point of the sequence of sets as defined
by (1). Thus we concentrate on such sequences of sets ap-
proximating least or inflationary fixed points.
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Let A := (A, τ) be aτ -structure with universeA. Right
by definition, the sequence of stages defined in(1) is in-
creasing and thus there is an ordinalα < |A|+ such that
Rα = Rα+1 = R∞, where|A|+ denotes the least infinite
cardinal greater than the cardinality ofA. The individual
sets occurring in the sequence induced by a formulaϕ are
called thestages of the induction onϕ and the setRα is
called theα-th stage of the induction. Sometimes we also
writeϕα to denote theα-th stage of the induction onϕ. As
a final bit of notation, we writeR<α or ϕ<α for the union
of all stages up toα, i.e.,ϕ<α :=

⋃

β<α ϕ
β , and likewise

for R<α.
We now define the stage comparison relations for a least

or inflationary fixed-point induction.

3.1 Definition. Letϕ(R, x) be a formula anda ∈ A. The
rank|a|ϕ of a with respect toϕ is defined as the least ordi-
nal α such thata ∈ ϕα if such an ordinalα exists and∞
otherwise.

Thestage comparison relations≤ϕ and≺ϕ are defined
as

x ≤ϕ y ⇐⇒ x, y ∈ ϕ∞ and|x|ϕ ≤ |y|ϕ,

and
x ≺ϕ y ⇐⇒ x ∈ ϕ∞ and|x|ϕ < |y|ϕ,

where we allow|y|ϕ =∞.

Clearly, for alla,

a ∈ ϕ∞ if, and only if, a ≤ϕ a
if, and only if, (A, {u : u ≺ϕ a}) |= ϕ[a].

The following theorem, due to Moschovakis shows that
if ϕ(R, x) is in LFP and positive inR, then these relations
can be defined in LFP itself and likewise for IFP. See [9]
and references therein for the case of LFP and [10] for the
IFP-version.

3.2 Theorem (Stage Comparison Theorem).
(i) Letϕ(R, x) be a formula inLFPpositive inR. Then
≤ϕ and≺ϕ are both definable inLFP.

(ii) Let ϕ(R, x) be a formula inIFP. Then≤ϕ and≺ϕ

are both definable inIFP.

We only sketch the proof for the relation≺ϕ defining the
stages of an inflationary induction onϕ(R, x). Consider the
formulaeψ defined as

ψ(≺, x, y) := ϕ(x,Ru/u ≺ x) ∧ ¬ϕ(y,Ru/u ≺ x),

where≺ is a second-order variable of arity twice the arity of
x and the formulaϕ(x,Ru/u ≺ x) is obtained fromϕ by
replacing each atom of the formRu by the formulau ≺ x.

We claim, that the inflationary fixed point ofψ exactly
defines≺ϕ. This is proved by induction onα showing that

ψα defines the set of pairs(x, y) such that|x|ϕ < α and
|x|ϕ < |y|ϕ.

A detailed proof of the theorem will be given in the next
section, where we show that the relation≺ϕ can be de-
fined in LFP, even if the formulaϕ is not positive in its
free second-order variable.

4. Inflationary vs. Least Fixed-Point Induc-
tions

In this section we establish the equivalence of IFP and
LFP. Towards this goal, letϕ′(R, x) be in LFP, not nec-
essarily positive inR, and consider the formulaϕ :=
Rx ∨ ϕ′(x). Clearly,ϕ andϕ′ have the same inflationary
fixed point. Fixϕ for the rest of this section.

Notation. Let ψ1(u) andψ2(u) be formulae, which may
or may not containR, whereu andR have the same ar-
ity. We write ϕ(x,Ru/ψ1(u),¬Ru/ψ2(u)) to denote the
formula obtained fromϕ by replacing each positive occur-
rence of atoms of the formRu, whereu is a tuple of terms,
byψ1(u) and each negative occurrence of atoms of the form
Ru by ¬ψ2(u). Clearly, the formula is positive both inψ1

andψ2 and, thus, positive inR if bothψ1 andψ2 are. �

We aim at defining the stage comparison relation≺ϕ for
ϕ in LFP. By the stage comparison theorem,≺ϕ can be
defined as the inflationary fixed-point of the formula

ϕ′(≺, x, y) := ϕ(x,Ru/u ≺ x,¬Ru/¬u ≺ x) ∧
¬ϕ(y,Ru/u ≺ x,¬Ru/¬u ≺ x),

where≺ is a second-order variable of appropriate arity.
To turn this into a formula in LFP we have to replace the

formula¬u ≺ x by a definition positive in≺. Essentially,
we aim at defining another formulaϑ(≪, x, y), negative in
≺, with free second-order variables≪ and≺, such that if
≺ is interpreted by a given stage≺α, for some ordinalα,
then the least fixed-point≪∞ will be ≺α. We could then
use[lfp ϑ] negatively to get the desired positive definition
of ≺.

