
Operational Semanti
s for Fixed-Point Logi
s onConstraint DatabasesStephan Kreutzer?RWTH Aa
henAbstra
t. In this paper we
ompare the expressive power of various�xed-point logi
s on linear or dense order
onstraint databases. This
omparison is not done on absolute terms, i.e. by
omparing their ex-pressive power for arbitrary queries, rather for de�nability of partiallyre
ursive queries. The motivation for
hoosing this ben
hmark
omesfrom �xed-point logi
s as query languages for
onstraint databases. Here,non-re
ursive queries are of no pra
ti
al interest.It is shown that for linear
onstraint databases already transitive
losurelogi
 is expressive enough to de�ne all partially re
ursive queries, i.e.,transitive-
losure logi
 is expressively
omplete for this
lass of databases.It follows that transitive-
losure, least, and strati�ed �xed-point logi
 areequivalent with respe
t to this ben
hmark.1 Introdu
tionLogi
s and query languages allowing the de�nition of �xed-points of de�nableoperators have a long tradition both in (�nite) model theory and database theory.In �nite model theory, the interest in �xed-point logi
s
omes from questions
onne
ted with the de�nability or des
ription of
omputations in logi
al for-malisms. To obtain logi
s strong enough to des
ribe properties interesting froma
omputational point of view, extensions of �rst-order logi
 by operators to de-�ne �xed-points have been
onsidered. Among the logi
s obtained in this way aretransitive-
losure logi
 (FO(TC)), whi
h extends �rst-order logi
 by an operatorto de�ne the transitive
losure of de�nable graphs, and least �xed-point logi
(FO(LFP)), whi
h extends �rst-order logi
 by an operator to de�ne the least�xed-point of operators de�ned by positive formulae. We give pre
ise de�nitionsof these logi
s in Se
tion 2.Query languages in
orporating �xed-point
on
epts have also been studiedin database theory. Here, the �xed-point
onstru
ts have not been added to full�rst-order logi
 but to
onjun
tive queries instead. To obtain more expressivelogi
s than this query language,
alled Datalog, database theorists in
orporatednegation in various ways. One of these extensions is Strati�ed Datalog, where? Stephan Kreutzer, LuFGMathematis
he Grundlagen der Informatik, RWTHAa
henAhornstr. 55, D-52056 Aa
hen, GermanyPhone: ++49-241-8021710, Fax: ++49-241-8888215Email: kreutzer�informatik.rwth-aa
hen.de

negation is allowed in a limited way. Strati�ed Datalog plays a rather prominentrole in database theory as it has a good balan
e between expressive power and
omplexity.On
e the logi
s and query languages had been de�ned, it be
ame obviousthat �xed-point logi
s had
orresponding Datalog variants and vi
e versa. Forinstan
e, Datalog is a logi
 equivalent to existential �xed-point logi
 (FO(EFP)),the restri
tion of least �xed-point logi
 to existential formulae.Generally, it is
lear that FO(TC) � FO(SFP) � FO(LFP) and, further,that FO(EFP) � FO(SFP), where FO(SFP) is equivalent to Strati�ed Datalog1.Further, FO(TC) and FO(EFP) are in
omparable. Whether these in
lusions arestri
t depends on the kind of stru
tures under
onsideration. It has been shown,that on arbitrary stru
tures all in
lusions are stri
t. The standard example sep-arating FO(SFP) and FO(LFP) is the property of a binary relation of being awell-ordering. See [DG℄ for a very re
ent survey on �xed-point logi
s.On �nite stru
tures, the situation depends on whether an ordering is avail-able. If the stru
tures are ordered, FO(SFP) and FO(LFP)
oin
ide with Ptimeand, if the order is given by a su

essor relation, the same is true for FO(EFP).Whether FO(TC) and FO(LFP) have the same expressive power on �nite or-dered stru
tures depends on whether NLogspa
e equals Ptime. See [EF95℄ foran extensive study of these questions on �nite stru
tures.In [Kol91℄, Kolaitis showed that on unordered �nite stru
tures FO(SFP) isstri
tly weaker than FO(LFP). To prove this he used so-
alled game trees whi
h
an be de�ned in FO(LFP) but not in FO(SFP).In this paper we are mainly interested in the expressive power of transitive-
losure logi
, strati�ed Datalog, and least �xed-point logi
 in the
ontext of
on-straint databases (See [KLP00℄ for a detailed overview of
onstraint databases.)We give a pre
ise de�nition of
onstraint databases in the next se
tion. Thesestru
tures lie somewhere between �nite and arbitrary in�nite stru
tures. Theyusually have an ordering on their universe available, so that the separation meth-ods for �nite stru
tures do not work, but on the other hand the database relationsoften provide too mu
h stru
ture to use the methods that work on general in�-nite stru
tures. The problem here is, that -
lassi
ally - logi
s are separated byshowing that a
lass of stru
tures with
ertain properties is de�nable in one logi
but not in the other. In the
onstraint setting, the
ontext stru
ture is �xed inadvan
e, whereas the relations that vary are �rst-order de�nable and thus have arather simple stru
ture. However, it
an still be shown that on many interesting
ontext stru
tures, least �xed-point logi
 is more expressive than, for instan
e,strati�ed Datalog.So far, mu
h work on �xed-point logi
s in the
ontext of
onstraint databaseshas fo
used on synta
ti
 variants de�ned with regard to
ertain properties of theresulting languages, as polynomial time
omplexity, see e.g. [GK97,Kre01℄, ortermination, see e.g. [GK00℄. Further, the logi
s have been
onsidered in terms1 A
tually, FO(SFP) stands for strati�ed �xed-point logi
, a name that will be
ome
lear later. 2

