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Abstract minor of any graph irG. For example, the complete graph
on five verticesKs, is an excluded minor of the class of
Let ¢(X) be a first-order formula in the language of all planar graphs. Most approximation results on general
graphs that has a free set variable X, and assume that X classes of graphs with excluded minors make heavy use of
only occurs positively igh (X). Then a natural minimisation ~ Robertson and Seymour’s structure theory for graphs with
problem associated with (X) is to find, in a given graph  excluded minors [22]. In a recent paper, Demaine, Ha-
G, a vertex set S of minimum size such that G satigfis jlaghayi, and Kawarabayashi [7] have proved algorithmic
Similarly, if X only occurs negatively it (X), then¢ (X) versions of some of the central parts of this theory and use
defines a maximisation problem. Many well-known optimi- these to obtain several new approximability results.

sation problems are first-order definable in this sense, for ) ) )
exampleMINIMUM DOMINATING SET or MAXIMUM IN- What kind of problems are approximable on graphs with
DEPENDENTSET. excluded minors? Demaine et al. [7] gave a general cri-

terion that is met by most problems known to be approx-
imable, but is somewhat unsatisfactory because it describe
when a certain proof technique works rather than describing
a “natural” class of problems. On planar graphs, Khanna
and Motwani [16] tried a more systematic “syntactic” ap-
proach: They defined three “generic” problems based on
f propositional logic and showed that the planar versions of
these problems have PTASs. Then they showed that most
problems which at that time were known to have PTASs
can easily be reduced to one of these three problems. In
this paper, we carry out a different logic based approach
towards identifying a large class of problems that have
It has long been known that many combinatorial optimisa- PTASs on classes of graphs with excluded minors. Our
tion problems that are hard to approximate in general haveapproach, in contrast to that of Khanna and Motwani, is
polynomial time approximation schemes (PTASs) on pla- based on first-order logic: Let(X) be a first-order for-
nar graphs, that is, they can be approximated to any givenmula in the language of graphs that has a free set vari-
ratio in polynomial time. Among these problems arexi ableX, and assume that only occurs positively inp (X).
MUM DOMINATING SET, MINIMUM VERTEX COVER, and Then a natural minimisation problem Ny, x, associated
MAXIMUM INDEPENDENTSET. The two main techniques with ¢ (X) is to find, in a given grapl®, a vertex setS
for proving such approximation results on planar graphs of minimum size such thaG satisfies¢(S). Many nat-
are Lipton and Tarjan’s planar separator theorem [19] andural minimisation problems can be described as problems
Baker’s layerwise decomposition technique [4]. Both tech- MiNgx for a suitable formulap(X). For example, the
niques have been generalised from planar graphs to moreMINIMUM DOMINATING SET problem is MN x) for the
general graph classes such as graphs of bounded genus arfidrmula ¢ (X) = ¥x(XxV Jy(XyA Exy)). The condition
ultimately to arbitrary classes of graphs with excluded mi- that ¢ (X) be positive inX is imposed to guarantee mono-
nors [1, 10, 14, 7]. Recall thatminor of a graphG is a tonicity, which is necessary to exclude pathological exam-
graph that can be obtained from a subgrapl&dfy con- ples (see Example 11). Similarly, ¥ only occurs nega-
tracting edges. We say that a cl&of graphshas an ex-  tively in a formulag(X) then this formula defines a natu-
cluded minorif there is some graph such thaH is not a ral maximisation problem Mx x,. For example, Mx-

We prove that for each clasg of graphs with excluded
minors, in particular for each class of planar graphs, the
restriction of a first-order definable optimisation probléon
the classé” has a polynomial time approximation scheme.

A crucial building block of the proof of this approxima-
bility result is a version of Gaifman’s locality theorem for
formulas positive in a set variable. This result may be o
independent interest.

1. Introduction



IMUM INDEPENDENT SET is MAXyx) for the formula approach seems incomparable with Khanna and Motwani’s
Y(X) =VxXvy(—=Xxv-XyV-Exy). Papadimitriou and Yan-  in that there is no obvious translation of our syntactically
nakakis [21] considered similar syntactically defined op- defined problems into theirs or vice versa. An important dif-
timisation problems to introduce their well-known class ference between our result and those of Demaine et al. and
MaAXSNP; a more detailed analysis of such problems wasKhanna and Motwani is that we obtain an EPTAS. For the
later carried out by Kolaitis and Thakur [17, 18]. The syn- problem RANAR TMIN, for which Khanna and Motwani
tactical problems studied by these authors can be directlyobtained a PTAS, it can actually be proved that, under rea-

translated to problems of the form A 4x) or MiNyx),
where ¢ is a formula of first-order or existential second-
order logic anK a (not necessarily unary) relation variable.
We call problems of the form Miyx) or MAXx)
first-order definable optimisation problemEor a class¢s’
of graphs, we write NNy x)(¢") and MAX 4(x) (%) to de-
note the restriction of My x) (MAX4(x), respectively)
to instances fron¥’. Our main result states that the re-
strictions of first-order definable optimisation probleros t
graphs with excluded minors have PTASs. More precisely:

Theorem 1. Let ¢ (X) be a first-order formula in the lan-
guage of graphs that is positive in a set variable X, and
let ¥ be a class of graphs with an excluded minor. Then
MINg(x) (%) has a PTAS.

Similarly, if ¢ (X) is negative in X, theMAX yx) (%)
has a PTAS.

In fact, we prove a stronger result; we actually get an
EPTAS(efficient polynomial time approximation scheme
cf. [11, 20]). This means that the running time of the
approximation algorithm igf (&) - n®Y for some function

sonable complexity theoretic assumptions, it does not have
an EPTAS [5, 20].

The proof of Theorem 1 has two parts: the second, algo-
rithmic, part builds on techniques that were first applied in
[14] to classes of graphs with excluded minors and gener-
alise Baker’s layerwise decomposition technique [4]. How-
ever, the techniques have to be generalised considerably to
handle the very general class of problems we consider here.
The crucial property of first-order definable optimisation
problems that our algorithms exploit is the locality of first
order logic. In the first part of the proof of Theorem 1, we
prove a “positive version” of Gaifman’s locality theorem, a
result which may be of independent interest:

Theorem 2. Let¢(X) be afirst-order sentence that is posi-
tive in the set variable X. Then there is a Boolean combina-
tion Y(X) of basic local sentences so thffX) is positive

in X and equivalent tg (X).

