
Operational Semantis for Fixed-Point Logis onConstraint DatabasesStephan Kreutzer?RWTH AahenAbstrat. In this paper we ompare the expressive power of various�xed-point logis on linear or dense order onstraint databases. Thisomparison is not done on absolute terms, i.e. by omparing their ex-pressive power for arbitrary queries, rather for de�nability of partiallyreursive queries. The motivation for hoosing this benhmark omesfrom �xed-point logis as query languages for onstraint databases. Here,non-reursive queries are of no pratial interest.It is shown that for linear onstraint databases already transitive losurelogi is expressive enough to de�ne all partially reursive queries, i.e.,transitive-losure logi is expressively omplete for this lass of databases.It follows that transitive-losure, least, and strati�ed �xed-point logi areequivalent with respet to this benhmark.1 IntrodutionLogis and query languages allowing the de�nition of �xed-points of de�nableoperators have a long tradition both in (�nite) model theory and database theory.In �nite model theory, the interest in �xed-point logis omes from questionsonneted with the de�nability or desription of omputations in logial for-malisms. To obtain logis strong enough to desribe properties interesting froma omputational point of view, extensions of �rst-order logi by operators to de-�ne �xed-points have been onsidered. Among the logis obtained in this way aretransitive-losure logi (FO(TC)), whih extends �rst-order logi by an operatorto de�ne the transitive losure of de�nable graphs, and least �xed-point logi(FO(LFP)), whih extends �rst-order logi by an operator to de�ne the least�xed-point of operators de�ned by positive formulae. We give preise de�nitionsof these logis in Setion 2.Query languages inorporating �xed-point onepts have also been studiedin database theory. Here, the �xed-point onstruts have not been added to full�rst-order logi but to onjuntive queries instead. To obtain more expressivelogis than this query language, alled Datalog, database theorists inorporatednegation in various ways. One of these extensions is Strati�ed Datalog, where? Stephan Kreutzer, LuFGMathematishe Grundlagen der Informatik, RWTHAahenAhornstr. 55, D-52056 Aahen, GermanyPhone: ++49-241-8021710, Fax: ++49-241-8888215Email: kreutzer�informatik.rwth-aahen.de

negation is allowed in a limited way. Strati�ed Datalog plays a rather prominentrole in database theory as it has a good balane between expressive power andomplexity.One the logis and query languages had been de�ned, it beame obviousthat �xed-point logis had orresponding Datalog variants and vie versa. Forinstane, Datalog is a logi equivalent to existential �xed-point logi (FO(EFP)),the restrition of least �xed-point logi to existential formulae.Generally, it is lear that FO(TC) � FO(SFP) � FO(LFP) and, further,that FO(EFP) � FO(SFP), where FO(SFP) is equivalent to Strati�ed Datalog1.Further, FO(TC) and FO(EFP) are inomparable. Whether these inlusions arestrit depends on the kind of strutures under onsideration. It has been shown,that on arbitrary strutures all inlusions are strit. The standard example sep-arating FO(SFP) and FO(LFP) is the property of a binary relation of being awell-ordering. See [DG℄ for a very reent survey on �xed-point logis.On �nite strutures, the situation depends on whether an ordering is avail-able. If the strutures are ordered, FO(SFP) and FO(LFP) oinide with Ptimeand, if the order is given by a suessor relation, the same is true for FO(EFP).Whether FO(TC) and FO(LFP) have the same expressive power on �nite or-dered strutures depends on whether NLogspae equals Ptime. See [EF95℄ foran extensive study of these questions on �nite strutures.In [Kol91℄, Kolaitis showed that on unordered �nite strutures FO(SFP) isstritly weaker than FO(LFP). To prove this he used so-alled game trees whihan be de�ned in FO(LFP) but not in FO(SFP).In this paper we are mainly interested in the expressive power of transitive-losure logi, strati�ed Datalog, and least �xed-point logi in the ontext of on-straint databases (See [KLP00℄ for a detailed overview of onstraint databases.)We give a preise de�nition of onstraint databases in the next setion. Thesestrutures lie somewhere between �nite and arbitrary in�nite strutures. Theyusually have an ordering on their universe available, so that the separation meth-ods for �nite strutures do not work, but on the other hand the database relationsoften provide too muh struture to use the methods that work on general in�-nite strutures. The problem here is, that - lassially - logis are separated byshowing that a lass of strutures with ertain properties is de�nable in one