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Abstract. We study determinacy, definability and complexity issues of
path games on finite and infinite graphs.

Compared to the usual format of infinite games on graphs (such as Gale-
Stewart games) we consider here a different variant where the players
select in each move a path of arbitrary finite length, rather than just an
edge. The outcome of a play is an infinite path, the winning condition
hence is a set of infinite paths, possibly given by a formula from S1S,
LTL, or first-order logic. Such games have a long tradition in descriptive
set theory (in the form of Banach-Mazur games) and have recently been
shown to have interesting application for planning in nondeterministic
domains.

It turns out that path games behave quite differently than classical graph
games. For instance, path games with Muller conditions always admit
positional winning strategies which are computable in polynomial time.

With any logic on infinite paths (defining a winning condition) we can
associate a logic on graphs, defining the winning regions of the associated
path games. We explore the relationships between these logics. For in-
stance, the winning regions of path games with an S1S-winning condition
are definable in the modal mu-calculus. Further, if the winning condi-
tion is first-order (on paths), then the winning regions are definable in
monadic path logic, or, for a large class of games, even in first-order logic.
As a consequence, winning regions of LTL path games are definable in
CTL*.

1 Introduction

The story. Once upon a time, two players set out on an infinite ride through
the west. More often than not, they had quite different ideas on where to go, but
for reasons that have by now been forgotten they were forced to stay together
– as long as they were both alive. They agreed on the rule that each player can
determine on every second day, where the ride should go. Of course the riders
could go only a finite distance every day; but a day’s ride might well lead back
to the location where it started in the morning, or where it started a day ago.
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Hence, one of the players began by choosing the first day’s ride: he indicated
a finite, non-empty path p1 from the starting point v; on the second day his
opponent selected the next stretch of way, extending p1 to a finite path p1q1;
then it was again the turn of the first player to extend the path to p1q1p2 and
so on. After ω days, an infinite ride is completed and it is time for payoff. There
were variants of this game where, after a designated number of days, one of the
players would be eliminated (these things happened in the west) and the other
was to complete the game by himself for the remaining ω days (a very lonesome
ride, indeed).

From descriptive set theory to planning in nondeterministic domains.
Path games arise also in other contexts than the wild west. They have been
studied in descriptive set theory, in the form of Banach-Mazur games (see [5,
Chapter 6] or [6, Chapter 8.H]). In their original variant (see [7, pp. 113–117],
the winning condition is a set W of real numbers; in the first move, one of the
players selects an interval d1 on the real line, then his opponent chooses an
interval d2 ⊂ d1, then the first player selects a further refinement d3 ⊂ d2 and
so on. The first player wins if the intersection

⋂

n∈ω dn of all intervals contains
a point of W , otherwise his opponent wins. This game is essentially equivalent
to a path game on the infinite binary tree T 2 or the ω-branching tree Tω. An
important issue in descriptive set theory is determinacy: to characterise the
winning conditions W such that one of the two players has a winning strategy
for the associated game. This is closely related to topological properties of W

(see Section 3).

In a quite different setting, Pistore and Vardi [9] have used path games for
task planning in nondeterministic domains. In their scenario, the desired infinite
behaviour is specified by formulae in linear temporal logic LTL, and it is assumed
that the outcome of actions may be nondeterministic; hence a plan does not have
only one possible execution path, but an execution tree. Between weak planning
(some possible execution path satisfies the specification) and strong planning (all
possible outcomes are consistent with the specification) there is a spectrum of
intermediate cases such as strong cyclic planning: every possible partial execution
of the plan can be extended to an execution reaching the desired goal. In this
context, planning can be modelled by a game between a friendly player E and
a hostile player A selecting the outcomes of nondeterministic actions. The game
is played on the execution tree of the plan, and the question is whether the
friendly player E has a strategy to ensure that the outcome (a path through
the execution tree) satisfies the given LTL-specification. In contrast to the path
games arising in descriptive set theory, the main interest here are path games
with finite alternations between players. For instance, strong cyclic planning
corresponds to a AEω-game where a single move by A is followed by actions
of E. Also the relevant questions are quite different: Rather than determinacy
(which is clear for winning conditions in LTL) algorithmic issues play the central
role. Pistore and Vardi show that the planning problems in this context can be
solved by automata-based methods in 2Exptime.



Outline of this paper. Here we consider path games in a general, abstract
setting, but with emphasis on definability and complexity issues. In Section 2
we describe path games and discuss their basic structure. In Section 3 we review
the classical results on determinacy of Banach-Mazur games. We then study
in Section 4 path games that are positionally determined, i.e., admit winning
strategies that only depend on the current position, not on the history of the
play. In Section 5 we investigate definability issues. We are interested in the
question how the logical complexity of defining a winning condition (a property
of infinite paths) is related to the logical complexity of defining who wins the
associated game (a property of game graphs). In particular, we will see that the
winner of path games with LTL winning conditions is definable in CTL∗.