The necessary definitions will be given later. Rather un-
expectedly, the proof of this theorem proved to be fairly
difficult, as we were unable to adapt the known proofs of

f. Let us remark that the statement of Theorem 1 does notGaifman’s theorem [12] (see [9] for alternative proofs) or

extend, for example, to monadic second-order logic (cf. Ex-

ample 11).

of its existential version [15]. Our proof of the positiverve
sion uses ideas from [3] to analyse the spatial distribudfon

We see our result as an algorithmic meta theorem in thethe types occurring in a structure, and it uses a lemma from

style of Courcelle’s theorem [6]. It gives a uniform and nat-
ural explanation for a large family of algorithmic results,
and for many problems it gives a quick way of proving that

they have a PTAS on graphs with excluded minors. Con-

sider, for example, the MiIMUM DISTANCE d DOMINAT-
ING SET problem (for a constard > 1), which asks for a
minimum setSof vertices of a graph such that each vertex is
within distanced of the setS. It is easy to find a first-order
formula ¢ (X) such that this problem is M x). Thus it

[15] to get from a nonuniform to a uniform version of the
theorem, but the core combinatorial argument is new.

2. Preliminaries

A vocabularyis a finite set of relation symbols and constant
symbols. Associated with every relation symBdk a pos-
itive integer called tharity of R. In the following,T always
denotes a vocabularyr is calledrelational if it does not

has a PTAS on all classes with excluded minors. This wascontain any constant symbol.

not known before, and the problem also does not meet De-

maine et al.'s general approximability criterion mentidne

A T-structurees consists of a non-empty s&f called the
universeof o7, an element” e Afor each constant symbol

above. Our theorem can easily be extended from graphs tct € T, and a relatioR” C A" for eachr-ary relation symbol

arbitrary relational structures and also to weighted o&Isi

of the problems, but we defer the details of these general-

isations to the full version of this paper. Even with these

Rer.
TheGaifman graplof at-structuree/ is the (undirected,
loop-free) grapl¥,, with vertex sefA and an edge between

generalisations, we do not claim that our theorem capturestwo verticesa,b € A iff there exists arR € T and a tuple
all problems that have PTASs on classes of graphs with ex-(as,..,&) € R” such thag,b € {ay,..,a}.

cluded minors. Indeed, it is easy to find problems that meet

Demaine et al.’s approximability criterion, but are nottfirs

The distancebetween two elementg b € A in <7, de-
noted by dis‘Ef(a7 b), is defined to be the length (that is,

order definable in our sense. Even on planar graphs, oumumber of edges) of the shortest path frato b in the Gaif-



man graph ofZ. Forr > 0 anda € A, ther-neighbourhood
of ain & is the setN (a) = {b € A: dist” (a,b) <r}.

The induced substructure of with universeN;” (a) is
denoted by4, (a). We omit superscript§’ if <7 is clear
from the context.

We write FQT) to denote the class of all formulae in
first-order logic over the vocabulany and we write gf¢)
to denote theuantifier rankof an FQ(t)-formula¢. If X
is a unary relation symbol not in, then an occurrence of
Xin an FQt U {X})-formula¢ is said to bepositiveif it
is within the scope of aevennumber of negations and it
is said to benegativeotherwise. We say that the formupa
is positive in X(or X-positive if all occurrences oK in ¢
are positive. Similarly, we say thét is negative in X(or
X-negativgif all occurrences oK in ¢ are negative.

For everyr > 0, we let dist, (x,y) be an FQt)-formula
expressing that the distance betweeandy is at most
r. We often write distx,y) <r instead of dist, (x,y) and
dist(x,y) > r or dist.; (X, y) instead of-dist<, (X, y).

The r-relativisation of a formula¢(x) is the formula
@' (x) obtained fromp by first renaming all bound variables
so that they are different fromand then replacing each sub-
formula of the formByy by Jy(dist(x,y) <r A ) and each
subformula of the formvyy by vy(dist(x,y) <r — ).
Clearly, ther-relativisation of every formulg (x) is r-local,
that is, for everyr-structuress and everya € A we have
o E¢'(a) < A(a) = ¢'(a). Note that we also have
o 9(a) < K@) d(@).

A (symmetric) basic local sentencéwith parameters
k,r,q) is a sentence of the form

3X1~~~3Xk( A distx,xj) >2r A A l.U(Xi))a

1<i<j<k 1<i<k

wherek,r > 1 andy(x) is r-local and of quantifier rank

whereys; (%) is r-local and of quantifier rank at mogt We
denote the set of all asymmetric basic local sentences with
parameter&’ <k, k, r' <r, andq < qby ABL(k,K,r,q).

By ABL " (k, k,r,q) (respectively, ABL (k,k,r,q)) we de-
note the set of all sentences in ABLk,r,q) that areposi-

tive (respectivelynegativg in X.

Similarly, we write BLk,r,q), BL*(krq), and
BL~(k,r,q) for, respectively, the set of all, ak-positive,
and allX-negative symmetric basic local sentences with pa-
rameterk’ <k, r’ <r,andq <q.

For a sentenc¢ < ABL (k, k,r,q) of the form

k
(A distx) > k20n A gix)

1<i<j<k i=1

we write ¢, /| to denote the sentence

k
a3 A distxoxg) > 208 A ()

1<i<j<k i=1

(in particular,g(1/«) € ABL (k,1,r,0)).
The two major steps in proving Theorem 2 consist of
showing the following two technical lemmas:

Lemma 4. Let K,Q,R > 2 and letk := 2<*~1, Suppose
of andZ# are T U{X}-structures such that every X-positive
(resp. X-negative) basic local sentenceBh (K, k-2R, Q)
that holds ine7 also holds inZ. Then we have for every
X-positive (resp. X-negative) senterfce ABL (K, k,R, Q)
that«/ |= ¢ impliesZ = ¢/«

We omit the proof of Lemma 4 since it is virtually identical
to the proof of Lemma 4 in [15]. We will use Lemma 4 as
an intermediate step in proving the following:

(here, the adjective “symmetric” emphasises that the sameé_emma 5. For every ¢ 0 there exist KR, Q > 2 such that

formulay is used for each of the variablgg.

