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Abstract graphs of bounded clique- or rank-width [9, 22, 21].

We consider various well-known, equivalent complex- All the examples mentioned above are defined
ity measures for graphs such as elimination orderin@é’, imposing restrictions on the underlying undirected
k-trees and cops and robber games and study their ggaph structure. However, there are many applications
ural translations to digraphs. We show that on digrap¥§€re the input structures — networks, state transition
all these measures are also equivalent and induce a A%glems, dependency graphs as in database theory, or
ural connectivity measure. We introduce a decompodi€ arenas of combinatorial games such as parity games
tion for digraphs and an associated width, Kelly-widtlr, ar€ more naturally modelled as directed r_ather than
which is equivalent to the aforementioned measure. Wadirected graphs. In these cases, the notion of tree-
demonstrate its usefulness by exhibiting a number Wdth is unsatisfactory as it does not take the direction
potential applications including polynomial-time algoo_f edges into account. This information Iqss_may be cru-
rithms for NP-complete problems on graphs of boundét, @s demonstrated by the problem of finding a Hamil-
Kelly-width, and complexity analysis of asymmetriéonian cycle inadigraph: an acyclic orientation of a grid
matrix factorization. Finally, we compare the new widtRas very high tree- or clique-width, but the Hamiltonian

to other known decompositions of digraphs. cycle problem on the digraph is trivial. _
As a consequence, several authors have tried to gen-
1 Introduction eralise notions like tree- or path-width from undirected

. L . . to directed graphs (See e.qg. [23, 18, 3, 25, 20, 4]). In
An important and active field of algorithm theory is t(y:lS]' Johnson, Robertson, Seymour, and Thomas con-

identify natural classes of structures or graphs whi o :
. . : .. __centrate on the connectivity aspect of tree-width, gener-
are algorithmically well-behaved, i.e. on which efficient . . ; I .
lising this to strong connectivity in the directed case,

solutions to otherwise NP-complete problems can se ; : X
. . 0 define directed tree-width. In the same paper, the au-
found. A particularly rich source of tractable case;

. ors give an algorithmic application of directed tree-
comes fror_n_graph structure_ theory in the form of grap\>NIdlth by showing that a number of NP-complete prob-
decomp(_)smons and assoglated measures of strugtvﬁg%s such as Hamiltonicity or thHedisjoint paths prob-
complexity such as tree-width or rank-width. For ing, o0 me tractable on graphs of small directed tree-
stance, Courcelle’s celebrated theorem [8] shows that
everv proberty of undirected araohs that can be fovly_|dth. Berwanger, Dawar, Hunter and Kreutzer [4] and,

Y property grap Independently, Obdrzalek [20] introduce the notion of

_mu_lated ‘F‘ monadic second-order logic can be dECidS G-width. DAG-width is a slightly weaker notion than
in linear time on any class of graphs of bounded tregi_rected tree-width, in the sense that more graphs have

width. This result immediately implies linear time al- : . . .
. y imp mall directed tree-width than sma&hG-width, but it
gorithms for a huge class of problems on such graphs. o
) .~ has a cleaner characterisation in terms of cops and rob-

Since then, hundreds of papers have been publishe )
bér games and gives more control over the graph, as the

describing efficient algorithms for graph problems of arding condition used is stricter. In [4], this has been

classes of graphs of bounded tree-width. (See e.g. 12bd to show that the winner of a parity game — a form

and references therein.) Similarly, efficient algorithm()% combinatorial aames plaved on diaraphs — can be de-
can sometimes be found for planar graphs [13, 2] or g play grap

more general classes of graphs, for instance clasCIdeOI in polynomial time provided the game graph has

€s . . .
of graphs of bounded local tree-width [14], or grapﬁoundedDAG-mdth. The analagous question remains

classes excluding a minor (see e.g. [10] and referenCos for graphs of bounded directed tree-width.
9 9. Both directed tree-decompositions andAG-

therein). - Another interesting example are classes (%ccompositions provide a natural and interesting con-

nectivity measure for directed graphs. Both, however,
~*Paul Hunter, Stephan Kreutzer, Logic and Discrete Sy&lso suffer from some difficulties. As Adler shows [1],
tems, Institute for Computer Science, Humboldt-Univgrderlin,  directed tree-decompositions are not closed under even
{hunter, kreutzgr@informatik.hu-berlin.de mild forms of directed minors, the corresponding games

