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Abstract. In this paper we compare the expressive power of various
fixed-point logics on linear or dense order constraint databases. This
comparison is not done on absolute terms, i.e. by comparing their ex-
pressive power for arbitrary queries, rather for definability of partially
recursive queries. The motivation for choosing this benchmark comes
from fixed-point logics as query languages for constraint databases. Here,
non-recursive queries are of no practical interest.

It is shown that for linear constraint databases already transitive closure
logic is expressive enough to define all partially recursive queries, i.e.,
transitive-closure logic is expressively complete for this class of databases.
It follows that transitive-closure, least, and stratified fixed-point logic are
equivalent with respect to this benchmark.

1 Introduction

Logics and query languages allowing the definition of fixed-points of definable
operators have a long tradition both in (finite) model theory and database theory.

In finite model theory, the interest in fixed-point logics comes from questions
connected with the definability or description of computations in logical for-
malisms. To obtain logics strong enough to describe properties interesting from
a computational point of view, extensions of first-order logic by operators to de-
fine fixed-points have been considered. Among the logics obtained in this way are
transitive-closure logic (FO(TC)), which extends first-order logic by an operator
to define the transitive closure of definable graphs, and least fixed-point logic
(FO(LFP)), which extends first-order logic by an operator to define the least
fixed-point of operators defined by positive formulae. We give precise definitions
of these logics in Section 2.

Query languages incorporating fixed-point concepts have also been studied
in database theory. Here, the fixed-point constructs have not been added to full
first-order logic but to conjunctive queries instead. To obtain more expressive
logics than this query language, called Datalog, database theorists incorporated
negation in various ways. One of these extensions is Stratified Datalog, where
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negation is allowed in a limited way. Stratified Datalog plays a rather prominent
role in database theory as it has a good balance between expressive power and
complexity.

Once the logics and query languages had been defined, it became obvious
that fixed-point logics had corresponding Datalog variants and vice versa. For
instance, Datalog is a logic equivalent to existential fixed-point logic (FO(EFP))
the restriction of least fixed-point logic to existential formulae.

Generally, it is clear that FO(TC) C FO(SFP) C FO(LFP) and, further,
that FO(EFP) C FO(SFP), where FO(SFP) is equivalent to Stratified Datalog'.
Further, FO(TC) and FO(EFP) are incomparable. Whether these inclusions are
strict depends on the kind of structures under consideration. It has been shown,
that on arbitrary structures all inclusions are strict. The standard example sep-
arating FO(SFP) and FO(LFP) is the property of a binary relation of being a
well-ordering. See [DG] for a very recent survey on fixed-point logics.

Y

On finite structures, the situation depends on whether an ordering is avail-
able. If the structures are ordered, FO(SFP) and FO(LFP) coincide with PTIME
and, if the order is given by a successor relation, the same is true for FO(EFP).
Whether FO(TC) and FO(LFP) have the same expressive power on finite or-
dered structures depends on whether NLOGSPACE equals PTIME. See [EF95] for
an extensive study of these questions on finite structures.

In [Kol91], Kolaitis showed that on unordered finite structures FO(SFP) is
strictly weaker than FO(LFP). To prove this he used so-called game trees which
can be defined in FO(LFP) but not in FO(SFP).

In this paper we are mainly interested in the expressive power of transitive-
closure logic, stratified Datalog, and least fixed-point logic in the context of con-
straint databases (See [KLPO0O] for a detailed overview of constraint databases.)
We give a precise definition of constraint databases in the next section. These
structures lie somewhere between finite and arbitrary infinite structures. They
usually have an ordering on their universe available, so that the separation meth-
ods for finite structures do not work, but on the other hand the database relations
often provide too much structure to use the methods that work on general infi-
nite structures. The problem here is, that - classically - logics are separated by
showing that a class of structures with certain properties is definable in one logic
but not in the other. In the constraint setting, the context structure is fixed in
advance, whereas the relations that vary are first-order definable and thus have a
rather simple structure. However, it can still be shown that on many interesting
context structures, least fixed-point logic is more expressive than, for instance,
stratified Datalog.