of absolute de�nability, i.e., the main question was whether there are relationsor properties de�nable in one logi
 but not in another.Besides this
lassi�
ation, the expressive power
an also be measured withrespe
t to a �xed ben
hmark. This approa
h is taken here, where we
onsider
onstraint databases over the real ordered group (R; <;+). As ben
hmark wetake the
lass of partially
omputable queries. Pre
isely, we investigate whi
hportions of this
lass of queries are de�nable in ea
h of the logi
s mentionedabove.The motivation for
hoosing the
lass of partially re
ursive queries as ben
h-mark
omes from the use of �xed-point logi
s as query languages. Someone usingthe logi
s to ask queries about a given database will only be interested in
om-putable queries, i.e., those whose evaluation terminates. Thus a query languagethat is more expressive than another only in means of the power to de�ne non-re
ursive queries will not be
onsidered as being expressively stronger.When speaking about logi
s de�ning partially
omputable queries we �rsthave to spe
ify what it means for a formula to de�ne a
omputable query. Sofar we only
onsidered the standard model-theoreti
al semanti
s of �xed-pointlogi
s. Formally, the model-theoreti
al semanti
s for a logi
 L
an be seen as afun
tion mod : ' 2 L 7�! (mod' : (A; �) 7�! P(A�));taking formulae ' 2 L to fun
tions that map a databaseB := (A; �) to relationsover its universe. The problem is that the fun
tions mod' are not required tobe
omputable. Further, in the
onstraint database setting, the problem arisesthat the resulting relations on A are not ne
essarily �nitely representable in the
ontext stru
ture. Therefore, we have to give the logi
s an operational semanti
s,i.e., a total re
ursive fun
tionop : ' 2 L 7�! (op' : (A; �) 7�! P(A�));where the fun
tions op' are partially re
ursive and take databases to �nitelyrepresentable relations.Clearly, not every su
h fun
tion
an sensibly be
alled an operational seman-ti
s. One obvious
ondition that should be satis�ed by any operational semanti
sfor a logi
 is, that it is
onsistent with the model-theoreti
al semanti
s, i.e., forall databases B and formulae ' where op'(B) is de�ned, the two semanti
sshould agree on the result, i.e., mod'(B) = op'(B).Although the
onsisten
y
ondition is a ne
essary
ondition, it alone does notensure that the semanti
s meets our expe
tations. For instan
e, the operationalsemanti
s mapping ea
h formula to the everywhere unde�ned fun
tion wouldtrivially satisfy the
onsisten
y requirement.Thus, besides this
onsisten
y
riterion also some kind of
ompleteness
on-dition is needed. Unlike for
onsisten
y, there is no
anoni
al de�nition for anoperational semanti
s to be
omplete. In this paper we take the view that anoperational semanti
s for a logi
 is
omplete if it is most powerful possible, i.e.there is no other operational semanti
s and no partially
omputable query whi
his de�nable in the logi
 under the se
ond but not under the �rst semanti
s.3

In Se
tion 3, we de�ne operational semanti
s for the �xed-point logi
s men-tioned above whi
h satisfy both, the
onsisten
y and the
ompleteness
ondition.The latter
ondition will be proved by showing that under the operational se-manti
s we de�ne for transitive-
losure logi
, all partially
omputable querieson linear
onstraint databases be
ome de�nable in FO(TC). This shows thatFO(TC) is expressively
omplete for this
lass of databases.It follows from this that also least and strati�ed �xed-point logi
 are ex-pressively
omplete and thus the three logi
s are equivalent with respe
t to the
lass of partially
omputable queries. This equivalen
e does not hold for exis-tential �xed-point logi
, where we show that there even exist queries de�nablein �rst-order logi
 but not in existential �xed-point logi
.Finally, in Se
tion 4 we will
onsider
onstraint databases over the real line.Here it will be shown that the question about the expressive power of �xed-point logi
s
an be redu
ed to the question for �nite ordered databases. Thus,strati�ed Datalog and least �xed-point logi
 have the same expressive powerand transitive-
losure logi
 is equal to both if, and only if, NLogspa
e equalsPtime.2 PreliminariesConstraint Databases. Constraint Databases have been introdu
ed by Kanel-lakis, Kuper, and Revesz [KKR90,KKR95℄ as a model for in�nite relationaldatabases that have a �nite representation and are therefore a

