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Abstract

Let ϕ(X) be a first-order formula in the language of
graphs that has a free set variable X, and assume that X
only occurs positively inϕ(X). Then a natural minimisation
problem associated withϕ(X) is to find, in a given graph
G, a vertex set S of minimum size such that G satisfiesϕ(S).
Similarly, if X only occurs negatively inϕ(X), thenϕ(X)
defines a maximisation problem. Many well-known optimi-
sation problems are first-order definable in this sense, for
example,M INIMUM DOMINATING SET or MAXIMUM IN-
DEPENDENTSET.

We prove that for each classC of graphs with excluded
minors, in particular for each class of planar graphs, the
restriction of a first-order definable optimisation problemto
the classC has a polynomial time approximation scheme.

A crucial building block of the proof of this approxima-
bility result is a version of Gaifman’s locality theorem for
formulas positive in a set variable. This result may be of
independent interest.

1. Introduction

It has long been known that many combinatorial optimisa-
tion problems that are hard to approximate in general have
polynomial time approximation schemes (PTASs) on pla-
nar graphs, that is, they can be approximated to any given
ratio in polynomial time. Among these problems are MINI -
MUM DOMINATING SET, M INIMUM VERTEX COVER, and
MAXIMUM INDEPENDENTSET. The two main techniques
for proving such approximation results on planar graphs
are Lipton and Tarjan’s planar separator theorem [19] and
Baker’s layerwise decomposition technique [4]. Both tech-
niques have been generalised from planar graphs to more
general graph classes such as graphs of bounded genus and
ultimately to arbitrary classes of graphs with excluded mi-
nors [1, 10, 14, 7]. Recall that aminor of a graphG is a
graph that can be obtained from a subgraph ofG by con-
tracting edges. We say that a classC of graphshas an ex-
cluded minorif there is some graphH such thatH is not a

minor of any graph inG. For example, the complete graph
on five vertices,K5, is an excluded minor of the class of
all planar graphs. Most approximation results on general
classes of graphs with excluded minors make heavy use of
Robertson and Seymour’s structure theory for graphs with
excluded minors [22]. In a recent paper, Demaine, Ha-
jiaghayi, and Kawarabayashi [7] have proved algorithmic
versions of some of the central parts of this theory and use
these to obtain several new approximability results.

What kind of problems are approximable on graphs with
excluded minors? Demaine et al. [7] gave a general cri-
terion that is met by most problems known to be approx-
imable, but is somewhat unsatisfactory because it describes
when a certain proof technique works rather than describing
a “natural” class of problems. On planar graphs, Khanna
and Motwani [16] tried a more systematic “syntactic” ap-
proach: They defined three “generic” problems based on
propositional logic and showed that the planar versions of
these problems have PTASs. Then they showed that most
problems which at that time were known to have PTASs
can easily be reduced to one of these three problems. In
this paper, we carry out a different logic based approach
towards identifying a large class of problems that have
PTASs on classes of graphs with excluded minors. Our
approach, in contrast to that of Khanna and Motwani, is
based on first-order logic: Letϕ(X) be a first-order for-
mula in the language of graphs that has a free set vari-
ableX, and assume thatX only occurs positively inϕ(X).
Then a natural minimisation problem MINϕ(X) associated
with ϕ(X) is to find, in a given graphG, a vertex setS
of minimum size such thatG satisfiesϕ(S). Many nat-
ural minimisation problems can be described as problems
M INϕ(X) for a suitable formulaϕ(X). For example, the
M INIMUM DOMINATING SET problem is MINϕ(X) for the
formula ϕ(X) = ∀x(Xx∨ ∃y(Xy∧ Exy)). The condition
that ϕ(X) be positive inX is imposed to guarantee mono-
tonicity, which is necessary to exclude pathological exam-
ples (see Example 11). Similarly, ifX only occurs nega-
tively in a formulaψ(X) then this formula defines a natu-
ral maximisation problem MAX ψ(X). For example, MAX -
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IMUM INDEPENDENT SET is MAX ψ(X) for the formula
ψ(X)= ∀x∀y(¬Xx∨¬Xy∨¬Exy). Papadimitriou and Yan-
nakakis [21] considered similar syntactically defined op-
timisation problems to introduce their well-known class
MAX SNP; a more detailed analysis of such problems was
later carried out by Kolaitis and Thakur [17, 18]. The syn-
tactical problems studied by these authors can be directly
translated to problems of the form MAX ϕ(X) or MINϕ(X),
whereϕ is a formula of first-order or existential second-
order logic andX a (not necessarily unary) relation variable.

We call problems of the form MINϕ(X) or MAX ϕ(X)

first-order definable optimisation problems. For a classC
of graphs, we write MINϕ(X)(C ) and MAX ϕ(X)(C ) to de-
note the restriction of MINϕ(X) (MAX ϕ(X), respectively)
to instances fromC . Our main result states that the re-
strictions of first-order definable optimisation problems to
graphs with excluded minors have PTASs. More precisely:

Theorem 1. Let ϕ(X) be a first-order formula in the lan-
guage of graphs that is positive in a set variable X, and
let C be a class of graphs with an excluded minor. Then
M INϕ(X)(C ) has a PTAS.

Similarly, if ϕ(X) is negative in X, thenMAX ϕ(X)(C )
has a PTAS.

In fact, we prove a stronger result; we actually get an
EPTAS(efficient polynomial time approximation scheme,
cf. [11, 20]). This means that the running time of theε-
approximation algorithm isf (ε) · nO(1) for some function
f . Let us remark that the statement of Theorem 1 does not
extend, for example, to monadic second-order logic (cf. Ex-
ample 11).

We see our result as an algorithmic meta theorem in the
style of Courcelle’s theorem [6]. It gives a uniform and nat-
ural explanation for a large family of algorithmic results,
and for many problems it gives a quick way of proving that
they have a PTAS on graphs with excluded minors. Con-
sider, for example, the MINIMUM DISTANCE d DOMINAT-
ING SET problem (for a constantd ≥ 1), which asks for a
minimum setSof vertices of a graph such that each vertex is
within distanced of the setS. It is easy to find a first-order
formula ϕ(X) such that this problem is MINϕ(X). Thus it
has a PTAS on all classes with excluded minors. This was
not known before, and the problem also does not meet De-
maine et al.’s general approximability criterion mentioned
above. Our theorem can easily be extended from graphs to
arbitrary relational structures and also to weighted versions
of the problems, but we defer the details of these general-
isations to the full version of this paper. Even with these
generalisations, we do not claim that our theorem captures
all problems that have PTASs on classes of graphs with ex-
cluded minors. Indeed, it is easy to find problems that meet
Demaine et al.’s approximability criterion, but are not first-
order definable in our sense. Even on planar graphs, our

approach seems incomparable with Khanna and Motwani’s
in that there is no obvious translation of our syntactically
defined problems into theirs or vice versa. An important dif-
ference between our result and those of Demaine et al. and
Khanna and Motwani is that we obtain an EPTAS. For the
problem PLANAR TM IN, for which Khanna and Motwani
obtained a PTAS, it can actually be proved that, under rea-
sonable complexity theoretic assumptions, it does not have
an EPTAS [5, 20].

