
Digraph Measures: Kelly Decompositions, Games, and Orderings

Paul Hunter Stephan Kreutzer∗†

Abstract

We consider various well-known, equivalent complex-
ity measures for graphs such as elimination orderings,
k-trees and cops and robber games and study their nat-
ural translations to digraphs. We show that on digraphs
all these measures are also equivalent and induce a nat-
ural connectivity measure. We introduce a decomposi-
tion for digraphs and an associated width, Kelly-width,
which is equivalent to the aforementioned measure. We
demonstrate its usefulness by exhibiting a number of
potential applications including polynomial-time algo-
rithms for NP-complete problems on graphs of bounded
Kelly-width, and complexity analysis of asymmetric
matrix factorization. Finally, we compare the new width
to other known decompositions of digraphs.

1 Introduction

An important and active field of algorithm theory is to
identify natural classes of structures or graphs which
are algorithmically well-behaved, i.e. on which efficient
solutions to otherwise NP-complete problems can be
found. A particularly rich source of tractable cases
comes from graph structure theory in the form of graph
decompositions and associated measures of structural
complexity such as tree-width or rank-width. For in-
stance, Courcelle’s celebrated theorem [8] shows that
every property of undirected graphs that can be for-
mulated in monadic second-order logic can be decided
in linear time on any class of graphs of bounded tree-
width. This result immediately implies linear time al-
gorithms for a huge class of problems on such graphs.
Since then, hundreds of papers have been published
describing efficient algorithms for graph problems on
classes of graphs of bounded tree-width. (See e.g. [5]
and references therein.) Similarly, efficient algorithms
can sometimes be found for planar graphs [13, 2] or
more general classes of graphs, for instance classes
of graphs of bounded local tree-width [14], or graph
classes excluding a minor (see e.g. [10] and references
therein). Another interesting example are classes of

∗Paul Hunter, Stephan Kreutzer, Logic and Discrete Sys-
tems, Institute for Computer Science, Humboldt-University Berlin,
{hunter, kreutzer}@informatik.hu-berlin.de

†Part of this work was carried out during the Logic and Algorithms
programme at the Isaac Newton Institute, Cambridge.

graphs of bounded clique- or rank-width [9, 22, 21].
All the examples mentioned above are defined

by imposing restrictions on the underlying undirected
graph structure. However, there are many applications
where the input structures – networks, state transition
systems, dependency graphs as in database theory, or
the arenas of combinatorial games such as parity games
– are more naturally modelled as directed rather than
undirected graphs. In these cases, the notion of tree-
width is unsatisfactory as it does not take the direction
of edges into account. This information loss may be cru-
cial, as demonstrated by the problem of finding a Hamil-
tonian cycle in a digraph: an acyclic orientation of a grid
has very high tree- or clique-width, but the Hamiltonian
cycle problem on the digraph is trivial.

As a consequence, several authors have tried to gen-
eralise notions like tree- or path-width from undirected
to directed graphs (See e.g. [23, 18, 3, 25, 20, 4]). In
[18], Johnson, Robertson, Seymour, and Thomas con-
centrate on the connectivity aspect of tree-width, gener-
alising this to strong connectivity in the directed case,
to define directed tree-width. In the same paper, the au-
thors give an algorithmic application of directed tree-
width by showing that a number of NP-complete prob-
lems such as Hamiltonicity or thek-disjoint paths prob-
lems become tractable on graphs of small directed tree-
width. Berwanger, Dawar, Hunter and Kreutzer [4] and,
independently, Obdrz̆álek [20] introduce the notion of
DAG-width. DAG-width is a slightly weaker notion than
directed tree-width, in the sense that more graphs have
small directed tree-width than smallDAG-width, but it
has a cleaner characterisation in terms of cops and rob-
ber games and gives more control over the graph, as the
guarding condition used is stricter. In [4], this has been
used to show that the winner of a parity game – a form
of combinatorial games played on digraphs – can be de-
cided in polynomial time provided the game graph has
boundedDAG-width. The analagous question remains
open for graphs of bounded directed tree-width.

Both directed tree-decompositions andDAG-
decompositions provide a natural and interesting con-
nectivity measure for directed graphs. Both, however,
also suffer from some difficulties. As Adler shows [1],
directed tree-decompositions are not closed under even
mild forms of directed minors, the corresponding games
are neither cop- nor robber monotone, and there is no

precise characterisation of directed tree-width by these
games (only up to a constant factor). Although this is
not really a problem for algorithmic applications, it sug-
gests that the notion of directed tree-width may not be
as well-behaved as undirected tree-width. Furthermore,
being a measure based on strong connectivity makes it
difficult to develop algorithms outside of those provided
in [18]. DAG-decompositions, on the other hand, suffer
from the fact that the best upper bound for the size of
DAG-decompositions of graphs of widthk known so far
is O(nk). This is a significant problem, as the space
consumption of algorithms is often more problematic
than running time. Hence, it is not known whether de-
ciding that a digraph hasDAG-width at mostk is in NP,
contrary to the authors’ claims. (It is NP-hard. This
follows easily from the NP-completeness of the corre-
sponding question for tree-width.)