essible to al-gorithmi
 problems.Let a signature � and a � -stru
ture A be given. Constraint databases arede�ned with respe
t to this �xed stru
ture A. For a �nite relational signature�, a �-
onstraint database B over A, or simply
onstraint database if � and Aare understood or irrelevant, is a �-expansion of A su
h that for all relationsymbols R 2 � there is a quanti�er-free formula over A de�ning RB in A. Inthese de�ning formulae elements of the universe may be used as parameters. Thedatabase relations in � are
alled �nitely representable or
onstraint relations.In this paper we are spe
i�
ally interested in linear
onstraint databases, i.e.,
onstraint databases over the stru
ture (R; <;+). Thus, linear
onstraint rela-tions are de�ned by boolean
ombinations of linear equalities and inequalities. Inthis paper we only allow rational
oeÆ
ients in these formulae de�ning databaserelations2.Fixed-point logi
s. As mentioned in the introdu
tion, we are spe
i�
allyinterested in the expressive power of transitive-
losure and least �xed-point logi
as well as Datalog and strati�ed Datalog. We de�ne FO(TC) and FO(LFP) �rstand then turn to the Datalog variants.2 After all,
onstraint databases have been de�ned in order to be �nitely representableand it is debatable whether formulae with trans
endental
oeÆ
ients
ould sensiblybe
alled �nitely representable. 4

De�nition 1 Transitive-
losure logi
 (FO(TC)) is de�ned as the extension of�rst-order logi
 by the following formula building rule. If '(x; y) is a formulawith free tuples of variables x; y of equal length, then := [TCx;y '℄(s; t)is also a formula, where s; t are tuples of terms of the same length as x andy. The free variables of are the variables o

urring free in s; t and the freevariables of ' other than x and y.Given a stru
ture A, the semanti
s of FO(TC) is de�ned indu
tively with themeaning of the TC-rule being that for some tuples a; b, A j= ([TCx;y '℄)[a; b℄ if,and only if, (a; b) is in the transitive
losure of the relation f(u; v) : A j= '[u; v℄g.Note that the result of a formula in FO(TC) on a linear
onstraint databasedoes not have to be �nitely representable anymore. For instan
e, the formula'(y) := [TCx;y x + 1 = y℄(0; y) de�nes the natural numbers on any linear
on-straint database. But
learly, the result is not �nitely representable.De�nition 2 Least �xed-point logi
 FO(LFP) is de�ned as the extension of�rst-order logi
 by the following formula building rule. If '(R; x) is a formulawith free �rst-order variables x := x1; : : : ; xk and a free se
ond-order variable Rof arity k su
h that ' is positive in R, then := [lfpR;x '℄(t)is also a formula, where t is a tuple of terms of the same length as x. The freevariables of are the variables o

urring in t and the free variables of ' otherthan x.Given a stru
ture A, the semanti
s of FO(LFP) is de�ned indu
tively withthe meaning of the FO(LFP)-rule being as follows. De�ne the stages R� of an�xed-point indu
tion as R0 :=?R�+1 := fa : A j= '[R�; a℄gR� :=S�<� R�:For a given stru
ture A and a tuple a 2 A, the formula [lfpR;x '℄ be
omestrue for a if, and only if, a 2 R�, where � is the least � su
h that R� = R�+1.As ' is required to be positive in R su
h a stage � always exists.We now turn to the de�nition of the Datalog variants. To harmonise notation,we will not deal with the Datalog variants dire
tly but
onsider the
orresponding�xed-point logi
s instead. In the
ase of Datalog this is the well known existential�xed-point logi
.De�nition 3 Existential least �xed-point logi
 is de�ned as the restri
tion ofFO(LFP) to formulae without universal quanti�ers and with negation being al-lowed only in front of atoms whi
h are not built up from �xed-point variables.5

For strati�ed Datalog there are various synta
ti
ally di�erent �xed-pointextensions of FO equivalent to it. We follow the notation introdu
ed by Kolaitisin [Kol91℄3.De�nition 4 Strati�ed Fixed-Point Logi
 (FO(SFP)) is de�ned as follows.� Let FO(SFP)1 be de�ned as existential �xed-point logi
.� De�ne FO(SFP)i+1 as the
lass of existential �xed-point formulae whi
h mayuse literals of the form (x), where is an FO(SFP)l formula with l � i.Note that these formulae may o

ur under the s
ope of negation symbols.Strati�ed Fixed-Point logi
 is de�ned as the union FO(SFP) := Si2! FO(SFP)iof all FO(SFP)i for i 2 !.Clearly, FO(SFP) and strati�ed Datalog have the same expressive power anda strati�ed Datalog program with l strata
orresponds to a formula in FO(SFP)l.We sometimes write [sfpR;x '℄ instead of [lfpR;x '℄. This happens in
ases wherewe
ompare FO(SFP) and FO(LFP) and want to make it very
lear in whi
hlogi
 we are.It
an easily be shown that a formula [TCx;y '(x; y)℄(s; t) of FO(TC) is equiv-alent to the FO(SFP)-formula [lfpR;z (z = s _ 9z0 (Rz0 ^ '(z0; z)))℄(t). Thus,FO(TC) � FO(SFP). In fa
t, it
an even be shown that every FO(SFP)-formulaof the form [lfpR;x '0(x) _ 9x0 2 R'1(x; x0)℄(t) su
h that R does not o