2 Path games and their values

Path games are a class of zero-sum infinite two-player games with complete
information, where moves of players consist of selecting and extending finite
paths through a graph. The players will be called Ego and Alter (in short E and
A). All plays are infinite, and there is a payoff function P , defining for each play
a real number. The goal of Ego is to maximise the payoff while Alter wants to
minimise it.

A strategy for a player is a function, assigning to every initial segment of a
play a next move. Given a strategy f for Ego and a strategy g for Alter in a
game G, we write f ĝ for the unique play defined by f and g, and P (f ĝ) for
its payoff. The values of a game G, from the point of view of Ego and Alter,
respectively, are

e(G) := max
f

min
g

P (f ĝ) and a(G) := min
g

max
f

P (f ĝ).

A game is determined if e(G) = a(G). In the case of win-or-lose games, where
the payoff of any play is either 0 or 1, this amounts to saying that one of the
two players has a winning strategy. For two games G and H we write G ¹ H if
e(G) ≤ e(H) and a(G) ≤ a(H). Finally, G ≡ H if G ¹ H and H ¹ G.

Let G = (V, F, v) be an arena (the west), consisting of a directed graph (V, F )
without terminal nodes, a distinguished start node v, and let P : V ω → R be
a payoff function that assigns a real number to each infinite path through the
graph.

We denote a move where Ego selects a finite path of length ≥ 1 by E and an
ω-sequence of such moves by Eω; for Alter we use corresponding notation A and
Aω. Hence, for any arena G and payoff function P we have the following games.

– (EA)ω(G,P ) and (AE)ω(G,P ) are the path games with infinite alternation
of finite path moves.

– (EA)kEω(G,P ) and A(EA)kEω(G,P ), for arbitrary k ∈ N, are the games
ending with an infinite path extension by Ego.

– (AE)kAω(G,P ) and E(AE)kAω(G,P ) are the games where Alter chooses
the final infinite lonesome ride.



All these games together form the collection Path(G,P ) of path games. (Ob-
viously two consecutive finite path moves by the same players correspond to a
single move, so there is no need for prefixes containing EE or AA.)

It turns out that this infinite collection of games collapses to a finite lattice
of just eight different games. This has been observed independently by Pistore
and Vardi [9].

Theorem 1 For every arena G and every payoff function P , we have

Eω(G,P ) º EAEω(G,P ) º AEω(G,P )

g| g|

(EA)ω(G,P ) º (AE)ω(G,P )

g| g|

EAω(G,P ) º AEAω(G,P ) º Aω(G,P )

Further, every path game H ∈ Path(G,P ) is equivalent to one of these eight
games.

Proof. The comparison relations in the diagram follow by trivial arguments. We
just illustrate them for one case. To show that G º H for G = EAEω(G,P )
and H = (EA)ω(G,P ), consider first an optimal strategy f of Ego in H, with
e(H) = ming P (f ĝ). Ego can use this strategy also for G: he just plays as if he
would play G, making an arbitrary move whenever it would be A’s turn in H.
Any play in G that is consistent with this strategy, is also a play in H that is
consistent with f , and therefore has payoff at least e(H). Hence e(G) ≥ e(H).
Second, consider an optimal strategy g of Alter in G, with a(G) = maxf P (f ĝ).
In H = (EA)ω(G,P ), Alter answers the first move of E as prescribed by g, and
moves arbitrarily in all further moves. Again, every play that can be produced
against this strategy is also a play of G that is consistent with g, and therefore
has payoff at most a(G). Hence a(G) ≥ a(H). In all other cases the arguments
are analogous.

To see that any other path game over G is equivalent to one of those displayed,
it suffices to show that

(1) (EA)kEω(G,P ) ≡ EAEω(G,P ), for all k ≥ 1, and
(2) A(EA)kEω(G,P ) ≡ AEω(G,P ), for all k ≥ 0.

By duality, we can then infer the following equivalences: (AE)kAω(G,P ) ≡
AEAω(G,P ) for k ≥ 1 and E(AE)kAω(G,P ) ≡ EAω(G,P ) for all k ≥ 0.

The equivalences (1) and (2) follow with similar reasoning as above. Ego
can modify a strategy f for EAEω(G,P ) to a strategy for (EA)kEω(G,P ).
He chooses the first move according to f and makes arbitrary moves the next
k − 1 times; he then considers the entire A(EA)k−1-sequence of moves, which
were played after his first move, as one single move of A in EAEω(G,P ) and



completes the play again according to f . The resulting play of (EA)kEω(G,P )
is a consistent play with f in EAEω(G,P ). Conversely a strategy of Ego for
(EA)kEω also works if his opponent lets Ego move for him in all moves after
the first one, i.e., in the game EAEω(G,P ). This proves that the e-values of the
two games coincide. All other equalities are treated in a similar way. ⊓⊔

The question arises whether the eight games displayed in the diagram are
really different or whether they can be collapsed further. The answer depends
on the game graph and the payoff function, but for each comparison º in the
diagram we find simple cases where it is strict. Indeed, standard winning con-
ditions W ⊆ {0, 1}ω (defining the payoff function P (π) = 1 if π ∈ W , and
P (π) = 0 otherwise) show that the eight games in the diagram are distinct on
appropriate game graphs. Let us consider here the completely connected graph
with two nodes 0 and 1.