TPart of this work was carried out during the Logic and Aldunis are neither cop- nor robber monotone. and there is no
programme at the Isaac Newton Institute, Cambridge. p !



precise characterisation of directed tree-width by theldalike the former, the size of these decompositions can
games (only up to a constant factor). Although this &2 made linear in the size of the graph it decomposes.
not really a problem for algorithmic applications, it sugon the other hand, their structure and strict guarding
gests that the notion of directed tree-width may not lsendition make them suitable for constructing dynamic
as well-behaved as undirected tree-width. Furthermopepgramming algorithms which can lead to polynomial-
being a measure based on strong connectivity makesnte algorithms for NP-complete problems on graphs of
difficult to develop algorithms outside of those provideldounded Kelly-width. We also show how they are ap-
in [18]. DAG-decompositions, on the other hand, suff@licable to asymmetric matrix factorization by relating
from the fact that the best upper bound for the size thfem to the elimination DAGs of [16].
DAG-decompositions of graphs of widthknown so far The paper is organised as follows. In Section 3
is O(n*). This is a significant problem, as the spacse formally define elimination orderings, inert robber
consumption of algorithms is often more problematgames, and partia-DAGs and show the equivalence of
than running time. Hence, it is not known whether dé¢he associated width measures. In Section 4, we intro-
ciding that a digraph haBAG-width at mostk is in NP, duce Kelly-decompositions and Kelly-width. In Section
contrary to the authors’ claims. (It is NP-hard. Thi§, we present applications: Algorithms for Hamiltonian
follows easily from the NP-completeness of the correycle, weighted disjoint paths and parity games that alll
sponding question for tree-width.) run in polynomial time on graphs of bounded Kelly-

Whereas for undirected graphs it is widely accepteddth, and details of the connection between Kelly-
that tree-width is the “right” notion, the problems dedecompositions and asymmetric matrix factorization.
scribed above suggest that more research is needeHitally, we compare our new width measure to other
decide what the “right” notion for digraphs is — if ther&nown measures on digraphs, in particular to directed
is any. A natural way to search for practical genetree-width andDAG-width. Due to space restrictions,
alisations of undirected tree-width is to look at usefumhost of the proofs appear in the full version of the pa-
equivalent characterisations of it and translate themper.
digraphs.

In this paper we consider three characterisatiofs Preliminaries
of tree-width: partialk-trees, elimination orders andye yse standard graph theory notation. See e.g. [12].
a graph searching game in which an invisible robbggt G be a digraph. We writ& (G) for its set of vertices
attempts to avoid capture by a number of cops, sukhd £(G) for its edge set. FoX C V(G) we write
ject to the restriction that he may only move if a cop| x| for the subgraph of induced byX andG \ X
is about to occupy his position. Partigltrees are the for g[1/(g) \ X]. If X := {v} is a singleton set,
historical forerunner of tree-width and are therefore age simply writeG \ v. Finally, we sometimes write
sociated with graph structure theory [24], e!iminatiog[vl’ ..., v] for G[{v1, ..., v }]. For everyy € V(G)
orders have found application in the analysis of sylndx  v/(G) such that ¢ X we writeReachy,  (v)
metric matrix factorization, such as Cholesky decomyy the set of vertices iy (G) \ X reachable from by a
position [19], and graph searching problems have fgrected walk ing \ X. If G is a directed, acyclic graph

cently been used to explore and generate robust mggaG), we write < for the reflexive, transitive closure
sures of graph complexity (see e.g. [11, 15]). We gedfthe edge relation.

eralise all of these to directed graphs, resulting in par-
tial k-DAGs, directed elimination orderings, and an i3 Ejimination Orderings, Inert Robber Games,
ert robber game on digraphs. We show that all of these gnd Partial k-DAGs

generalisations are equivalent on digraphs and are a}Iﬁs?