ur in'0 and '1 is equivalent to a formula in FO(TC), provided that '0 and '1 areequivalent to formulae in FO(TC).It is also
lear that FO(SFP) � FO(LFP).3 Finitely representable expansions of the real orderedgroupIn this se
tion we
onsider
onstraint databases over the real ordered group(R; <;+) and show that transitive-
losure, least, and strati�ed �xed-point logi
de�ne the same
lass of partially
omputable queries. This is proven by showingthat all partially
omputable queries are already de�nable in FO(TC). For this,we �rst have to give the logi
s an operational semanti
s.3.1 Operational semanti
s for �xed-point logi
sThroughout this se
tion, we denote by CDB the
lass of
onstraint databases over(R; <;+) and by CRel the
lass of �nitely representable relations over (R; <;+).We don't distinguish between �nitely representable relations and their represent-ing formulae and denote both by CRel. It will always be
lear from the
ontextwhether the relation or the formula is meant.3 Note that in this paper the logi
 was
alled existential �xed-point logi
!6

De�nition 5 For a given logi
 L, an operational semanti
s opL is de�ned as atotal re
ursive fun
tionop : ' 2 L 7�! (op' : CDB �! CRel)taking formulae ' 2 L to partially
omputable fun
tions op' whi
h take
on-straint databases over (R; <;+) to representations of �nitely representable rela-tions over (R; <;+).For ' 2 L we denote by mod'(B) the set of elements de�ned by ' under themodel-theoreti
al semanti
s for L. An operational semanti
s op for L is
onsis-tent with the model-theoreti
al semanti
s if, and only if, for all formulae ' andall databases B su
h that op'(B) is de�ned, mod'(B) = op'(B).We now de�ne an operational semanti
s for transitive-
losure logi
. This op-erational semanti
s
losely resembles the usual de�nition of the model-theoreti
alsemanti
s.De�nition 6 (Operational semanti
s for FO(TC)) For ea
h formula ' 2FO(TC) we de�ne a fun
tion op' : CDB �! CRel by indu
tion on the stru
tureof '. Fix a quanti�er elimination pro
edure for (R; <;+), i.e., an evaluations
hema for �rst-order queries.� If ' 2 FO, de�ne op'(B) := '0, where '0 is obtained from ' by �rst substi-tuting ea
h o

urren
e of a database relation symbol by the formula de�ningthe relation in B and then eliminating the quanti�ers using the quanti�erelimination method �xed above.� If ' := '1^'2, de�ne op'(B) as ((op'1(B))^ (op'2(B)). For other boolean
onne
tives the fun
tion op' is de�ned analogously.� If ' := 9x'1, de�ne op'(B) as the result of applying the quanti�er-elimina-tion method �xed above to op'1(B).� Now suppose that ' is of the form ' := [TCx;y (x; y)℄(u; v). We indu
-tively de�ne formulae �i, i 2 !, as follows. Re
all that we allowed the useof rational numbers as parameters in the formulae. Let I be the indi
es ofparameters among u := u1; : : : ; un, i.e., ui is a
onstant if, and only if, i 2 I.(i) �0 := (x; y) ^Vi2I ui = xi.(ii) �i+1 := 9x0 �i(x; x0) ^ (x0; y).If there is no j 2 ! su
h that �j and �j+1 are equivalent in B, then op'(B)is unde�ned. Otherwise let i be the smallest su
h j and de�neop'(B) := 9x9y ((u = x) ^ (y = v) ^ �i(x; y)):Finally, we de�ne the operational semanti
s op for FO(TC) as the fun
tiontaking formulae ' to op'.Observe the di�eren
e between this de�nition of an operational semanti
sand the standard way to de�ne the model-theoreti
al semanti
s as outlined inDe�nition 1 in the way the formula �0 is de�ned. The
onjun
t Vi2I(ui = xi)redu
es the
omputation of the transitive
losure to the
omputation of all tuples7

whi
h are rea
hable from tuples with some �xed
omponents. Thus, by letting
onstants o