Unfortunately, by definition, the relation defined by such
a formula must increase with increasing stages≺α. On the
other hand, asϑwas supposed to be negative - and therefore
antitone - in≺, the relation defined byϑmust decrease with
increasing stages≺α. Thus, in general, we can not hope for
such a formula to exist. Instead we will use a formula defin-
ing a slightly different relation. But it might be helpful to
keep the original idea in mind.

Consider the following formulae:

χ(x, y) := [lfp≺,x,y χ
′(x, y)](x, y),
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where

χ′(x, y) := ϕ(x,Ru/u ≺ x,¬Ru/¬u⊳ x) ∧

∀u(u ≺ x ∨ ¬u ⊳ x) ∧

¬ϕ(y,Ru/u⊳ x,¬Ru/¬u ≺ x)

and
x⊳ y := [lfp

≪,x,y ϑ(≪, x, y)](x, y)

where

ϑ(x, y) := ϕ(x,Ru/u≪ x,¬Ru/¬u ≺ x}) ∧

¬∃u(u ≺ x ∧ ¬(u≪ x ∧ u≪ y)) ∧

¬ϕ(y,Ru/u ≺ x,¬Ru/¬(u≪ x ∧ u≪ y)).

Obviously, the formulaχ′ is positive in≺ and itself a
formula in LFP. Thus the least fixed point ofχ′ exists. We
claim that this fixed point defines exactly the stage compar-
ison relation≺ϕ of ϕ. Before proving this we first have to
establish some facts about the sub-formulaϑ. Recall from
the beginning of this section thatϕ is supposed to be of the
formRx ∨ ϕ′. This is important for the proofs below as it
ensures that whenever a tuplex satisfiesϕ at a stageα, it
satisfiesϕ at all higher stages also.

4.1 Lemma. Consider the fixed-point induction onϑ where
≺ is interpreted by≺<α, the strict stage comparison rela-
tion up to stageα, i.e.,x ≺ y if, and only if,x ∈ ϕ<α and
|x|ϕ < |y|ϕ.

(i) If x ∈ ϕα or y ∈ ϕα, then(x, y) ∈ ϑ∞ if, and only
if, |x| < |y|.

(ii) For all y such that|y| > α there is anx such that
|x| = α and(x, y) ∈ ϑ∞.

(iii) If the fixed-point of≺ has already been reached, i.e.
if ≺α=≺<α, thenϑ∞ =≺α.

Proof.

1. We first prove by induction onβ that for allβ < α,
(x, y) ∈ ϑβ if, and only if, x ∈ ϕβ and |x| < |y|.
This is clear forβ = 0. Now assume that for all
0 ≤ γ < β the claim has been proved. We distin-
guish between the case wherex ∈ ϕβ andx 6∈ ϕβ .

• Suppose,x ∈ ϕβ . We show that(A,≺<α,
≪<β) |= ϑ(x, y), if, and only if, |x| < |y|.
We consider the three conjuncts ofϑ separately.
If x ∈ ϕβ , then for allu, by induction hypothe-
sis,u ≪ x iff |u|ϕ < |x|ϕ and, by assumption,
¬u ≺ x iff |u|ϕ ≥ |x|ϕ. Thus,

(A,≺<α,≪<β) |=
ϕ(x,Ru/u≪ x,¬Ru/¬u ≺ x}).

Now considery. If |y|ϕ > |x|ϕ, then for allu,
u≪ x∧ u≪ y if, and only if,u≪ x which in
turn is true only ifu ≺ x. Thus¬(u≪ x∧u≪
y) reduces to¬u ≺ x. Therefore there is nou
satisfying(u ≺ x ∧ ¬(u ≪ x ∧ u ≪ y)) and
the second conjunct inϑ is satisfied. Further,y
does not satisfyϕ(y,Ru/u ≺ x,¬Ru/¬(u ≪
x ∧ u ≪ y)) as otherwise|y|ϕ ≤ |x|ϕ. Thus,
(x, y) ∈ ϑβ .