If the winning condition requires some initial segment (“our journey will start
with a ride through the desert”) then Ego wins the path games where he moves
first and loses those where Alter moves first. Thus, starting conditions separate
the left half of the diagram from the right one.

Games with reachability conditions (“some day, there will be the showdown”)
and safety conditions (“no day without a visit to the saloon”) separate games
in which only one player moves, i.e. with prefix Eω or Aω respectively, from the
other ones.

A game with a Büchi condition (“again and again someone will play the
harmonica”) is won by Ego if he has infinite control and lost if he only has
a finite number of finite moves (prefix ending with Aω). Similarly, Co-Büchi
conditions (“some day, he will ride alone toward the sunset and never come
back”) separate the games which are controlled by Ego from some time onwards
(with prefix ending in Eω) from the others.

3 Determinacy

From now on we consider win-or-lose games, with a winning condition given by
a set of plays W . Player E wins the path game if the resulting infinite path
belongs to W , otherwise Player A wins.

The topological properties of winning conditions W implying that the asso-
ciated path games are determined are known from descriptive set theory. We
just recall the basic topological notions and the results. In the following section,
we will proceed to the issue of positional determinacy, i.e. to the question which
path games admit winning strategies that only depend on the current position,
not on the history of the play.

Note that path games with only finite alternations between the two players
are trivially determined, for whatever winning condition; hence we restrict at-
tention to path games with prefix (EA)ω or (AE)ω, and by duality, it suffices
to consider (EA)ω. By unravelling the game graph to a tree, we can embed any
game (EA)ω(G,W ) in a Banach-Mazur game over the ω-branching tree Tω. The



determinacy of Banach-Mazur games is closely related to the Baire property, a
notion that arose from topological classifications due to René Baire.

Topology. We consider the space Bω of infinite sequences over a set B, endowed
with the topology whose basic open sets are O(x) := x · Bω, for x ∈ B∗. A set
L ⊆ Bω is open if it is a union of sets O(x), i.e., if L = W ·Bω for some W ⊆ B∗.
A tree T ⊆ B∗ is a set of finite words that is closed under prefixes. It is easily
seen that L ⊆ Bω is closed (i.e., the complement of an open set) if L is the set of
infinite branches of some tree T ⊆ B∗, denoted L = [T ]. This topological space
is called Cantor space in case B = {0, 1}, and Baire space in case B = ω.

The class of Borel sets is the closure of the open sets under countable union
and complementation. Borel sets form a natural hierarchy of classes Σ

0
η for

1 ≤ η < ω1, whose first levels are

Σ
0
1 (or G) : the open sets

Π
0
1 (or F ) : the closed sets

Σ
0
2 (or Fσ) : countable unions of closed sets

Π
0
2 (or Gδ) : countable intersections of open sets

In general, Π
0
η contains the complements of the Σ

0
η-sets, Σ

0
η+1 is the class of

countable unions of Π
0
η-sets, and Σ

0
λ =

⋃

η<λ Σ
0
η for limit ordinals λ.

We recall that a set X in a topological space is nowhere dense if its closure
does not contain a non-empty open set. A set is meager if it is a union of
countably many nowhere dense sets and it has the Baire property if its symmetric
difference with some open set is meager. In particular, every Borel set has the
Baire property.

We are now ready to formulate the Theorem of Banach and Mazur (see
e.g. [5, 6]). To keep in line with our general notation for path games we write
(EA)ω(Tω,W ) for the Banach-Mazur game on the ω-branching tree with win-
ning condition W .

Theorem 2 (Banach-Mazur) (1) Player A has a winning strategy for the
game (EA)ω(Tω,W ) if, and only if, W is meager.

(2) Player E has a winning strategy for (EA)ω(Tω,W ) if, and only if, there
exists a finite word x ∈ ω∗ such that x · ωω \ W is meager (i.e., W is
co-meager in some basic open set).

As a consequence, it can be shown that for any class Γ ⊆ P(ωω) that is closed
under complement and under union with open sets, all games (EA)ω(Tω,W )
with W ∈ Γ are determined if, and only if, all sets in Γ have the Baire property.
Since Borel sets have the Baire property, it follows that Banach-Mazur games
are determined for Borel winning conditions. (Via a coding argument, this can
also been easily derived form Martin’s Theorem, saying that Gale-Stewart games
with Borel winning conditions are determined.)

