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We consider an extension of modal logic with an operator for constructing inflationary fixed points,
just as the modal p-calculus extends basic modal logic with an operator for least fixed points.
Least and inflationary fixed point operators have been studied and compared in other contexts,
particularly in finite model theory, where it is known that the logics IFP and LFP that result from
adding such fixed point operators to first order logic have equal expressive power. As we show,
the situation in modal logic is quite different, as the modal iteration calculus (MIC) we introduce
has much greater expressive power than the p-calculus. Greater expressive power comes at a cost:
the calculus is algorithmically much less manageable.
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1. INTRODUCTION

The modal p-calculus L, is an extension of multi-modal logic with an operator for
forming least fixed points. This logic has been extensively studied, having acquired
importance for a number of reasons. In terms of expressive power, it subsumes
a variety of modal and temporal logics used in verification, in particular LTL,
CTL, CTL*, PDL and also many logics used in other areas of computer science,
for instance description logics. On the other hand, L, has a rich theory, and is
well-behaved in model-theoretic and algorithmic terms.

The logic L, is only one instance of a logic with an explicit operator for forming
least fixed points. Indeed, in recent years, a number of fixed point extensions of
first order logic have been studied in the context of finite model theory. It may
be argued that fixed point logics play a central role in finite model theory, more
important than first order logic itself. The best known of these fixed point logics
is LFP, which extends first order logic with an operator for forming the least fixed
points of positive formulae, defining monotone operators. In this sense, it relates to
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first order logic in much the same way as L, relates to propositional modal logic.
However, a number of other fixed point operators have been extensively studied in
finite model theory, including inflationary, partial, nondeterministic and alternating
fixed points. All of these have in common that they allow the construction of fixed
points of operators that are not necessarily monotone.

Furthermore, a variety of fragments of the fixed point logics formed have been
studied, such as existential and stratified fragments, bounded fixed point logics,
transitive closure logic and varieties of Datalog. Thus, there is a rich theory of the
structure and expressive power of fixed point logics on finite relational structures
and, to a lesser extent, on infinite structures.

In the present paper, we take a first step in the study of extensions of proposi-
tional modal logic by operators that allow us to form fixed points of non-monotone
formulae. We focus on the simplest of these, that is the inflationary fixed point
(also sometimes called the iterative fixed point). Though the inflationary fixed
point extension of first order logic (IFP) is often used interchangeably with LFP,
as the two have the same expressive power on finite structures, we show that in the
context of modal logic, the inflationary fixed point behaves quite differently from
the least fixed point.

Least and Inflationary Inductions. We begin by reviewing the known results on the
logics LFP and IFP.

(1) On finite structures, LFP and IFP have the same expressive power [Gurevich
and Shelah 1986]. A recent result shows that this equivalence of LFP and
IFP also extends to infinite structures (see [Kreutzer 2002]).

(2) On ordered finite structures, LFP and IFP express precisely the properties
that are decidable in polynomial time.

(3) Simultaneous least or inflationary inductions do not provide more expressive
power than simple inductions.

(4) The complexity of evaluating a formula 1 in LFP or IFP on a given finite
structure 2 is polynomial in the size of the structure, but exponential in the
length of the formula. For formulae with a bounded number & of variables,
the evaluation problem is PSPACE-complete [Dziembowski 1996], even for
k = 2 and on fixed (and very small) structures. If, in addition to bounding
the number of variables one also forbids parameters in fixed point formulae,
the evaluation problem for LFP is computationally equivalent to the model
checking problem for L, [Gréddel and Otto 1999; Vardi 1995] which is known
to be in NP N Co-NP, in fact in UP N Co-UP [Jurdzinski 1998], and hard
for PTiME. It is an open problem whether this problem can be solved in
polynomial time. The model checking problem for bounded variable TFP
does not appear to have been studied previously.

We also note that even though IFP does not provide more expressive power than
LFP on finite structures, it is often more convenient to use inflationary inductions
in explicit constructions. The advantage of using IFP is that one is not restricted to
inductions over positive formulae. A non-trivial case in point is the formula defining
an order on the k-variable types in a finite structure, an essential ingredient of the
proof of the Abiteboul-Vianu Theorem, saying that least and partial fixed point
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logics coincide if and only if PTIME = PSPACE (see [Abiteboul and Vianu 1995;
Dawar 1993; Dawar et al. 1995; Ebbinghaus and Flum 1999]). Furthermore, IFP
is more robust, in the sense that inflationary fixed points are well-defined, even
when other, non-monotone, operators are added to the language (see, for instance,
[Dawar and Hella 1995]).

Inflationary Inductions in Modal Logic. Given the close relationship between LFP
and IFP on finite structures, and the importance of the u-calculus, it is natural to
study also the properties and expressive power of inflationary fixed points in modal
logic. In this paper, we undertake a study of an analogue of IFP for modal logic.
We define a modal iteration calculus, MIC, by extending basic multi-modal logic
with simultaneous inflationary inductions. While deferring formal definitions until
Section 2, we begin with an informal explanation.