. ) . his section we formally define directed elimination
equivalent to the width-measure associated to a new, : i
. . : orderings, inert robber games, and parkidDAGs and
kind of decomposition we introduce. As the game | ; . .
. . . show that the associated width-measures of digraphs are
reminiscent of capturing hideout-based outlaws, we PO ivalent

" . e
pose the name Kelly-decompositions, after the infamoti$ Our first definition extends the idea of vertex elim-

Australian bushranger Ned Kelly. The fact that all the?ﬁg@tion to digraphs. Vertex elimination is the process

notions are equivalent on digraphs as they are on undi-~ - oving vertices from a aranh but adding edaes to
rected graphs suggests that this might be a robust méa- 9 grap g edg

sure of complexity/connectivity of digraphs. preserve reachability. The complexity measure we are

L . . interested in is the maximum out-degree of eliminated
In addition to being equivalent to the natural gen-_".
S o - vertices.
eralisations of the above characterisations, we believe

that Kelly-decompositions have many advantages over

DAG-decompositions and directed tree-decompositiorEFINITION 3.1. Let G be a digraph.  An(directed)
elimination ordering« is a linear ordering onV' (G).



Given an elimination orderingt := (vo, v1,...,v,—1) C€an be viewed as a class of graphs generated by a gen-
of G, we define:Gs' := G; and G, is obtained from eralisation of how one might construct a tree. In the
G by deletingy; and adding new edges (if necessangame wayk-DAGs are a class of digraphs generated by
(u,v) if (u,v;),(vi,v) € E(GY) andu # v. G is ageneralisation of how one might construct a DAG in a
thedirected elimination graph at sté@ccording to<t. top-down manner.

Thewidth of an elimination ordering is the maximunp . \yition 3.3. (RRTIAL GRAPH) Given two di-

over alls of the out-degree af; in g_f. For convenience graphsG and M, we sayH is a partial graph ofg if
we also define thsupport ofv; with respect to< as V(H) = V(G) and E(H) C E(G), i.e.G is a spanning
supp,(vi) == {v; : (vi,v;) € E(GT)}. Note that subgraph ofH.

the width of an elimination orderingi is the maximum

cardinality of all supports. DEFINITION 3.4. ((RRTIAL) k-DAG) The class ok-

) o 'DAGs is defined recursively as follows:
Immediately from the definitions, we have this

simple lemma relating the support of an element in® A k:_-chqu_e gﬂhgtAg a complete digraph with
an elimination ordering to the set of vertices reachable vertices) is &- :
from that node. e A k-DAG withn + 1 vertices can be constructed

LEMMA 3.1. Let < be a directed elimination ordering ~ T0mM @k-DAGH with n vertices by adding a vertex

of a graphG and letv € V(G). LetR = {u : v and edges satisfying the following:

v <u}. Thensupp(v) = {u: v <wandthereis’ € — At mostk edges from to H

Reacly, r(v) such thatllv', u) € E(G)}- — If X is the set of endpoints of the edges added
We proceed with defining inert robber games on in the previous subcondition, an edge from

digraphs. Intuitively, a robber occupies some vertex u € V(H) towv if (u,w) € E(H) for all

of a graphG. k cops attempt to capture this robber w € X \ {u}. Note that ifX = g, this

by occupying the same vertex as the robber. The condition is true for allu € V' (H).

robp(_ar evades captu_re by being abI_e to run from de\ artial k-DAG is a partial graph of ak-DAG.
position along any directed path which does not pas

through a cop. Any number of cops can move anywhetg€ second condition on the edges provides a method to
on the graph but they do so by removing themselv@dd as many edges as possible going to the new vertex
Comp|ete|y from the graph and then announcing Whé‘\éthout introducing CyCleS. Note that this definition
they are moving. It is during this transition that thg@eneralises:-trees, for if the verticesX) adjacent to
robber moves. In the inert robber game, the robd&€e new vertex«) form a clique, we will add edges
may only move if a cop is about to land on his curreR@ck fromX to v, effectively creating undirected edges
position, however he is not visible to the cops and f&tweeny and X (and possibly some additional edges

knows the cops’ strategy in advance. More formally, from™ \ X tov). Note that a partial 0-DAG is a DAG.
Our main result of this section is that the three

DEFINITION 3.2. (INERT ROBBER GAME The measures introduced are equivalent on digraphs.

(k-cop) inert robber gameon a digraph G is . )

the set of all plays, where aplay is a se- THEOREM3.1. LetG be a digraph. The following are
quence (Xo, Ro), (X1, Ry), ... (Xn, Rn), such that equivalent:

(X0, Ro) = (©,V(G9)) and for alli: X;,R; C V(G); 1. G hasadirected elimination ordering of width k.