Theorem 3 (Gaifman [12]). Every first-order sentence
over a relational vocabulary is equivalent to a Boolean
combination of basic local sentences.

3. A positive locality theorem

In this section we present a proof of the version of Gaif-
man’s theorem for formula@ositivein a unary relation
symbol, stated in Theorem 2. From now on, fix a rela-
tional vocabularyr and a unary relation symb#l ¢ 7. For

for all TU{X}-structures«?, % the following holds: If for
everyp € BLT(K,R Q), & = ¢ implies® = ¢, and for
everyg € BL™(K,R Q), Z = ¢ implies«Z = ¢, then we
have for every X-positiieO(1 U {X})-sentenc& of quan-
tifier rank at most q that = { implies# = (.

Note that by using Lemma 5 one easily obtains a proof of
Theorem 2 (details of this will be given in the full version
of the paper).

The remainder of Section 3 is devoted to the proof of
Lemma 5. To prove Lemma 5, we use the following-“
positive” variant of the classic&hrenfeucht-Frés€ game

proving Theorem 2 we adopt the approach of [15] of using (EF-game, for short) for first-order logic.

asymmetridasic local formulae in an intermediate step.

An asymmetric basic local sentence with parameters 3.1. TheX-positive EF-game.

k,k,r,qis a sentence of the form

k
Exl...Eka( /\ dist(x,xj) > k-2r A )\ wi(m)),

1<i<j<k i=1

The rules of this game are the same as for the “classical”
EF-game for first-order logic (cf., e.g. [9]), the winning
condition, however, is slightly different. To be precideg t
“X-positive” EF-game is defined as follows:



Let g be a positive integer. Thg-round X-positive EF-
gameis played by two playershe spoilerandthe dupli-
cator, on two T U {X}-structureseZ and . The spoiler’s

intention is to show a difference between the two structures
while the duplicator tries to make them look alike. There

is a fixed numben of rounds. Each rounde {1,..,q}

is played as follows: First, the spoiler chooses either an

elementa in A or an elemenb; in B. Next, the dupli-
cator chooses an element in the other structure.
chooses an elemebt in B if the spoiler’s move was i,
or an elemeng; in A if the spoiler's move was iB. After
g rounds the game ends with elemeats..,aq chosen in
A andby,..,bq chosen inB. The duplicator has won the
gameiff the mappingf defined via(aj — bj)j:l,..‘q is an
X -positive partial isomorphism fron¥ to 4, i.e.,

(i) forany tuple of elementfry, .., Vs) within the domain
of f and any relation symb® < 1 of arity s, we have
(v1,..,Vvs) ER? <= (f(va),..,f(v)) €R”, and

(ii) for any elementv within the domain off and for the
particular unary relation symb®, we havev € X7
= f(v) € X¥.

l.e., she

Letr,qg > 0, & atU{X}-structure anch € A. Thefull
(r,q)-typeof ain « is the setfull-(r,q)-type” (a) :=

{60 | ¢ e FO(TU{X}), ar(¢) <q, &/ = ¢'(a)}.
Note that there is a formula

¢(X)’

pefull-(r,q)-type” (a)

e(r,q,g;/,a) (X) =

defining an element’s ful(r,q)-type and for allt U {X}-
structures” and allb € Bwe haveZ |= 6, s a)(b) <=
full-(r, q)-type” (b) = full- (r, q)-type” (a). Also, all the for-
mulae6 q . a) arer-local and of quantifier rank at mogt ~
(whered™> g only depends om, g, andt U {X}). In the
following, we often identify the types with these formulae.
We denote the set of all full, g)-types by®, ).
A type 6(x) is realisedin a structures if there is an ele-
menta € A such thateZ = 6(a). The elemenais called a
realisationof 8 in <.

Let & be a structure, le€ C A, let 8 ¢ Oq) be a full
(r,q)-type, and leR K > 0. We say that

6 is R-coveredchy C

Otherwise, the spoiler has won the game. Since the game

is finite, one of the two players must havevanning strat-

if for all realisationsa of 8 in .« we havea € Nr(C). We

egy, i.e., he or she can always win the game, no matter howsay that

the other player plays. We writey =4 P**% to denote

that the duplicator has a winning strategy in #peound
X-positive EF-game ony and 4. Note that the relation
defined by=*"% on the class of alt U {X}-structures is
reflexive and transitive, but not symmetric.

The fundamental use of tlieroundX-positive EF-game
comes from the fact that it characterises definabilityxdy
positive first-order sentences in the following sense:

Proposition 6. Let.er and % bet U{X}-structures and let
q be a positive integer. If7 =3 P°°%, then we have for
every X-positiv&O(1 U {X})-sentencé€ of quantifier rank

at most q, thaty = ¢ implies® = (.

The proof is straightforward.

6 is (R K)-freeoverC

if there are realisationg,...,ax of 6 in & such thaty ¢
Nr(C) for alli € {1,..,K} and dista;,a;) > Rfor alli, ] €
{1,.., K} withi # j.

The next lemma analyses the spatial distribution of the
types occurring in a structure.

Lemma 8. For all k,r,q > 0 there areK > k andR >r,
such that for allr U {X}-structureser and.% there are KR
withk<K <Kandr<R<Randsets@ C AandC? C B
such that fork := 2“1 and each? € {7, %}, the follow-
ing properties are satisfied:

(1) [C7] <K;

Now, note that Lemma 5 is an immediate consequence (2) dist(c,c¢) > k-10R, for all ¢,¢’ € CZ with ¢ # ¢/;

of Proposition 6 and the following lemma.

Lemma 7. For every g> 0O there exist KR Q > 2 such
that for all T U {X}-structures«/,%: If for every ¢ €
BLT(K,RQ), & = ¢ implies% = ¢, and for everyp €
BL (K,RQ), Z = ¢ implies./ |= ¢, then.o’ =4 P> 2.