logibut not in the other. In the onstraint setting, the ontext struture is �xed inadvane, whereas the relations that vary are �rst-order de�nable and thus have arather simple struture. However, it an still be shown that on many interestingontext strutures, least �xed-point logi is more expressive than, for instane,strati�ed Datalog.So far, muh work on �xed-point logis in the ontext of onstraint databaseshas foused on syntati variants de�ned with regard to ertain properties of theresulting languages, as polynomial time omplexity, see e.g. [GK97,Kre01℄, ortermination, see e.g. [GK00℄. Further, the logis have been onsidered in terms1 Atually, FO(SFP) stands for strati�ed �xed-point logi, a name that will beomelear later. 2

of absolute de�nability, i.e., the main question was whether there are relationsor properties de�nable in one logi but not in another.Besides this lassi�ation, the expressive power an also be measured withrespet to a �xed benhmark. This approah is taken here, where we onsideronstraint databases over the real ordered group (R; <;+). As benhmark wetake the lass of partially omputable queries. Preisely, we investigate whihportions of this lass of queries are de�nable in eah of the logis mentionedabove.The motivation for hoosing the lass of partially reursive queries as benh-mark omes from the use of �xed-point logis as query languages. Someone usingthe logis to ask queries about a given database will only be interested in om-putable queries, i.e., those whose evaluation terminates. Thus a query languagethat is more expressive than another only in means of the power to de�ne non-reursive queries will not be onsidered as being expressively stronger.When speaking about logis de�ning partially omputable queries we �rsthave to speify what it means for a formula to de�ne a omputable query. Sofar we only onsidered the standard model-theoretial semantis of �xed-pointlogis. Formally, the model-theoretial semantis for a logi L an be seen as afuntion mod : ' 2 L 7�! (mod' : (A; �) 7�! P(A�));taking formulae ' 2 L to funtions that map a databaseB := (A; �) to relationsover its universe. The problem is that the funtions mod' are not required tobe omputable. Further, in the onstraint database setting, the problem arisesthat the resulting relations on A are not neessarily �nitely representable in theontext struture. Therefore, we have to give the logis an operational semantis,i.e., a total reursive funtionop : ' 2 L 7�! (op' : (A; �) 7�! P(A�));where the funtions op' are partially reursive and take databases to �nitelyrepresentable relations.Clearly, not every suh funtion an sensibly be alled an operational seman-tis. One obvious ondition that should be satis�ed by any operational semantisfor a logi is, that it is onsistent with the model-theoretial semantis, i.e., forall databases B and formulae ' where op'(B) is de�ned, the two semantisshould agree on the result, i.e., mod'(B) = op'(B).Although the onsisteny ondition is a neessary ondition, it alone does notensure that the semantis meets our expetations. For instane, the operationalsemantis mapping eah formula to the everywhere unde�ned funtion wouldtrivially satisfy the onsisteny requirement.Thus, besides this onsisteny riterion also some kind of ompleteness on-dition is needed. Unlike for onsisteny, there is no anonial de�nition for anoperational semantis to be omplete. In this paper we take the view that anoperational semantis for a logi is omplete if it is most powerful possible, i.e.there is no other operational semantis and no partially omputable query whihis de�nable in the logi under the seond but not under the �rst semantis.3

In Setion 3, we de�ne operational semantis for the �xed-point logis men-tioned above whih satisfy both, the onsisteny and the ompleteness ondition.The latter ondition will be proved by showing that under the operational se-mantis we de�ne for transitive-losure logi, all partially omputable querieson linear onstraint databases beome de�nable in FO(TC). This shows thatFO(TC) is expressively omplete for this lass of databases.It follows from this that also least and strati�ed �xed-point logi are ex-pressively omplete and thus the three logis are equivalent with respet to thelass of partially omputable queries. This equivalene does not hold for exis-tential �xed-point logi, where we show that there even exist queries de�nablein �rst-order logi but not in existential �xed-point logi.Finally, in Setion 4 we will onsider onstraint databases over the real line.Here it will be shown that the question about the expressive power of �xed-point logis an be redued to the question for �nite ordered databases. Thus,strati�ed