The proof of Theorem 1 has two parts: the second, algo-
rithmic, part builds on techniques that were first applied in
[14] to classes of graphs with excluded minors and gener-
alise Baker’s layerwise decomposition technique [4]. How-
ever, the techniques have to be generalised considerably to
handle the very general class of problems we consider here.
The crucial property of first-order definable optimisation
problems that our algorithms exploit is the locality of first-
order logic. In the first part of the proof of Theorem 1, we
prove a “positive version” of Gaifman’s locality theorem, a
result which may be of independent interest:

Theorem 2. Letϕ(X) be a first-order sentence that is posi-
tive in the set variable X. Then there is a Boolean combina-
tion ψ(X) of basic local sentences so thatψ(X) is positive
in X and equivalent toϕ(X).

The necessary definitions will be given later. Rather un-
expectedly, the proof of this theorem proved to be fairly
difficult, as we were unable to adapt the known proofs of
Gaifman’s theorem [12] (see [9,?] for alternative proofs) or
of its existential version [15]. Our proof of the positive ver-
sion uses ideas from [3] to analyse the spatial distributionof
the types occurring in a structure, and it uses a lemma from
[15] to get from a nonuniform to a uniform version of the
theorem, but the core combinatorial argument is new.

2. Preliminaries

A vocabularyis a finite set of relation symbols and constant
symbols. Associated with every relation symbolR is a pos-
itive integer called thearity of R. In the following,τ always
denotes a vocabulary.τ is calledrelational if it does not
contain any constant symbol.

A τ-structureA consists of a non-empty setA, called the
universeof A , an elementcA ∈A for each constant symbol
c∈ τ, and a relationRA ⊆Ar for eachr-ary relation symbol
R∈ τ.

TheGaifman graphof aτ-structureA is the (undirected,
loop-free) graphGA with vertex setA and an edge between
two verticesa,b ∈ A iff there exists anR∈ τ and a tuple
(a1, . . ,ar) ∈ RA such thata,b∈ {a1, . . ,ar}.

The distancebetween two elementsa,b ∈ A in A , de-
noted by distA (a,b), is defined to be the length (that is,
number of edges) of the shortest path froma tob in the Gaif-
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man graph ofA . Forr ≥ 0 anda∈ A, ther-neighbourhood
of a in A is the setNA

r (a) = {b∈ A : distA (a,b) ≤ r}.
The induced substructure ofA with universeNA

r (a) is
denoted byN A

r (a). We omit superscriptsA if A is clear
from the context.

We write FO(τ) to denote the class of all formulae in
first-order logic over the vocabularyτ, and we write qr(ϕ)
to denote thequantifier rankof an FO(τ)-formulaϕ . If X
is a unary relation symbol not inτ, then an occurrence of
X in an FO(τ ∪{X})-formulaϕ is said to bepositiveif it
is within the scope of anevennumber of negations and it
is said to benegativeotherwise. We say that the formulaϕ
is positive in X(or X-positive) if all occurrences ofX in ϕ
are positive. Similarly, we say thatϕ is negative in X(or
X-negative) if all occurrences ofX in ϕ are negative.

For everyr ≥ 0, we let dist≤r(x,y) be an FO(τ)-formula
expressing that the distance betweenx and y is at most
r. We often write dist(x,y) ≤ r instead of dist≤r(x,y) and
dist(x,y) > r or dist>r(x,y) instead of¬dist≤r(x,y).

The r-relativisation of a formulaϕ(x) is the formula
ϕ r(x) obtained fromϕ by first renaming all bound variables
so that they are different fromx and then replacing each sub-
formula of the form∃yψ by∃y

(
dist(x,y)≤ r ∧ψ

)
and each

subformula of the form∀yψ by ∀y
(
dist(x,y) ≤ r → ψ

)
.

Clearly, ther-relativisation of every formulaϕ(x) is r-local,
that is, for everyτ-structureA and everya ∈ A we have
A |= ϕ r(a) ⇐⇒ Nr(a) |= ϕ r(a). Note that we also have
A |= ϕ r(a) ⇐⇒ Nr(a) |= ϕ(a).

A (symmetric) basic local sentence(with parameters
k, r,q) is a sentence of the form

∃x1 · · ·∃xk

( ∧

1≤i< j≤k

dist(xi ,x j) > 2r ∧
∧

1≤i≤k

ψ(xi)
)
,

wherek, r ≥ 1 andψ(x) is r-local and of quantifier rankq
(here, the adjective “symmetric” emphasises that the same
formulaψ is used for each of the variablesxi).

Theorem 3 (Gaifman [12]). Every first-order sentence
over a relational vocabulary is equivalent to a Boolean
combination of basic local sentences.

3. A positive locality theorem

In this section we present a proof of the version of Gaif-
man’s theorem for formulaepositive in a unary relation
symbol, stated in Theorem 2. From now on, fix a rela-
tional vocabularyτ and a unary relation symbolX 6∈ τ. For
proving Theorem 2 we adopt the approach of [15] of using
asymmetricbasic local formulae in an intermediate step.

An asymmetric basic local sentence with parameters
k,κ , r,q is a sentence of the form

∃x1 . . .∃xk

( ∧

1≤i< j≤k

dist(xi ,x j) > κ ·2r ∧
k∧

i=1

ψi(xi)
)
,

whereψi(xi) is r-local and of quantifier rank at mostq. We
denote the set of all asymmetric basic local sentences with
parametersk′ ≤ k, κ , r ′ ≤ r, andq′ ≤ q by ABL(k,κ , r,q).
By ABL+(k,κ , r,q) (respectively, ABL−(k,κ , r,q)) we de-
note the set of all sentences in ABL(k,κ , r,q) that areposi-
tive (respectively,negative) in X.

Similarly, we write BL(k, r,q), BL+(k, r,q), and
BL−(k, r,q) for, respectively, the set of all, allX-positive,
and allX-negative symmetric basic local sentences with pa-
rametersk′ ≤ k, r ′ ≤ r, andq′ ≤ q.

For a sentenceϕ ∈ ABL(k,κ , r,q) of the form

∃x1 . . .∃xk

( ∧

1≤i< j≤k

dist(xi ,x j) > κ ·2r ∧
k∧

i=1

ψi(xi)
)

we writeϕ[1/κ ] to denote the sentence

∃x1 . . .∃xk

( ∧

1≤i< j≤k

dist(xi ,x j) > 2r ∧
k∧

i=1

ψi(xi)
)

(in particular,ϕ[1/κ ] ∈ ABL(k,1, r,q)).
The two major steps in proving Theorem 2 consist of

showing the following two technical lemmas:

Lemma 4. Let K,Q,R≥ 2 and let κ := 2K2−1. Suppose
A andB areτ ∪{X}-structures such that every X-positive
(resp. X-negative) basic local sentence inBL(K,κ ·2R,Q)
that holds inA also holds inB. Then we have for every
X-positive (resp. X-negative) sentenceϕ ∈ABL(K,κ ,R,Q)
thatA |= ϕ impliesB |= ϕ[1/κ ].