ur in the tuple u one gets some
ontrol over the pro
ess of buildingup the transitive
losure. However limited this
ontrol might seem, we will showbelow that it is enough to allow the de�nition of arbitrary partially
omputablequeries over databases from CDB, whereas it seems unlikely that this is alsopossible without this modi�
ation.It is now an easy observation that the model-theoreti
al and the operationalsemanti
s for FO(TC) are
onsistent.Proposition 7 The operational semanti
s of De�nition 6 is
onsistent with themodel-theoreti
al semanti
s of FO(TC).3.2 Expressive
ompleteness of transitive
losure logi
We now turn to the de�nability of partially
omputable queries by formulae ofFO(TC).De�nition 8 A partially
omputable query Q is de�ned by a formula ' 2FO(TC) if for all databases B, Q(B) is de�ned if, and only if, op'(B) is de�nedand in this
ase Q(B) = op'(B).We show now that all partially
omputable fun
tions on
onstraint databasesover (R; <;+)
an be de�ned in FO(TC). The proof runs along the following line.We �rst show that the logi
 PFOL as introdu
ed by Vandeurzen et. al. [Van99℄is a subset of FO(TC). This enables us to use the results on �nite representa-tions de�nable in PFOL. We then show that the run of Turing-ma
hines
an besimulated in FO(TC).Re
all that PFOL was de�ned as an extension of FO by a restri
ted formof multipli
ation. Pre
isely, the logi
 allows the use of atoms x � p = y, where pis a so-
alled produ
t variable. These produ
t variables have to be bound by aquanti�er 9p 2 'p or 8p 2 'p, where 'p(x) must be a formula de�ning a �niteset. The semanti
s of a quanti�er Qp 2 'p is the semanti
s of Q relativised tothe set de�ned by 'p.To show that PFOL � FO(TC) it suÆ
es to prove that atoms of the formx � p = y
an be de�ned in FO(TC) by a formula whose evaluation alwaysterminates.We show that atoms of this form
an be de�ned by a formulamult in FO(TC)provided that the formula 'p de�nes a set of rational numbers. In all
ases wherewe use PFOL formulae below this will always be true. The formula mult makesuse of two auxiliary formulae 'nd(p; n; d), stating that n and d are the numeratorand denominator of the rational number p, and 'im(a; b;
), whi
h de�nes a�b =
,provided that b is an integer.By the dis
ussion above, we may use quanti�ers 9p 2 'p in our formulae asabbreviation for 9p'p(p), where 'p is the unique formula binding p in the PFOLformula. 8

The formula 'im is de�ned as' im(x; y; z) := [TCx;y;z;x0;y0;z0 x = x0 ^ y0 = y � 1^z0 = z + x ^ 0 � y ^ (y) ℄(x; y; 0; x; 0; z):The formula is parameterised by the formula whi
h will be repla
ed by a
on
rete formula whenever we use 'im below. The idea is, that bounds thepossible values for y from above, whereas the
onjun
t 0 � y bounds y frombelow. Thus, if there exists a number
 su
h that is not satis�ed for any
0 >
, then the evaluation of 'im is guaranteed to terminate. We abbreviate' im(a; b;
) as a � i b =
.We now give the de�nition of the formula mult and de�ne 'nd below. Theformula mult is de�ned asmult(x; p; y) := 9d9n 'nd(p; n; d) ^ (x �'ni n = z �'di d);where x �'ni n = y �'di d is an abbreviation for 9z(x �'ni n = z ^ z = y �'di d), andthe formulae 'n and 'd are de�ned as 'n(x) := 9d9p'nd(p; x; d) and 'd(x) :=9n9p'nd(p; n; x).Finally, to de�ne 'nd we assume a formula
(i; j; i0; j0) de�ning a G�odelenumeration of pairs (i; j) of natural numbers. Using this, we
an set'nd(p; n; d) := 'p(p)^d�'pi p = n^[TCx;y;x0;y0:x = y�'pi p^
(x; y; x0; y0)℄(1; 0; n; d);where 'p is the formula binding p in the PFOL formula.Re
all that the operational semanti
s above guarantees that the evaluation ofthe TC operator start with the pair 0; 1. The
onjun
t :x = y �'pi p ensures thatit terminates on
e a pair n; d of numerator and denominator for p is rea
hed.Thus 'nd de�nes exa
tly one pair n; d for ea
h p. As the formula is used onlyfor produ
t variables p, it de�nes a �nite set. This ensures that the formula 'nand 'd above de�ne �nite sets as well. Thus, for produ
t variables p the formulamult(x; p; y) terminates and de�nes the set f(a; b;
) : a � b =
 and b 2 'pg.The proof of the following lemma is now straight-forward.Lemma 9 Ea
h PFOL formula where all produ
t variables are bound by formu-lae de�ning sets of rationals only is equivalent to a formula in FO(TC) whoseevaluation always terminates.It has been shown by Vandeurzen [Van99℄ that there are PFOL queries
odeand de
ode, su
h that for a given databases B := ((R; <;+); SB), where S isk-ary,
ode de�nes a �nite set Sen
 � Rk(k+1) of (k + 1)-tuples of points in Rk ,and SB
an be re
overed from this �nite en
oding Sen
 by the formula de
ode,i.e., S = fa : (R; <;+) j= de
ode(Sen
)g.As all parameters o

urring in the formulae de�ning the database relationsare required to be rational, and therefore also all points in the en
oding have ra-tional
oordinates, Lemma 9 implies that su
h an �nite en
oding of the databaserelation
an also be de�ned in FO(TC).9