Datalog and least �xed-point logi have the same expressive powerand transitive-losure logi is equal to both if, and only if, NLogspae equalsPtime.2 PreliminariesConstraint Databases. Constraint Databases have been introdued by Kanel-lakis, Kuper, and Revesz [KKR90,KKR95℄ as a model for in�nite relationaldatabases that have a �nite representation and are therefore aessible to al-gorithmi problems.Let a signature � and a � -struture A be given. Constraint databases arede�ned with respet to this �xed struture A. For a �nite relational signature�, a �-onstraint database B over A, or simply onstraint database if � and Aare understood or irrelevant, is a �-expansion of A suh that for all relationsymbols R 2 � there is a quanti�er-free formula over A de�ning RB in A. Inthese de�ning formulae elements of the universe may be used as parameters. Thedatabase relations in � are alled �nitely representable or onstraint relations.In this paper we are spei�ally interested in linear onstraint databases, i.e.,onstraint databases over the struture (R; <;+). Thus, linear onstraint rela-tions are de�ned by boolean ombinations of linear equalities and inequalities. Inthis paper we only allow rational oeÆients in these formulae de�ning databaserelations2.Fixed-point logis. As mentioned in the introdution, we are spei�allyinterested in the expressive power of transitive-losure and least �xed-point logias well as Datalog and strati�ed Datalog. We de�ne FO(TC) and FO(LFP) �rstand then turn to the Datalog variants.2 After all, onstraint databases have been de�ned in order to be �nitely representableand it is debatable whether formulae with transendental oeÆients ould sensiblybe alled �nitely representable. 4

De�nition 1 Transitive-losure logi (FO(TC)) is de�ned as the extension of�rst-order logi by the following formula building rule. If '(x; y) is a formulawith free tuples of variables x; y of equal length, then := [TCx;y '℄(s; t)is also a formula, where s; t are tuples of terms of the same length as x andy. The free variables of are the variables ourring free in s; t and the freevariables of ' other than x and y.Given a struture A, the semantis of FO(TC) is de�ned indutively with themeaning of the TC-rule being that for some tuples a; b, A j= ([TCx;y '℄)[a; b℄ if,and only if, (a; b) is in the transitive losure of the relation f(u; v) : A j= '[u; v℄g.Note that the result of a formula in FO(TC) on a linear onstraint databasedoes not have to be �nitely representable anymore. For instane, the formula'(y) := [TCx;y x + 1 = y℄(0; y) de�nes the natural numbers on any linear on-straint database. But learly, the result is not �nitely representable.De�nition 2 Least �xed-point logi FO(LFP) is de�ned as the extension of�rst-order logi by the following formula building rule. If '(R; x) is a formulawith free �rst-order variables x := x1; : : : ; xk and a free seond-order variable Rof arity k suh that ' is positive in R, then := [lfpR;x '℄(t)is also a formula, where t is a tuple of terms of the same length as x. The freevariables of are the variables ourring in t and the free variables of ' otherthan x.Given a struture A, the semantis of FO(LFP) is de�ned indutively withthe meaning of the FO(LFP)-rule being as follows. De�ne the stages R� of an�xed-point indution as R0 :=?R�+1 := fa : A j= '[R�; a℄gR� :=S�<� R�:For a given struture A and a tuple a 2 A, the formula [lfpR;x '℄ beomestrue for a if, and only if, a 2 R�, where � is the least � suh that R� = R�+1.As ' is required to be positive in R suh a stage � always exists.We now turn to the de�nition of the Datalog variants. To harmonise notation,we will not deal with the Datalog variants diretly but onsider the orresponding�xed-point logis instead. In the ase of Datalog this is the well known existential�xed-point logi.De�nition 3 Existential least �xed-point logi is de�ned as the restrition ofFO(LFP) to formulae without universal quanti�ers and with negation being al-lowed only in front of atoms whih are not built up from �xed-point variables.5