Whereas for undirected graphs it is widely accepted
that tree-width is the “right” notion, the problems de-
scribed above suggest that more research is needed to
decide what the “right” notion for digraphs is – if there
is any. A natural way to search for practical gener-
alisations of undirected tree-width is to look at useful
equivalent characterisations of it and translate them to
digraphs.

In this paper we consider three characterisations
of tree-width: partialk-trees, elimination orders and
a graph searching game in which an invisible robber
attempts to avoid capture by a number of cops, sub-
ject to the restriction that he may only move if a cop
is about to occupy his position. Partialk-trees are the
historical forerunner of tree-width and are therefore as-
sociated with graph structure theory [24], elimination
orders have found application in the analysis of sym-
metric matrix factorization, such as Cholesky decom-
position [19], and graph searching problems have re-
cently been used to explore and generate robust mea-
sures of graph complexity (see e.g. [11, 15]). We gen-
eralise all of these to directed graphs, resulting in par-
tial k-DAGs, directed elimination orderings, and an in-
ert robber game on digraphs. We show that all of these
generalisations are equivalent on digraphs and are also
equivalent to the width-measure associated to a new
kind of decomposition we introduce. As the game is
reminiscent of capturing hideout-based outlaws, we pro-
pose the name Kelly-decompositions, after the infamous
Australian bushranger Ned Kelly. The fact that all these
notions are equivalent on digraphs as they are on undi-
rected graphs suggests that this might be a robust mea-
sure of complexity/connectivity of digraphs.

In addition to being equivalent to the natural gen-
eralisations of the above characterisations, we believe
that Kelly-decompositions have many advantages over
DAG-decompositions and directed tree-decompositions.

Unlike the former, the size of these decompositions can
be made linear in the size of the graph it decomposes.
On the other hand, their structure and strict guarding
condition make them suitable for constructing dynamic
programming algorithms which can lead to polynomial-
time algorithms for NP-complete problems on graphs of
bounded Kelly-width. We also show how they are ap-
plicable to asymmetric matrix factorization by relating
them to the elimination DAGs of [16].

The paper is organised as follows. In Section 3
we formally define elimination orderings, inert robber
games, and partialk-DAGs and show the equivalence of
the associated width measures. In Section 4, we intro-
duce Kelly-decompositions and Kelly-width. In Section
5, we present applications: Algorithms for Hamiltonian
cycle, weighted disjoint paths and parity games that all
run in polynomial time on graphs of bounded Kelly-
width, and details of the connection between Kelly-
decompositions and asymmetric matrix factorization.
Finally, we compare our new width measure to other
known measures on digraphs, in particular to directed
tree-width andDAG-width. Due to space restrictions,
most of the proofs appear in the full version of the pa-
per.

2 Preliminaries

We use standard graph theory notation. See e.g. [12].
LetG be a digraph. We writeV (G) for its set of vertices
andE(G) for its edge set. ForX ⊆ V (G) we write
G[X] for the subgraph ofG induced byX andG \ X

for G[V (G) \ X]. If X := {v} is a singleton set,
we simply writeG \ v. Finally, we sometimes write
G[v1, . . . , vk] for G[{v1, . . . , vk}]. For everyv ∈ V (G)
andX ⊆ V (G) such thatv 6∈ X we writeReachG\X(v)
for the set of vertices inV (G)\X reachable fromv by a
directed walk inG \ X . If G is a directed, acyclic graph
(DAG), we write�G for the reflexive, transitive closure
of the edge relation.

3 Elimination Orderings, Inert Robber Games,
and Partial k-DAGs

In this section we formally define directed elimination
orderings, inert robber games, and partialk-DAGs and
show that the associated width-measures of digraphs are
equivalent.

Our first definition extends the idea of vertex elim-
ination to digraphs. Vertex elimination is the process
of removing vertices from a graph but adding edges to
preserve reachability. The complexity measure we are
interested in is the maximum out-degree of eliminated
vertices.

DEFINITION 3.1. Let G be a digraph. An(directed)
elimination ordering⊳ is a linear ordering onV (G).

Given an elimination ordering⊳ := (v0, v1, . . . , vn−1)
of G, we define:G⊳

0 := G; and G⊳

i+1 is obtained from
G⊳

i by deletingvi and adding new edges (if necessary)
(u, v) if (u, vi), (vi, v) ∈ E(G⊳

i) and u 6= v. G⊳

i is
thedirected elimination graph at stepi according to⊳.
The width of an elimination ordering is the maximum
over alli of the out-degree ofvi in G⊳

i . For convenience
we also define thesupport ofvi with respect to⊳ as
supp

⊳
(vi) := {vj : (vi, vj) ∈ E(G⊳

i)}. Note that
the width of an elimination ordering⊳ is the maximum
cardinality of all supports.

Immediately from the definitions, we have this
simple lemma relating the support of an element in
an elimination ordering to the set of vertices reachable
from that node.