So far, much work on fixed-point logics in the context of constraint databases
has focused on syntactic variants defined with regard to certain properties of the
resulting languages, as polynomial time complexity, see e.g. [GK97,Kre01], or
termination, see e.g. [GK00]. Further, the logics have been considered in terms

! Actually, FO(SFP) stands for stratified fized-point logic, a name that will become
clear later.



of absolute definability, i.e., the main question was whether there are relations
or properties definable in one logic but not in another.

Besides this classification, the expressive power can also be measured with
respect to a fixed benchmark. This approach is taken here, where we consider
constraint databases over the real ordered group (R, <,+). As benchmark we
take the class of partially computable queries. Precisely, we investigate which
portions of this class of queries are definable in each of the logics mentioned
above.

The motivation for choosing the class of partially recursive queries as bench-
mark comes from the use of fixed-point logics as query languages. Someone using
the logics to ask queries about a given database will only be interested in com-
putable queries, i.e., those whose evaluation terminates. Thus a query language
that is more expressive than another only in means of the power to define non-
recursive queries will not be considered as being expressively stronger.

When speaking about logics defining partially computable queries we first
have to specify what it means for a formula to define a computable query. So
far we only considered the standard model-theoretical semantics of fixed-point
logics. Formally, the model-theoretical semantics for a logic £ can be seen as a
function

mod : ¢ € L — (mod,, : (4,0) — P(A")),

taking formulae ¢ € £ to functions that map a database B8 := (4, o) to relations
over its universe. The problem is that the functions mod, are not required to
be computable. Further, in the constraint database setting, the problem arises
that the resulting relations on A are not necessarily finitely representable in the
context structure. Therefore, we have to give the logics an operational semantics,
i.e., a total recursive function

op:p € L (op, : (A,0) — P(A")),

where the functions op,, are partially recursive and take databases to finitely
representable relations.

Clearly, not every such function can sensibly be called an operational seman-
tics. One obvious condition that should be satisfied by any operational semantics
for a logic is, that it is consistent with the model-theoretical semantics, i.e., for
all databases B and formulae ¢ where op,(B) is defined, the two semantics
should agree on the result, i.e., mod,(8) = op,,(‘B).

Although the consistency condition is a necessary condition, it alone does not
ensure that the semantics meets our expectations. For instance, the operational
semantics mapping each formula to the everywhere undefined function would
trivially satisfy the consistency requirement.

Thus, besides this consistency criterion also some kind of completeness con-
dition is needed. Unlike for consistency, there is no canonical definition for an
operational semantics to be complete. In this paper we take the view that an
operational semantics for a logic is complete if it is most powerful possible, i.e.
there is no other operational semantics and no partially computable query which
is definable in the logic under the second but not under the first semantics.



In Section 3, we define operational semantics for the fixed-point logics men-
tioned above which satisfy both, the consistency and the completeness condition.
The latter condition will be proved by showing that under the operational se-
mantics we define for transitive-closure logic, all partially computable queries
on linear constraint databases become definable in FO(TC). This shows that
FO(TC) is expressively complete for this class of databases.

It follows from this that also least and stratified fixed-point logic are ex-
pressively complete and thus the three logics are equivalent with respect to the
class of partially computable queries. This equivalence does not hold for exis-
tential fixed-point logic, where we show that there even exist queries definable
in first-order logic but not in existential fixed-point logic.

Finally, in Section 4 we will consider constraint databases over the real line.
Here it will be shown that the question about the expressive power of fixed-
point logics can be reduced to the question for finite ordered databases. Thus,
stratified Datalog and least fixed-point logic have the same expressive power
and transitive-closure logic is equal to both if, and only if, NLOGSPACE equals
PTIME.

2 Preliminaries

Constraint Databases. Constraint Databases have been introduced by Kanel-
lakis, Kuper, and Revesz [KKR90,KKR95] as a model for infinite relational
databases that have a finite representation and are therefore accessible to al-
gorithmic problems.

Let a signature 7 and a 7-structure 2 be given. Constraint databases are
defined with respect to this fixed structure . For a finite relational signature
o, a o-constraint database B over 2, or simply constraint database if o and A
are understood or irrelevant, is a g-expansion of 2l such that for all relation
symbols R € o there is a quantifier-free formula over 2 defining R® in 2. In
these defining formulae elements of the universe may be used as parameters. The
database relations in ¢ are called finitely representable or constraint relations.