X;| < k;and e
[Xil < 2. k + 1 cops have a monotone winning strategy to

Riyy — <R1-U U Reac@\(xm){iﬂ)(v)) \Xi capture an inert robber.

vERINX 41 3. G is a partial k-DAG.
Intuitively, the X; represent the cop locations, and It follows from this theorem that the minimal width
the R; represent the set of potential robber locationgver all directed elimination orderings &f and the
(also known as contaminated vertices). The sequemai@imal number of cops required to capture an inert
Xo, X1, ... is thestrategyfor the cops. Note that givenrobber (less one) coincide, and this class of digraphs
a strategy we can reconstruct the play. A strategy characterised by partid-DAGs. This leads to the

Xo, X1,..., X, iswinningif R,, = @ in the associated following definition:
play. Finally, a strategy isnonotonef R; 2 Rit1 for  pepiniion 3.5. (ELIMINATION WIDTH ) Let G be a
all 7 in the associated play. digraph. The(directed) elimination widthof G is the

The last characterisation we consider is a generéﬂjnimal width over all directed elimination Orderings
sation of partiak-trees, called partiat-DAGs. k-trees OfG.
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4 Decompositions 5 Applications

With a robust measure for digraph complexity definei,1 Computing Kelly-decompositionsin this sec-

we now turn to the problem of finding a closely relatetion we mention several algorithms for computing
digraph decomposition. The decomposition we intrécelly-width and Kelly-decompositions. The proofs of
duce is a partition of the vertices, arranged as a directBteorems 3.1 and 4.1 show that Kelly-decompositions
acyclic graph, together with sets of vertices which guacdn easily (i.e. polynomial time) be constructed from
against paths in the graph that do not respect this directed elimination orderings or monotone winning
rangement. We have an additional restriction to avastrategies, so we concern ourselves with the problem of
trivial decompositions — vertices in the guard sets musiding any of the equivalent characterisations.

appear either to the left or earlier in the decomposition. In a recent paper [6] Bodlaender et al. study exact
More precisely, algorithms for computing the (undirected) tree-width of

DEFINITION 4.1. (GUARDING) Let G be a digraph. & graph. Their algorithms are _bas_ed on dy_namic pro-

We sayiV’ C V(G) guardsX C V(G)if WN X = o gramming to compute an elimination ordering of the
and for all (u,v) € E(G) with u € X, we have graph. In the same paper, the authors remark on actual
ve XUW. experiments with these algorithms. Using some prepro-
cessing techniques, the dynamic programming approach

DEFINITION 4.2. (KELLY-DECOMPOSITIONg seems to perform reasonably well (in particular for not
A Kelly-decompositionof a digraph G is a triple o4 |arge instances). The algorithms translate to directed
9 := (D, (Bt)iev(p), (Wi)tev(p)) SO that elimination orderings and can therefore be used to com-

e DisaDAG and B;):cv (p) partitionsV(G), pute Kelly-width. Hence, we get the following theorem.

e forall ¢t € V(D), W, C V(G) guardsB} := THEOREMS5.1. The Kelly-width of a graph with ver-
Uy pt Be, and tices can be determined in tim@*(2") and space

e for all s € V(D) there is a linear order on its 07(2"), orin time 0" (4") and polynomial space.

childrenty, ..., 1, sothatforalll <i <p,W;, € Here,0*(f(n)) means that polynomial factors are sup-
B, uWsUU;, Btlj- Similarly, there is a linear pressed. For a giveh, the problem whether a digraph
order on the roots such thav., € |J,_; B}j. G has Kelly-width< k is decided in exponential time

Thewidth of D is max{|B; UW,| : ¢ € V(D)}. The with the above algorithms. Further, as the size of Kelly-

; ; ‘s - : decompositions is linear in the size of the graphs they
Kelly-width of G is the minimal width of any of its Kelly- X
decompositions. decompose, the problem, given a graplandk € N,

) ) S to decide ifG has Kelly-width at most, is in NP. We
Our main result of this section is that Kellycan simply guess a Kelly-decomposition. As the min-
decompositions do in fact correspond with the compleymization problem is NP-complete (it generalises the

ity measure defined at the end of the previous SeCtiorNP-complete problem of deciding the tree-width of an

THEOREM4.1. G has directed elimination widtkt & undirected graph), we cannot expect polynomial time
if, and only if,G has Kelly-width< k + 1. algorithms to exist. It seems plausible though that, as in