LEMMA 3.1. Let ⊳ be a directed elimination ordering
of a graphG and let v ∈ V (G). Let R := {u :
v ⊳ u}. Then supp

⊳
(v) = {u : v ⊳ u and there isv′ ∈

ReachG\R(v) such that(v′, u) ∈ E(G)}.

We proceed with defining inert robber games on
digraphs. Intuitively, a robber occupies some vertex
of a graphG. k cops attempt to capture this robber
by occupying the same vertex as the robber. The
robber evades capture by being able to run from his
position along any directed path which does not pass
through a cop. Any number of cops can move anywhere
on the graph but they do so by removing themselves
completely from the graph and then announcing where
they are moving. It is during this transition that the
robber moves. In the inert robber game, the robber
may only move if a cop is about to land on his current
position, however he is not visible to the cops and he
knows the cops’ strategy in advance. More formally,

DEFINITION 3.2. (INERT ROBBER GAME) The
(k-cop) inert robber gameon a digraph G is
the set of all plays, where aplay is a se-
quence (X0, R0), (X1, R1), . . . (Xn, Rn), such that
(X0, R0) = (∅, V (G)) and for all i: Xi, Ri ⊆ V (G);
|Xi| ≤ k; and

Ri+1 =

(

Ri∪
⋃

v∈Ri∩Xi+1

ReachG\(Xi∩Xi+1)(v)

)

\Xi+1.

Intuitively, the Xi represent the cop locations, and
the Ri represent the set of potential robber locations
(also known as contaminated vertices). The sequence
X0, X1, . . . is thestrategyfor the cops. Note that given
a strategy we can reconstruct the play. A strategy
X0, X1, . . . , Xn is winning if Rn = ∅ in the associated
play. Finally, a strategy ismonotoneif Ri ⊇ Ri+1 for
all i in the associated play.

The last characterisation we consider is a generali-
sation of partialk-trees, called partialk-DAGs. k-trees

can be viewed as a class of graphs generated by a gen-
eralisation of how one might construct a tree. In the
same way,k-DAGs are a class of digraphs generated by
a generalisation of how one might construct a DAG in a
top-down manner.

DEFINITION 3.3. (PARTIAL GRAPH) Given two di-
graphsG andH, we sayH is a partial graph ofG if
V (H) = V (G) andE(H) ⊆ E(G), i.e.G is a spanning
subgraph ofH.

DEFINITION 3.4. ((PARTIAL) k-DAG) The class ofk-
DAGs is defined recursively as follows:

• A k-clique (that is, a complete digraph withk
vertices) is ak-DAG.

• A k-DAG with n + 1 vertices can be constructed
from ak-DAGH with n vertices by adding a vertex
v and edges satisfying the following:

– At mostk edges fromv to H

– If X is the set of endpoints of the edges added
in the previous subcondition, an edge from
u ∈ V (H) to v if (u, w) ∈ E(H) for all
w ∈ X \ {u}. Note that ifX = ∅, this
condition is true for allu ∈ V (H).

A partialk-DAG is a partial graph of ak-DAG.

The second condition on the edges provides a method to
add as many edges as possible going to the new vertex
without introducing cycles. Note that this definition
generalisesk-trees, for if the vertices (X) adjacent to
the new vertex (v) form a clique, we will add edges
back fromX to v, effectively creating undirected edges
betweenv andX (and possibly some additional edges
fromH \ X to v). Note that a partial 0-DAG is a DAG.

Our main result of this section is that the three
measures introduced are equivalent on digraphs.

THEOREM 3.1. LetG be a digraph. The following are
equivalent:

1. G has a directed elimination ordering of width≤ k.

2. k + 1 cops have a monotone winning strategy to
capture an inert robber.

3. G is a partialk-DAG.

It follows from this theorem that the minimal width
over all directed elimination orderings ofG and the
minimal number of cops required to capture an inert
robber (less one) coincide, and this class of digraphs
is characterised by partialk-DAGs. This leads to the
following definition:

DEFINITION 3.5. (ELIMINATION WIDTH) Let G be a
digraph. The(directed) elimination widthof G is the
minimal width over all directed elimination orderings
of G.

3

4 Decompositions

With a robust measure for digraph complexity defined,
we now turn to the problem of finding a closely related
digraph decomposition. The decomposition we intro-
duce is a partition of the vertices, arranged as a directed
acyclic graph, together with sets of vertices which guard
against paths in the graph that do not respect this ar-
rangement. We have an additional restriction to avoid
trivial decompositions – vertices in the guard sets must
appear either to the left or earlier in the decomposition.
More precisely,

DEFINITION 4.1. (GUARDING) Let G be a digraph.
We sayW ⊆ V (G) guardsX ⊆ V (G) if W ∩ X = ∅

and for all (u, v) ∈ E(G) with u ∈ X , we have
v ∈ X ∪ W .