We omit the proof of Lemma 4 since it is virtually identical
to the proof of Lemma 4 in [15]. We will use Lemma 4 as
an intermediate step in proving the following:

Lemma 5. For every q≥ 0 there exist K,R,Q≥ 2 such that
for all τ ∪{X}-structuresA ,B the following holds: If for
everyϕ ∈ BL+(K,R,Q), A |= ϕ impliesB |= ϕ , and for
everyϕ ∈ BL−(K,R,Q), B |= ϕ impliesA |= ϕ , then we
have for every X-positiveFO(τ ∪{X})-sentenceζ of quan-
tifier rank at most q thatA |= ζ impliesB |= ζ .

Note that by using Lemma 5 one easily obtains a proof of
Theorem 2 (details of this will be given in the full version
of the paper).

The remainder of Section 3 is devoted to the proof of
Lemma 5. To prove Lemma 5, we use the following “X-
positive” variant of the classicalEhrenfeucht-Fräısśe game
(EF-game, for short) for first-order logic.

3.1. TheX-positive EF-game.
The rules of this game are the same as for the “classical”
EF-game for first-order logic (cf., e.g. [9]), the winning
condition, however, is slightly different. To be precise, the
“X-positive” EF-game is defined as follows:
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Let q be a positive integer. Theq-round X-positive EF-
gameis played by two players,the spoilerand the dupli-
cator, on twoτ ∪{X}-structuresA andB. The spoiler’s
intention is to show a difference between the two structures,
while the duplicator tries to make them look alike. There
is a fixed numberq of rounds. Each roundi ∈ {1, . . ,q}
is played as follows: First, the spoiler chooses either an
elementai in A or an elementbi in B. Next, the dupli-
cator chooses an element in the other structure. I.e., she
chooses an elementbi in B if the spoiler’s move was inA,
or an elementai in A if the spoiler’s move was inB. After
q rounds the game ends with elementsa1, . . ,aq chosen in
A andb1, . . ,bq chosen inB. The duplicator has won the
gameiff the mappingf defined via

(
a j 7→ b j

)
j=1,. . ,q is an

X-positive partial isomorphism fromA to B, i.e.,

(i) for any tuple of elements(v1, . . ,vs) within the domain
of f and any relation symbolR∈ τ of arity s, we have(
v1, . . ,vs

)
∈ RA ⇐⇒

(
f (v1), . . , f (vs)

)
∈ RB, and

(ii) for any elementv within the domain off and for the
particular unary relation symbolX, we havev ∈ XA

=⇒ f (v) ∈ XB.

Otherwise, the spoiler has won the game. Since the game
is finite, one of the two players must have awinning strat-
egy, i.e., he or she can always win the game, no matter how
the other player plays. We writeA ⇛

X-pos
q B to denote

that the duplicator has a winning strategy in theq-round
X-positive EF-game onA andB. Note that the relation
defined by⇛X-pos on the class of allτ ∪{X}-structures is
reflexive and transitive, but not symmetric.

The fundamental use of theq-roundX-positive EF-game
comes from the fact that it characterises definability byX-
positive first-order sentences in the following sense:

Proposition 6. LetA andB beτ ∪{X}-structures and let
q be a positive integer. IfA ⇛

X-pos
q B, then we have for

every X-positiveFO(τ ∪{X})-sentenceζ of quantifier rank
at most q, thatA |= ζ impliesB |= ζ .

The proof is straightforward.
Now, note that Lemma 5 is an immediate consequence

of Proposition 6 and the following lemma.

Lemma 7. For every q≥ 0 there exist K,R,Q ≥ 2 such
that for all τ ∪ {X}-structuresA ,B: If for every ϕ ∈
BL+(K,R,Q), A |= ϕ impliesB |= ϕ , and for everyϕ ∈

BL−(K,R,Q), B |= ϕ impliesA |= ϕ , thenA ⇛
X-pos
q B.

Subsection 3.2 below is devoted to the proof of Lemma 7.

3.2. Proof of Lemma 7.
Before describing the duplicator’s winning strategy we need
some preparation.

Let r,q ≥ 0, A a τ ∪{X}-structure anda ∈ A. The full
(r,q)-typeof a in A is the setfull-(r,q)-typeA (a) :=

{
ϕ r(x) | ϕ ∈ FO(τ ∪{X}), qr(ϕ) ≤ q, A |= ϕ r(a)

}
.

Note that there is a formula

θ(r,q,A ,a)(x) :=
∧

ϕ∈full-(r,q)-typeA (a)

ϕ(x),

defining an element’s full(r,q)-type and for allτ ∪ {X}-
structuresB and allb∈ B we haveB |= θ(r,q,A ,a)(b) ⇐⇒

full-(r,q)-typeB(b) = full-(r,q)-typeA (a). Also, all the for-
mulaeθ(r,q,A ,a) arer-local and of quantifier rank at most ˜q
(whereq̃ ≥ q only depends onr, q, andτ ∪ {X}). In the
following, we often identify the types with these formulae.
We denote the set of all full(r,q)-types byΘ(r,q).
A type θ (x) is realisedin a structureA if there is an ele-
menta∈ A such thatA |= θ (a). The elementa is called a
realisationof θ in A .

Let A be a structure, letC ⊆ A, let θ ∈ Θ(r,q) be a full
(r,q)-type, and letR,K ≥ 0. We say that

θ is R-coveredby C

if for all realisationsa of θ in A we havea ∈ NR(C). We
say that

θ is (R,K)-freeoverC

if there are realisationsa1, . . . ,aK of θ in A such thatai 6∈
NR(C) for all i ∈ {1, . . ,K} and dist(ai ,a j) > R for all i, j ∈
{1, . . ,K} with i 6= j.

The next lemma analyses the spatial distribution of the
types occurring in a structure.

Lemma 8. For all k, r,q ≥ 0 there areK̂ ≥ k andR̂≥ r,
such that for allτ ∪{X}-structuresA andB there are K,R
with k≤K ≤ K̂ and r≤R≤ R̂ and sets CA ⊆A and CB ⊆B
such that forκ := 2K2−1 and eachD ∈ {A ,B}, the follow-
ing properties are satisfied:

(1) |CD | ≤ K;

(2) dist(c,c′) > κ ·10R, for all c,c′ ∈CD with c 6= c′;

(3) eachθ ∈ Θ(r,q) realised inD is either R-covered by
CD or (κ ·10R,10K)-free over CD .

Due to lack of space, we defer the proof of Lemma 8 to the
full version of the paper. For the proof of Lemma 7 we also
need the notions ofpositivetypes andnegativetypes of an
elementa in aτ ∪{X}-structureA . Thepositive(r,q)-type
of a is the set

pos-(r,q)-typeA (a) :=
{

ϕ r(x) :

ϕ ∈ FO(τ ∪{X}) positive inX, qr(ϕ) ≤ q, A |= ϕ r(a)
}
.
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Similarly, thenegative(r,q)-typeof a is the set

neg-(r,q)-typeA (a) :=
{

ϕ r(x) :

ϕ ∈ FO(τ ∪{X}) negative inX,qr(ϕ) ≤ q, A |= ϕ r(a)
}
.