For strati�ed Datalog there are various syntatially di�erent �xed-pointextensions of FO equivalent to it. We follow the notation introdued by Kolaitisin [Kol91℄3.De�nition 4 Strati�ed Fixed-Point Logi (FO(SFP)) is de�ned as follows.� Let FO(SFP)1 be de�ned as existential �xed-point logi.� De�ne FO(SFP)i+1 as the lass of existential �xed-point formulae whih mayuse literals of the form (x), where is an FO(SFP)l formula with l � i.Note that these formulae may our under the sope of negation symbols.Strati�ed Fixed-Point logi is de�ned as the union FO(SFP) := Si2! FO(SFP)iof all FO(SFP)i for i 2 !.Clearly, FO(SFP) and strati�ed Datalog have the same expressive power anda strati�ed Datalog program with l strata orresponds to a formula in FO(SFP)l.We sometimes write [sfpR;x '℄ instead of [lfpR;x '℄. This happens in ases wherewe ompare FO(SFP) and FO(LFP) and want to make it very lear in whihlogi we are.It an easily be shown that a formula [TCx;y '(x; y)℄(s; t) of FO(TC) is equiv-alent to the FO(SFP)-formula [lfpR;z (z = s _ 9z0 (Rz0 ^ '(z0; z)))℄(t). Thus,FO(TC) � FO(SFP). In fat, it an even be shown that every FO(SFP)-formulaof the form [lfpR;x '0(x) _ 9x0 2 R'1(x; x0)℄(t) suh that R does not our in'0 and '1 is equivalent to a formula in FO(TC), provided that '0 and '1 areequivalent to formulae in FO(TC).It is also lear that FO(SFP) � FO(LFP).3 Finitely representable expansions of the real orderedgroupIn this setion we onsider onstraint databases over the real ordered group(R; <;+) and show that transitive-losure, least, and strati�ed �xed-point logide�ne the same lass of partially omputable queries. This is proven by showingthat all partially omputable queries are already de�nable in FO(TC). For this,we �rst have to give the logis an operational semantis.3.1 Operational semantis for �xed-point logisThroughout this setion, we denote by CDB the lass of onstraint databases over(R; <;+) and by CRel the lass of �nitely representable relations over (R; <;+).We don't distinguish between �nitely representable relations and their represent-ing formulae and denote both by CRel. It will always be lear from the ontextwhether the relation or the formula is meant.3 Note that in this paper the logi was alled existential �xed-point logi!6

De�nition 5 For a given logi L, an operational semantis opL is de�ned as atotal reursive funtionop : ' 2 L 7�! (op' : CDB �! CRel)taking formulae ' 2 L to partially omputable funtions op' whih take on-straint databases over (R; <;+) to representations of �nitely representable rela-tions over (R; <;+).For ' 2 L we denote by mod'(B) the set of elements de�ned by ' under themodel-theoretial semantis for L. An operational semantis op for L is onsis-tent with the model-theoretial semantis if, and only if, for all formulae ' andall databases B suh that op'(B) is de�ned, mod'(B) = op'(B).We now de�ne an operational semantis for transitive-losure logi. This op-erational semantis losely resembles the usual de�nition of the model-theoretialsemantis.De�nition 6 (Operational semantis for FO(TC)) For eah formula ' 2FO(TC) we de�ne a funtion op' : CDB �! CRel by indution on the strutureof '. Fix a quanti�er elimination proedure for (R; <;+), i.e., an evaluationshema for �rst-order queries.� If ' 2 FO, de�ne op'(B) := '0, where '0 is obtained from ' by �rst substi-tuting eah ourrene of a database relation symbol by the formula de�ningthe relation in B and then eliminating the quanti�ers using the quanti�erelimination method �xed above.� If ' := '1^'2, de�ne op'(B) as ((op'1(B))^ (op'2(B)). For other booleanonnetives the funtion op' is de�ned analogously.� If ' := 9x'1, de�ne op'(B) as the result of applying the quanti�er-elimina-tion method �xed above to op'1(B).� Now suppose that ' is of the form ' := [TCx;y (x; y)℄(u; v). We indu-tively de�ne formulae �i, i 2 !, as follows. Reall that we allowed the useof rational numbers as parameters in the formulae. Let I be the indies ofparameters among u := u1; : : : ; un, i.e., ui is a onstant if, and only if, i 2 I.(i) �0 := (x; y) ^Vi2I ui = xi.(ii) �i+1 := 9x0 �i(x; x0) ^ (x0; y).If there is no j 2 ! suh that �j and �j+1 are equivalent in B, then op'(B)is unde�ned. Otherwise let i be the smallest suh j and de�neop'(B) := 9x9y ((u = x) ^ (y = v) ^ �i(x; y)):Finally, we de�ne the operational semantis op for FO(TC) as the funtiontaking formulae ' to op'.Observe the di�erene between this de�nition of an operational semantisand the standard way to de�ne the model-theoretial semantis as outlined inDe�nition 1 in the way the formula �0 is de�ned. The onjunt Vi2I(ui = xi)redues the omputation of the transitive losure to the omputation of all tuples7