DEFINITION 4.2. (KELLY-DECOMPOSITIONS)
A Kelly-decompositionof a digraph G is a triple
D := (D, (Bt)t∈V (D), (Wt)t∈V (D)) so that

• D is a DAG and(Bt)t∈V (D) partitionsV (G),

• for all t ∈ V (D), Wt ⊆ V (G) guardsB↓
t :=

⋃

t′�Dt Bt′ , and

• for all s ∈ V (D) there is a linear order on its
childrent1, . . . , tp so that for all1 ≤ i ≤ p, Wti

⊆

Bs ∪ Ws ∪
⋃

j<i B
↓
tj

. Similarly, there is a linear

order on the roots such thatWri
⊆

⋃

j<i B
↓
rj

.

Thewidth of D is max{|Bt ∪ Wt| : t ∈ V (D)}. The
Kelly-width ofG is the minimal width of any of its Kelly-
decompositions.

Our main result of this section is that Kelly-
decompositions do in fact correspond with the complex-
ity measure defined at the end of the previous section.

THEOREM 4.1. G has directed elimination width≤ k

if, and only if,G has Kelly-width≤ k + 1.

The proof of Theorem 4.1 is constructive in that
given an elimination ordering of widthk it constructs a
Kelly-decomposition of widthk + 1, and conversely. In
fact, the proof establishes a slightly stronger statement.

COROLLARY 4.1. Every digraph G of
Kelly-width k has a Kelly-decomposition
(D, (Bt)t∈V (D), (Wt)t∈V (D)) of width k such that
for all t ∈ V (D):

• |Bt| = 1,

• Wt is the minimal set which guardsB↓
t , and

• every vertexv ∈ B↓
t is reachable inG \ Wt from

the uniquew ∈ Bt.

Further, ifG is strongly connected, thenD has only one
root.

We call such a decompositionspecial.

5 Applications

5.1 Computing Kelly-decompositionsIn this sec-
tion we mention several algorithms for computing
Kelly-width and Kelly-decompositions. The proofs of
Theorems 3.1 and 4.1 show that Kelly-decompositions
can easily (i.e. polynomial time) be constructed from
directed elimination orderings or monotone winning
strategies, so we concern ourselves with the problem of
finding any of the equivalent characterisations.

In a recent paper [6] Bodlaender et al. study exact
algorithms for computing the (undirected) tree-width of
a graph. Their algorithms are based on dynamic pro-
gramming to compute an elimination ordering of the
graph. In the same paper, the authors remark on actual
experiments with these algorithms. Using some prepro-
cessing techniques, the dynamic programming approach
seems to perform reasonably well (in particular for not
too large instances). The algorithms translate to directed
elimination orderings and can therefore be used to com-
pute Kelly-width. Hence, we get the following theorem.

THEOREM 5.1. The Kelly-width of a graph withn ver-
tices can be determined in timeO∗(2n) and space
O∗(2n), or in timeO∗(4n) and polynomial space.

Here,O∗(f(n)) means that polynomial factors are sup-
pressed. For a givenk, the problem whether a digraph
G has Kelly-width≤ k is decided in exponential time
with the above algorithms. Further, as the size of Kelly-
decompositions is linear in the size of the graphs they
decompose, the problem, given a graphG andk ∈ N,
to decide ifG has Kelly-width at mostk, is in NP. We
can simply guess a Kelly-decomposition. As the min-
imization problem is NP-complete (it generalises the
NP-complete problem of deciding the tree-width of an
undirected graph), we cannot expect polynomial time
algorithms to exist. It seems plausible though that, as in
the case ofDAG-width, studying strategies in the inert
robber game will lead to a polynomial time algorithm
whenk is fixed. This is part of ongoing research.

5.2 Algorithms on graphs of small Kelly-width In
this section we present algorithmic applications of the
decomposition introduced above, including a general
scheme that can be used to construct algorithms based
on Kelly-decompositions. We assume that a Kelly-
decomposition (or even an elimination ordering) has
been provided or pre-computed. We give two example
algorithms based on this which run in polynomial time
on graphs of bounded Kelly-width. The first is an
algorithm for the NP-complete optimization problem of
computing disjoint paths of minimal weight in weighted
graphs. The second is an algorithm to compute the
winner of certain forms of combinatorial games. We
conclude the section with remarks about how these

algorithms compare with similar algorithms previously
presented in [18] and [4].

Algorithms using Kelly-decompositions often fol-
low a common pattern. Similar to algorithms
on graphs of small tree-width, the algorithms start
with computing a special Kelly-decomposition(D,

(Bt)t∈V (D), (Wt)t∈V (D)) and then work bottom up to
compute for each nodet ∈ V (D) a data set containing
information on the setB↓

t :=
⋃

t′�t Bt. The general pat-
tern is therefore described by the following steps (after
the special Kelly-decomposition has been computed):

Leaves:Compute the data set for all leaves.

Combine: If t ∈ V (D) is an inner node with children
t1, . . . , tp ordered by the ordering guaranteed by
the Kelly-decomposition (we observe that such an
ordering can be computed easily with a greedy
algorithm), combine the data sets computed for
B↓

t1
, . . . ,B↓

tp
to a data set for the union

⋃

1≤i≤p B
↓
ti

.