In this paper we are specifically interested in linear constraint databases, i.e.,
constraint databases over the structure (R, <,+). Thus, linear constraint rela-
tions are defined by boolean combinations of linear equalities and inequalities. In
this paper we only allow rational coefficients in these formulae defining database
relations?.

Fixed-point logics. As mentioned in the introduction, we are specifically
interested in the expressive power of transitive-closure and least fixed-point logic
as well as Datalog and stratified Datalog. We define FO(TC) and FO(LFP) first
and then turn to the Datalog variants.

2 After all, constraint databases have been defined in order to be finitely representable
and it is debatable whether formulae with transcendental coefficients could sensibly
be called finitely representable.



Definition 1 Transitive-closure logic (FO(TC)) is defined as the extension of
first-order logic by the following formula building rule. If o(T,y) is a formula
with free tuples of variables T,y of equal length, then

is also a formula, where 5,1 are tuples of terms of the same length as T and
Y. The free variables of 1 are the variables occurring free in 5,t and the free
variables of @ other than T and .

Given a structure 2, the semantics of FO(TC) is defined inductively with the
meaning of the TC-rule being that for some tuples @,b, A = ([TCz 3 ¢))[a,b] if,
and only if, (@, b) is in the transitive closure of the relation {(u,v) : A |= o[u,v]}.

Note that the result of a formula in FO(TC) on a linear constraint database
does not have to be finitely representable anymore. For instance, the formula
o(y) == [TCqyx + 1 = y](0,y) defines the natural numbers on any linear con-
straint database. But clearly, the result is not finitely representable.

Definition 2 Least fixed-point logic FO(LFP) is defined as the extension of
first-order logic by the following formula building rule. If ¢(R,T) is a formula
with free first-order variables T := x1,...,xy and a free second-order variable R
of arity k such that ¢ is positive in R, then

= [lpr,T ] (t)

is also a formula, where t is a tuple of terms of the same length as T. The free
variables of 1 are the variables occurring in t and the free variables of ¢ other
than T.

Given a structure 2, the semantics of FO(LFP) is defined inductively with
the meaning of the FO(LFP)-rule being as follows. Define the stages R* of an
fized-point induction as

R =2
RO+ i {2 = [ ]}
RY =,y R"

For a given structure 2 and a tuple @ € A, the formula [fpp - ¢] becomes
true for @ if, and only if, @ € R, where o is the least o such that R® = R®T!,
As ¢ is required to be positive in R such a stage a always exists.

We now turn to the definition of the Datalog variants. To harmonise notation,
we will not deal with the Datalog variants directly but consider the corresponding
fixed-point logics instead. In the case of Datalog this is the well known existential
fixed-point logic.

Definition 3 Existential least fixed-point logic is defined as the restriction of
FO(LFP) to formulae without universal quantifiers and with negation being al-
lowed only in front of atoms which are not built up from fixed-point variables.



For stratified Datalog there are various syntactically different fixed-point
extensions of FO equivalent to it. We follow the notation introduced by Kolaitis
in [Kol91].

Definition 4 Stratified Fixed-Point Logic (FO(SFP)) is defined as follows.

e Let FO(SFP), be defined as existential fized-point logic.

e Define FO(SFP),, as the class of existential fized-point formulae which may
use literals of the form (), where ¢ is an FO(SFP), formula with | < i.
Note that these formulae may occur under the scope of negation symbols.

Stratified Fized-Point logic is defined as the union FO(SFP) := |J
of all FO(SFP), fori € w.

FO(SFP),

i€w

Clearly, FO(SFP) and stratified Datalog have the same expressive power and
a stratified Datalog program with [ strata corresponds to a formula in FO(SFP),.
We sometimes write [sfpp, ; o] instead of [ifpg ; ¢]. This happens in cases where
we compare FO(SFP) and FO(LFP) and want to make it very clear in which
logic we are.