whih are reahable from tuples with some �xed omponents. Thus, by lettingonstants our in the tuple u one gets some ontrol over the proess of buildingup the transitive losure. However limited this ontrol might seem, we will showbelow that it is enough to allow the de�nition of arbitrary partially omputablequeries over databases from CDB, whereas it seems unlikely that this is alsopossible without this modi�ation.It is now an easy observation that the model-theoretial and the operationalsemantis for FO(TC) are onsistent.Proposition 7 The operational semantis of De�nition 6 is onsistent with themodel-theoretial semantis of FO(TC).3.2 Expressive ompleteness of transitive losure logiWe now turn to the de�nability of partially omputable queries by formulae ofFO(TC).De�nition 8 A partially omputable query Q is de�ned by a formula ' 2FO(TC) if for all databases B, Q(B) is de�ned if, and only if, op'(B) is de�nedand in this ase Q(B) = op'(B).We show now that all partially omputable funtions on onstraint databasesover (R; <;+) an be de�ned in FO(TC). The proof runs along the following line.We �rst show that the logi PFOL as introdued by Vandeurzen et. al. [Van99℄is a subset of FO(TC). This enables us to use the results on �nite representa-tions de�nable in PFOL. We then show that the run of Turing-mahines an besimulated in FO(TC).Reall that PFOL was de�ned as an extension of FO by a restrited formof multipliation. Preisely, the logi allows the use of atoms x � p = y, where pis a so-alled produt variable. These produt variables have to be bound by aquanti�er 9p 2 'p or 8p 2 'p, where 'p(x) must be a formula de�ning a �niteset. The semantis of a quanti�er Qp 2 'p is the semantis of Q relativised tothe set de�ned by 'p.To show that PFOL � FO(TC) it suÆes to prove that atoms of the formx � p = y an be de�ned in FO(TC) by a formula whose evaluation alwaysterminates.We show that atoms of this form an be de�ned by a formulamult in FO(TC)provided that the formula 'p de�nes a set of rational numbers. In all ases wherewe use PFOL formulae below this will always be true. The formula mult makesuse of two auxiliary formulae 'nd(p; n; d), stating that n and d are the numeratorand denominator of the rational number p, and 'im(a; b;), whih de�nes a�b = ,provided that b is an integer.By the disussion above, we may use quanti�ers 9p 2 'p in our formulae asabbreviation for 9p'p(p), where 'p is the unique formula binding p in the PFOLformula. 8

The formula 'im is de�ned as' im(x; y; z) := [TCx;y;z;x0;y0;z0 x = x0 ^ y0 = y � 1^z0 = z + x ^ 0 � y ^ (y) ℄(x; y; 0; x; 0; z):The formula is parameterised by the formula whih will be replaed by aonrete formula whenever we use 'im below. The idea is, that bounds thepossible values for y from above, whereas the onjunt 0 � y bounds y frombelow. Thus, if there exists a number suh that is not satis�ed for any0 > , then the evaluation of 'im is guaranteed to terminate. We abbreviate' im(a; b;) as a � i b = .We now give the de�nition of the formula mult and de�ne 'nd below. Theformula mult is de�ned asmult(x; p; y) := 9d9n 'nd(p; n; d) ^ (x �'ni n = z �'di d);where x �'ni n = y �'di d is an abbreviation for 9z(x �'ni n = z ^ z = y �'di d), andthe formulae 'n and 'd are de�ned as 'n(x) := 9d9p'nd(p; x; d) and 'd(x) :=9n9p'nd(p; n; x).Finally, to de�ne 'nd we assume a formula (i; j; i0; j0) de�ning a G�odelenumeration of pairs (i; j) of natural numbers. Using this, we an set'nd(p; n; d) := 'p(p)^d�'pi p = n^[TCx;y;x0;y0:x = y�'pi p^(x; y; x0; y0)℄(1; 0; n; d);where 'p is the formula binding p in the PFOL formula.Reall that the operational semantis above guarantees that the evaluation ofthe TC operator start with the pair 0; 1. The onjunt :x = y �'pi p ensures thatit terminates one a pair n; d of numerator and denominator for p is reahed.Thus 'nd de�nes exatly one pair n; d for eah p. As the formula is used onlyfor produt variables p, it de�nes a �nite set. This ensures that the formula 'nand 'd above de�ne �nite sets as well. Thus, for produt variables p the formulamult(x; p; y) terminates and de�nes the set f(a; b;) : a � b = and b 2 'pg.The proof of the following lemma is now straight-forward.Lemma 9 Eah PFOL formula where all produt variables are bound by formu-lae de�ning sets of rationals only is equivalent to a formula in FO(TC) whoseevaluation always terminates.It has been shown by Vandeurzen [Van99℄ that there are PFOL queries odeand deode, suh that for a given databases B := ((R; <;+); SB), where S isk-ary, ode de�nes a �nite set Sen � Rk(k+1) of (k + 1)-tuples of points in Rk ,and SB an be reovered from this �nite enoding Sen by the formula deode,i.e., S = fa : (R; <;+) j= deode(Sen)g.As all parameters ourring in the formulae de�ning the database relationsare required to be rational, and therefore also all points in the enoding have ra-tional oordinates, Lemma 9 implies that suh an �nite enoding of the databaserelation an also be de�ned in FO(TC).9