Update: Update the data set computed in the previous
step so that the new vertexu with Bt = {u} is
taken into account. Usually, the vertexu will have
been part of at least some guard setsWti

. As
u 6∈ Wt, it can now be used freely.

Expand: Finally, expand the data set to include guards
in Wt \

⋃

i Wti
and also paths etc. starting atu.

We illustrate this pattern by presenting an algorithm
for computing a Hamiltonian-cycle of minimal weight
in a weighted digraph. We explain below how this
algorithm extends to the much more general problem of
finding disjoint paths of minimal weight.

5.2.1 Weighted Hamiltonian Cycle and Disjoint
Paths. A weighted digraph is a pair(G, ω) whereG
is a digraph andω : V (G) → R is a weight function.
The Kelly-width of(G, ω) is the Kelly-width ofG.

THEOREM 5.2. For any k, given a weighted
digraph (G, ω) and a Kelly-decomposition
(D, (Bt)t∈V (D), (Wt)t∈V (D)) of G of width ≤ k,
there exists a polynomial time algorithm which com-
putes a Hamilton-cycle of(G, ω) of minimal weight or
determines thatG is not Hamiltonian.

Here, the weight of a Hamilton-cycle is the sum
of the weights of the edges occurring on the cycle.
To prove the theorem we first need some notation.
Given a weighted digraph(G, ω) ∈ C and tuples :=
{(s1, t1), . . . , (sr, tr)} of pairs of vertices, ans-linkage
is a sequenceP := (P1, . . . , Pr) of pairwise inner
vertex disjoint paths so thatPi links si to ti. Theorder
of P is the order ofG[

⋃

i Pi]. Theweightof P is the
sum of the weights of edges inPi. Now, let (G, ω)

ands be given. For a setU ⊆ V (G) and its guarding
set W we write LINK(U, W) for the set of all tuples
((u1, v1), . . . , (ur, vr), l, w) such that a)r ≤ k, where
k is the Kelly-width ofG, ui ∈ U , vi ∈ W , b) there
are pairwise vertex disjoint pathsP1, . . . , Pr in U ∪ W

with all inner vertices inU so thatPi links ui to vi, c)
the order of(P1, . . . , Pr) is l, and d)w is the minimal
weight of any such sequence of paths of orderl. For
t ∈ V (D) let B↓

t :=
⋃

t′�t Bt′ and define LINK(t) as

L INK(B↓
t , Wt). Now, beginning from the leaves, we

carry out the four steps described above and compute for
each nodet ∈ V (D) the set LINK(t) as follows. Once
we have computed LINK(t) for all nodes, the theorem
follows easily by examining linkages of order|V (G)|
during theCombinestep at the (unique) root ofD.
Leaves: Clearly, for a leaft, the set LINK(t) can be
computed in constant time.
Now let t be an inner vertex and lett1, . . . , tp be
the children of t ordered according to the ordering
guaranteed by the Kelly-decomposition. To compute
L INK(t) we perform three steps.
Combine:In the first step we combine the sets LINK(ti)

to obtain LINK(
⋃

i B
↓
ti
,
⋃

i Wti
). Let Bi :=

⋃

j≤i B
↓
tj

andWi :=
⋃

j≤i Wtj
\ Bi−1. The sets LINK(Bi, Wi)

are computed by induction oni. The crucial observation
is that, by definition of Kelly-decompositions, there are
no edges starting inBi−1 and ending inB↓

ti
\ Bi−1.

Hence, a path betweenu ∈ B↓
ti

and a guard either

stays inB↓
ti

, in which case we can read its existence
from LINK(ti), or it crosses over toBi−1, in which
case the first vertex inBi−1 \ B↓

ti
is in Wti

. The first
part of such paths can be computed from LINK(ti) and
second part, the part inBi−1, can be computed from
L INK(Bi−1, Wi−1).
In the next two steps we compute the set LINK(t). Let
Bt = {u}. Note thatWp ⊆ Wt ∪ Bt andu 6∈ Wt.
Further, ifw ∈ Wt \ Wp then(u, w) ∈ E(G) and there
is no v ∈ Bp with (v, w) ∈ E(G). Now, consider a
tuple s := ((u1, v1), . . . , (ur, vr)) with ui ∈ B↓

t and
vi ∈ Wt. Clearly, asu 6∈ Wt, vi 6= u for all i. There
can only be ans-linkage inB↓

t in one of the following
cases.

Case 1: ui ∈ Bp andvi ∈ Wp \ {u} for all i.

Case 2: ui ∈ Bp for all i and there is at least one
vi ∈ Wt \ Wp.

Case 3: ui = u for somei.

The first case concerns tuples which have already been
considered in theCombinestep but now may have
additional linkages containingu as an inner vertex.
In this sense, we are merely updating information for
tuples we have already processed. Hence, this case

5

is dealt with in theUpdatestep. The last two cases
concern new tuples which have not been considered
before. These cases are treated in theExpandstep. The
full details of these steps can be found in the full version
of the paper.