The proof of Theorem 4.1 is constructive in thatpe case oDAG-width, studying strategies in the inert

given an elimination ordering of width it constructs a ro:belz Qimedw'ﬂh'?"".d o :;1 pfolyn0|_”n|al time alﬁlomhm
Kelly-decomposition of width: + 1, and conversely. In WheN#k 1S fixed. This IS part of ongoing research.

fact, the proof establishes a slightly stronger statemer%t.2 Algorithms on graphs of small Kelly-width In

COROLLARY 4.1. Every digraph G of this section we present algorithmic applications of the
Kelly-width £ has a  Kelly-decompositiongecomposition introduced above, including a general
(D, (Bi)tev(p), (Wi)tev(p)) of width k such that scheme that can be used to construct algorithms based
forallt € V(D): on Kelly-decompositions. We assume that a Kelly-
o |B| =1, decomposition (or even an elimination ordering) has
been provided or pre-computed. We give two example
algorithms based on this which run in polynomial time
o every vertew € Bti is reachable ing \ W, from ©N graphs of bounded KeIIy-wid.th.. T_he first is an
the uniquew € B,. algonthm for_t_he_ NP—compIet(_a 9pt|m|za_1t|on_ prob_lem of
computing disjoint paths of minimal weight in weighted
graphs. The second is an algorithm to compute the
winner of certain forms of combinatorial games. We
We call such a decompositi@pecial conclude the section with remarks about how these

e W, is the minimal set which guardé%, and

Further, if G is strongly connected, theld has only one
root.



algorithms compare with similar algorithms previouslgnd s be given. For a se/ C V(G) and its guarding

presented in [18] and [4]. set W we write LINK (U, W) for the set of all tuples
Algorithms using Kelly-decompositions often fol-((u1, v1),. .., (u, v.),l,w) such that ay < k, where
low a common pattern. Similar to algorithmg: is the Kelly-width ofG, u; € U, v; € W, b) there

on graphs of small tree-width, the algorithms stasre pairwise vertex disjoint pattfa, ..., P, inU U W
with computing a special Kelly-decompositiofD, with all inner vertices inJ so thatP; links w; to v;, C)
(Bt)tev (), Wi)iev(py) and then work bottom up tothe order of(Py,. .., P.) is [, and d)w is the minimal
compute for each nodee V(D) a data set containingweight of any such sequence of paths of ortefor
information on the se} := J,.._, B:. The general pat-t € V(D) let B; = |J,,,, By and define INK (t) as
tern is therefore described by the following steps (aftgqNK(Btl, W;). Now, beginning from the leaves, we
the special Kelly-decomposition has been computed)carry out the four steps described above and compute for
each node € V(D) the set LNK (¢) as follows. Once
we have computed INK () for all nodes, the theorem
Combine:If ¢t € V(D) is an inner node with childrenfollows easily by examining linkages of ordgr (G)|
t1,...,t, ordered by the ordering guaranteed byuring theCombinestep at the (unique) root @?.

the Kelly-decomposition (we observe that such dfaves: Clearly, for a leaft, the set LNk (t) can be

ordering can be computed easily with a greed®@mputed in constant time.

algorithm), combine the data sets computed fbtow let ¢ be an inner vertex and lety,...,t, be

Btil,m,gtl to a data set for the unidg, ., ., B}. the children oft ordered according to the ordering

g == " guaranteed by the Kelly-decomposition. To compute
Update: Update the data set computed in the previousnk (¢) we perform three steps.

step so that the new vertexwith B, = {u} is Combine:ln the first step we combine the setsuk (¢;)

taken into account. Usually, the vertexwill have 15 optain LNk (|, Btl-an W.,). LetB; := J., B

been part of at least some guard sBis. As gnqyy; .= U< Wtjl\ B;_ ;. The sets MK(é; W)

u & Wy, itcan now be used freely. are computed by induction an The crucial observation
(jgthat, by definition of Kelly-decompositions, there are
no edges starting i3;_; and ending thl \ Bi-1.
Hence, a path betweem < Btl and a guard either

We illustrate this pattern by presenting an algorith@ays ins! | in which case we can read its existence
for computlng a _Ham|lton|an—cycle pf minimal welgh}rom LINKL(ti), or it crosses over td3;_;, in which
n a yve|ghted digraph. 'We explain below how th'§ se the first vertex im; 1 \Btl, is in W,. The first
algorithm extends to the much more general problemrggrt of such paths can be comf)uted fromik (#;) and

finding disjoint paths of minimal weight. second part, the part i3;_;, can be computed from
L|NK(BZ',1, Wifl).