We now turn to the simulation of the run of a Turing-mahineM := (Q;� :=f0; 1g; q0; Æ; fqfg) omputing a given query. Here, Q is the set of states of M ,� is the alphabet, q0 the initial state, and qf the unique halting state. Æ is aset of rules of the form (q; a) ! (q0; a0;m), where q; q0 2 Q, a; a0 2 �, andm 2 f�1; 1; 0g. Suh a rule states that if M is in state q and the head sansa position labelled a then M replaes a by a0, goes into state q0 and movesaording to m the head to the left, to the right, or not at all.We an assume w.l.o.g. thatM operates on the enoding of the input databaseas de�ned above. Further, we assume that the mahine halts with the head san-ning the �rst position on the tape.A on�guration of M will be enoded as a tuple (xl; xr; t; s), where xl andxr are natural numbers enoding the tape ontent, 0 � t 2 N denotes the stepounter, and s ontains the urrent state of the Turing-mahine. A tape ontenta0a1 : : : an will be enoded as follows. Let 0 � p � n be the urrent head position.The insription a0 : : : ap�1 of the tape to the left of p is oded inversely, i.e., asap�1 : : : a0, in xl by xl := �p�1i=0 2i � ap�1�i. The insription ap : : : an of the tapeto the right of p is oded in xr by xr := �n�pi=0 2i � ap+i. As the mahine onlyuses �nitely many positions on the tape and all ells whih have not been visitedby the mahine are de�ned to be 0, we an also think of xr as the in�nite sum�1i=02i � ap+i.The run of M will be simulated by the formula 'M . We use bold fae lettersq0;qf ; : : : ; a;m to denote �xed onstants of the Turing-mahine, e.g. states q0,symbols a of the alphabet, or m.'M := 9t9x [TC xl;xr;t;s;x0l;x0r;t0;s0 � (t = �1) ^ init)_(t � 0 ^ s 6= qf ^ ompute�℄(�1;�1;�1;�1;x; t;qf ; 0):The formulae init and ompute are de�ned suh that1. init(x0l; x0r ; t0; s0) beomes true for the tuple x0l; x0r; t0; s0 oding the input on-�guration, i.e., x0l = 0, x0r odes the input, s0 = q0, i.e., the mahine is inthe initial state, and, �nally, t0 = 0.2. ompute(xl; xr ; t; s;x0l; x0r; t0; s0) beomes true for a pair of tuples, if thex0l; x0r; t0; s0 odes the suessor on�guration of the on�guration oded inxl; xr; t; s.The onjunt s 6= qf is needed to terminate the evaluation of the formulaone the mahine reahes the �nal state qf .We now turn to the de�nition of the formula ompute. To de�ne this, we �rstneed three auxiliary formulaemove-righta,move-lefta, and don't-movea with freevariables fxl; xr; x0l; x0rg whih de�ne the transition from the tape ontent odedin (xl; xr) to the new tape ontent (x0l; x0r) if the mahine writes the symbol aand moves to the right, to the left or doesn't move at all.(i) move-right is de�ned asmove-righta := x0l = 2xl + a ^ x0r = xr div 2:10

Consider the following situation:xlz }| {j xlz }| {b jwhere the head sans the symbol b, the tape to the left is oded in xl, andthe tape to the right ontaining b is oded in xr. As the head moves tothe right, the pair (x0l; x0r) must ode the new tape ontent as follows.x0lz }| {j a j x0lz }| {j jThus, the position ontaining the b must be removed from the right sideoded in xr and x0r resp., it must be added to the left side oded in xland x0l resp., and, the symbol b must be replaed by a. This is done bysetting x0r to xr div 2, i.e., removing the position entirely, and setting x0lto 2xl + a. The same ideas are used in the next two formulae taking areof the head moving to the right or not moving at all.(ii) don't-move is de�ned asdon't-movea := x0l = xl ^ x0r = (xr div 2) � 2 + a:(iii) move-left is de�ned asmove-lefta := x0l = xl div 2 ^ x0r = ((xr div 2) � 2 + a) � 2 + (xl mod 2):We are now ready to state the de�nition of the formula ompute.ompute := t0 = t+ 1 ^ 9 (= xr mod 2) ^W(q;a)!(q0 ;a0;m)2Æs = q ^ s0 = q0 ^ = a ^ p0 = p+m^((m = 1 ^move-righta0)_(m = 0 ^ don't-movea0)_(m = �1 ^move-lefta0)):We now turn to the de�nition of the formula init. Again we �rst need someauxiliary formulae. Reall from above that there is a formula en whih de�nesa representation en(S) � Rk(k+1) of the input S � Rk by a �nite set of tuplesof points. We use this to de�ne the initial on�guration by letting the Turing-tape ontain this set of tuples of points. To simplify notation, we assume anenoding S0 := en(S) of the input S by a �nite set of natural numbers, i.e., thetuples of points redue to 1-tuples of points in R1 and, further, the oordinatesof this \points" are natural numbers. Observe that suh an enoding does notorrespond to any possible input relation S but the extension to points andtuples of higher dimension and to rational oordinates will be straight forward.We omment on this below.The formula init is de�ned asinit(x0l; x0r; t0; s0) := t0 = 0 ^ s0 = q0 ^ x0l = 0 ^ start(x0r);11