Note that pos-(r,q)-typeA (a) ⊆ full-(r,q)-typeA (a) and
neg-(r,q)-typeA (a) ⊆ full-(r,q)-typeA (a). The formula

θ+
(r,q,A ,a)

(x) :=
∧

ϕ∈pos-(r,q)-typeA (a)

ϕ(x),

defines the positive(q, r)-type, in the sense that for all
(τ∪{X})-structuresB and allb∈ B with B |= θ+

(r,q,A ,a)
(b)

we havepos-(r,q)-typeB(b) ⊇ pos-(r,q)-typeA (a). Anal-
ogously, one obtains a formulaθ−

(r,q,A ,a)
(x) that defines

the negative(q, r)-type of a in A . Note that the for-
mulae θ+

(r,q,A ,a) and θ−
(r,q,A ,a) are r-local and of quanti-

fier rank at most ˜q (where q̃ ≥ q only depends onq, r,
andτ ∪ {X}). Furthermore,θ+

(r,q,A ,a)
(x) is positive inX,

whereasθ−
(r,q,A ,a)

(x) is negative inX. In the following, we
often identify the types with these formulae.

We denote the set of all positive and negative(r,q)-types
by Θ+

(r,q) andΘ−
(r,q), respectively. A (positive or negative)

type θ (x) is realised in a structureA if there is ana ∈ A
such thatA |= θ (a). We calla a realisationof θ in A .

Proof of Lemma 7:
We fix q ≥ 0 and letk := q, r := 3q, andQ := q̃+1. Let
K̂,R̂ be chosen according to Lemma 8. Now letA andB

beτ ∪{X}-structures such that

(∗) for everyϕ ∈ BL+(K̂,2K̂2−1·10R̂,Q), A |= ϕ implies
B |= ϕ , and for everyϕ ∈ BL−(K̂,2K̂2−1·10R̂,Q),
B |= ϕ impliesA |= ϕ .

Before we can describe the duplicator’s winning strategy
in the q-roundX-positive EF-game onA andB, we first
need to explore the “playing fields”A andB. To this end,
we first apply Lemma 8 toA andB (with k, r,q) to obtain
numbersK ≤ K̂,R≤ R̂ and setsC := CA ⊆ A and D :=
CB ⊆ B such that forκ := 2K2−1 and for eachD ∈ {A ,B}
the properties (1)–(3) of Lemma 8 are satisfied.

Note that, sinceK ≤ K̂ andR≤ R̂, (∗) in particular holds
when replacingK̂ with K andR̂ with R. Thus, by applying
Lemma 4 (both theX-positive and theX-negative version,
while interchanging the roles ofA andB when applying
theX-negative version), we obtain

(∗∗) for every ϕ ∈ ABL+(K,κ ,5R,Q), A |= ϕ implies
B |= ϕ[1/κ ] and for everyϕ ∈ ABL−(K,κ ,5R,Q),
B |= ϕ impliesA |= ϕ[1/κ ].

Let us proceed with fixing some more notation. We call a
full (r,q)-typeθ ∈ Θ(r,q) rare in A (in B) if it is R-covered
byC (by D, respectively); otherwise, we callθ frequent.

A positive (r,q)-type π ∈ Θ+
(r,q)

is called saturatedif
there is afull typeθ ∈ Θ(r,q) that is frequent inB such that
π ⊆ θ . Similarly, anegative(r,q)-typeν ∈ Θ−

(r,q)
is called

saturatedif there is a full typeθ ∈ Θ(r,q) that isfrequent in
A such thatν ⊆ θ .

We define a bipartite GraphG on C∪D by drawing an
edge fromc ∈ C to d ∈ D if there are ac′ ∈ N2R(c) and
a d′ ∈ N2R(d) such that the positive(4R,q+1)-type ofc′ is
contained in the positive(4R,q+1)-type ofd′ and hence the
negative(4R,q+1)-type of d′ is contained in the negative
(4R,q+1)-type ofc′.

We call an elementc∈C specialif there is ana∈ NR(c)
such that the positive(r,q)-type ofa is not saturated(i.e.,
everyfull (r,q)-type θ ⊇ pos-(r,q)-typeA (a) is rare in B,
i.e., realised only by elements inNR(D)). Similarly, an el-
ementd ∈ D is calledspecialif there is ab ∈ NR(d) such
that the negative(r,q)-type ofb is not saturated.

LetCS⊆C andDS⊆ D be the sets of all special vertices.

Claim 9. The bipartite graphG has a matching M such
that each special element of C and D is an endpoint of an
edge in M.

Proof of Claim 9: Let ℓ = |CS| andCS = {c1, . . . ,cℓ}.
For everyi ∈ {1, . . , ℓ} let πi(x) be the positive(4R,q+1)-
type of ci . Then A satisfies theX-positive asymmetric

basic local sentenceϕ := ∃x1 . . .∃xℓ

(∧
1≤i< j≤ℓ d(xi ,x j) >

κ ·10R∧
∧ℓ

i=1 πi(xi)
)
. ThusB satisfies the sentenceϕ[1/κ ]

(to see this, recall the assumption(∗∗) on A and B on
the sentences in ABL+(K,κ ,5R,Q), note thatℓ ≤ K since
CS⊆C and|C| ≤K, and recall from Lemma 8 that elements
in C have pairwise distance> κ ·10R). Hence we can find
b1, . . . ,bℓ ∈ B of pairwise distance greater than 10R such
thatB |= πi(bi) for everyi ∈ {1, . . , ℓ}.

Let us next note that each of thebi belongs toN2R(D).
This can be seen as follows. Sinceci is special, there
exists anai ∈ NR(ci) whose positive(r,q)-type π ′ is not
saturated, i.e., each full(r,q)-type that containsπ ′ is re-
alised inB only by elements inNR(D). Since the posi-
tive (4R,q+1)-type of bi contains the positive(4R,q+1)-
type πi of ci andN4R(ci) satisfies theX-positive formula
∃y

(
dist(ci ,y)≤ R ∧ π ′(y)

)
, we know that alsoN4R(bi) sat-

isfies this formula, and thus there exists an elementb′i with
dist(bi ,b′i) ≤ R whose full(r,q)-type containsπ ′. Sinceπ ′

is not saturated, we conclude thatb′i ∈ NR(D) and hence
bi ∈ N2R(D).

Since eachbi belongs toN2R(D), there ared1, . . . ,dℓ ∈
D such that dist(di ,bi) ≤ 2R, for every i ∈ {1, . . , ℓ}. The
verticesd1, . . ,dℓ are pairwise distinct, since dist(bi ,b j) >
10R and thus dist(di ,d j) > 6R, for all i, j ∈ {1, . . , ℓ} with
i 6= j. Furthermore, by the definition of the graphG , there
is an edge betweenci anddi , for everyi ∈ {1, . . , ℓ} (to see
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this, note thatc′i := ci ∈ N2R(ci) has the positive(4R,q+1)-
typeπi , andd′

i := bi ∈N2R(di) has a positive(4R,q+1)-type
that containsπi). It follows that each setC′ ⊆CS of special
vertices has at least|C′| neighbours inD.