In the next two steps we compute the setik (¢). Let
B, = {u}. Note thatW, C W, U B, andu ¢ W,.
Further, ifw € W, \ W, then(u,w) € E(G) and there
is nov € B, with (v,w) € E(G). Now, consider a
THEOREM5.2. For any k, given a weighted tuples := ((u1,v1),..., (u,,v,)) with u; € B} and
digraph (G,w) and a Kelly-decompositionvi € W;. Clearly, asu ¢ Wi, v; # u for all i. There
(D, (Bi)iev ) Wiliev(p)) Of G of width < k, can only be ans-linkage inB3} in one of the following
there exists a polynomial time algorithm which contases.

putes a Hamilton-cycle afg,w) of minimal weight or
determines thag is not Hamiltonian.

Leaves: Compute the data set for all leaves.

Expand: Finally, expand the data set to include guar
in W \ U, Ws, and also paths etc. startingat

5.2.1 Weighted Hamiltonian Cycle and Disjoint
Paths. A weighted digraph is a paifG,w) whereg

is a digraph and : V(G) — R is a weight function.
The Kelly-width of (G, w) is the Kelly-width ofG.

Casel u; € B, andv; € W, \ {u} foralls.

Here, the weight of a Hamilton-cycle is the Surﬁ?ase 2 u; € By foralliand there is at least one

of the weights of the edges occurring on the cycle. i € Wi\ Wp.
To prove the theorem we first need some notatiofgqe 3 s
Given a weighted digraptg,w) € C and tuples :=

{(s1,t1),- .., (sr, t,)} Of pairs of vertices, ar-linkage The first case concerns tuples which have already been
is a sequencé® := (Py,...,P.) of pairwise inner considered in theCombinestep but now may have
vertex disjoint paths so thd?, links s; to ¢;. Theorder additional linkages containing as an inner vertex.

of P is the order ofG[J, P;]. Theweightof P is the In this sense, we are merely updating information for
sum of the weights of edges iR;. Now, let (G,w) tuples we have already processed. Hence, this case

= y for somei.
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is dealt with in theUpdatestep. The last two casesmnain technical difference is the role the guards play in
concern new tuples which have not been considettb@ algorithms. In the algorithm presented above, the
before. These cases are treated inEkpandstep. The guardsi¥; of a nodet play an active role: We only con-
full details of these steps can be found in the full versiaider paths from verticeg € Btl to guardsv € W;.

of the paper. In a directed tree-decomposition, a sg¢t C V(G)

An analysis of the algorithm shows that thedate does not uniquely define its guards and these guards
and Expandsteps can be implemented to run in timmay only be reachable froifi by a path that involves
O(n?* +1). Hence, a3V (D)| = |V(G)|, the overall other vertices outside of. Consequently, the guards
running time of the algorithm i®(n2%+2). This slightly only play an indirect role in the algorithm on directed
improves the running time of the Hamilton-cycle algdree-decompositions in that they give a bound on the
rithm given in [18] for digraphs (without a weight funcsize of tuples that have to be considered. Although
tion) of small directed tree-width. this is enough for algorithms computing disjoint paths,

The algorithm introduced above can easily be eklamilton-cycles and similar problems, this forms a sig-
tended to solve the following, more general prolmificant issue for other types of problems. An example
lem. Theweightedw-linkage problemis the prob- of this is in the presented parity game algorithm, which,
lem, given a weighted digraphG,w), a tuple so far, has resisted attempts to translate it to directed

s = ((s1,t1),.--,(sw,tw)), and a setM C tree-decompositions. Hence, if a problem requires to
{1,...,|V(G)|}, to compute for eacti € M an s- compute more complicated data structures than paths
linkage of order/ of minimal weight (among alls- between vertices, Kelly-decompositions may be much
linkages of ordet). easier to work with than directed tree-decompositions.