where the formula start is de�ned asstart(x) :=9p = max(S0)^[TCp;x;p0;x0 0BB��p = x = �1 ^ p0 = min(S0)^append(1; p0; x0) �_�p 2 S0 ^ p0 2 S0 ^ p0 = su(p)^append(x; p0; x0) �1CCA℄(�1;�1; x0; p):Here the formulaemax,min, and su are de�ned with respet to the lexiograph-ial ordering of the points in the enoding S0 and the formula append(x0; p; x)de�nes x0 to ode the tape insription obtained from the insription oded in xwith the bit representation of p being appended at the end. It is de�ned asappend := x0 = p0 + x ^9 [TCx;p;x0;p0 �p0 = 2 � p ^ x0 = x div 2 ^ x > 0^(9p̂ 2 S0 x � p̂) �℄(x; p; 0;):The formula �rst shifts the bit representation of the point p as many bitsto the right as the number of bits needed for representation of x and stores theresult in . Then it simply adds x to and gets the desired bit representation inx0. The part that might ause onfusion is the onjunt (9p̂ 2 S0 x � p̂). This isunneessary for the omputation of x0 but guarantees that the evaluation of theformula terminates. This is ahieved by binding the values for x by the largestpoint in the enoding S0. As S0 is �nite, the proess of building up the transitivelosure must be �nite as well.As mentioned above, the ase that the enoding S0 is unary does not happenfor any input relation. Also it is unlikely, that the points in the enoding all havenatural oordinates. But the formula an easily - although with a huge overheadin notation - be extended to rational numbers and enodings of higher arity.Termination of the evaluation proess is also guaranteed for the general ase, asall the omputations needed to enode the input an be bounded by the valuesof points in the �nite set S0.Finally, we have to deode the result of the omputation. For this we an usethe PFOL-formula deode mentioned above. Further, we need some preproessingto deode the output of the mahine given in one single number x into tuples ofpoints. But the indutions involved an all be bounded by the number x odingthe output of the Turing mahine.Now, the proof of the following lemma is straight forward.Lemma 10 Let f be a query on onstraint databases over (R; <;+) and let Mbe a Turing-mahine omputing it. Let f' := op'M be the funtion assigned bythe operational semantis to the formula 'M as onstruted above. Then, foreah database B := ((R; <;+); �),(i) M halts on input B if, and only if, f'(B) is de�ned, and(ii) f'(B) de�nes the same set of elements as represented by the output of Mon B. 12

Thus we have shown the following theorem.Theorem 11 Under the operational semantis de�ned above, FO(TC) de�nesexatly the partially omputable queries on onstraint databases over (R; <;+).The proof of the theorem also yields a negative answer to further deidabil-ity questions. For instane, one might ask whether it is deidable for a givenFO(TC)-formula ' and a �rst-order formula if for all databases B suh thatmod'(B) is de�ned op (B) � op'(B): Using the proof given above, it is an easyexerise to redue the halting problem for Turing mahines to this question, thusproving it undeidable.Corollary 12 Let ' be a FO(TC)-formula and 2 FO. It is undeidable,whether for all databases B 2 CDB(R; <;+) suh that mod'(B) is de�ned,op (B) � op'(B):3.3 Completeness of strati�ed Datalog and least �xed-point logiClearly, FO(SFP) is more expressive than FO(TC). Thus, Theorem 11 gener-alises to FO(SFP) and FO(LFP) in the sense that eah partially omputablequery an be de�ned in these logis. However, a bit are has to be taken onwhether the formulae terminate in the ases where the query is omputable.Let ' := [TCx;y (x; y)℄(u; v) be a FO(TC)-formula. Then ' an indutively betranslated to the equivalent FO(SFP)-formula '� := [FO(SFP)R;x;y �(x; y) _9z Rxz^ �(z; y)℄(u; v). However, under the standard operational semantis, thisformula might not terminate although, given the operational semantis above,the FO(TC)-formula might. To avoid this we reursively translate formulae 'as above to '� := [FO(SFP)R;x;y(x = u ^ �(x; y)) _ 9z(Rxz ^ �(z; y))℄(u; v):This losely resembles the operational semantis we used for FO(TC) and thusguarantees termination of the formulae.3.4 Existential Fixed-Point LogiIn the previous setions we have seen that FO(TC);FO(SFP), and FO(LFP) allexpress the same lass of partially reursive queries. Regarding existential �xed-point logi (FO(EFP)), it an easily be shown that this logi is muh weakerthan the other three. In fat, there are even �rst-order de�nable queries thatare not expressible in existential �xed-point logi. An example is the booleanquery that is true for all databases whih are bounded, i.e. where there is anumber suh that there is no point in the database with an oordinate greaterthan . This an easily be expressed in �rst-order logi. As it is known thatFO \ FO(EFP) is exatly the lass of positive existential �rst-order formulaeand that these formulae are preserved under extensions of the struture, it is aneasy observation that this query annot be expressed in existential �xed-pointlogi. 13