Analogously, we can show that each setD′ ⊆ DS of spe-
cial vertices has at least|D′| neighbours inC.

Now Claim 9 immediately follows from the following
purely combinatorial lemma, which may be viewed as an
extension of Hall’s well known marriage theorem. Let us a
say that a vertex iscoveredby a matching if it is an endpoint
of an edge in the matching.

Lemma 10. Let G be a bipartite graph with bipartition
C,D of the vertex set. Let CS⊆C and DS⊆ D, and suppose
that each C′ ⊆CS has at least|C′| neighbours in D and each
D′ ⊆ DS has at least|D′| neighbours in C. Then there is a
matching M ofG that covers each vertex in CS∪DS.

The proof of Lemma 10 can be found in the full version
of this paper. To proceed with the proof of Lemma 7 let
us now fix a matchingM that covers all special vertices
(such a matching exists by Claim 9). Letc1, . . . ,cm ∈C and
d1, . . . ,dm∈ D be the vertices covered byM via an edge be-
tweenci anddi , for eachi ∈ {1, . . ,m}. By the definition of
the graphG , for i ∈ {1, . . ,m}, there are verticesc′i ∈N2R(ci)
andd′

i ∈ N2R(di) such that the positive(4R,q+1)-type ofd′
i

contains the positive(4R,q+1)-type ofc′i . In particular, the
duplicator has a winning strategy for theq-roundX-positive
EF-game onN4R(c′i) andN4R(d′

i ).

Recall that, by the definition ofspecialvertices, every
a ∈ A whose positive(r,q)-type is not saturated is in the
R-neighbourhood of some special vertex ofC and hence,
in particular, inNR(ci) ⊆ N2R(c′i), for somei ∈ {1, . . ,m}
(to see this, note that (1)a has to belong toNR(C) due
to Lemma 8, and (2) the vertex fromC in whose R-
neighbourhooda lies has to be special). Similarly, every
b∈ B whose negative(r,q)-type is not saturated is inNR(di)
and hence inN2R(d′

i ) for somei ∈ {1, . . ,m}.

Now it is easy to define a winning strategy for the du-
plicator in theq-roundX-positive EF-game onA andB:
If the spoiler plays near a vertexc′i or d′

i , the duplicator an-
swers according to the local strategy there. If the spoiler
plays near a vertex played before, the duplicator answers
according to the local strategy there. Otherwise, the spoiler
plays a saturated vertex far away from everything, and the
duplicator can always find an answer. The meaning of
“near” varies with the numberj of moves remaining in the
game. The duplicator seeks to preserve neighbourhoods
of radius 3j around previously played elements or 2R+ 3 j

aroundc′i or d′
i .

This finally completes the proof of Lemma 7 and thus,
altogether, the proof of Theorem 2. 2

4. Graph Decompositions

In this section we fix some notation and briefly present the
basic notions from graph minor theory used later on. See
the last chapter of [8] or the survey [23].

The vertex set of a graphG is denoted byVG and its
edge set is denoted byEG . ForU ⊆VG we write〈U〉 for the
subgraph ofG induced byV. A tree is an acyclic, connected
graph. We usually use rooted directed trees where edges are
directed from the root towards the leaves.

A minorof a graphG is a graphH that can be obtained
from a subgraph ofG by contracting edges. We writeH �
G to denote thatH is a minor ofG . A classC of graphs is
minor closedif, and only if, for allG ∈ C andH � G also
H ∈ C . A classC of graphs isH -free if H 6� G for all
G ∈ C . We then callH anexcluded minorof C .

A tree-decompositionof a graphG is a pair(T,(Bt)t∈Vt ),
whereT is a directed tree andBt ⊆ VG for all t ∈ VT such
that

⋃
t∈VT 〈Bt〉= G and for everyv∈VG the set{t : v∈Bt}

is connected. The setsBt are calledblocksof the decompo-
sition. Thewidth of (T,(Bt)t∈VT ) is max{|Bt | : t ∈VT}−1
and thetree-widthtw(G ) of a graphG is the minimal width
of any of its tree-decompositions. A classC of graphs has
bounded tree-width, if there is a constantk bounding the
tree-width of all members ofG .

For a tree-decomposition(T,(Bt)t∈VT ) andt ∈ VT with
parents∈ VT we letAt := Bt ∩Bs. For the rootr of T we
let At := /0. Theadhesionof (T,(Bt)t∈VT ) is the number
ad(T,(Bt)t∈VT ) := max{|At | : t ∈ VT}. The torso [Bt ] of
(T,(Bt)t∈VT ) at t ∈ VT is the graph with vertex setBt and
with an edge betweenu,v ∈ Bt if (u,v) ∈ EG or u,v both
belong to a blockBs with s 6= t.

A tree-decomposition of a graphG over a classB of
graphs is a tree-decomposition(T,(Bt)t∈VT ) whose torsi
[Bt ] are contained inB.

We also need the following notion. Thelocal tree-width
of a graphG is the function ltwG : N → N defined as
ltwG (r) := max{tw

(
〈NG

r (v)〉
)

: v ∈ VG }. A classC of
graphs hasbounded local tree-widthif there is anf :N→N
such that ltwG(r) ≤ f (r) for all G ∈ C andr ∈N.

5. First-order definable optimisation problems

In this section we present a proof of Theorem 1. Here, we
only prove the minimisation version of the theorem. The
maximisation version is proved similarly using techniques
from [14]. We defer the details to the full version of the
paper. We begin with a formal definition. LetXmin be an
optimal solution for MINϕ(X) on inputG . For ε > 0 we
call a solutionX, i.e. a setX with (G ,X) |= ϕ , ε-close
if |X| ≤ (1+ ε)|Xmin|. A polynomial-time approximation
scheme(PTAS) for MINϕ(X) is a uniform family(Aε)ε>0

of algorithms, whereAε , given an instanceG , computes an
ε-close solution forG in polynomial time. Uniform here
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means that there is an algorithm that, givenε, generatesAε .
A PTAS is calledefficient, (or, it is an EPTAS), if the degree
of the polynomial bounding the running time ofAε does not
depend onε. Our proof of Theorem 1 establishes an EPTAS
for first-order definable optimisation problems.

Example 11. It is well known that the class of planar
graphs excludes a minor. Thus, by Theorem 1, every opti-
misation problem definable by anX-positive orX-negative
first-order formula has a PTAS on the class of planar graphs.