As for DAG-decompositions, it is their space con-
sumption that forms a significant problem. Although
oour algorithm for parity games is similar to that of [4],
ours requires only storing at most a linear number of
data structures. Until th€(n*) bound on the size

5.2.2 Parity Games.Another example for an aIgo—Of DAG-decompositions is reduced, such dynamic pro-

rithm on graphs of bounded Kelly-width is an algorithrﬂramming algorithms are only feasible for small values

for solving parity games on game arenas of small Kell9f k. . .
width. Parity games are a form of combinatorial games Finally, we believe that the presentation of algo-

played on digraphs with many applications in the aréims on Kelly-decompositions is simpler and more

of verification. See [17] for a definition. It is wellUnderstandable than on directed tree-decompositions or

known that deciding the winner of a parity game is iHAG-dgcompositilons, again for the reasons that a) there
NP N co-NP and it is a longstanding open problem |p a strict separation of guards and vertices in the[sf,ﬂets

the problem is in P. In [4], Berwanger et al. describ@’hiCh is foreign toDAG-decompositions) and b) that

an algorithm for computing the winner of a parity gami'€ guards of a sef C V/(G) are uniquely defined and
can therefore be used in more ways.

of boundedDAG-width. This algorithm can be trans-

lated to arenas of small Kelly-width and, in some sense

becomes more transparent. Due to lack of space, ﬁ‘lg ~Asymmetric matrix factorization The use of
algorithm is given in the full version of the paper. elimination orders and elimination trees to investigate

) _ symmetric matrix factorizations is well documented
THEOREMS.4. Foranyk, givenan arenad of aparity (gee e.g. [19]). For example, the height of an elimi-
game and a Kelly-decomposition gf of width < k, nation tree gives the parallel time required to factor a
the winning region of4 can be computed in polynomialyairix [7]. In [16], Gilbert and Liu introduced a gener-
time. alisation of elimination trees, called elimination DAGs,
] ) which can be similarly used to analyse factorizations in
5.2.3 Remarks.In the following section we show ihe asymmetric case. Kelly-decompositions are closely

that the class of graphs of bounded Kelly-width ig|ated to these structures, as illustrated by the follgwin
(strictly) smaller than the class of graphs of boundgfegrem.

directed tree-width. Consequently, the algorithms pre-
sented in [18] can be used on graphs of bounded KelyerINITION 5.1. Let M = (a;;) be a squaren x n
width, including the disjoint paths algorithm. Thisnatrix. We defineG,; as the directed graph with

THEOREMb.3. For everyw, k € N, given a weighted
digraph and a Kelly-decomposition of width &, the
weightedw-linkage problem can be solved in polyn
mial time.

raises the question, what advantages does our algoritiity,;) = {vi,...,v,}, and fori # j, (v;,v;) €
enjoy over the one for directed tree-width? The firgl(Gy,) if, and only if, a;; # 0. We defined); =
and obvious difference is that our algorithm comput¢s, , ..., v,).

a Hamilton-cycle of minimal weight. However, the



THEOREMb5.5. Let M be a square matrix thatA strategy iswinning if it captures the robber, and it
can be decomposed ak/ = LU without pivot- is monotonef the set of vertices which the robber can
ing. Let (D, (B:)iev(p), Wi)iev(p)) be the Kelly- reach is non-increasing.

decomposition of,; obtained by applying the proof

of Theorem 4.1 with elimination ordet,,. Then The following theorem summarises the results of [4, 20,

18]:

(@) (D, (Bi)tev(p)) is equivalent to the lower elimi- .

nation DAG (as defined in [16]), and THEOREM®6.1. Letg be a digraph.
1. G has DAG-width & if, and only if, & cops have

a monotone winning strategy in the visible robber

game org.

(b) Gy = (V(Gum),{(v,w) : w € W,}), which
implies the upper elimination DAG is equivalent
to the transitive reduction of the relatiof{v, w) :

w e Wy} 2. G hasdirected tree-widtkl 3k+1 or k cops do not

) have a winning strategy in the strong visible robber
We can use the results of [16] to make the following game org

observation when we construct Kelly-decompositions
on undirected graphs. Our first result shows that a monotone winning
strategy in the inert robber game can be translated to

COROLLARY 5.1. Let G be an undirected 5 (not necessarily monotone) winning strategy in the
graph, < an elimination order on G and \;siple robber game.

(D, (Bt)iev(p), Wi)iev(p)) the Kelly-decomposition
of G (considered as a bidirected graph) obtained byHEOREM6.2. If k£ cops can catch an inert robber with
applying the proof of Theorem 4.1 with eliminatio@ robber-monotone strategy, theh — 1 cops can catch
order <. ThenD is a tree, and more precisely,2 mobile, visible robber.

(D, (B:)iev(py) is equivalent to the elimination tree

associated with the (undirected) elimination order One consequence of this theorem s that Kelly-

width bounds directed tree-width by a constant factor.