We now turn to the simulation of the run of a Turing-ma
hineM := (Q;� :=f0; 1g; q0; Æ; fqfg)
omputing a given query. Here, Q is the set of states of M ,� is the alphabet, q0 the initial state, and qf the unique halting state. Æ is aset of rules of the form (q; a) ! (q0; a0;m), where q; q0 2 Q, a; a0 2 �, andm 2 f�1; 1; 0g. Su
h a rule states that if M is in state q and the head s
ansa position labelled a then M repla
es a by a0, goes into state q0 and movesa

ording to m the head to the left, to the right, or not at all.We
an assume w.l.o.g. thatM operates on the en
oding of the input databaseas de�ned above. Further, we assume that the ma
hine halts with the head s
an-ning the �rst position on the tape.A
on�guration of M will be en
oded as a tuple (xl; xr; t; s), where xl andxr are natural numbers en
oding the tape
ontent, 0 � t 2 N denotes the step
ounter, and s
ontains the
urrent state of the Turing-ma
hine. A tape
ontenta0a1 : : : an will be en
oded as follows. Let 0 � p � n be the
urrent head position.The ins
ription a0 : : : ap�1 of the tape to the left of p is
oded inversely, i.e., asap�1 : : : a0, in xl by xl := �p�1i=0 2i � ap�1�i. The ins
ription ap : : : an of the tapeto the right of p is
oded in xr by xr := �n�pi=0 2i � ap+i. As the ma
hine onlyuses �nitely many positions on the tape and all
ells whi
h have not been visitedby the ma
hine are de�ned to be 0, we
an also think of xr as the in�nite sum�1i=02i � ap+i.The run of M will be simulated by the formula 'M . We use bold fa
e lettersq0;qf ; : : : ; a;m to denote �xed
onstants of the Turing-ma
hine, e.g. states q0,symbols a of the alphabet, or m.'M := 9t9x [TC xl;xr;t;s;x0l;x0r;t0;s0 � (t = �1) ^ init)_(t � 0 ^ s 6= qf ^
ompute�℄(�1;�1;�1;�1;x; t;qf ; 0):The formulae init and
ompute are de�ned su
h that1. init(x0l; x0r ; t0; s0) be
omes true for the tuple x0l; x0r; t0; s0
oding the input
on-�guration, i.e., x0l = 0, x0r
odes the input, s0 = q0, i.e., the ma
hine is inthe initial state, and, �nally, t0 = 0.2.
ompute(xl; xr ; t; s;x0l; x0r; t0; s0) be
omes true for a pair of tuples, if thex0l; x0r; t0; s0
odes the su

essor
on�guration of the
on�guration
oded inxl; xr; t; s.The
onjun
t s 6= qf is needed to terminate the evaluation of the formulaon
e the ma
hine rea
hes the �nal state qf .We now turn to the de�nition of the formula
ompute. To de�ne this, we �rstneed three auxiliary formulaemove-righta,move-lefta, and don't-movea with freevariables fxl; xr; x0l; x0rg whi
h de�ne the transition from the tape
ontent
odedin (xl; xr) to the new tape
ontent (x0l; x0r) if the ma
hine writes the symbol aand moves to the right, to the left or doesn't move at all.(i) move-right is de�ned asmove-righta := x0l = 2xl + a ^ x0r = xr div 2:10

Consider the following situation:xlz }| {j xlz }| {b jwhere the head s
ans the symbol b, the tape to the left is
oded in xl, andthe tape to the right
ontaining b is
oded in xr. As the head moves tothe right, the pair (x0l; x0r) must
ode the new tape
ontent as follows.x0lz }| {j a j x0lz }| {j jThus, the position
ontaining the b must be removed from the right side
oded in xr and x0r resp., it must be added to the left side
oded in xland x0l resp., and, the symbol b must be repla
ed by a. This is done bysetting x0r to xr div 2, i.e., removing the position entirely, and setting x0lto 2xl + a. The same ideas are used in the next two formulae taking
areof the head moving to the right or not moving at all.(ii) don't-move is de�ned asdon't-movea := x0l = xl ^ x0r = (xr div 2) � 2 + a:(iii) move-left is de�ned asmove-lefta := x0l = xl div 2 ^ x0r = ((xr div 2) � 2 + a) � 2 + (xl mod 2):We are now ready to state the de�nition of the formula
ompute.
ompute := t0 = t+ 1 ^ 9
 (
 = xr mod 2) ^W(q;a)!(q0 ;a0;m)2Æs = q ^ s0 = q0 ^
 = a ^ p0 = p+m^((m = 1 ^move-righta0)_(m = 0 ^ don't-movea0)_(m = �1 ^move-lefta0)):We now turn to the de�nition of the formula init. Again we �rst need someauxiliary formulae. Re
all from above that there is a formula en
 whi
h de�nesa representation en
(S) � Rk(k+1) of the input S � Rk by a �nite set of tuplesof points. We use this to de�ne the initial
on�guration by letting the Turing-tape
ontain this set of tuples of points. To simplify notation, we assume anen
oding S0 := en
(S) of the input S by a �nite set of natural numbers, i.e., thetuples of points redu
e to 1-tuples of points in R1 and, further, the
oordinatesof this \points" are natural numbers. Observe that su
h an en
oding does not
orrespond to any possible input relation S but the extension to points andtuples of higher dimension and to rational
oordinates will be straight forward.We
omment on this below.The formula init is de�ned asinit(x0l; x0r; t0; s0) := t0 = 0 ^ s0 = q0 ^ x0l = 0 ^ start(x0r);11

where the formula start is de�ned asstart(x) :=9p = max(S0)^[TCp;x;p0;x0 0BB��p = x = �1 ^ p0 = min(S0)^append(1; p0; x0) �_�p 2 S0 ^ p0 2 S0 ^ p0 = su