It can easily be shown that a formula [TCz 3 ¢(Z,9)](5, t) of FO(TC) is equiv-
alent to the FO(SFP)-formula [Ifpp (Z = 5V 32" (RZ' A ©(7',%)))](t). Thus,
FO(TC) C FO(SFP). In fact, it can even be shown that every FO(SFP)-formula
of the form [Ifpp z vo(Z) V 3F € Ry (T,7')](t) such that R does not occur in
o and 1 is equivalent to a formula in FO(TC), provided that g and ¢; are
equivalent to formulae in FO(TC).

It is also clear that FO(SFP) C FO(LFP).

3 Finitely representable expansions of the real ordered
group

In this section we consider constraint databases over the real ordered group
(R, <, +) and show that transitive-closure, least, and stratified fixed-point logic
define the same class of partially computable queries. This is proven by showing
that all partially computable queries are already definable in FO(TC). For this,
we first have to give the logics an operational semantics.

3.1 Operational semantics for fixed-point logics

Throughout this section, we denote by CDB the class of constraint databases over
(R, <, +) and by CRel the class of finitely representable relations over (R, <, +).
We don’t distinguish between finitely representable relations and their represent-
ing formulae and denote both by CRel. It will always be clear from the context
whether the relation or the formula is meant.

% Note that in this paper the logic was called ezistential fixed-point logic!



Definition 5 For a given logic L, an operational semantics op. is defined as a
total recursive function

op: ¢ € L+ (op, : CDB — CRel)

taking formulae ¢ € L to partially computable functions op, which take con-
straint databases over (R, <,+) to representations of finitely representable rela-
tions over (R, <, +).

For ¢ € L we denote by mod,(B) the set of elements defined by ¢ under the
model-theoretical semantics for L. An operational semantics op for L is consis-
tent with the model-theoretical semantics if, and only if, for all formulae ¢ and
all databases B such that op,(B) is defined, mod,(B) = op,,(B).

We now define an operational semantics for transitive-closure logic. This op-
erational semantics closely resembles the usual definition of the model-theoretical
semantics.

Definition 6 (Operational semantics for FO(TC)) For each formula ¢ €
FO(TC) we define a function op, : CDB — CRel by induction on the structure
of ¢. Fiz a quantifier elimination procedure for (R, <,+), i.e., an evaluation
schema for first-order queries.

o If p € FO, define op,(B) := ¢', where ¢' is obtained from ¢ by first substi-
tuting each occurrence of a database relation symbol by the formula defining
the relation in B and then eliminating the quantifiers using the quantifier
elimination method fized above.

o If o 1= p1 ANpa, define op,(B) as ((op,, (B)) A (0op,, (B)). For other boolean
connectives the function op,, is defined analogously.

o If p:=3zp1, define op,(B) as the result of applying the quantifier-elimina-
tion method fized above to op,,, (B).

o Now suppose that @ is of the form ¢ = [TCz3¢(T,7)](w,v). We induc-
tively define formulae o;, i € w, as follows. Recall that we allowed the use
of rational numbers as parameters in the formulae. Let I be the indices of
parameters amongu := U1, - - ., Uy, i.e., u; is a constant if, and only if, 1 € 1.

(i) oo :=Y(Z,7) A /\iEI U; = T;.

(i) oiy1 =37 0;(Z,T) ANY(T', 7).
If there is no j € w such that o; and 0j41 are equivalent in B, then opw(%)
is undefined. Otherwise let i be the smallest such j and define

0p,(B) = 3737 (@ = F) A (7 = 7) A0u(.7)).

Finally, we define the operational semantics op for FO(TC) as the function
taking formulae ¢ to op,,.

Observe the difference between this definition of an operational semantics
and the standard way to define the model-theoretical semantics as outlined in
Definition 1 in the way the formula og is defined. The conjunct A, (u; = z;)
reduces the computation of the transitive closure to the computation of all tuples



which are reachable from tuples with some fixed components. Thus, by letting
constants occur in the tuple w one gets some control over the process of building
up the transitive closure. However limited this control might seem, we will show
below that it is enough to allow the definition of arbitrary partially computable
queries over databases from CDB, whereas it seems unlikely that this is also
possible without this modification.

It is now an easy observation that the model-theoretical and the operational
semantics for FO(TC) are consistent.