An analysis of the algorithm shows that theUpdate
and Expandsteps can be implemented to run in time
O(n2k + 1). Hence, as|V (D)| = |V (G)|, the overall
running time of the algorithm isO(n2k+2). This slightly
improves the running time of the Hamilton-cycle algo-
rithm given in [18] for digraphs (without a weight func-
tion) of small directed tree-width.

The algorithm introduced above can easily be ex-
tended to solve the following, more general prob-
lem. The weightedw-linkage problemis the prob-
lem, given a weighted digraph(G, ω), a tuple
s := ((s1, t1), . . . , (sw, tw)), and a setM ⊆
{1, . . . , |V (G)|}, to compute for eachl ∈ M an s-
linkage of orderl of minimal weight (among alls-
linkages of orderl).

THEOREM 5.3. For everyw, k ∈ N, given a weighted
digraph and a Kelly-decomposition of width≤ k, the
weightedw-linkage problem can be solved in polyno-
mial time.

5.2.2 Parity Games.Another example for an algo-
rithm on graphs of bounded Kelly-width is an algorithm
for solving parity games on game arenas of small Kelly-
width. Parity games are a form of combinatorial games
played on digraphs with many applications in the area
of verification. See [17] for a definition. It is well
known that deciding the winner of a parity game is in
NP ∩ co-NP and it is a longstanding open problem if
the problem is in P. In [4], Berwanger et al. describe
an algorithm for computing the winner of a parity game
of boundedDAG-width. This algorithm can be trans-
lated to arenas of small Kelly-width and, in some sense,
becomes more transparent. Due to lack of space, the
algorithm is given in the full version of the paper.

THEOREM 5.4. For anyk, given an arenaA of a parity
game and a Kelly-decomposition ofA of width ≤ k,
the winning region ofA can be computed in polynomial
time.

5.2.3 Remarks. In the following section we show
that the class of graphs of bounded Kelly-width is
(strictly) smaller than the class of graphs of bounded
directed tree-width. Consequently, the algorithms pre-
sented in [18] can be used on graphs of bounded Kelly-
width, including the disjoint paths algorithm. This
raises the question, what advantages does our algorithm
enjoy over the one for directed tree-width? The first
and obvious difference is that our algorithm computes
a Hamilton-cycle of minimal weight. However, the

main technical difference is the role the guards play in
the algorithms. In the algorithm presented above, the
guardsWt of a nodet play an active role: We only con-
sider paths from verticesu ∈ B↓

t to guardsv ∈ Wt.
In a directed tree-decomposition, a setS ⊆ V (G)
does not uniquely define its guards and these guards
may only be reachable fromS by a path that involves
other vertices outside ofS. Consequently, the guards
only play an indirect role in the algorithm on directed
tree-decompositions in that they give a bound on the
size of tuples that have to be considered. Although
this is enough for algorithms computing disjoint paths,
Hamilton-cycles and similar problems, this forms a sig-
nificant issue for other types of problems. An example
of this is in the presented parity game algorithm, which,
so far, has resisted attempts to translate it to directed
tree-decompositions. Hence, if a problem requires to
compute more complicated data structures than paths
between vertices, Kelly-decompositions may be much
easier to work with than directed tree-decompositions.

As for DAG-decompositions, it is their space con-
sumption that forms a significant problem. Although
our algorithm for parity games is similar to that of [4],
ours requires only storing at most a linear number of
data structures. Until theO(nk) bound on the size
of DAG-decompositions is reduced, such dynamic pro-
gramming algorithms are only feasible for small values
of k.

Finally, we believe that the presentation of algo-
rithms on Kelly-decompositions is simpler and more
understandable than on directed tree-decompositions or
DAG-decompositions, again for the reasons that a) there
is a strict separation of guards and vertices in the setsB↓

t

(which is foreign toDAG-decompositions) and b) that
the guards of a setS ⊆ V (G) are uniquely defined and
can therefore be used in more ways.

5.3 Asymmetric matrix factorization The use of
elimination orders and elimination trees to investigate
symmetric matrix factorizations is well documented
(see e.g. [19]). For example, the height of an elimi-
nation tree gives the parallel time required to factor a
matrix [7]. In [16], Gilbert and Liu introduced a gener-
alisation of elimination trees, called elimination DAGs,
which can be similarly used to analyse factorizations in
the asymmetric case. Kelly-decompositions are closely
related to these structures, as illustrated by the following
theorem.

DEFINITION 5.1. Let M = (aij) be a squaren × n

matrix. We defineGM as the directed graph with
V (GM) = {v1, . . . , vn}, and for i 6= j, (vi, vj) ∈
E(GM) if, and only if, aij 6= 0. We define⊳M :=
(v1, . . . , vn).

THEOREM 5.5. Let M be a square matrix that
can be decomposed asM = LU without pivot-
ing. Let (D, (Bt)t∈V (D), (Wt)t∈V (D)) be the Kelly-
decomposition ofGM obtained by applying the proof
of Theorem 4.1 with elimination order⊳M . Then

(a) (D, (Bt)t∈V (D)) is equivalent to the lower elimi-
nation DAG (as defined in [16]), and

(b) GU = (V (GM), {(v, w) : w ∈ Wv}), which
implies the upper elimination DAG is equivalent
to the transitive reduction of the relation{(v, w) :
w ∈ Wv}.