Standard winning conditions used in applications (in particular the winning
conditions that can be described in S1S) are contained in very low levels of the
Borel hierarchy. Hence all path games of this form are determined.



4 Positional determinacy

In general, winning strategies can be very complicated. However, there are in-
teresting classes of games that are determined via relatively simple winning
strategies. Of particular interest are positional (also called memoryless) strate-
gies which only depend on the current position, not on the history of the play.
On a game graph G = (V, F ) a positional strategy has the form f : V → V ∗

assigning to every move v a finite path from v through G.
To start, we present a simple example of a path game, that is determined,

but does not admit a positional strategy.

Example 3 Let G2 be the completely connected directed graph with nodes 0 and 1,
and let the winning condition for Ego be the set of infinite sequences with infinitely
many initial segments that contain more ones than zeros. Clearly, Ego has a winning
strategy for (EA)ω(G, W ), but not a positional one.

Note that this winning condition is on the Π2-level of the Borel hierarchy. It
has been pointed out by Jacques Duparc, that this is the lowest level with such
an example.

Proposition 4 If Ego has a winning strategy for a path game (EA)ω(G,W )
with W ∈ Σ

0
2, then he also has a positional winning strategy.

Proof. Let G = (V, F ) be the game graph. Since W is a countable union of closed
sets, we have W =

⋃

n<ω[Tn] where each Tn ⊆ V ∗ is a tree. Further, let f be
any (non-positional) winning strategy for Ego. We claim that, in fact, Ego can
win with one move.

We construct this move by induction. Let x1 be the initial path chosen by Ego
according to f . Let i ≥ 1 and suppose that we have already constructed a finite
path xi 6∈

⋃

n<i Tn. If xiy ∈ Ti for all finite y, then all infinite plays extending
xi remain in W , hence Ego wins with the initial move w = xi. Otherwise choose
some yi such that xiyi 6∈ Ti, and suppose that Alter prolongs the play from xi

to xiyi. Let xi+1 := f(xiyi) the result of the next move of Ego, according to his
winning strategy f .

If this process did not terminate, then it would produce an infinite play that
is consistent with f and won by Alter. Since f is a winning strategy for Ego,
this is impossible. Hence there exists some m < ω such that xmy ∈ Tm for all y.
Thus, if Ego moves to xm in his opening move, then he wins, no matter how the
play proceeds afterwards. In particular, Ego wins with a positional strategy. ⊓⊔

While many important winning conditions are outside Σ
0
2, they may well be

Boolean combinations of Σ
0
2-sets. For instance, this is the case for parity condi-

tions, Muller conditions, and more generally, S1S-definable winning conditions.
In the classical framework of infinite games on graphs (where moves are along
edges rather than paths) it is well-known that parity games admit positional
winning strategies, whereas there are simple games with Muller conditions that
require strategies with some memory. We will see that for path games, the class



of winning conditions admitting positional winning strategies is much larger than
for classical graph games.

Let G = (V, F ) be a game graph with a colouring λ : V → C of the nodes
with a finite number of colours. The winning condition is given by an ω-regular
set W ⊆ Cω which is defined by a formula in some appropriate logic over infinite
paths. In the most general case, we have S1S-formulae (i.e. MSO-formulae on
infinite paths with vocabulary {<} ∪ {Pc : c ∈ C}) but we will also consider
weaker formalisms like first-order logic or, equivalently, LTL.

Muller and parity conditions. As we mentioned before, typical examples of
winning conditions for which strategies require memory on single-step games are
Muller conditions. Such a condition is specified by a family F ⊆ 2C of winning
sets; a play is winning if the set of colours seen infinitely often belongs to F .

Proposition 5 All Muller path games (EA)ω(G,F) and (AE)ω(G,F) admit
positional winning strategies.

Proof. We will write w ≥ v to denote that position w is reachable from position
v. For every position v ∈ V , let C(v) be the set of colours reachable from v,
that is, C(v) := {λ(w) : w ≥ v}. Obviously, C(w) ⊆ C(v) whenever w ≥ v. In
case C(w) = C(v) for all w ≥ v, we call v a stable position. Note that from
every u ∈ V some stable position is reachable. Further, if v is stable, then every
reachable position w ≥ v is stable as well.

We claim that Ego has a winning strategy in (EA)ω(G,F) iff there is a stable
position v that is reachable from the initial position v0, so that C(v) ∈ F .

To see this, let us assume that there is such a stable position v with C(v) ∈ F .
Then, for every u ≥ v, we choose a path p from u so that, when moving along p,
each colour of C(u) = C(v) is visited at least once, and set f(u) := p. In case v0

is not reachable from v, we assign f(v0) to some path that leads from v0 to v.
Now f is a positional winning strategy for Ego in (EA)ω(G,F), because, after
the first move, no colours other then those in C(v) are seen. Moreover, every
colour in C(v) is visited at each move of Ego, hence, infinitely often.