6 Is it better to be invisible but lazy or visible and CoroLLARY 6.1. If G has Kelly-width< % theng has
eager? directed tree-width< 6k — 2.

In this section we use graph searching games to com-
pare Kelly-width tobAG-width and directed tree-width. . ., o\ ricient in the visible robber game, we cannot ob-

In the undirected case, all games require t.he Sa({]nalen a similar bound fobAG-width. We can, however,
number of searchers, however we show that in the di-

. ask whether we can improve the bound, i.e. assuming

rected case there are graphs on which all three mea. o
; ; - that & cops have a robber-monotone winning strategy
sures differ by an arbitrary amount. Our resuilts do Mgainst an invisible, inert robber can we define a win-
ply that Kelly-width bounds directed tree-width within g '

) ning strategy for less thatk — 1 cops in the visible rob-

a constant factor, but the converse fails as there e 5 Althouah it might b iol . h
classes of graphs of bounded directed tree-width an%r game? Although it might be possible to improve the

; ) . result, the next theorem shows that we cannot do better
unbounded Kelly-width. We also provide evidence tt?]an With4 % cops
suggest that Kelly-width an®AG-width are within a 3 ps.
constant factor of each other. We begin by introdutHEOREM6.3. For everyk € N, there is a graph such
ing the games associated witiAG-width and directed that 3k cops have a robber-monotone winning strategy
tree-width (see [4, 20, 18] for formal definitions). in the inert robber game but no fewer thah cops can

catch a mobile visible robber.

Since it is not known whether monotone strategies

DEFINITION 6.1. (VISIBLE ROBBER GAME) Thevisi-

ble robber gamés played as the inert robber gameProof. Consider the graphg with vertex set
except that the robber’s position is always known ., ..., v} SO that{ve, vs, vg} as well as{vs, vs, v}
the cops and the robber is free to move during a c@md {v4, v5,vs} form 3-cliques and there are edges
transition irrespective of where the cops intend to movyey, vs), (vs, vs), (v1,v2), (v1,v3), (vs,v1). Itis easy to
(however, he still cannot run through a stationary copee that o7, 3 cops do not have a (non-monotone win-
Thestrong visible robber gamadds the further restric- ning) strategy to catch a visible robber, howeyeops
tion that the robber can only move in the same stronglp. On the other hand,cops suffice to capture an invis-
connected component (of the graph with the stationabje, inert robber with a robber-monotone strategy. The
cops’ locations removed). #trategyfor the cops is a result follows by taking the lexicographic product of this
function that, given the current locations of the copgraph with the complete graph érvertices. See the full
and the robber, indicates the next location of the copgersion of the paper for details. O

7



In fact, 4 cops can capture a visible robber with a[4] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer.

monotone strategy on the graph in the previous proof,

giving us the following:

COROLLARY 6.2. For all £ > 1 there exists graphs of [5]

DAG-width 4k and Kelly-width3%.

Despite this% bound, for graphs of small Kelly-
width we can do better.

THEOREM6.4. For k = 1 or 2, if G has Kelly-widthk,
G has DAG-widthk.

We now turn to the converse problem, what can bé’]
said about the Kelly-width of graphs given their directed
tree-width orDAG-width? First, we consider the binary
tree with back-edges example in [4], where it was show
this class of graphs has bounded directed tree-width b

unboundedAG-width. It is readily shown that this
class of graphs also has unbounded Kelly-width.

THEOREM®G6.5. There exists classes of digraphs with!®]
bounded directed tree-width and unbounded Kelly-

width.

Our final result is a step towards relating Kelly-width
to DAG-width by showing how to translate a monotone
strategy in the visible robber game to a (not necessarily

monotone) strategy in the inert robber game.

THEOREM6.6. If G hasDAG-width < k, thenk cops
have a winning strategy in the inert robber game.

Proof. Given aDAG-decompositionD, (X4)qecv (D))
of G of width k, the strategy fork cops against an

invisible, inert robber is to follow a depth-first search

on the decomposition. O

Again we observe that it is unknown if monotonél4]
strategies suffice in the inert robber game, so this result

does not allow us to compare Kelly-width amiG-

width. However, we strongly believe that monoton
strategies suffice in both the inert robber game and the
visible robber game, giving us the following conjectureti,s]

Conjecture. The Kelly-width andDAG-
width of a graph lie within constant factors of
one another.
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