Subsection 3.2 below is devoted to the proof of Lemma 7.

3.2. Proof of Lemma 7.
Before describing the duplicator’s winning strategy wedcee
some preparation.

(3) eachb € O realised inZ is either R-covered by
C? or (k-10R, 10K )-free over C'.

Due to lack of space, we defer the proof of Lemma 8 to the
full version of the paper. For the proof of Lemma 7 we also
need the notions giositivetypes anchegativetypes of an
elementin atU{X}-structuree. Thepositive(r,q)-type

of ais the set

pos{r,q)-type” (a) = {¢"(x) :
¢ € FO(TU{X}) positive inX, qr(¢) <q, o |= ¢"(a)}.



Similarly, thenegative(r, q)-typeof a is the set

neg{r,q)-type” (a) == {9"(x
VRS FO(TU{X}) negative mX,qr(q)) <q o E=¢"(a)}.

Note that pos<{r,q)-type” (a) C full-(r,q)-type” (a) and
negqr,q)-type” (a) C full-(r,q)-type” (a). The formula

Orqera® = A ),

$epos{r,q)-type” (a)

defines the positivéq,r)-type, in the sense that for all
(TU{X})-structures? and allb € Bwith Z |= 6 ra..2) (b)
we havepos{r,q) typeﬂ( b) O pos{r,q)- type“/( a). Anal-
ogously, one obtains a formulét;’q’%’a)(x) that defines
the negative(q,r)-type of a in /. Note that the for-
mulaeerq% and Grq v &€ r-local and of quanti-
fier rank at mostq (whered > q only depends or,r,
andt U {X}). Furthermore,@rqﬂ,a (x) is positive inX,
whereaserqﬂ,w( ) is negative inX. In the following, we
often identify the types with these formulae.

We denote the set of all positive and negatfive)-types
by eg‘q) and O(’rm, respectively. A (positive or negative)
type 6(x) is realisedin a structures if there is ana € A
such thateZ |= 6(a). We calla arealisationof 8 in 7.

Proof of Lemma 7: -

We fix q> 0 and letk:=q, r := 3% andQ := g+1. Let
K,R be chosen according to Lemma 8. Now tgtand %
be 1 U {X}-structures such that

(x) forevery¢ € BLT(K,2K*-1.10R Q), o |= ¢ implies
Z = ¢, and for everyp € BL~(K,2K*-1.10R Q),
% E ¢ implies« | ¢.

A positive (r,q)-type 17 € G)+ ) is called saturatedif
there is dull type 8 € O q) that is frequent inZ such that
mC 6. Similarly, anegative(r,q)-typev € O(’l ) is called
saturatedif there is a full typed € O, o) that iSfrequent in
&/ such thav C 6.

We define a bipartite Grapi on CUD by drawing an
edge fromc € C to d € D if there are ac’ € Nar(c) and
ad’ € Nor(d) such that the positivé4R, g+1)-type ofc’ is
contained in the positivelR g+1)-type ofd’ and hence the
negative(4R,g+1)-type of d’ is contained in the negative
(4R, g+1)-type ofc’.

We call an element € C specialif there is ama € Ng(c)
such that the positivér, g)-type ofa is not saturated(i.e.,
everyfull (r,q)-type 8 D posr, q)-type“/(a) is rare in 4,
i.e., realised only by elements Mr(D)). Similarly, an el-
ementd € D is calledspecialif there is ab € Ng(d) such
that the negativér, g)-type ofb is not saturated

LetCs C CandDg C D be the sets of all special vertices.

Claim 9. The bipartite graph¥ has a matching M such
that each special element of C and D is an endpoint of an
edge in M.

Proof of Claim 9: Let ¢ = |Cg| andCs = {c1,...,C/}.
For everyi € {1,..,¢} let 15(x) be the positivg4R g+1)-
type of ¢;. Then.« satisfies theX-positive asymmetric
basic local sentencg := HX]_...3Xg(/\1<i<j<gd(Xj,Xj) >

K-10RA A T8 (% )) Thus % satisfies the sentendg, /4|

(to see this, recall the assumpti¢a«) on </ and % on
the sentences in ABL(K, k,5R,Q), note that/ < K since
CsC Cand|C| <K, and recall from Lemma 8 that elements
in C have pairwise distance k-10R). Hence we can find
by,...,b, € B of pairwise distance greater thanR8uch

Before we can describe the duplicator's winning strategy that% (= i (b;) for everyi € {1,..,¢}.

in the g-round X-positive EF-game or? and %, we first
need to explore the “playing fields¥ and%. To this end,
we first apply Lemma 8 tey and.%Z (with k, r, q) to obtain
numbersk < K,R< R and setC :=C? C A andD :=
C# C B such that fok := 2K*~1 and for eact? € { </, %)}
the properties (1)—(3) of Lemma 8 are satisfied.

Note that, sinc& < K andR< R, () in particular holds
when replacindC with K andR with R. Thus, by applying
Lemma 4 (both th&X-positive and theX-negative version,
while interchanging the roles of/ and % when applying
the X-negative version), we obtain

(xx) for every ¢ € ABLT(K,k,5R,Q), &/ = ¢ implies
% = ¢/« and for everyg € ABL ™ (K,k,5R Q),
% = ¢ implies.o |= @1/,

Let us proceed with fixing some more notation. We call a

full (r,q)-type 6 € O, o rare in o7 (in %) if itis R-covered
by C (by D, respectively); otherwise, we calfrequent

Let us next note that each of tlhe belongs toN,r(D).
This can be seen as follows. Sinceis special, there
exists ana € Nr(ci) whose positive(r,q)-type 17’ is not
saturated, i.e., each full,q)-type that containst is re-
alised in% only by elements ifNg(D). Since the posi-
tive (4R, g+1)-type of b contains the positivé4R g+1)-
type 17 of ¢; and . #;r(ci) satisfies theX-positive formula
Jy(dist(ci,y) <R A 1(y)), we know that also#sr(b;) sat-
isfies this formula, and thus there exists an elenbgmtith
dist(b;,b{) < Rwhose full(r,q)-type containst. Sincer’
is not saturated, we conclude thate Nr(D) and hence
b € NZR(D).