4 Dense linear ordersIn this setion we onsider dense linear order databases, e.g. onstraint databasesover (R; <;+). Fixed-point logis on this lass of databases have been studied in[BST98,GK99,Kre99℄ where it is shown that questions about �xed-point querieson dense order databases an be redued to the orresponding questions on �nitedatabases. In partiular, in [GK99℄ it has been shown that for all dense linearorder database B there is a �nite ordered database inv(B) with universe B,alled the invariant of B suh that� there is a funtion b� from �nite subsets S � B to FO(LFP)-formulae over(R; <;+) and� for eah FO(LFP)-formula ' on B there is a FO(LFP)-formula '0 on inv(B)with the property that if S = '0(inv(B)) is the result of the evaluation of '0in the invariant of B and P := fa : (R; <;+) j= b�(S)g is the set of elementssatisfying the formula b�(S), then R = '(B);where '(B) denotes the set of tuples satisfying ' in B.Now, by the results mentioned in the introdution, it follows that the formula'0 on the �nite ordered database is equivalent to a formula '� in strati�ed �xed-point logi. To obtain a strati�ed �xed-point formula equivalent to the originalquery ' we have to transform '� bak to a formula overB. It follows immediatelyfrom the results proved in [GK99℄ that there is a strati�ed �xed-point formula over B de�ning the relation R as de�ned above.Thus we have shown the following theorem.Theorem 13 Strati�ed �xed-point logi and �xed-point logi have the same ex-pressive power on the lass of �nitely representable strutures over the real line(R; <).5 ConlusionIn this paper we ompared various �xed-point logis with respet to the frationof partially omputable queries on linear onstraint databases they de�ne. Forthis, we �rst had to equip the logis with an operational semantis, whih allowedus to speak about omputability of queries de�ned by these logis. We thenshowed that already transitive-losure logi is expressive enough to de�ne allpartially reursive queries on linear onstraint databases. Thus, with respetto this benhmark, transitive-losure, least, and strati�ed �xed-point logi areequivalent. As mentioned in the introdution, this is ontrary to the relationshipof the logis in terms of absolute de�nability, i.e., where there are no restritionson the lass of queries under onsideration.The motivation for hoosing the lass of partially reursive queries as benh-mark omes from the usage of �xed-point logis as query languages, where non-reursive queries are of no pratial interest.14

Aknowledgement I want to thank Jan Van den Busshe and Floris Geerts forthe many helpful disussions we had on the topis of this paper and espeiallyfor pointing out the importane of the preise operational semantis used in theproofs. I also want to thank Dietmar Berwanger for the time he spent on thedetails of the proofs and the many helpful omments he made.Referenes[BST98℄ O. Belegradek, A. Stolboushkin, and M. Taitslin. Extended order-generiqueries. Annals of Pure and Applied Logi, 1998. To appear.[DG℄ A. Dawar and Y. Gurevih. Fixed-point logis. Bulletin of Symboli Logi.to appear.[EF95℄ H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.[GK97℄ S. Grumbah and G. M. Kuper. Tratable reursion over geometri data. InPriniples and Pratie of Constraint Programming, number 1330 in LNCS,pages 450 { 462. Springer, 1997.[GK99℄ E. Gr�adel and S. Kreutzer. Desriptive omplexity theory for onstraintdatabases. In Computer Siene Logi, number 1683 in LNCS, pages 67 { 82.Springer, 1999.[GK00℄ F. Geerts and B. Kuijpers. Linear approximation of planar spatial databasesusing transitive-losure logi. In Proeedings of the 19th ACM Symp. onPriniples of Database Systems (PODS), 2000, pages 126{135. ACM Press,2000.[KKR90℄ P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages.In Pro. 9th ACM Symp. on Priniples of Database Systems, pages 299{313,1990.[KKR95℄ P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journalof Computer and Systems Sienes, 51:26{52, 1995. (An extended abstratappeared in the Proeedings of PODS'90).[KLP00℄ G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases.Springer, 2000.[Kol91℄ P. Kolaitis. The expressive power of strati�ed logi programs. INFORMA-TION AND COMPUTATION, 90:50{66, 1991.[Kre99℄ S. Kreutzer. Desriptive omplexity theory for onstraint databases, 1999.Diplomarbeit an der RWTH Aahen.[Kre01℄ S. Kreutzer. Query languages for onstraint databases: First-order logi, �xed-points, and onvex hulls. In Proeedings of the 8th International Confereneon Database Theory (ICDT), number 1973 in Leture Notes in ComputerSiene, pages 248{262. Springer, 2001.[Van99℄ L. Vandeurzen. Logi-Based Query Languages for the Linear ConstraintDatabase Model. PhD thesis, Limburgs Universitair Centrum, 1999.
15