We can use the results of [16] to make the following
observation when we construct Kelly-decompositions
on undirected graphs.

COROLLARY 5.1. Let G be an undirected
graph, ⊳ an elimination order on G and
(D, (Bt)t∈V (D), (Wt)t∈V (D)) the Kelly-decomposition
of G (considered as a bidirected graph) obtained by
applying the proof of Theorem 4.1 with elimination
order ⊳. Then D is a tree, and more precisely,
(D, (Bt)t∈V (D)) is equivalent to the elimination tree
associated with the (undirected) elimination order⊳.

6 Is it better to be invisible but lazy or visible and
eager?

In this section we use graph searching games to com-
pare Kelly-width toDAG-width and directed tree-width.
In the undirected case, all games require the same
number of searchers, however we show that in the di-
rected case there are graphs on which all three mea-
sures differ by an arbitrary amount. Our results do im-
ply that Kelly-width bounds directed tree-width within
a constant factor, but the converse fails as there are
classes of graphs of bounded directed tree-width and
unbounded Kelly-width. We also provide evidence to
suggest that Kelly-width andDAG-width are within a
constant factor of each other. We begin by introduc-
ing the games associated withDAG-width and directed
tree-width (see [4, 20, 18] for formal definitions).

DEFINITION 6.1. (VISIBLE ROBBER GAME) Thevisi-
ble robber gameis played as the inert robber game
except that the robber’s position is always known to
the cops and the robber is free to move during a cop
transition irrespective of where the cops intend to move
(however, he still cannot run through a stationary cop).
Thestrong visible robber gameadds the further restric-
tion that the robber can only move in the same strongly
connected component (of the graph with the stationary
cops’ locations removed). Astrategyfor the cops is a
function that, given the current locations of the cops
and the robber, indicates the next location of the cops.

A strategy iswinning if it captures the robber, and it
is monotoneif the set of vertices which the robber can
reach is non-increasing.

The following theorem summarises the results of [4, 20,
18]:

THEOREM 6.1. LetG be a digraph.

1. G has DAG-width k if, and only if, k cops have
a monotone winning strategy in the visible robber
game onG.

2. G has directed tree-width≤ 3k+1 or k cops do not
have a winning strategy in the strong visible robber
game onG.

Our first result shows that a monotone winning
strategy in the inert robber game can be translated to
a (not necessarily monotone) winning strategy in the
visible robber game.

THEOREM 6.2. If k cops can catch an inert robber with
a robber-monotone strategy, then2k− 1 cops can catch
a mobile, visible robber.

One consequence of this theorem is that Kelly-
width bounds directed tree-width by a constant factor.

COROLLARY 6.1. If G has Kelly-width≤ k thenG has
directed tree-width≤ 6k − 2.

Since it is not known whether monotone strategies
are sufficient in the visible robber game, we cannot ob-
tain a similar bound forDAG-width. We can, however,
ask whether we can improve the bound, i.e. assuming
that k cops have a robber-monotone winning strategy
against an invisible, inert robber can we define a win-
ning strategy for less than2k−1 cops in the visible rob-
ber game? Although it might be possible to improve the
result, the next theorem shows that we cannot do better
than with 4

3k cops.

THEOREM 6.3. For everyk ∈ N, there is a graph such
that 3k cops have a robber-monotone winning strategy
in the inert robber game but no fewer than4k cops can
catch a mobile visible robber.

Proof. Consider the graphG with vertex set
{v1, . . . , v6} so that{v2, v5, v6} as well as{v3, v5, v6}
and {v4, v5, v6} form 3-cliques and there are edges
(v4, v3), (v3, v2), (v1, v2), (v1, v3), (v3, v1). It is easy to
see that onG, 3 cops do not have a (non-monotone win-
ning) strategy to catch a visible robber, however4 cops
do. On the other hand,3 cops suffice to capture an invis-
ible, inert robber with a robber-monotone strategy. The
result follows by taking the lexicographic product of this
graph with the complete graph onk vertices. See the full
version of the paper for details. �

7

In fact, 4 cops can capture a visible robber with a
monotone strategy on the graph in the previous proof,
giving us the following:

COROLLARY 6.2. For all k ≥ 1 there exists graphs of
DAG-width4k and Kelly-width3k.

Despite this4
3 bound, for graphs of small Kelly-

width we can do better.

THEOREM 6.4. For k = 1 or 2, if G has Kelly-widthk,
G has DAG-widthk.

We now turn to the converse problem, what can be
said about the Kelly-width of graphs given their directed
tree-width orDAG-width? First, we consider the binary
tree with back-edges example in [4], where it was shown
this class of graphs has bounded directed tree-width but
unboundedDAG-width. It is readily shown that this
class of graphs also has unbounded Kelly-width.

THEOREM 6.5. There exists classes of digraphs with
bounded directed tree-width and unbounded Kelly-
width.