(p)^append(x; p0; x0) �1CCA℄(�1;�1; x0; p):Here the formulaemax,min, and su

 are de�ned with respe
t to the lexi
ograph-i
al ordering of the points in the en
oding S0 and the formula append(x0; p; x)de�nes x0 to
ode the tape ins
ription obtained from the ins
ription
oded in xwith the bit representation of p being appended at the end. It is de�ned asappend := x0 = p0 + x ^9
 [TCx;p;x0;p0 �p0 = 2 � p ^ x0 = x div 2 ^ x > 0^(9p̂ 2 S0 x � p̂) �℄(x; p; 0;
):The formula �rst shifts the bit representation of the point p as many bitsto the right as the number of bits needed for representation of x and stores theresult in
. Then it simply adds x to
 and gets the desired bit representation inx0. The part that might
ause
onfusion is the
onjun
t (9p̂ 2 S0 x � p̂). This isunne
essary for the
omputation of x0 but guarantees that the evaluation of theformula terminates. This is a
hieved by binding the values for x by the largestpoint in the en
oding S0. As S0 is �nite, the pro
ess of building up the transitive
losure must be �nite as well.As mentioned above, the
ase that the en
oding S0 is unary does not happenfor any input relation. Also it is unlikely, that the points in the en
oding all havenatural
oordinates. But the formula
an easily - although with a huge overheadin notation - be extended to rational numbers and en
odings of higher arity.Termination of the evaluation pro
ess is also guaranteed for the general
ase, asall the
omputations needed to en
ode the input
an be bounded by the valuesof points in the �nite set S0.Finally, we have to de
ode the result of the
omputation. For this we
an usethe PFOL-formula de
ode mentioned above. Further, we need some prepro
essingto de
ode the output of the ma
hine given in one single number x into tuples ofpoints. But the indu
tions involved
an all be bounded by the number x
odingthe output of the Turing ma
hine.Now, the proof of the following lemma is straight forward.Lemma 10 Let f be a query on
onstraint databases over (R; <;+) and let Mbe a Turing-ma
hine
omputing it. Let f' := op'M be the fun
tion assigned bythe operational semanti
s to the formula 'M as
onstru
ted above. Then, forea
h database B := ((R; <;+); �),(i) M halts on input B if, and only if, f'(B) is de�ned, and(ii) f'(B) de�nes the same set of elements as represented by the output of Mon B. 12

Thus we have shown the following theorem.Theorem 11 Under the operational semanti
s de�ned above, FO(TC) de�nesexa
tly the partially
omputable queries on
onstraint databases over (R; <;+).The proof of the theorem also yields a negative answer to further de
idabil-ity questions. For instan
e, one might ask whether it is de
idable for a givenFO(TC)-formula ' and a �rst-order formula if for all databases B su
h thatmod'(B) is de�ned op (B) � op'(B): Using the proof given above, it is an easyexer
ise to redu
e the halting problem for Turing ma
hines to this question, thusproving it unde
idable.Corollary 12 Let ' be a FO(TC)-formula and 2 FO. It is unde
idable,whether for all databases B 2 CDB(R; <;+) su
h that mod'(B) is de�ned,op (B) � op'(B):3.3 Completeness of strati�ed Datalog and least �xed-point logi
Clearly, FO(SFP) is more expressive than FO(TC). Thus, Theorem 11 gener-alises to FO(SFP) and FO(LFP) in the sense that ea
h partially
omputablequery
an be de�ned in these logi
s. However, a bit
are has to be taken onwhether the formulae terminate in the
ases where the query is
omputable.Let ' := [TCx;y (x; y)℄(u; v) be a FO(TC)-formula. Then '
an indu
tively betranslated to the equivalent FO(SFP)-formula '� := [FO(SFP)R;x;y �(x; y) _9z Rxz^ �(z; y)℄(u; v). However, under the standard operational semanti
s, thisformula might not terminate although, given the operational semanti
s above,the FO(TC)-formula might. To avoid this we re
ursively translate formulae 'as above to '� := [FO(SFP)R;x;y(x = u ^ �(x; y)) _ 9z(Rxz ^ �(z; y))℄(u; v):This
losely resembles the operational semanti
s we used for FO(TC) and thusguarantees termination of the formulae.3.4 Existential Fixed-Point Logi
In the previous se
tions we have seen that FO(TC);FO(SFP), and FO(LFP) allexpress the same
lass of partially re
ursive queries. Regarding existential �xed-point logi
 (FO(EFP)), it
an easily be shown that this logi
 is mu
h weakerthan the other three. In fa
t, there are even �rst-order de�nable queries thatare not expressible in existential �xed-point logi
. An example is the booleanquery that is true for all databases whi
h are bounded, i.e. where there is anumber
 su
h that there is no point in the database with an
oordinate greaterthan
. This
an easily be expressed in �rst-order logi
. As it is known thatFO \ FO(EFP) is exa
tly the
lass of positive existential �rst-order formulaeand that these formulae are preserved under extensions of the stru
ture, it is aneasy observation that this query
annot be expressed in existential �xed-pointlogi
. 13