Proposition 7 The operational semantics of Definition 6 is consistent with the
model-theoretical semantics of FO(TC).

3.2 Expressive completeness of transitive closure logic

We now turn to the definability of partially computable queries by formulae of
FO(TC).

Definition 8 A partially computable query Q is defined by a formula ¢ €
FO(TC) if for all databases B, Q(B) is defined if, and only if, op,(°B) is defined
and in this case Q(B) = op,(B).

We show now that all partially computable functions on constraint databases
over (R, <, +) can be defined in FO(TC). The proof runs along the following line.
We first show that the logic PFOL as introduced by Vandeurzen et. al. [Van99]
is a subset of FO(TC). This enables us to use the results on finite representa-
tions definable in PFOL. We then show that the run of Turing-machines can be
simulated in FO(TC).

Recall that PFOL was defined as an extension of FO by a restricted form
of multiplication. Precisely, the logic allows the use of atoms z - p = y, where p
is a so-called product variable. These product variables have to be bound by a
quantifier Ip € ¢, or Vp € p,, where ,(z) must be a formula defining a finite
set. The semantics of a quantifier Qp € ¢, is the semantics of () relativised to
the set defined by ¢,,.

To show that PFOL C FO(TC) it suffices to prove that atoms of the form
x -p = y can be defined in FO(TC) by a formula whose evaluation always
terminates.

We show that atoms of this form can be defined by a formula mult in FO(TC)
provided that the formula ¢, defines a set of rational numbers. In all cases where
we use PFOL formulae below this will always be true. The formula mult makes
use of two auxiliary formulae ¢,4(p, n, d), stating that n and d are the numerator
and denominator of the rational number p, and ¢;, (a, b, ¢), which defines a-b = ¢,
provided that b is an integer.

By the discussion above, we may use quantifiers 3p € ¢, in our formulae as
abbreviation for Ipy, (p), where ¢, is the unique formula binding p in the PFOL
formula.



The formula ¢;y, is defined as

z=2' ANy =y —1A

w = Y
cpim(x7y7z) T [Tcz,y,Z;m YLE L — +zA0 S y /\'QZJ(y)

I(z,9,0,2,0,z).

The formula is parameterised by the formula v which will be replaced by a
concrete formula whenever we use ;,, below. The idea is, that ¢ bounds the
possible values for y from above, whereas the conjunct 0 < y bounds y from
below. Thus, if there exists a number ¢ such that ) is not satisfied for any
¢ > ¢, then the evaluation of p;,, is guaranteed to terminate. We abbreviate
@?m(a, b,c) as a :[’ b=c.

We now give the definition of the formula mult and define p,q below. The
formula mult is defined as

mult(z, p,y) := 3dAn ra(p,n,d) A (z-7"n=2-£7d),

(3 k3

where z -7" n =y -7? d is an abbreviation for 3z(z " n=2Az=y-*d), and
the formulae ¢,, and ¢4 are defined as ¢, (z) := 3dIp Pna(p, z,d) and p4(z) :=
InIp pna(p,n, z).

Finally, to define p,q we assume a formula ~(i,7,4',j') defining a Godel

enumeration of pairs (i, ) of natural numbers. Using this, we can set
@nd(pa n, d) = ‘Pp(p)/\d‘fpp = n/\[Tcm,y,m’,y’_‘x = y'fppA7($: Y, xla yl)](]-a 0,n, d)a

where ¢, is the formula binding p in the PFOL formula.

Recall that the operational semantics above guarantees that the evaluation of
the TC operator start with the pair 0, 1. The conjunct ~z =y -f"’ p ensures that
it terminates once a pair n,d of numerator and denominator for p is reached.
Thus ¢,q defines exactly one pair n,d for each p. As the formula is used only
for product variables p, it defines a finite set. This ensures that the formula ¢,
and g4 above define finite sets as well. Thus, for product variables p the formula
mult(z, p,y) terminates and defines the set {(a,b,c):a-b=cand b€ @,}.

The proof of the following lemma is now straight-forward.

Lemma 9 FEach PFOL formula where all product variables are bound by formu-
lae defining sets of rationals only is equivalent to a formula in FO(TC) whose
evaluation always terminates.