Our final result is a step towards relating Kelly-width
to DAG-width by showing how to translate a monotone
strategy in the visible robber game to a (not necessarily
monotone) strategy in the inert robber game.

THEOREM 6.6. If G hasDAG-width ≤ k, thenk cops
have a winning strategy in the inert robber game.

Proof. Given aDAG-decomposition(D, (Xd)d∈V (D))
of G of width k, the strategy fork cops against an
invisible, inert robber is to follow a depth-first search
on the decomposition. �

Again we observe that it is unknown if monotone
strategies suffice in the inert robber game, so this result
does not allow us to compare Kelly-width andDAG-
width. However, we strongly believe that monotone
strategies suffice in both the inert robber game and the
visible robber game, giving us the following conjecture:

Conjecture. The Kelly-width andDAG-
width of a graph lie within constant factors of
one another.

References

[1] I. Adler. Directed tree-width examples. To appear in
Journal of Combinatorial Theory, Series B.

[2] B. S. Baker. Approximation algorithms for NP-complete
problems on planar graphs. Journal of the ACM,
41(1):153–180, 1994.

[3] J. Barát. Directed path-width and monotonicity in di-
graph searching. To appear inGraphs and Combina-
torics.

[4] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer.
DAG-width and parity games. InProceedings of the
23rd Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS), pages 524–536, 2006.

[5] H. Bodlaender. Treewidth: Algorithmic techniques
and results. InProceedings of the 22nd International
Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 19–36, 1997.

[6] H. Bodlaender, F. Fomin, A. Koster, D. Kratsch, and
D. Thilikos. On exact algorithms for treewidth. In
Proceedings of the 14th Annual European Symposium
on Algorithms (ESA), 2006.

[7] H. Bodlaender, J. Gilbert, H. Hafsteinsson, and T. Kloks.
Approximating treewidth, pathwidth, frontsize, and
shortest elimination tree. Journal of Algorithms,
18(2):238–255, 1995.

[8] B. Courcelle. Graph rewriting: An algebraic and logic
approach. In J. van Leeuwan, editor,Handbook of The-
oretical Computer Science, Volume B: Formal Models
and Sematics (B), pages 193–242. 1990.

[9] B. Courcelle and S. Olariu. Upper bounds to the clique
width of graphs. Discrete Applied Mathematics, 1–
3:77–114, 2000.

[10] E. Demaine, M. Hajiaghayi, and K. Kawarabayashi.
Algorithmic graph minor theory: Decomposition, ap-
proximation, and coloring. InProceedings of the 46th
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 637–646, 2005.

[11] N. Dendris, L. Kirousis, and D. Thilikos. Fugitive-
search games on graphs and related parameters.The-
oretical Computer Science, 172(1-2):233–254, 1997.

[12] R. Diestel.Graph Theory. Springer, 3rd edition, 2005.
[13] F. Dorn, E. Penninkx, H. Bodlaender, and F.Fomin.

Efficient exact algorithms on planar graphs: Exploiting
sphere cut branch decompositions. InProceedings of the
13th Annual European Symposium on Algorithms (ESA),
pages 95–106, 2005.

[14] D. Eppstein. Subgraph isomorphism in planar graphs
and related problems.Journal of Graph Algorithms and
Applications, 3(3):1–27, 1999.

[15] F. V. Fomin, P. Heggernes, and J. A. Telle. Graph
searching, elimination trees, and a generalization of
bandwidth.Algorithmica, 41(2):73–87, 2004.

[16] J. Gilbert and J. Liu. Elimination structures for unsym-
metric sparse LU factors.SIAM Journal of Matrix Anal-
ysis and Applications, 14:334–352, 1993.

[17] Erich Grädel, Wolfgang Thomas, and Thomas Wilke,
editors. Automata Logics, and Infinite Games, volume
2500 ofLNCS. Springer, 2002.

[18] T. Johnson, N. Robertson, P. Seymour, and R. Thomas.
Directed tree-width.Journal of Combinatorial Theory,
Series B, 82(1):138–154, 2001.

[19] J. W. H. Liu. The role of elimination trees in sparse
factorization. SIAM Journal of Matrix Analysis and
Applications, 11(1):134–172, 1990.

[20] J. Obdrz̆álek. DAG-width: connectivity measure for
directed graphs. InProceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 814–821, 2006.

[21] S.-I. Oum. Rank-width and vertex-minors.Journal of
Combinatorial Theory, Series B, 95:79 – 100, 2005.

[22] S.-I. Oum and P. Seymour. Approximating clique-width
and branch-width. Journal of Combinatorial Theory,
Series B, 2006. to appear.

[23] B. Reed. Introducing directed tree width. In6th Twente
Workshop on Graphs and Combinatorial Optimization,
volume 3 ofElectronic Notes in Discrete Mathematics.
Elsevier, 1999.

[24] D. J. Rose. Triangulated graphs and the elimination pro-
cess. Journal of Mathematical Analysis and Applica-
tions, 32:597–609, 1970.

[25] M. Safari. D-width: A more natural measure for directed
tree width. InProceedings of the 30th International
Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 745–756, 2005.

9