Since eachb; belongs toN,r(D), there areds,...,d; €
D such that digd;, b)) < 2R, for everyi € {1,..,¢}. The
verticesdy, ..,d, are pairwise distinct, since disi,b;) >
10R and thus didid;,dj) > 6R, for all i, j € {1,..,¢} with
i # j. Furthermore, by the definition of the gragh there
is an edge between andd;, for everyi € {1,..,¢} (to see



this, note that] := ¢ € Nor(ci) has the positivé4R, g+1)-
typers, andd’ := b; € Nor(di) has a positivédR, g+1)-type
that containgr). It follows that each set’ C Cs of special
vertices has at leaft’| neighbours irD.

Analogously, we can show that each B&tC Ds of spe-
cial vertices has at leald’| neighbours irC.

Now Claim 9 immediately follows from the following
purely combinatorial lemma, which may be viewed as an
extension of Hall's well known marriage theorem. Letus a
say that a vertex isoveredby a matchingif itis an endpoint
of an edge in the matching.

Lemma 10. Let 4 be a bipartite graph with bipartition
C,D of the vertex set. Letd3C C and Ds C D, and suppose
that each CC Cs has at leas{C'| neighboursin D and each
D’ C Ds has at leastD’| neighbours in C. Then there is a
matching M of¢ that covers each vertex ingC Ds.

The proof of Lemma 10 can be found in the full version
of this paper. To proceed with the proof of Lemma 7 let
us now fix a matchingM that covers all special vertices
(such a matching exists by Claim 9). L&t ..., ¢, € Cand
d,...,dm € D be the vertices covered Iy via an edge be-
tweenc; andd;, for eachi € {1,..,m}. By the definition of
the graph, fori € {1,..,m}, there are vertices € Nor(G;)
andd/ € Nor(di) such that the positivedR, g+1)-type ofd/
contains the positive4R, g+1)-type ofc]. In particular, the
duplicator has a winning strategy for thgoundX-positive
EF-game on/4g(cf) and./ar(d)).

Recall that, by the definition ofpecialvertices, every
a € A whose positive(r, g)-type is not saturated is in the
R-neighbourhood of some special vertex®@fand hence,
in particular, inNr(ci) € Nor(cf), for somei € {1,..,m}
(to see this, note that (13 has to belong td\r(C) due
to Lemma 8, and (2) the vertex fro® in whose R-
neighbourhoodh lies has to be special). Similarly, every
b € Bwhose negativér, g)-type is not saturated is Nr(d;)
and hence iMNr(d/) for somei € {1,..,m}.

Now it is easy to define a winning strategy for the du-
plicator in theg-roundX-positive EF-game ony and %:
If the spoiler plays near a vertekor df, the duplicator an-

4. Graph Decompositions

In this section we fix some notation and briefly present the
basic notions from graph minor theory used later on. See
the last chapter of [8] or the survey [23].

The vertex set of a grap¥ is denoted byv¥ and its
edge set is denoted IB7. ForU C V¥ we write (U) for the
subgraph o/ induced by/. A tree is an acyclic, connected
graph. We usually use rooted directed trees where edges are
directed from the root towards the leaves.

A minorof a graph¢ is a graphs# that can be obtained
from a subgraph a¥ by contracting edges. We writ&” <
¢ to denote that? is a minor of4. A class% of graphs is
minor closedf, and only if, for all¢ € ¥ and# < ¢ also
H € €. A class¥ of graphs is7Z-freeif 57 A ¢ for all
4 € €. We then call>Z anexcluded minoof 4.

A tree-decompositioaf a graph¥ is a pair(T, (Bt)tevt ),
whereT is a directed tree ang C V¥ forallt € VT such
that{ oyt (Bt) = ¢ and for everw € V¥ the set{t : ve B}
is connected. The seB; are calledblocksof the decompo-
sition. Thewidth of (T, (Bt);cyt) is maxX{|B| :teVT} -1
and thetree-widthtw (%) of a graph? is the minimal width
of any of its tree-decompositions. A clagsof graphs has
bounded tree-widthif there is a constarit bounding the
tree-width of all members of .

For a tree-decompositiofT, (Bt ),y ) andt € VT with
parents€ V' we letA := B, N Bs. For the rootr of T we
let A, := 0. Theadhesionof (T, (Bt);oy7) is the number
adT, (B)ieyr) := max{|A| : t € VT}. Thetorso [B] of
(T, (Bt);eyt) att € VT is the graph with vertex sé; and
with an edge between,v € B if (u,v) € E“ or u,v both
belong to a blocklBs with s# .

A tree-decomposition of a graphi over a class# of
graphs is a tree-decompositi@f, (Bt );.,7) whose torsi
[Bt] are contained 4.

We also need the following notion. Theacal tree-width
of a graph¥ is the function ItW/ : N — N defined as
ltw? (r) := max{tw((N?(v))) : ve V?}. A class¥ of
graphs habounded local tree-widtiithere isanf : N — N
such that Itf (r) < f(r) forall ¢ € ¢ andr € N.

5. First-order definable optimisation problems

swers according to the local strategy there._ If the spoiler | this section we present a proof of Theorem 1. Here, we
plays near a vertex played before, the duplicator answerspnly prove the minimisation version of the theorem. The

according to the local strategy there. Otherwise, the spoil

maximisation version is proved similarly using techniques

plays a saturated vertex far away from everything, and thefrom [14]. We defer the details to the full version of the
duplicator can always find an answer. The meaning of haper. We begin with a formal definition. L¥in be an

“near” varies with the numbejr of moves remaining in the

optimal solution for MNyx) on input¥. Fore >0 we

game. The duplicator seeks to preserve neighbourhoodgg|| a4 solutionX, i.e. a setX with (%,X) E ¢, e-close

of radius 3 around previously played elements d?2 3!
aroundc] ord/.