It has been shown by Vandeurzen [Van99] that there are PFOL queries code
and decode, such that for a given databases B := ((R,<,4+),S®), where S is
k-ary, code defines a finite set S C RF(*+1) of (k + 1)-tuples of points in R,
and S® can be recovered from this finite encoding S°*¢ by the formula decode,
ie, S={a: (R <,+) |= decode(S")}.

As all parameters occurring in the formulae defining the database relations
are required to be rational, and therefore also all points in the encoding have ra-
tional coordinates, Lemma 9 implies that such an finite encoding of the database
relation can also be defined in FO(TC).



We now turn to the simulation of the run of a Turing-machine M := (Q, ¥ :=
{0,1}, 40,9, {qs}) computing a given query. Here, Q is the set of states of M,
X is the alphabet, go the initial state, and gy the unique halting state. J is a
set of rules of the form (q,a) — (¢’,a’,m), where q,¢' € Q, a,a’ € X, and
m € {—1,1,0}. Such a rule states that if M is in state ¢ and the head scans
a position labelled a then M replaces a by a', goes into state ¢’ and moves
according to m the head to the left, to the right, or not at all.

We can assume w.l.0.g. that M operates on the encoding of the input database
as defined above. Further, we assume that the machine halts with the head scan-
ning the first position on the tape.

A configuration of M will be encoded as a tuple (z;,x,,t,s), where z; and
z, are natural numbers encoding the tape content, 0 < ¢ € N denotes the step
counter, and s contains the current state of the Turing-machine. A tape content
apay . ..ay, will be encoded as follows. Let 0 < p < n be the current head position.
The inscription ag...a,_1 of the tape to the left of p is coded inversely, i.e., as
ap—1 ...ag, in 2 by z; := Ef:_(]lQi - ap—1—;. The inscription ay .. .a, of the tape
to the right of p is coded in z, by z, := X" F2¢.a,.;. As the machine only
uses finitely many positions on the tape and all cells which have not been visited
by the machine are defined to be 0, we can also think of x, as the infinite sum
E?iOQZ CAptg.

The run of M will be simulated by the formula ¢,;. We use bold face letters

do, df, - - - »a, m to denote fixed constants of the Turing-machine, e.g. states qo,
symbols a of the alphabet, or m.
o (t = —1) Ainit)Vv -1,-1,-1,-1;
oy =33z [TCJ;’,;’[,;‘/,TI <(t > 0As 4 qs A compute I .10 ).

The formulae init and compute are defined such that

1. init(z}, x,,t', s") becomes true for the tuple z;, z,t', s’ coding the input con-
figuration, i.e., z; = 0, z, codes the input, s’ = qo, i.e., the machine is in
the initial state, and, finally, t' = 0.

2. compute(z;, ,,t,s; 2}, 2),t',s") becomes true for a pair of tuples, if the
x), ., t',s" codes the successor configuration of the configuration coded in
Ty, Ty, t,S.

The conjunct s # qr is needed to terminate the evaluation of the formula
once the machine reaches the final state gy.

We now turn to the definition of the formula compute. To define this, we first
need three auxiliary formulae move-right,, move-left,, and don’t-move, with free
variables {x;, z,, ], z,} which define the transition from the tape content coded
in (z1,2,) to the new tape content (zj,z!) if the machine writes the symbol a

and moves to the right, to the left or doesn’t move at all.
(i) move-right is defined as

move-right, := x; = 2x; + a Azl = z, div 2.

10



Consider the following situation:

x] x]
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where the head scans the symbol b, the tape to the left is coded in x;, and
the tape to the right containing b is coded in z,. As the head moves to

the right, the pair (2, z,) must code the new tape content as follows.

1 !
Ty Ty

CEEEEEEEEEEEEEE e e TR

Thus, the position containing the b must be removed from the right side
coded in z, and z, resp., it must be added to the left side coded in z;
and zj resp., and, the symbol b must be replaced by a. This is done by
setting ) to z, div 2, i.e., removing the position entirely, and setting z;
to 2z; + a. The same ideas are used in the next two formulae taking care
of the head moving to the right or not moving at all.