However, the result neither extends to monadic second-
order logic (MSO) nor to first-order formulae which are not
monotone inX. For this, note that 3-colourability is NP-
complete even on the class of planar graphs (see [13]). As
3-colourability can easily be defined by a formulaψ ∈ MSO,
the minimisation problem defined byϕ(X) := ψ → ∀xXx
cannot have a PTAS (unless P= NP). Similarly, a simple
reduction shows that the 3-colourability problem on planar
graphs can be reduced to a minimisation problem on planar
graphs defined by a non-monotone first-order formula.2

To prove Theorem 1 we first need some preparation.
Let ϕ be a first-order formula positive inX. By The-
orem 2 we can assume thatϕ :=

∨
i
∧

j ψi, j , where each
ψi, j is X-positive and either basic local or the negation
of a basic local formula. To compute a minimal set
X satisfying the formula, it suffices to consider the dis-
juncts

∧
j ψi j separately. Thus we can assume thatϕ :=∧

j ψ j , where eachψ j is either an existential basic lo-
cal formula of the form∃x1 . . .∃xr j

∧
s6=t dist(as,at) > 2r ∧

∧r j
s=1 ϑ j(xs) or auniversal basic local formulaof the form

∀x1 . . .∀xr j

(∧
s6=t dist(as,at) > 2r →

∨r j
s=1 ϑ j (xs)

)
. Here,

the formulaeϑ j are X-positive and restricted to ther-
neighbourhoods ofxl . We will transformϕ even further.
For this, observe that for any fixed graphG := (V,E),
the formula∃x1 . . .∃xk

∧
s6=t dist(as,at) > 2r ∧

∧k
s=1 ϑ(xs)

is equivalent to
∨

(a1,...,ak)∈(VG )k

(∧
s6=t dist(as,at) > 2r ∧

∧k
s=1 ϑ(as)

)
which can be simplified even further to

∨{ k∧

s=1

ϑ(as) : (a1, . . . ,ak) ∈ (VG )k and
∧

s6=t

dist(as,at)> 2r
}
.

(*)
Here, the elementsai are used as constants in the formu-
lae. A similar, although more complicated, translation can
be given for the universal basic local sentences. LetG be
a graph andψ(X) := ∀x1 . . .∀xk

(∧
s6=t dist(xs,xt) > 2r →

∨k
s=1 ϑ(xs)

)
be a universal basic local sentence. For every

0≤ j ≤ k−1 letπ j be the set of functionsf : {1, . . . , j}→N
such that∑ j

i=1 f (i) < k. Let ψ∗(X) be the formula

∨

j<k

( ∨

(a1,...,a j )∈(VG ) j

( ∨

f∈π j

k− j∨

n=0

χ j ,a, f ,n
))

(**)

whereχ j ,a, f ,n :=

∧
1≤l<l ′≤ j dist(al ,al ′) > 5n ·8r ∧

∀x(
∧ j

i=1dist(x,ai) ≥ 5n ·4r → ϑ(x)
)
∧

∧ j
s=1∀x1 . . .∀xf (s)+1

(∧ f (s)+1
l=1 dist(xl ,as) < 5n4r ∧

∧
1≤l<l ′≤ f (s)+1dist(xl ,x′l ) > 2r

)
→

∨ f (s)+1
l=1 ϑ(xl ).

We claim thatψ andψ∗ are equivalent onG in the fol-
lowing sense. Due to lack of space, we defer the proof to
the full version of the paper.

Lemma 12. For every set X⊆VG , (G ,X) |= ψ if, and only
if, (G ,X) |= ψ∗.

Lemma 12 implies that for a given graphG we can trans-
late the formulaϕ(X) into a conjunction of formulae of
the form(∗) and(∗∗). By distributivity, we can translate
this into a disjunction of conjunctions of formulaeχ j ,a, f ,n

and formulaeξ :=
∧k

s=1 ϑ(bl ) for tuples of constantsai ,bi ,
functions f and numbersj andn. As the arity of the tuples
a,b is bounded by a function ofϕ and the ranges of the vari-
ables j,n, and f also only depend onϕ , the translation can
be done in polynomial time in the size ofG .

Further, the first line of the formulaχ j ,a, f ,n only imposes
conditions on the choice of the tuplea. It follows that for
computing an approximation of a setX satisfyingϕ in G it
suffices to compute an approximation of a setX satisfying
the conjunction of formulae

a)
∧k

s=1ϑ(al ) for anr-local formulaϑ and a tuple of con-
stants(a1, . . . ,ak) with dist(as,at) > 2r for all i 6= j,

b) ∀x(
∧ j

i=1dist(x,ai) ≥ q → ϑ(x)
)

for an r-local formula
ϑ , someq > 2r and a tuple of elements(a1, . . . ,a j) of
distance dist(as,at) > 2q for all i 6= j, and

c) ∀x1 . . .∀xf (s)+1

(∧ f (s)+1
l=1 dist(xl ,as) < 5n4r ∧

∧
1≤l<l ′≤ f (s)+1dist(xl ,x′l ) > 2r

)
→

∨ f (s)+1
l=1 ϑ(xl )

which are q-local aroundas for some q > 2r only
depending onϕ .

Note that the formulas inc) are 5n · 4r-local aroundas.
Hence, Theorem 1 follows from the following lemma.

Lemma 13. Let C ′ be a class of graphs with an excluded
minor and letσ := {a1, . . . ,ak} be a set of constant symbols.
Let q> 0 and letϕ(X)∈FObe an X-positive conjunction of
q-local formulaeϕi(a) using only one constant symbol a∈
σ and formulaeψt := ∀x(

∧kt
s=1dist(x,as,t) > qt → ϑ(x)

)
,

for an r-local formulaϑ with qt > 2r, using constant sym-
bolsat ⊆ σ .

Let C := {(G ,a) : G ∈ C ′ anda ⊆ VG }. Then
M INϕ(X)(C ) has a polynomial time approximation scheme.

7



To prove the lemma we use a decomposition theorem for
classes of graphs with an excluded minor that is due to [14].
We first introduce some notation.

For λ ,µ ≥ 0 we let

L (λ ) :=
{

G :
for all H � G , for all r ≥ 0
ltwH (r) ≤ λ · r

}

L (λ ,µ) :=
{

G :
there isX ⊆VG

s.th.
(
|X| ≤ µ ∧G \X ∈ L (λ )

)
}

Note thatL (λ ,µ) is minor closed. The proof of Lemma
13 is based on the following decomposition theorem for
classes of graphs with an excluded minor.

Theorem 14 ([14]). LetC be a class of graphs with an ex-
cluded minor. Then there existλ ,µ ∈N such that allG ∈C

have a tree-decomposition overL (λ ,µ).

For the approximation algorithms we want to show, we
need an algorithmic version of this theorem.

Theorem 15 ([14]). Let C be a minor closed class of
graphs. Then there is a polynomial-time algorithm that
computes for a given graphG a tree-decomposition ofG
overC or rejectsG if no such decomposition exists.

We apply this result to the minor closed classesL (λ ,µ).
Let G be a graph. For every vertexv ∈ VG and integers
j ≥ i ≥ 0 we define

LG
v [i, j] := {w∈VG : i ≤ distG (v,w) ≤ j},

where distG (v,w) denotes the distance betweenv andw in
G . To simplify notation, we will useLG

v [i, j] for arbitrary in-
tegersi, j and setLG

v [i, j] := /0 if i > j andLG
v [i, j] := LG

v [0, j]
for i ≤ 0. The following lemma follows easily.