4 Dense linear ordersIn this se
tion we
onsider dense linear order databases, e.g.
onstraint databasesover (R; <;+). Fixed-point logi
s on this
lass of databases have been studied in[BST98,GK99,Kre99℄ where it is shown that questions about �xed-point querieson dense order databases
an be redu
ed to the
orresponding questions on �nitedatabases. In parti
ular, in [GK99℄ it has been shown that for all dense linearorder database B there is a �nite ordered database inv(B) with universe B,
alled the invariant of B su
h that� there is a fun
tion b� from �nite subsets S � B to FO(LFP)-formulae over(R; <;+) and� for ea
h FO(LFP)-formula ' on B there is a FO(LFP)-formula '0 on inv(B)with the property that if S = '0(inv(B)) is the result of the evaluation of '0in the invariant of B and P := fa : (R; <;+) j= b�(S)g is the set of elementssatisfying the formula b�(S), then R = '(B);where '(B) denotes the set of tuples satisfying ' in B.Now, by the results mentioned in the introdu
tion, it follows that the formula'0 on the �nite ordered database is equivalent to a formula '� in strati�ed �xed-point logi
. To obtain a strati�ed �xed-point formula equivalent to the originalquery ' we have to transform '� ba
k to a formula overB. It follows immediatelyfrom the results proved in [GK99℄ that there is a strati�ed �xed-point formula over B de�ning the relation R as de�ned above.Thus we have shown the following theorem.Theorem 13 Strati�ed �xed-point logi
 and �xed-point logi
 have the same ex-pressive power on the
lass of �nitely representable stru
tures over the real line(R; <).5 Con
lusionIn this paper we
ompared various �xed-point logi
s with respe
t to the fra
tionof partially
omputable queries on linear
onstraint databases they de�ne. Forthis, we �rst had to equip the logi
s with an operational semanti
s, whi
h allowedus to speak about
omputability of queries de�ned by these logi
s. We thenshowed that already transitive-
losure logi
 is expressive enough to de�ne allpartially re
ursive queries on linear
onstraint databases. Thus, with respe
tto this ben
hmark, transitive-
losure, least, and strati�ed �xed-point logi
 areequivalent. As mentioned in the introdu
tion, this is
ontrary to the relationshipof the logi
s in terms of absolute de�nability, i.e., where there are no restri
tionson the
lass of queries under
onsideration.The motivation for
hoosing the
lass of partially re
ursive queries as ben
h-mark
omes from the usage of �xed-point logi
s as query languages, where non-re
ursive queries are of no pra
ti
al interest.14

A
knowledgement I want to thank Jan Van den Buss
he and Floris Geerts forthe many helpful dis
ussions we had on the topi
s of this paper and espe
iallyfor pointing out the importan
e of the pre
ise operational semanti
s used in theproofs. I also want to thank Dietmar Berwanger for the time he spent on thedetails of the proofs and the many helpful
omments he made.Referen
es[BST98℄ O. Belegradek, A. Stolboushkin, and M. Taitslin. Extended order-generi
queries. Annals of Pure and Applied Logi
, 1998. To appear.[DG℄ A. Dawar and Y. Gurevi
h. Fixed-point logi
s. Bulletin of Symboli
 Logi
.to appear.[EF95℄ H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.[GK97℄ S. Grumba
h and G. M. Kuper. Tra
table re
ursion over geometri
 data. InPrin
iples and Pra
ti
e of Constraint Programming, number 1330 in LNCS,pages 450 { 462. Springer, 1997.[GK99℄ E. Gr�adel and S. Kreutzer. Des
riptive
omplexity theory for
onstraintdatabases. In Computer S
ien
e Logi
, number 1683 in LNCS, pages 67 { 82.Springer, 1999.[GK00℄ F. Geerts and B. Kuijpers. Linear approximation of planar spatial databasesusing transitive-
losure logi
. In Pro
eedings of the 19th ACM Symp. onPrin
iples of Database Systems (PODS), 2000, pages 126{135. ACM Press,2000.[KKR90℄ P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages.In Pro
. 9th ACM Symp. on Prin
iples of Database Systems, pages 299{313,1990.[KKR95℄ P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journalof Computer and Systems S
ien
es, 51:26{52, 1995. (An extended abstra
tappeared in the Pro
eedings of PODS'90).[KLP00℄ G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases.Springer, 2000.[Kol91℄ P. Kolaitis. The expressive power of strati�ed logi
 programs. INFORMA-TION AND COMPUTATION, 90:50{66, 1991.[Kre99℄ S. Kreutzer. Des
riptive
omplexity theory for
onstraint databases, 1999.Diplomarbeit an der RWTH Aa
hen.[Kre01℄ S. Kreutzer. Query languages for
onstraint databases: First-order logi
, �xed-points, and
onvex hulls. In Pro
eedings of the 8th International Conferen
eon Database Theory (ICDT), number 1973 in Le
ture Notes in ComputerS
ien
e, pages 248{262. Springer, 2001.[Van99℄ L. Vandeurzen. Logi
-Based Query Languages for the Linear ConstraintDatabase Model. PhD thesis, Limburgs Universitair Centrum, 1999.
15