On the other hand, if|y|ϕ < |x|ϕ, then(u ≪
x ∧ u ≪ y) in the second conjunct reduces
to u ≺ y and thus there is au satisfyingu ≺
x ∧ ¬(u≪ x ∧ u≪ y)), u := y for instance.

Finally, suppose|x|ϕ = |y|ϕ. By the same argu-
ment as above we get that in this case(A,≺<α,
≪<β) |= ϕ(y,Ru/u ≺ x,¬Ru/(¬u ≪ x ∨
¬u≪ y)) and thusϑ is not satisfied.

• Supposex 6∈ ϕβ . We show thatϕ(x,Ru/u ≪
x,¬Ru/¬u ≺ x}) is not satisfied. By induc-
tion hypothesis,u ≪ x defines the setM :=
ϕ<β . Further, defineN := {u : ¬u ≺ x}. As,
by assumption,x 6∈ ϕβ , we getM ⊇ N , where
M denotes the complement ofM .

ThusA 6|= ϕ(x,Ru/u ∈ M,¬Ru/u ∈ M)
and, by monotonicity ofϕ in M andM , it fol-
lows

(A,≺<α,≪<β) 6|=
ϕ(x,Ru/u≪ x,¬Ru/¬u ≺ x}.

Taken together we get that(A,≺<α,≪<β) |=
ϑ(x, y) for a pair(x, y) if, and only if, x ∈ ϕβ and
|x|ϕ < |y|ϕ.

2. From the first part of the proof we get that(x, y) ∈
ϑ<α, if, and only if, x ∈ ϕ<α and|x| < |y|. Thus,
≪<α=≺<α. Now consider the next induction step.
Again we distinguish betweenx ∈ ϕα andx 6∈ ϕα.

• Supposex ∈ ϕα. Clearly,(A,≺<α,≪<α) |=
ϕ(x,Ru/u≪ x,¬Ru/¬u ≺ x}).

If |y|ϕ ≥ |x|ϕ, then (u ≪ x ∧ u ≪ y) re-
duces tou ≺ x and thus(A,≺<α,≪<α) |=
¬ϕ(y,Ru/u ≺ x,¬Ru/¬(u ≪ x ∧ u ≪ y))
if, and only if, |y|ϕ > |x|ϕ.

Now suppose|y|ϕ < |x|ϕ. Then |y|ϕ < α
and there is anu satisfyingu ≺ x ∧ ¬(u ≪
x ∧ u ≪ y), againy being such a tuple itself.
Thusϑ(x, y) is not satisfied.

• Now assumex 6∈ ϕα. Then(A,≺<α,≪<α) 6|=
ϕ(x,Ru/u ≪ x,¬Ru/¬u ≺ x}) asu ≺ x
defines the setu ∈ ϕ<α and¬u ≺ x its com-
plement.
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Taken together,ϑα contains all pairs(x, y) such that
x ∈ ϕα and|x|ϕ < |y|ϕ. This also proves Part(ii)
because if there is a tupley of rank greater thanα
there must also be a tuplex of rank exactlyα and this
pair would be inϑα.

If the fixed-point of≺ has already been reached, i.e.
≺α=≺<α, then there are no tuplesx of rank ex-
actly α and thus all the tuples(x, y) ∈ ϑα have al-
ready been inϑ<α and the fixed-point ofϑ has been
reached. This proves Part(iii) of the lemma. Thus,
from now on, we assume that≺<α(≺α.

3. We show now that in no stageγ > α a pair (x, y)
such thatx, y ∈ ϕα and |y|ϕ ≤ |x|ϕ can enter the
fixed-point. Towards a contradiction letγ be the
smallest such stage and let(x, y) be as described.
Then the same argument as in the first item of Step
1 yields a contradiction.

4. What is left to be shown is that for nox 6∈ ϕα and
y ∈ ϕα the pair(x, y) enters the fixed-point at some
higher stage. Towards a contradiction, letγ be the
least such stage, i.e. the least stage such that there is
a pair(x, y) ∈ ϑγ with x 6∈ ϕα andy ∈ ϕα.

Now, asx 6∈ ϕα, u ≺ x defines justϕ<α. As γ
is supposed to be the least such stage, we get that
¬(u ≪ x ∧ u ≪ y) defines the set of tuplesu such
that |u|ϕ ≥ |y|ϕ. Thus, if |y|ϕ < α then there is a
tupleu satisfyingu ≺ x ∧ ¬(u ≪ x ∧ u ≪ y) and
thusϑ is not satisfied by(x, y). On the other hand,
if |y|ϕ = α, then(A,≺<α,≪<α) |= ϕ(y,Ru/u ≺
x,¬Ru/¬(u ≪ x ∧ u ≪ y)) and againϑ is not sat-
isfied.