This finally completes the proof of Lemma 7 and thus,
altogether, the proof of Theorem 2. O

if |X] < (14 €)[Xmin|]- A polynomial-time approximation
schemgPTAS) for MiNgx) is a uniform family (A¢)e~0

of algorithms, wheré\;, given an instanc#, computes an
e-close solution for in polynomial time. Uniform here



means that there is an algorithm that, gigegenerates\. wherexz fn:=

A PTAS is calleckefficient (or, it is an EPTAS), if the degree

of the polynomial bounding the running timeAf does not Ni<i<r<jdist@,ay) > 5"-8r A
depend org. Our proof of Theorem 1 establishes an EPTAS VX(/\-j dist(x, &) > 5" 4r — 19(X)) A
for first-order definable optimisation problems. =1 T

WX .. VX "+ gist(x, as) < 5"4r A
Example 11. It is well known that the class of planar Ner v f(5)+1(/\"1 104, 2)

graphs excludes a minor. Thus, by Theorem 1, every opti- Ni<i<r<i(s+1dist(x, %) > ZV) = V{99 (x).

misation problem definable by afrpositive orX-negative

first-order formula has a PTAS on the class of planar graphs. We claim thatiy and* are equivalent o7’ in the fol-
However, the result neither extends to monadic second-lowing sense. Due to lack of space, we defer the proof to

order logic (1s0) nor to first-order formulae which are not  the full version of the paper.

monotone inX. For this, note that 3-colourability is NP- g .

complete even on the class of planar graphs (see [13]). Asl;er;m; 12. FSr every set X V7, (¢,X) = ¢ if, and only

3-colourability can easily be defined by a formyla mMso, i, (4, X) = ¢

the minimisation problem defined by(X) := @ — VxXx Lemma 12 implies that for a given graghwe can trans-
cannot have a PTAS (unless-PNP). Similarly, a simple  |5te the formulag(X) into a conjunction of formulae of
reduction shows that the 3-colourability problem on planar the form (x) and (x«). By distributivity, we can translate
graphs can be reduced to a minimisation problem on planariis into a disjunction of conjunctions of formulaga 1 n
graphs defined by a non-monotone first-order formulal and formulaef ‘= /\5;119(b|) for tuples of constamﬁ ,’5},

functionsf and numberg andn. As the arity of the tuples
3, bis bounded by a function @f and the ranges of the vari-
ablesj,n, andf also only depend o, the translation can
be done in polynomial time in the size @t

Further, the first line of the formulg; 4  » only imposes
conditions on the choice of the tupge It follows that for
computing an approximation of a Sétsatisfying¢ in ¢ it
suffices to compute an approximation of a Xesatisfying
the conjunction of formulae

To prove Theorem 1 we first need some preparation.
Let ¢ be a first-order formula positive iiX. By The-
orem 2 we can assume that:= \/; \; ¢ j, where each
Yi,j is X-positive and either basic local or the negation
of a basic local formula. To compute a minimal set
X satisfying the formula, it suffices to consider the dis-
juncts A; sj separately. Thus we can assume that=
AjWj, where eachy; is either an existential basic lo-
cal formula of the forrrExl...EIxrj /\#tdist(as,at) > 2rA
/\glﬁj (xs) or auniversal basic local formulaf the form a) A\X_;9(a) for anr-local formulad and a tuple of con-
VX . X, (/\Sﬁdisr(as,at) >2r — \/;119]- (xs)). Here, stants(ay, . .., ax) with dist(as,a;) > 2r for all i # j,
the formulaed; are X-positive and restricted to the- |
neighbourhoods of. We will transform¢ even further.  P) YX(Ai_pdist(x.&) > q — 9 (x)) for anr-local formula

For this, observe that for any fixed gragh:= (V,E), &, someq > 2r and a tuple of elemeni®y. ..., a;) of
the formula3x ... 3x Asx dist(@s,a) > 2r A A3 9 (%) distance digias, a;) > 2q for all i # j, and
is equivalent toV ,  a)eve) (Asu dist(as,a) > 2r A ) Vxl...fo(s)ﬂ(/\,f:(sl)“dist()q,as) < 54 A

/\';119(515)) which can be simplified even further to :
Nici<r<tg+1distx, ) > Zr) - V9 x)
k .
. . which are g-local aroundas for someq > 2r only
\/{ N9 (@s):(ay,....a) € (V¥) and / dist(as, &) > Zr}. depending or.
s=1 S#t
*) Note that the formulas i) are %' - 4r-local aroundas.

Here, the elements; are used as constants in the formu- Hence, Theorem 1 follows from the following lemma.
lae. A similar, although more complicated, translation can

be given for the universal basic local sentences. % die Lemma 13. Let ¢' be a class of graphs with an excluded
a graph andp(X) := le...ka(/\#tdist(xs,&) > 2r — minor and leto := {ay,...,a} be aset ofponstantsyr_nbols.
VX 19 (xs)) be a universal basic local sentence. For every L€1d> Oand let$ (X) € FObe an X-positive conjunction of
0< j <k—1letr be the set of functions: {1,...,j} — N g-local formulaegi(a) using only one constant symboka

; - ki d
suchthaty)_ (i) < k. Lety*(X) be the formula o and formulaeyy = VX(_ S;ldlst(x,aat_) > — 9(X)),
for an r-local formulad with g > 2r, using constant sym-

k—j bolsa; C o.
\/( \V (V \/Xj,a’f’n)) (**) Let ¥ = {(¥9,3) : 4 € ¥’ anda C VY}. Then
i<k (ay,...aj)e(v¥)i femn=0 MINg x) (¢) has a polynomial time approximation scheme.



To prove the lemma we use a decomposition theorem forTheorem 17 ([2]). Let ¢(X) be an X-positive formula of

classes of graphs with an excluded minor that is due to [14].

We first introduce some notation.
ForA,u >0 we let

~ forall s <% forallr >0

20y = o QBT STTE0 )
. thereisx c V¥
LAp) = {g- s.th.(|X|§uA%\X€«$(A>)}

Note thatZ (A, i) is minor closed. The proof of Lemma
13 is based on the following decomposition theorem for
classes of graphs with an excluded minor.