Lemma 16. Letλ ∈N. Thentw
(
〈LG

v [i, j]〉
)
≤ λ ·( j− i+1)

for all G ∈ L (λ ), v∈VG and i, j ∈Z with i ≤ j.

Now, let ϕ be as in the hypothesis of Lemma 13 and
let C be a class of graphs with an excluded minor. By
Theorem 14, we can chooseλ ,µ ∈ N such that every
graphG ∈ C has a tree-decomposition overL (λ ,µ). Let
ε > 0. We describe a polynomial time algorithm that, on
inputG ∈ C anda∈VG , computes anε-close solution for
M INϕ(X)(C ) on (G ,a). To ease notation we will consider
the tuplea as part of the graph and use notation such as
G |= ϕ for (G ,a) |= ϕ .

The proof of Lemma 13 is split into two steps. In the first
step, which we present in the next subsection, we prove the
lemma for the classesL (λ ) andL (λ ,µ) of graphs. Here,
we use the corresponding result for graphs of bounded tree-
width which essentially follows from [2].

Theorem 17 ([2]). Let ϕ(X) be an X-positive formula of
MSO. ThenM INϕ(X)(C ) can be solved in linear time on any
classC of graphs of bounded tree-width.

In Section 5.3, we extend the proof to graphs which have
a tree-decomposition overL (λ ,µ), i.e. to all graphs inC .

5.1. The levels of graphs of bounded local tree-width.
In the first step of the proof of Lemma 13 we show that
the restriction of MINϕ(X)(C ) to instances inL (λ ) has a
PTAS. Letϕ :=

∧
i∈Ie ϕi(ai)∧

∧
t∈Iu ψt , where theϕi(ai) are

r-local formulae and theψt := ∀x(
∧kt

s=1dist(x,as,t) > rt →
ϑt(x)

)
, for aq-local formulaϑt with rt > 2q, using constant

symbolsat ⊆ σ . For simplicity we assume w.l.o.g. thatrt =
rt′ for all t,t ′. Let r := rt .

Let k := ⌈2r
ε ⌉. Note thatk+2r

k ≤ (1+ ε). Let G ∈ L (λ ).
Choose a nodev∈VG arbitrarily. For 1≤ i ≤ k and j ≥ 0
let Li j := LG

v [( j −1) ·k− r + i, j ·k+ r + i]. By Lemma 16,
tw(〈Li j 〉) ≤ λ (k+2r +1).

For all 1≤ i ≤ k, j ≥ 0 letXi j be a set of minimal cardi-
nality such that

(1)
(
〈Li j 〉,Xi j

)
|= ϕl (al ) for all l ∈ Ie such thatal and its

r-neighbourhood is contained inLi j and

(2)
(
〈Li j 〉,Xi j

)
|= ψt for all i ∈ Iu.

Note that asψt := ∀x(
∧kt

s=1dist(x,as,t) > rt → ϑt(x)
)

also
mentions constants interpreted by vertices outside ofLi j ,
this is, strictly speaking, not well defined. However, as
the at are constants, we can easily check whetherx is
close to any constant interpreted by an element outside of
Li j . For instance, we could colour ther-neighbourhoods of
a1, . . . ,akt and then check inψt thatx is outside a coloured
area. For ease of presentation we will therefore simply write(
〈Li j 〉,Xi j

)
|= ψt even in cases where some or all of the con-

stants are interpreted by elements outside ofLi j .
By Theorem 17 the setsXi j can be computed in linear

time. For 1≤ i ≤ s let Xi :=
⋃

j≥0Xi j . As ϕ is monotone in
X, everyXi is a solution of MINϕ(X)(C ) onG .

Let Xmin be an optimal solution of MINϕ(X)(C ) for G ,
i.e. a set of minimal cardinality such that(G ,Xmin) |= ϕ .
Clearly,Xmin∩Li j satisfies the conditions(1) and(2) above
for all levelsLi, j . Hence,

k

∑
i=1

|Xi | ≤
k

∑
i=1

∑
j≥0

|Xi j | ≤
k

∑
i=1

∑
j≥0

|Li j ∩Xmin| ≤ (k+2r)|Xmin|.

The last inequality follows as every nodev ∈ VG can be
contained in at mostk+2r levelsLi j . Choosem, 1≤ m≤ k
such that|Xm| := min{|X1|, . . . , |Xk|}. Then

|Xm| ≤
(k+2r)

k
|Xmin| ≤ (1+ ε)|Xmin|.
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Hence,Xm is anε-close solution of MINϕ(X)(C ) on G . As
every setXi can be computed in polynomial time, the setXm

can also be computed in polynomial time.

5.2. Extension to the classesL(λ ,µ).
In a second step we show how this approximation algorithm
can be extended to the classesL (λ ,µ) for constantsλ ,µ ≥
0. LetG ∈ L (λ ,µ) and letU ⊆ VG be such that|U | ≤ µ
andG \U ∈ L(λ ). The following extension of Theorem 17
can easily be proved by dynamic programming.

Theorem 18. For every k≥ 0 and every first-order formula
ϕ(X) which is positive in the set-variable X, the following
problem can be solved in linear time. Given a graphG , a set
U ⊆VG so thattw(G \U)≤ k and a subset Y⊆U, find a set
X ⊆VG \U of minimal cardinality such that(G ,X∪Y) |= ϕ
or determine that no such set exists.

Let againϕ(X) be anX-positive first-order formula. For
every Y ⊆ U let X(Y) be a subset ofVG \U such that
(G ,X(Y)∪Y) |= ϕ and

|X(Y)| ≤ (1+ε)min{|X| : X ⊆VG \U and(G ,X∪Y) |= ϕ}

orX(Y) :=⊥ if no such set exists. IfX(Y)=⊥ for all Y⊆U
then MINϕ(X)(C ) has no solution onG and we are done.
Otherwise letY0 ⊆ U be such that|X(Y0)∪Y0| is minimal
among{|X(Y)∪Y| : Y ⊆ U andX(Y) 6= ⊥}. Then clearly,
X(Y0)∪Y0 is anε-close solution for MINϕ(X)(C ).

Using Theorem 18 instead of Theorem 17, the setsX(Y)
can be computed in polynomial time analogously to the first
step. As there are only 2µ possible subsets ofU – recall
thatµ is a constant only depending on the classC – and for
eachY ⊆U , X(Y) can be computed in polynomial time, the
solutionX(Y0)∪Y0 can be computed in polynomial time.

5.3. Excluded Minors.
In the last step, we show how the approximation algorithm
can be extended to graphs that have a tree-decomposition
overL (λ ,µ), i.e. to all graphs inC .