This finishes the proof of the lemma. �

We now prove a technical lemma which will establish the
induction step in the proof that the fixed point ofχ′ defines
≺ϕ.

4.2 Lemma. Let≺<α be the strict stage comparison rela-
tion up to stageα, i.e.,x ≺<α y if, and only if,x ∈ ϕ<α

and|x|ϕ < |y|ϕ.
Then(A,≺<α) |= χ′(x, y), if, and only if,x ∈ ϕα and

|x|ϕ < |y|ϕ.

Proof. We distinguish between the cases wherex ∈ ϕα

andx 6∈ ϕα.

• Supposex ∈ ϕα. By assumption,u ≺ x de-
fines the set{u : |u|ϕ < |x|ϕ} and, by Part(i) of
Lemma 4.1,¬u ⊳ x defines its complement. Thus,
(A,≺<α) |= ϕ(x,Ru/u ≺ x,¬Ru/¬u ⊳ x) and all
u satisfyu ≺ x ∨ ¬u⊳ x.

Now, (A,≺<α) |= ϕ(y,Ru/u ⊳ x,¬Ru/¬u ≺ x)
if, and only if, |y|ϕ > |x|ϕ.

Thus,(A,≺<α) |= χ′(x, y) if, and only if, |y|ϕ >
|x|ϕ.

• Supposex 6∈ ϕα. Then u ≺ x defines the set
{u : u ∈ ϕ<α}. If ϕ<α = ϕα, i.e. if the fixed-point
of ϕ has been reached, then, by Part(iii) of Lemma
4.1, we get⊳ =≺ and(A,≺<α) 6|= ϕ(x,Ru/u ≺
x,¬Ru/¬u⊳ x). Thereforeχ′ is not satisfied.

Otherwise, i.e. ifϕ<α ( ϕα, then, by Part(ii) of
Lemma 4.1, there is a tuplea of rankα with a ⊳ x.
Thus, the conjunct∀u(u ≺ x ∨ ¬u⊳ ≺ x) is not
satisfied asa⊳ x buta 6≺ x.

This finishes the proof of the lemma. �

As corollary of this we get that the relation≺ϕ is defin-
able in LFP.

4.3 Corollary. Letϕ(R, x) be a formula in LFP. Then the
stage comparison relation≺ϕ of the inflationary fixed point
ofϕ is definable in LFP.

Proof. A simple induction on the stages using the previ-
ous lemma shows that≺ϕ is defined by the formulaχ
above.

The equivalence of LFP and IFP follows immediately.

4.4 Theorem. For every formula inIFP there is a formula
in LFP equivalent to it on all structures.

Proof. By Corollary 4.3, the relation≺ϕ is definable in LFP
for everyϕ(R, x) ∈ LFP. Thus, for allx, x ∈ ϕ∞ if, and
only if, A |= ϕ(x,Ru/χ(u, x)). Thus, the inflationary fixed
point of a LFP-formula can be defined in LFP.

For arbitrary formulaeϕ ∈ IFP, the theorem follows
by induction on the number of inflationary fixed points
in ϕ converting them to least fixed points from the inside
out.

The theorem shows that also on infinite structures, least
and inflationary fixed-point logic have the same expressive
power. But, contrary to the case of finite structures where
the translation of IFP-formulae to equivalent LFP-formulae
does not alter the fixed-point structure - although the re-
sulting formulae often become more complicated and less
understandable - in the general case also their structure in
terms of alternations betweenlfp-operators and negation as
well as the nesting depth of fixed-point operators becomes
more complicated. In the next section we show that this
cannot be avoided. Although it might be possible to lower
the increase in nesting depth of the resulting LFP-formulae,
we will show that in general an increase in the number of
alternations is necessary.
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5. Normal Forms and Hierarchies

In this section we investigate on the question whether al-
lowing to nestifp-operators inside each other or to use them
negatively increases the expressive power of the resulting
logic. In particular, we will show that using of fixed-point
operators negatively does not increase the expressive power
of IFP whereas nestingifp-operators does.