(ii) don’t-move is defined as

don’t-move, 1= z; = 7 A 7. = (z, div 2) - 2 + a.
(iii) move-left is defined as
move-left, .= z; = x; div 2 Az}, = ((z, div 2) -2+ a) - 2+ (z; mod 2).
We are now ready to state the definition of the formula compute.

compute :=t' =t + 1A 3Jc(c =z, mod 2) A
\/(M)_)(q,’a,,m)eas =qAs'=q Ac=aAp =p+mA
((m = 1 A move-right,, )V
(m = 0 A don’t-movea )V
(m = —1 A move-left,,)).

We now turn to the definition of the formula init. Again we first need some
auxiliary formulae. Recall from above that there is a formula enc which defines
a representation enc(S) C RF(**1) of the input S C RF by a finite set of tuples
of points. We use this to define the initial configuration by letting the Turing-
tape contain this set of tuples of points. To simplify notation, we assume an
encoding S’ := enc(S) of the input S by a finite set of natural numbers, i.e., the
tuples of points reduce to 1-tuples of points in R' and, further, the coordinates
of this “points” are natural numbers. Observe that such an encoding does not
correspond to any possible input relation S but the extension to points and
tuples of higher dimension and to rational coordinates will be straight forward.
We comment on this below.

The formula init is defined as

init(x), 2., t',s'") :=t' =0A s = qo Az} = 0 Astart(x])

11



where the formula start is defined as

start(z) :=3p = max(S")A
(p =z =—-1Ap =min(S")A v
append(1,p', z') I
[TCpaip' 2! peES Ap €S Ap = suce(p)A I(=1,-1,2",p).
append(z,p', ')

Here the formulae maz, min, and succ are defined with respect to the lexicograph-
ical ordering of the points in the encoding S’ and the formula append(z’, p, x)
defines z' to code the tape inscription obtained from the inscription coded in x
with the bit representation of p being appended at the end. It is defined as

append :=z' =p' +x A
p=2-pAz' =z div2Az > 0A
S [TCs AP 1(2..0.0).

The formula first shifts the bit representation of the point p as many bits
to the right as the number of bits needed for representation of x and stores the
result in ¢. Then it simply adds = to ¢ and gets the desired bit representation in
z'. The part that might cause confusion is the conjunct (Ip € S’z < p). This is
unnecessary for the computation of 2’ but guarantees that the evaluation of the
formula terminates. This is achieved by binding the values for z by the largest
point in the encoding S’. As S’ is finite, the process of building up the transitive
closure must be finite as well.

As mentioned above, the case that the encoding S’ is unary does not happen
for any input relation. Also it is unlikely, that the points in the encoding all have
natural coordinates. But the formula can easily - although with a huge overhead
in notation - be extended to rational numbers and encodings of higher arity.
Termination of the evaluation process is also guaranteed for the general case, as
all the computations needed to encode the input can be bounded by the values
of points in the finite set S’.

Finally, we have to decode the result of the computation. For this we can use
the PFOL-formula decode mentioned above. Further, we need some preprocessing
to decode the output of the machine given in one single number z into tuples of
points. But the inductions involved can all be bounded by the number z coding
the output of the Turing machine.

Now, the proof of the following lemma is straight forward.

Lemma 10 Let f be a query on constraint databases over (R, <,+) and let M
be a Turing-machine computing it. Let f, := op,,, be the function assigned by
the operational semantics to the formula @y as constructed above. Then, for
each database B := ((R,<,+),0),

(i) M halts on input B if, and only if, f,(B) is defined, and
(it) f,(*B) defines the same set of elements as represented by the output of M
on ‘B.
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Thus we have shown the following theorem.

Theorem 11 Under the operational semantics defined above, FO(TC) defines
exactly the partially computable queries on constraint databases over (R, <, +).

The proof of the theorem also yields a negative answer to further decidabil-
ity questions. For instance, one might ask whether it is decidable for a given
FO(TC)-formula ¢ and a first-order formula ¢ if for all databases B such that
mod, (B) is defined op, (B) C op,,(B). Using the proof given above, it is an easy
exercise to reduce the halting problem for Turing machines to this question, thus
proving it undecidable.

Corollary 12 Let ¢ be a FO(TC)-formula and v € FO. It is undecidable,
whether for all databases B € CDB(R, <,+) such that mod,(B) is defined,

opy (B) C op,(B).