Theorem 14 ([14]). Let € be a class of graphs with an ex-
cluded minor. Then there exist u € N such thatally € ¥
have a tree-decomposition ovéf (A, u).

For the approximation algorithms we want to show, we
need an algorithmic version of this theorem.

Theorem 15 ([14]). Let ¥ be a minor closed class of
graphs. Then there is a polynomial-time algorithm that
computes for a given grap¥ a tree-decomposition of
over® or rejects¥ if no such decomposition exists.

We apply this result to the minor closed class€6\ , ).
Let ¢ be a graph. For every vertaxe V¥ and integers
j > 1> 0we define

L7, j) := {we V7 i <dist’ (v,w) < j},

where disf (v,w) denotes the distance betweeandw in
¢. To simplify notation, we will us&Z[i, j] for arbitrary in-
tegerd, j and set? i, j] :=0ifi > jandL{[i, ] := LY[0, ]]
fori < 0. The following lemma follows easily.

Lemma 16. LetA € N. Thentw ((LY[i,j])) <A-(j—i+1)
forall ¥ € Z(A),veV? andijc Zwithi < |.

Now, let ¢ be as in the hypothesis of Lemma 13 and
let ¢ be a class of graphs with an excluded minor. By
Theorem 14, we can choose u € IN such that every
graph¥ € ¢ has a tree-decomposition ov&f(A, ). Let
€ > 0. We describe a polynomial time algorithm that, on
input¥ € ¥ anda e V¥, computes ag-close solution for
MINgx) (%) on (¢,a). To ease notation we will consider

the tuplea as part of the graph and use notation such as

Y = ¢ for (9,3) = ¢.

The proof of Lemma 13 is split into two steps. In the first
step, which we present in the next subsection, we prove th
lemma for the classe®’(A) and.Z (A, u) of graphs. Here,

we use the corresponding result for graphs of bounded tree

width which essentially follows from [2].

e

MSO. ThenMINx) (%) can be solved in linear time on any
class@ of graphs of bounded tree-width.

In Section 5.3, we extend the proof to graphs which have
a tree-decomposition ove¥’ (A, i), i.e. to all graphs irg’.

5.1. The levels of graphs of bounded local tree-width.

In the first step of the proof of Lemma 13 we show that
the restriction of MNd,(X)(%”) to instances inZ(A) has a
PTAS. Let¢ := Aic, i (&) A Arer, $t, where thepi(a;) are
r-local formulae and thgk := Vx( _'f;ldist(x, ast) >y —

% (x)) , for ag-local formulad; with ry > 2q, using constant
symbolsa; C g. For simplicity we assume w.l.0.g. that=

re forallt,t’. Letr :=r;.

Letk:=[Z]. Note that“Z < (1+¢). Let¥ € Z(A).
Choose a node € V¥ arbitrarily. For 1<i<kandj >0
letLij ;=LY [(j—1)-k—r+i,j -k+r+i]. By Lemma 16,
tw((Lij})) < A(k+2r +1).

Forall 1<i <k, j >0 letX be a set of minimal cardi-
nality such that

(1) ((Lij),%ij) = ¢i(a) for all | € I such thatey and its
r-neighbourhood is contained i; and

) ((Lij),%ij) = g foralli € 1.

Note that asjt := Vx(AX_; dist(x,as;) > re — 9(x)) also
mentions constants interpreted by vertices outside;gf
this is, strictly speaking, not well defined. However, as
the a; are constants, we can easily check whetkés
close to any constant interpreted by an element outside of
Lij. For instance, we could colour theneighbourhoods of
ai,...,ay and then check i thatx is outside a coloured
area. For ease of presentation we will therefore simplyawrit
({Lij),%j) = yr evenin cases where some or all of the con-
stants are interpreted by elements outside; of

By Theorem 17 the set¥; can be computed in linear
time. For 1<i <sletX := Ujo0Xij- As ¢ is monotone in
X, everyX; is a solution of MN(x) (%) on%.

Let Xmin be an optimal solution of Miyx (%) for ¢,
i.e. a set of minimal cardinality such th&¥, Xyin) E ¢.
Clearly,XminNLj; satisfies the conditiond) and(2) above
for all levelsL; j. Hence,

k

i_il%l < iij;lxijl < i;j;mj N Xmin| < (K=+2r) [Xmin]-

The last inequality follows as every nodes V¥ can be
contained in at most+ 2r levelsLij. Choosem, 1 < m<k
such thatXpy| := min{|Xy|,...,|X«|}. Then

(k+2r)
k

|xm| < |xmin| <(1+ 8)|xmin|-



Hence Xm is ane-close solution of M\ x)(¢) on¥. As
every sef; can be computed in polynomial time, the Xgt
can also be computed in polynomial time.

5.2. Extension to the classes(A, u).

In a second step we show how this approximation algorithm

can be extended to the class#$A, i) for constants\, 1 >

0. Let? € Z(A,u) and letU C V¥ be such thaju| < u
and¥\U € L(A). The following extension of Theorem 17
can easily be proved by dynamic programming.

Theorem 18. For every k> 0 and every first-order formula
¢ (X) which is positive in the set-variable X, the following
problem can be solved in linear time. Given a grapha set

U C V¥ sothattw(¢\U) < k and a subset ¥ U, find a set

X CV#\U of minimal cardinality such that7, X UY) |= ¢

or determine that no such set exists.

Let againg (X) be anX-positive first-order formula. For
everyY C U let X(Y) be a subset o¥“ \ U such that
(@, X(Y)UY) = ¢ and

IX(Y)| < (1+¢&)min{|X|: X CV¥\U and(¥,XUY) = ¢}

orX(Y):= Lifnosuchsetexists. K(Y)=_LforallY CU
then MiNg(x) (%) has no solution o7 and we are done.
Otherwise letYy C U be such thatX(Yp) UYo| is minimal
among{|X(Y)UY]|:Y CU andX(Y) # L}. Then clearly,
X(Yo) UYp is ane-close solution for MN ¢ x)(¢).