5.1 Theorem. Each IFP-formula is equivalent to anIFP-
formula where negation occurs only in front of atoms.

Proof. The theorem is proved by induction on the structure
of the IFP-formula. For the case of theifp-operator note
that a formula¬[ifpR,x ϕ]t is equivalent to the simultane-
ous fixed point[ifp Q : S]t of the system

S :=

{

Rx ← ϕ(R, x)

Qx ← ∀y (ϕ(R, y)→ Ry) ∧ ¬Rx.

On structures with at least two elements this is equivalent to
the inflationary fixed point of a single formula whereas on
structures with only one element IFP collapses to FO any-
way and the theorem is trivial. �

We now turn to the question whether nestedifp-
operators can be reduced to a single one as it can be done in
LFP. For this we first need some technical definitions.

5.2 Definition (Alternation and nesting-depth hierar-
chy). Let ϕ ∈ LFP be a formula such that no fixed-point
variable is bound twice in it and letX1, . . . , Xk be the
fixed-point variables occurring inϕ. Let for all i, ϕi be
the formula bindingXi in ϕ, i.e. ϕi := [lfpXi,xi

ϕ′

i] for
suitablexi andϕ′

i.
We define a partial order⊑ϕ on the variables

X1, . . . , Xk as

Xi ⊑ϕ Xj if, and only if,ϕi is a sub-formula ofϕj

(i) The nesting-depth ofϕ is defined as the maximal
cardinality of a subset of{X1, . . . , Xk} which can
be linearly ordered by⊑ϕ.

(ii) The alternation-level ofϕ is defined as the maximal
cardinality of a subsetM of {X1, . . . , Xk} which
can be linearly ordered by⊑ϕ such that in addition
for all Xi, Xj ∈ M, if Xi is a direct predecessor of
Xj with respect to⊑ϕ, thenϕi occurs negatively in
ϕj .

The n-th level of the alternation hierarchy(LFPa
n)n∈ω

consists of all formulae ofLFP with alternation-leveln.
Analogously, then-th level of the nesting-depth hierarchy
(LFPd

n)n∈ω of LFP is defined as the class of formulae in
LFPof nesting-depthn.

The alternation and nesting-depth hierarchy forIFP are
defined analogously.

By definition, LFPa1 consists of all LFP-formulae where
no lfp-operator occurs negatively, whereas LFPa

0 and LFPd0
are just the class of first-order formulae.

Theorem 5.1 above shows that the alternation hierarchy
of IFP collapses to level one. It follows from results by
Moschovakis [9] and Bradfield [2] that in general the alter-
nation hierarchy for LFP is strict on infinite structures, the
structure of arithmetic being an example. Note that this def-
inition of the alternation hierarchy is the simplest possible
and does not capture the true nature of alternation. There-
fore more sophisticated definitions of the alternation hierar-
chy have been proposed in the literature. (See [6, 11, 2] and
references therein.) Here we use the alternation hierarchy
only to establish the next theorem showing that in inflation-
ary fixed-point logic, nested fixed points cannot be elimi-
nated in favour of a single one. Therefore we stick to the
simplest possible definition of alternation. But the results
below can easily be adapted to the other definitions as well.
We now prove the main result of this section.

5.3 Theorem. For everyn ≥ 0,

LFPa
n ⊆ IFPd

n ⊆ LFPa
3n

Proof. Letϕ ∈ LFPn be a formula with alternation depthn.
It is known that nestedlfp-operators which all occur posi-
tively can be contracted to a singlelfp-operator increasing
the arity. Thus, every formula in LFPn is equivalent to a
formula withn nested fixed-points. By Theorem 5.1 above,
this formula again is equivalent to an IFP formula with nest-
ing depthn.

Towards the second containment, note that using the
method of Theorem 4.4 to convert an IFP-formula to an
equivalent LFP-formula, the translation of each individual
ifp-operator at most triples the alternation depth. The theo-
rem now follows by induction. �

We immediately get the following corollaries.

5.4 Corollary. For any structure, the alternation depth hi-
erarchy for LFP collapses if, and only if, the nesting depth
hierarchy for IFP collapses.

An example of a class of structures where the hierarchies
are strict is the class of acceptable structures (see [9] forin-
stance.)

5.5 Corollary. LetA be acceptable. Then the nesting depth
hierarchy for IFP is strict. The same holds, ifA is not ac-
ceptable but allows the definition of a coding scheme in IFP.

Proof. This follows immediately from Corollary 5.5 and
the results of Moschovakis [9] and Bradfield [2] on the al-
ternation hierarchy of LFP on acceptable structures.�
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