Conversely, if for every stable position v reachable from v0 we have C(v) 6∈ F ,
we can construct a winning strategy for Alter in a similar way. ⊓⊔

Note that in a finite arena all positions of a strongly connected component
that is terminal, i.e., with no outgoing edges, are stable. Thus, the above char-
acterisation translates as follows: Ego wins the game iff there is a terminal com-
ponent whose set of colours belongs to F . Obviously this can be established in
linear time w.r.t. the size of the arena and the description of F .

Corollary 6 On a finite arena G, path games with a Muller winning condition
F can be solved in time O(|G| · |F|).

We remark that solving single-step graph games with Muller winning condi-
tion is Pspace-complete. We are not aware of any reference where this is stated



explicitly, but it is not too difficult to derive this from the analysis presented in
[1].

A special case of the Muller condition is the parity condition. Given an arena
G = (V, F ) with positions coloured by a priority function Ω : V → N of finite
range, this condition requires that the least priority seen infinitely often on a
play is even. It turns out that path games with parity conditions are positionally
determined for any game prefix. (By Theorem 1 we can restrict attention to the
eight prefixes Eω, Aω, AEω, EAω, EAEω, AEAω, (EA)ω, and (AE)ω.)

Proposition 7 Every parity path game γ(G,parity) is determined via a posi-
tional winning strategy.

General S1S-winning conditions. In the following, we will use parity games
as an instrument to investigate path games with winning conditions specified
in the monadic second-order logic of paths, S1S. It is well known that every
S1S-definable class of infinite words can be recognised by a deterministic parity
automaton (see e.g. [2]). For words over the set of colours C, such an automaton
has the form A = (Q,C, q0, δ, Ω), where Q is a finite set of states, q0 the initial
state, δ : Q × C → Q a deterministic transition function, and Ω : Q → N

a priority function. Given an input word, a run of A starts at the first word
position in state q0; if, at the current position v the automaton is in state q, it
proceeds to the next position assuming the state δ(q, λ(v)). The input is accepted
if the least priority of a state occurring infinitely often in the run is even.

Via a reduction to parity games, we will first show that S1S-games admit
finite-memory (or, automatic) strategies. By refining these, we will then establish
strategies that are independent of the memory state, that is, positional.

Proposition 8 For any winning condition ψ ∈ S1S and any game prefix γ, the
path games γ(G,ψ) admit finite-memory winning strategies.

Proof. Let A = (Q,C, q0, δ, Ω) be an automaton that recognises the set of words
defined by ψ. Given an arena G = (V,E) with starting position v0, we define the
synchronised product G × A to be the arena with positions V × Q, edges from
(v, q) to (v′, q′) whenever (v, v′) ∈ E and δ(q, λ(v)) = q′, and designated starting
position (v0, q0). We will use two sets of colours for G × A: one inherited from
G, λ(v, q) := λ(v), and the other one inherited from A, Ω(v, q) := Ω(q). When
referring to a specific colouring we write, respectively, G × A↾λ and G × A↾Ω .
Between the games on G and G ×A we can observe a strong relationship.

(1) For every prefix γ, a play starting from position (v0, q0) is winning in
γ(G ×A↾λ, ψ) if, and only if, it is winning in γ(G ×A↾Ω ,parity).

(2) The arenas G, v0 and G ×A↾λ, (v0, q0) are bisimilar.

The first assertion follows from the meaning of the automaton A, and entails a
strategical equivalence between the two games: Any winning strategy in γ(G ×
A ↾Ω ,parity) is also a winning strategy in γ(G × A ↾λ, ψ) and vice versa. By
Proposition 7, there always exists a positional winning strategy for the former
game and, hence, for the latter one as well.



The second statement holds because A is deterministic. It implies that every
winning strategy for a path game γ(G,ψ) starting from position v0 is also a
winning strategy for the game γ(G × A, ψ) starting from (v0, q0). Conversely,
every winning strategy f for the latter game induces a winning strategy f ′ for
the former one, namely f ′(v, s) := f

(

(v, q′), s
)

where q′ := δ(q0, s) is the state
reached by the automaton after processing the word s. Since f can be chosen to
be positional, we obtain a winning strategy f ′ on γ(G,ψ) that does not depend
on the entire history, but only on a finite memory, namely the set of states Q. ⊓⊔

Note that the finite-memory strategy f ′ constructed above does not yet need
to be positional, since a position v in G has several copies (v, q) in G × A at
which the prescriptions of f may differ. In order to obtain a state-independent
winning strategy for γ(G,ψ) we will unify, for each node v ∈ V , the prescriptions
f(v, q) for those position (v, q) which are reachable in a play of according to f .

Theorem 9 For any winning condition ψ ∈ S1S, the games (EA)ω(G,ψ) and
(AE)ω(G,ψ) admit positional winning strategies.