Using Theorem 18 instead of Theorem 17, the X&)
can be computed in polynomial time analogously to the first
step. As there are only*2possible subsets & — recall
thatyu is a constant only depending on the cl&ss and for
eachY C U, X(Y) can be computed in polynomial time, the
solutionX(Yp) UYp can be computed in polynomial time.

5.3. Excluded Minors.

notation is motivated by the factthatfef =¥, (¢, X) = ¢

for any set satisfying conditiofll) and(2) and vice versa.
Inductively, from the leaves to the root, we compute for

every node € VT and for every subsef C A an X(t,Y)

such thai(t,Y) C %\ A, ((%),X(t,Y)UY) = ¢ and

IX(E,Y)] < (1+¢&)min{[X]: ((£),XUY) = ¢, X S Z\ A}

or X(Y) := L if no such set exists. As tree-decompositions
over Z(A,u) have adhesion at moat+ u + 1, we have
|A| <A+ u+1. Hence, we only have to compute a con-
stant number of sets(t,Y) for eacht. Further, for the root
r we haveA, = 0 and{%;) =¥. HenceX(r,0) is ane-close
solution for MiNgx) (%) or L if no solution exists.

We show next how to compute the s¥i&,Y). Suppose
t € VT and for every child’ of t we have already com-
puted the familyX(t’,-). LetU C B; such thatjU| < u
and[B]\U € Z(A). (Recall that[B] denotes the torso
of (T, (Bt )ieyT) att.) LetW :=U UA.

For everyZ CW, let Xmin(Z) be a set of minimal car-
dinality such thamin(Z) C % \W and ((%), Xmin(Z) U
Z) = ¢ or Xnin(Z) := L if no such set exists.

Claim 19. For every set Z W we can compute in polyno-
mial time an XZ) such that XZ) C % \W, ((%),X(Z) U
Z) = ¢, and|X(2)| < (14 €)[Xmin(Z2)| or X(Z) := L if no
such set exists.

Before we prove Claim 19 let us show how the proof of
Lemma 13 can be completed using the claim. For every
Y C A, choose & CW suchthaZNA; =Y and|X(Z)U(Z\
Y) | =min{|X(Z)U(Z'\Y)|:YCZ CWandZ' nA =Y}.
SetX(t,Y) :=X(Z)U(Z\Y). By our choice o it follows
that|X(t,Y)| < (1+&)min{|X|: ((%),XUY) = ¢ } which
concludes the proof.

So all that remains is to prove Claim 19. FixZaC W.

In the last step, we show how the approximation algorithm We show how to computé(Z) in polynomial time. IfW =
can be extended to graphs that have a tree-decompositio, i-€.Bt :=U UA, then1etX(Z) := U y)eer X(t',ArNZ).
over.Z(A,u), i.e. to all graphs ir¢’. Otherwise choose an arbitrarye B; \W. For 1<i <k

Let 4 € . We first compute a tree-decomposition andj > 0 let Ljj := L\[,B‘}\W[(j —1)-k+i—rj-k+i+r].
(T, (B)ieyt) OVEr Z(A,p). By Theorem 15, this can be  Then tw((Lij)) < A (k+ 1+ 2r). For every child’ of t and
done in polynomial time. Let be the root ofl and for ev- every 1<i <kthere s at least ong> 0 such thaf\, \W C
eryt € VT with parents let A ;= BN Bs. We setA := 0. Lij. This follows from that fact tha#y induces a clique in
Further, for every nodéc VT let T; be the subtree of [Bi]. Let jmin(i,t") be the least suchand let
rooted at and let%; := Usc, Bs.

In what follows we will construct for subgraphig of ¢ Lij == Lij U J{%v \ Av : (t,t') €ET andjmin(i,t') = j}.
setsX such thai((#), X) satisfies .

Similarly, for everyX C Lj; let

(1) ((#),X) = ¢i(a) for all | € le such thata and its
r-neighbourhood is contained i# and X* = XUJ{X(, (XUZ)NAY) (1Y) €ET, jmin(i,t)) = j}.

) ((#2).X) Eforallt € ly. We compute anX;; C Lij with minimal [X;j| such that
(Here, we use the same convention as in Section 5.1 above.{(Lij )5 Xij UZ) = ¢ or setX; := L if no suchX exists. This
To simplify the presentation we writgd %), X) | ¢ to in- can be done in polynomial time using the standard dynamic
dicate thafX satisfies the conditiond) and(2) in #. The programming techniques on graphs of bounded tree-width,



provided that the numbetX (t’,Y)]| for the childrent’ of t
are given. It is important here that evelyy \ W is a clique

in (Lij), as this implies that it is contained in a single block
of every tree-decomposition ¢k;j ).

Let Xi := Uj>0Xij andX" :=U;>0X;j. Then, by mono-
tonicity of ¢ in X, ((%),X*UZ) = ¢ or X = L if no set
satisfyingg in (%) exists. Finally, choose dre {1,...,k}
such thatX*| := min{|X;|,...,|X{|} and letX(Z) := X*. It
follows thatX(Z) can be computed in polynomial time.

Recall that we define¥min := Xmin(Z) € % \W to be
a set of minimal order such th&t%;), Xmin UZ) = ¢ or
Xmin := L if no such set exists. It remains to prove that
X(2)] < (1+ &) Xmin|-

By hypothesis of the algorithm we have for every child
' of t, [X(t, (XminUZ) N A )| < (1+&)[Xenin 1 Zy \ Av)|-
Further, the construction of; andX;j guarantees that for
1<i<kandj>0

%51 < [Xmin N Lij | + X(t', (XminUZ) NAY)|.

2

(tt)eeT
imin(:t)=i

But then
k k
kiX(2)] < X < X
X(2)] < i;w_i;j;w
k
< XminNLij| +
i;goﬂ nNLij|
IX(t', (Xmin UZ) N Ay)])
(tt)eET
imin(i.t)=i
k
< XminNLij| +
i;goﬂ nNLij|
(1+ &) Xmin N By \ Av))
(tt)eeT
imin(i.t)=i
< (K420)[Xmin N Bt| +K(1+ €)|XminN % \ By|

This implies|X(Z)| < (1+ €)Xmin and concludes the proof
of Lemma 13 and with it also the proof of Theorem 1.
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