Let G ∈ C . We first compute a tree-decomposition
(T,(Bt)t∈VT ) over L (λ ,µ). By Theorem 15, this can be
done in polynomial time. Letr be the root ofT and for ev-
ery t ∈VT with parents let At := Bt ∩Bs. We setAr := /0.
Further, for every nodet ∈ VT let Tt be the subtree ofT
rooted att and letBt :=

⋃
s∈Tt

Bs.
In what follows we will construct for subgraphsB of G

setsX such that(〈B〉,X) satisfies

(1)
(
〈B〉,X

)
|= ϕl (al ) for all l ∈ Ie such thatal and its

r-neighbourhood is contained inB and

(2)
(
〈B〉,X

)
|= ψt for all t ∈ Iu.

(Here, we use the same convention as in Section 5.1 above.)
To simplify the presentation we write(〈B〉,X) |= ϕ to in-
dicate thatX satisfies the conditions(1) and(2) in B. The

notation is motivated by the fact that forB =G , (G ,X) |= ϕ
for any set satisfying condition(1) and(2) and vice versa.

Inductively, from the leaves to the root, we compute for
every nodet ∈ VT and for every subsetY ⊆ At an X(t,Y)
such thatX(t,Y) ⊆ Bt \At , (〈Bt〉,X(t,Y)∪Y) |= ϕ and

|X(t,Y)| ≤ (1+ε)min{|X| : (〈Bt〉,X∪Y) |= ϕ ,X ⊆Bt \At}

or X(Y) := ⊥ if no such set exists. As tree-decompositions
over L (λ ,µ) have adhesion at mostλ + µ + 1, we have
|At | ≤ λ + µ + 1. Hence, we only have to compute a con-
stant number of setsX(t,Y) for eacht. Further, for the root
r we haveAt = /0 and〈Bt〉= G . Hence,X(r, /0) is anε-close
solution for MINϕ(X)(C ) or⊥ if no solution exists.

We show next how to compute the setsX(t,Y). Suppose
t ∈ VT and for every childt ′ of t we have already com-
puted the familyX(t ′, ·). Let U ⊆ Bt such that|U | ≤ µ
and [Bt ] \U ∈ L (λ ). (Recall that[Bt ] denotes the torso
of (T,(Bt)t∈VT ) at t.) LetW := U ∪At .

For everyZ ⊆ W, let Xmin(Z) be a set of minimal car-
dinality such thatXmin(Z) ⊆ Bt \W and(〈Bt〉,Xmin(Z)∪
Z) |= ϕ or Xmin(Z) := ⊥ if no such set exists.

Claim 19. For every set Z⊆W we can compute in polyno-
mial time an X(Z) such that X(Z) ⊆ Bt \W,(〈Bt 〉,X(Z)∪
Z) |= ϕ , and|X(Z)| ≤ (1+ ε)|Xmin(Z)| or X(Z) := ⊥ if no
such set exists.

Before we prove Claim 19 let us show how the proof of
Lemma 13 can be completed using the claim. For every
Y⊆At choose aZ⊆W such thatZ∩At =Y and|X(Z)∪(Z\
Y)|= min{|X(Z′)∪(Z′ \Y)| : Y ⊆ Z′ ⊆W andZ′∩At =Y}.
SetX(t,Y) := X(Z)∪ (Z\Y). By our choice ofZ it follows
that|X(t,Y)| ≤ (1+ε)min{|X| : (〈Bt 〉,X∪Y) |= ϕ} which
concludes the proof.

So all that remains is to prove Claim 19. Fix aZ ⊆ W.
We show how to computeX(Z) in polynomial time. IfW =
Bt , i.e.Bt :=U∪At , then letX(Z) :=

⋃
(t,t′)∈ET X(t ′,At′∩Z).

Otherwise choose an arbitraryv∈ Bt \W. For 1≤ i ≤ k

and j ≥ 0 let Li j := L[Bt ]\W
v [( j − 1) · k+ i − r, j · k+ i + r].

Then tw(〈Li j 〉) ≤ λ (k+1+2r). For every childt ′ of t and
every 1≤ i ≤ k there is at least onej ≥ 0 such thatAt′ \W⊆
Li j . This follows from that fact thatAt′ induces a clique in
[Bt ]. Let jmin(i,t ′) be the least suchj and let

L∗
i j := Li j ∪

⋃
{Bt′ \At′ : (t,t ′) ∈ ET and jmin(i,t

′) = j}.

Similarly, for everyX ⊆ Li j let

X∗ := X∪
⋃
{X(t ′,(X∪Z)∩At′

)
: (t,t ′)∈ET , jmin(i,t

′)= j}.

We compute anXi j ⊆ Li j with minimal |X∗
i j | such that(

〈Li j 〉,Xi j ∪Z
)
|= ϕ or setXi j :=⊥ if no suchX exists. This

can be done in polynomial time using the standard dynamic
programming techniques on graphs of bounded tree-width,
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provided that the numbers|X(t ′,Y)| for the childrent ′ of t
are given. It is important here that everyAt′ \W is a clique
in 〈Li j 〉, as this implies that it is contained in a single block
of every tree-decomposition of〈Li j 〉.

Let Xi :=
⋃

j≥0Xi j andX∗
i :=

⋃
j≥0X∗

i j . Then, by mono-
tonicity of ϕ in X, (〈Bt〉,X∗

i ∪Z) |= ϕ or Xi = ⊥ if no set
satisfyingϕ in 〈Bt 〉 exists. Finally, choose ani ∈ {1, . . . ,k}
such that|X∗

i | := min{|X∗
1 |, . . . , |X

∗
k |} and letX(Z) := X∗

i . It
follows thatX(Z) can be computed in polynomial time.

Recall that we definedXmin := Xmin(Z) ⊆ Bt \W to be
a set of minimal order such that(〈Bt 〉,Xmin ∪ Z) |= ϕ or
Xmin := ⊥ if no such set exists. It remains to prove that
|X(Z)| ≤ (1+ ε)|Xmin|.

By hypothesis of the algorithm we have for every child
t ′ of t, |X(t ′,(Xmin∪Z)∩At′ )| ≤ (1+ ε)|Xmin ∩Bt′ \At′)|.
Further, the construction ofXi j andX∗

i j guarantees that for
1≤ i ≤ k and j ≥ 0

|X∗
i j | ≤ |Xmin∩Li j |+ ∑

(t,t′)∈ET

jmin(i,t′)= j

|X(t ′,(Xmin∪Z)∩At′)|.

But then

k|X(Z)| ≤
k

∑
i=1

|X∗
i | ≤

k

∑
i=1

∑
j≥0

|X∗
i j |

≤
k

∑
i=1

∑
j≥0

(
|Xmin∩Li j | +

∑
(t,t′)∈ET

jmin(i,t′)= j

|X(t ′,(Xmin∪Z)∩At′)|
)

≤
k

∑
i=1

∑
j≥0

(
|Xmin∩Li j | +

∑
(t,t′)∈ET

jmin(i,t′)= j

(1+ ε)|Xmin∩Bt′ \At′)|
)

≤ (k+2r)|Xmin∩Bt |+k(1+ ε)|Xmin∩Bt \Bt |

This implies|X(Z)| ≤ (1+ ε)Xmin and concludes the proof
of Lemma 13 and with it also the proof of Theorem 1.
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