Proof. Let us assume that Ego wins the game (EA)ω(G,ψ) starting from posi-
tion v0. We will base our argumentation on the game (EA)ω(G × A, ψ), where
Ego has a positional winning strategy f .

For any v ∈ V , we denote by Qf (v) the set of states q so that the position
(v, q) can be reached from position (v0, q0) in a play according to f :

Qf (v) := {δ(q0, s) : s prolongs f(v0, q0) and leads to v}.

Let {q1, q2, . . . , qn} be an enumeration of Qf (v), in which the initial state q0

is taken first, in case it belongs to Qf (v). We construct a path associated to v

along the following steps. First, set p1 := f(v, q1); for 1 < i ≤ n, let (v′, q′) be
the node reached after playing the path p1 · p2 · · · · · pi−1 from position (v, qi)
and set pi := f(v′, q′). Finally, let f ′(v) be the concatenation of p1, p2, . . . , pn.

q1
f(v,q1)

◦

q2 q′2
f(v1,q′

2
)

◦

q3
f(v2,q′

3
)

q′3 ◦

qn q′n
f(v

n−1,q′

n
)
◦

v
f(v,q1)

v1
f(v1,q′

2
)

v2
f(v2,q′

3
)

v3 vn−1
f(v

n−1,q′

n
)
•

Fig. 1. Merging strategies at node v

Now, consider a play on (EA)ω(G×A, ψ) in which Ego chooses the path f ′(v)
at any node (v, q) ∈ V ×Q. This way, the play will start with f(q0, v0). Further,



at any position (v, q) at which Ego moves, the prescription f ′(v) contains some
segment of the form (v′, q′)·f(v′, q′). In other words, every move of Ego has some
“good part” which would also have been produced by f at the position (v′, q′).
But this means that the play cannot be distinguished, post-hoc, from a play
where Ego always moved according to the strategy f while all the “bad parts”
were produced by Alter. Accordingly, Ego wins every play of (EA)ω(G ×A, ψ)
starting from (q0, v0).

This proves that f ′ is a positional strategy for Ego in the game (EA)ω(G ×
A, ψ). Since the values do not depend on the second component, f ′ induces a
positional strategy for Ego in (EA)ω(G,ψ).

The same construction works for the case (AE)ω(G,ψ), if we take instead of
Qf (v) the set Q(v) := {δ(q0, s) : s is a path from v0 to v}. ⊓⊔

The above proof relies upon the fact that the players always take turns. If we
consider games where the players alternate only finitely many times, the situation
changes. Intuitively, a winning strategy of the solitaire player eventually forms
an infinite path which may not be broken apart into finite pieces to serve as a
positional strategy.

Proposition 10 For any prefix γ with finitely many alternations between the
players, there are arenas G and winning conditions ψ ∈ S1S so that no positional
strategy is winning in the game γ(G,ψ).

Proof. Consider, for instance, the arena G2 from Example 3 and a winning
condition ψ ∈ S1S that requires the number of zeroes occurring in a play to
be odd. When starting from position 1, Ego obviously has winning strategies for
each of the games Eω(G,ψ), AEω(G,ψ), and EAEω(G,ψ), but no positional
ones. ⊓⊔

Nevertheless, these games are positionally determined for one of the play-
ers. Indeed, if a player wins a game γ(G,ψ) finally controlled by his oppo-
nent, he always has a positional winning strategy. This is trivial when γ ∈
{Eω, Aω, AEω, EAω}; for the remaining cases EAEω and AEAω a positional
strategy can be constructed as in the proof of Theorem 9.

Finally we consider winning conditions that do not depend on initial seg-
ments. We say that ψ is a future-formula, if, for any ω-word π and any finite
words x and y, we have xπ |= ψ if, and only if, yπ |= ψ .

Theorem 11 For any winning condition ψ ∈ S1S specified by a future-formula
and every prefix γ, the games γ(G,ψ) admit a positional winning strategies.

Proof. The core of our argument consists in showing that, given a solitaire game
Eω(G,ψ), Ego has a uniform positional winning strategy that works for all
starting positions in his winning region W .

We again consider the game Eω(G × A↾Ω ,parity) (as in the proof of Theo-
rem 9). When playing solitaire, path games do not differ from single-step games,
and it is well known that parity games admit winning strategies that are uniform



on the entire winning region. Let f be such a strategy. We use f to define a po-
sitional strategy f ′ for ∃ω(G,ψ) as follows. Starting from any winning position
(v0, q0) in Eω(G×A↾Ω ,parity), let (vn, qn)n<ω be the unique play according to f .
There are two cases. If the play visits only finitely many different positions, we
have (vi, qi) = (vj , qj) for some i, j and set f ′(v0) := v0, v1, . . . , vi and f ′(vi) :=
vi+1, . . . , vj (overwriting f ′(v0) if vi = v0). Otherwise, there are infinitely many
positions (vj , qj) where vj is fresh, in the sense that vj 6= vi for all i < j. In that
case, we assign to each fresh position vj the path f ′(vj) := vj+1, . . . , vk which
leads to the next fresh position vk in the play. Next, for every node v where f ′

is still undefined but from which a position v′ ∈ dom(f ′) is reachable in G, we
choose a path t from v to v′ and set f ′(v) := t. After this, if dom(f ′) does not
yet contain the entire winning region W of Ego, we take a new starting position
(v′

0, q0) ∈ W with v′0 ∈ V \ dom(f ′), and proceed as above, through a possibly
transfinite number of stages, until f ′ is defined on all nodes in W .