3.3 Completeness of stratified Datalog and least fixed-point logic

Clearly, FO(SFP) is more expressive than FO(TC). Thus, Theorem 11 gener-
alises to FO(SFP) and FO(LFP) in the sense that each partially computable
query can be defined in these logics. However, a bit care has to be taken on
whether the formulae terminate in the cases where the query is computable.
Let ¢ := [TCz 5% (Z,7)](w,7) be a FO(TC)-formula. Then ¢ can inductively be
translated to the equivalent FO(SFP)-formula ¢* := [FO(SFP)p . .4*(Z.7) V
3z RzzAY*(Z,7)](uw, ). However, under the standard operational semantics, this
formula might not terminate although, given the operational semantics above,
the FO(TC)-formula might. To avoid this we recursively translate formulae ¢
as above to ¢* 1= [FO(SFP)g - (T = u AY*(z,7)) V F2(RzZ A Y*(2,7))](T, V).
This closely resembles the operational semantics we used for FO(TC) and thus
guarantees termination of the formulae.

3.4 Existential Fixed-Point Logic

In the previous sections we have seen that FO(TC), FO(SFP), and FO(LFP) all
express the same class of partially recursive queries. Regarding existential fixed-
point logic (FO(EFP)), it can easily be shown that this logic is much weaker
than the other three. In fact, there are even first-order definable queries that
are not expressible in existential fixed-point logic. An example is the boolean
query that is true for all databases which are bounded, i.e. where there is a
number ¢ such that there is no point in the database with an coordinate greater
than ¢. This can easily be expressed in first-order logic. As it is known that
FO N FO(EFP) is exactly the class of positive existential first-order formulae
and that these formulae are preserved under extensions of the structure, it is an
easy observation that this query cannot be expressed in existential fixed-point
logic.
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4 Dense linear orders

In this section we consider dense linear order databases, e.g. constraint databases
over (R, <, +). Fixed-point logics on this class of databases have been studied in
[BST98,GK99,Kre99] where it is shown that questions about fixed-point queries
on dense order databases can be reduced to the corresponding questions on finite
databases. In particular, in [GK99] it has been shown that for all dense linear
order database B there is a finite ordered database inv(98) with universe B,
called the invariant of 8 such that

e there is a function 7 from finite subsets S C B to FO(LFP)-formulae over
(R, <,+) and
e for each FO(LFP)-formula ¢ on B there is a FO(LFP)-formula ¢’ on inv(B)

with the property that if S = ¢'(inv(B)) is the result of the evaluation of ¢
in the invariant of B and P := {a : (R,<,+) | 7(S)} is the set of elements
satisfying the formula 7(S), then

R = ¢(%B),

where ¢(B) denotes the set of tuples satisfying ¢ in 8.

Now, by the results mentioned in the introduction, it follows that the formula
¢’ on the finite ordered database is equivalent to a formula ¢* in stratified fixed-
point logic. To obtain a stratified fixed-point formula equivalent to the original
query ¢ we have to transform ¢* back to a formula over 8. It follows immediately
from the results proved in [GK99] that there is a stratified fixed-point formula
1 over B defining the relation R as defined above.

Thus we have shown the following theorem.

Theorem 13 Stratified fixed-point logic and fixed-point logic have the same ex-
pressive power on the class of finitely representable structures over the real line
(R, <).

5 Conclusion

In this paper we compared various fixed-point logics with respect to the fraction
of partially computable queries on linear constraint databases they define. For
this, we first had to equip the logics with an operational semantics, which allowed
us to speak about computability of queries defined by these logics. We then
showed that already transitive-closure logic is expressive enough to define all
partially recursive queries on linear constraint databases. Thus, with respect
to this benchmark, transitive-closure, least, and stratified fixed-point logic are
equivalent. As mentioned in the introduction, this is contrary to the relationship
of the logics in terms of absolute definability, i.e., where there are no restrictions
on the class of queries under consideration.

The motivation for choosing the class of partially recursive queries as bench-
mark comes from the usage of fixed-point logics as query languages, where non-
recursive queries are of no practical interest.
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