We claim that f ′ is a winning strategy on W . Consider any play π′ in
Eω(G,ψ) that starts at some v ∈ W and that is consistent with f ′. By the
construction of f ′ there exists a play π in the arena G × A, consistent with f ,
such that the projection of π to G differs from π′ only by an initial segment.
Now π is a winning play for Ego in Eω(G × A ↾Ω ,parity) and therefore also
for ∃ω(G × A↾λ, ψ) (see item (1) in the proof of Theorem 9). By item (2), and
since ψ is a future condition this implies that π′ is winning for Ego in the game
Eω(G,ψ).

The case AEω follows now immediately since Ego wins AEω(G,ψ) if all
positions v reachable from v0 are in his winning region. For the case EAEω, let
g be a winning strategy for Ego. If g(v0) leads to a position v from which v0 is
again reachable, then f ′ (constructed above for Eω(G,ψ) is a winning strategy
also for EAEω(G,ψ). Otherwise, we may change f ′ for the initial position by
f ′(v0) := g(v0) to obtain a positional winning strategy. The other cases follow
by duality. ⊓⊔

5 Definability

We now study the question in what logics (MSO, µ-calculus, FO, CTL∗, . . . )
winning positions of path games with ω-regular winning conditions can be de-
fined. Given any formula ϕ from a logic on infinite paths (like S1S or LTL) and
a quantifier prefix γ for path games, we define the game formula γ.ϕ, to be
evaluated over game graphs, with the meaning that

G |= γ . ϕ ⇐⇒ Player E wins the path game γ(G,ϕ).

Note that the operation ϕ 7→ γ.ϕ maps a formula over infinite paths to a formula
over graphs. Given a logic L over infinite paths, and a prefix γ, let γ.L := {γ.ϕ :
ϕ ∈ L}. As usual we write L ≤ L′ to denote that every formula in the logic L is
equivalent to some formula from the logic L′.

Our main definability result can be stated as follows.



Theorem 12 For any game prefix γ,

(1) γ .S1S ≤ Lµ

(2) γ .LTL ≡ γ .FO ≤ CTL∗.

Obviously, the properties expressed by formulae γ.ϕ are invariant under
bisimulation. This has two relevant consequences:

(a) We can restrict attention to trees (obtained for instance by unravelling
the given game graph from the start node).

(b) It suffices to show that, on trees, γ .S1S ≤ MSO, and γ .FO ≤ MPL
where MPL is monadic path logic, i.e., monadic second-order logic where
second-order quantification is restricted to infinite paths.

Indeed, it has been proved by Janin and Walukiewicz [4] that every bisi-
mulation-invariant class of trees that is MSO-definable is also definable in the
modal µ-calculus. Similarly, it is known from results by Hafer and Thomas [3]
and by Moller and Rabinovitch [8], that every bisimulation invariant property
of trees expressible in MPL is also expressible in CTL∗.

Proposition 13 On trees, (EA)ω.S1S ≤ MSO and (AE)ω.S1S ≤ MSO.

Proof. Let x ≤ y denote that y is reachable from x. A strategy for Player E

in a game (EA)ω(T,W ) on a tree T = (V, F ) is a partial function f : V → V ,
such that w < f(w) for every w; it is winning if every infinite path through T

containing f(ε), y1, f(y1), y2, f(y2) . . ., where f(yi) < yi+1 for all i, satisfies W .
An equivalent description can be given in terms of the set X = f(V ). A set
X ⊆ V defines a winning strategy for Player E in the game (EA)ω(T,W ) if

(1) (∀x ∈ X)∀y(x < y → (∃z ∈ X)(y < z))
(2) every path hitting X infinitely often is in W (i.e. is winning for Player E)
(3) X is non-empty.

Clearly these conditions are expressible in MSO. For the game (AE)ω(G,W )
we only have to replace (3) by the condition that the start node v is contained
in X. ⊓⊔

Proposition 14 Let γ be a game prefix with a bounded number of alternations
between E and A. Then γ .S1S ≤ MSO and γ .FO ≤ MPL.

Proof. Every move is represented by a path quantification; by relativizing the
formula ϕ that defines the winning condition to the infinite path produced by
the players, we obtain an MSO-formula expressing that Player E has a winning
strategy for the game given by γ and ϕ. If ϕ a first-order formula over paths,
then the entire formula remains in MPL. ⊓⊔

The most interesting case concerns winning conditions defined in first-order
logic (or equivalently, LTL). In our proof, we will use a normal form for first-
order logic on infinite paths (with <) that has been established by Thomas [10].
Recall that a first-order formula ϕ(x) is bounded if it only contains bounded
quantifiers of form (∃y ≤ xi) or (∀y ≤ xi).



Proposition 15 On infinite paths, every first-order formula is equivalent to a
formula of the form

∨

i

(

∃x(∀y ≥ x)ϕi ∧ ∀y(∃z ≥ y)ϑi

)

where ϕi and ϑi are bounded.

Theorem 16 On trees, (EA)ω.FO ≤ FO and (AE)ω.FO ≤ FO.

Proof. Let ψ =
∨

i

(

∃x(∀y ≥ x)ϕi ∧ ∀y(∃z ≥ y)ϑi

)

be a first-order formula on

infinite paths describing a winning condition. We claim that, on trees, (EA)ωψ

is equivalent to the first-order formula

ψ∗ := (∃p1)(∀p2 ≥ p1)(∃p3 ≥ p2)
∨

i∈I

ψ
(b)
i where

ψ
(b)
i := (∃x ≤ p1)(∀y . x ≤ y ≤ p2)ϕi ∧ (∀y ≤ p2)(∃z . y ≤ z ≤ p3)ϑi.

Let T = (V,E) and suppose first that Alter has a winning strategy for the
game (EA)ω(T, ψ). We prove that T |= ¬ψ∗. To see this we have to define an
appropriate Skolem function g : p1 7→ p2 such that for all p3 ≥ p2 and all i ∈ I

T |= ¬ψ
(b)
i (p1, p2, p3).

Fix any p1 which we can consider as the first move of Ego in the game
(EA)ω(T, ψ) and any play P (i.e., any infinite path through T ) that prolongs
this move and that is consistent with Alter’s winning strategy. Since Alter wins,
we have that P |= ¬ψ. Hence there exists some J ⊆ I such that

P |=
∧

i∈J

∀x(∃y ≥ x)¬ϕi ∧
∧

i∈I−J

∃y(∀z ≥ y)¬ϑi.

To put it differently, there exist

– for every i ∈ J and every a ∈ P a witness hi(a) ∈ P such that P |=
¬ϕi(a, hi(a)), and

– for every i ∈ I − J an element bi such that P |= (∀z ≥ bi)¬ϑi(bi, z).

Now set
p2 := max({hi(a) : a ≤ p1, i ∈ J} ∪ {bi : i ∈ I − J}).

For any p3 we now obviously have that T |= ¬ψ
(b)
i (p1, p2, p3).

For the converse, let f : V → V be a winning strategy for Ego in the game
(EA)ω(T, ψ). We claim that T |= ψ∗. Toward a contradiction, suppose that
T |= ¬ψ∗. Hence there exists a Skolem function g : V → V assigning to each p1

an appropriate p2 ≥ p1 such that T |= ¬ψ
(b)
i (p1, p2, p3) for all p3 ≥ p2 and all

i ∈ I. We can view g as a strategy for Alter in the game (EA)ω(T, ψ). If Ego
plays according to f and Alter plays according to g, then the resulting infinite



play f ĝ = q1q2q3 . . . satisfies ψ (because f is a winning strategy). Hence there
exists some i ∈ I such that

f ĝ |= ∃x(∀y ≥ x)ϕi ∧ ∀y(∃z ≥ y)ϑi.

Let a be a witness for x so that f ĝ |= (∀y ≥ a)ϕi(a, y). Choose the minimal
odd k, such that a ≤ qk, and set p1 := qk. Then qk+1 = g(qk) = g(p1) = p2.
Since f ĝ |= ∀y(∃z ≥ y)ϑi(y, z), we have, in particular, for every b ≤ p2 a witness
h(b) ≥ b on f ĝ such that f ĝ |= ϑi(b, h(b)). Choose p3 = max{h(b) : b ≤ p2}

It follows that f ĝ |= ψ
(b)
i (p1, p2, p3). Since ψ

(b)
i is bounded, its evaluation on T

is equivalent to its evaluation on f ĝ. Hence we have shown that there exists p1

such that for p2 = g(p1), given by the Skolem function g, we can find a p3 with

T |= ψ
(b)
i (p1, p2, p3). But this contradicts the assumption that g is an appropriate

Skolem function for ¬ψ∗.

We have shown that whenever Ego has a winning strategy for (EA)ω(T, ψ)
then T |= ψ∗ and whenever Alter has a winning strategy, then T |= ¬ψ∗. By
contraposition and determinacy, the reverse implications also hold. For games of
form (AE)ω(T, ψ) the arguments are analogous. ⊓⊔

Theorem 12 is implied by Propositions 13, Proposition 14, and Theorem 16.
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