In L,, we can write formulae pX.p, which are true in state s of a transition
system K if, and only if, s is in the least set X satisfying X <> ¢ in K. We can do
this, provided that the variable X appears only positively in ¢. This guarantees
that ¢ defines a monotone operator and has a least fixed point. Moreover, the
fixed point can be obtained by an iterative process. Starting with the empty set,
if we repeatedly apply the operator defined by ¢ (possibly through a transfinite
series of stages), we obtain an increasing sequence of sets, which converges to the
desired least fixed point. If, on the other hand, ¢ is not positive in X, we can still
define an increasing sequence of sets, by starting with the empty set, and iteratively
taking the union of the current set X with the set of states satisfying ¢(X), and
this sequence must eventually converge to a fixed point (not necessarily of ¢, but
of the operator that maps X to X V ¢(X)). More generally, we allow formulae
ifp X;: [X1 < ¢1,..., Xk < @] that construct sets by a simultaneous inflationary
induction. At each stage a, we have a tuple of sets X{*, ..., X*. Substituting these
into the formulae ¢1,...,pr we obtain a new tuple of sets, which we add to the
existing sets X7*,..., X!, to obtain the next stage.

It is clear that MIC is a modal logic in the sense that it is invariant under
bisimulation. In fact, on every class of bounded cardinality, inflationary fixed points
can be unwound to obtain equivalent infinitary modal formulae. As a consequence,
MIC has the tree model property. It is also clear that MIC is at least as expressive
as L,. The following natural questions now arise.

(1) Is MIC more expressive than L,?

(2) Does MIC have the finite model property?

(3) What are the algorithmic properties of MIC? Is the satisfiability problem
decidable? Can model checking be performed efficiently (as efficiently as for
L,)?

(4) Can we eliminate, as in the u-calculus and as in IFP, simultaneous inductions
without losing expressive power?

(5) What is the relationship of MIC with monadic second-order logic (MSO) and
with finite automata? Or more generally, what are the ‘right’ automata for
MIC?

(6) Is MIC the bisimulation-invariant fragment of any natural logic (as L, is the
bisimulation-invariant fragment of MSO [Janin and Walukiewicz 1996])? It
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has recently been proved that the bisimulation invariant fragment of the most
natural candidate for this, the monadic fragment of inflationary fixed-point
logic, has much greater expressive power than MIC [Dawar and Kreutzer
2002]. Thus, if such a logic exists, its expressive power must be somewhere
between MSO and monadic IFP.

We provide answers to most of these questions. From an algorithmic point of
view, most of the answers are negative. From the point of view of expressiveness,
we can say that in the context of modal logic, inflationary fixed points provide
much more expressive power than least fixed points, and MIC has very different
structural properties to L,. In particular, we establish the following results:

(1) There exist MIC-definable languages that are not regular. Hence MIC is more
expressive than the p-calculus, and does not translate to monadic second-
order logic.

(2) MIC does not have the finite model property.

(3) The satisfiability problem for MIC is undecidable. In fact, it is not even in
the arithmetic hierarchy.

(4) The model checking problem for MIC is PSPACE-complete.

(5) Simultaneous inflationary inductions do provide more expressive power than
simple inflationary inductions. Nevertheless the algorithmic intractability
results for MIC apply also to MIC without simultaneous inductions.

(6) There are bisimulation-invariant polynomial time properties that are not
expressible in MIC.

(7) All languages in DTIME(O(n)) are MIC-definable.

No doubt, these properties exclude MIC as a candidate logic for hardware verifi-
cation. On the other hand, the present study is an investigation into the structure
of the inflationary fixed point operator and may suggest tractable fragments of the
logic MIC, which involve crucial use of an inflationary operator, just as logics like
CTL and alternation-free L, carve out efficiently tractable fragments of L,. In
any case, it delineates the differences between inflationary and least fixed point
constructs in the context of modal logic.

In the rest of this paper, we begin in Section 2 by giving the necessary background
on modal logic and fixed points, and giving the definition of MIC, along with an
example that illustrates how this calculus has higher expressive power than L.
Section 3 establishes that MIC fails to have the finite model property and that the
satisfiability problem is highly undecidable. In Section 4 we investigate questions
of the computational complexity of MIC in the context of finite transition systems.
We show that the model checking problem is PSPACE-complete and that the class of
models of any MIC formula is decidable in both polynomial time and linear space.
In Section 5 we investigate the expressive power of MIC on finite words, establishing
that there are languages definable in MIC that are not context-free, and that every
linear time decidable language is expressible in MIC. In Section 6 we prove that
there are polynomial time bisimulation-invariant properties that are not expressible
in MIC. Further, we discuss the automaticity of MIC-definable sets of finite words
and finite trees. Finally, in Section 7 we prove that 1MIC, the fragment of MIC
that uses only simple induction, has less expressive power than full MIC.
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2. THE MODAL ITERATION CALCULUS

Before we define the modal iteration calculus, we briefly recall the definitions of
propositional modal logic ML and the p-calculus L.

2.1 Propositional Modal Logic.

Transition Systems. Modal logics are interpreted on transition systems (also called
Kripke structures). Fix a set A of actions and a set W of atomic propositions. A
transition system for A and W is a structure K with universe V' (whose elements are
called states) binary relations E, C V x V for each a € A and monadic relations
p C V for each atomic proposition p € W (we do not distinguish notationally
between atomic propositions and their interpretations.)

Syntaz of ML. For a set A of actions and a set W of proposition variables, the
formulae of ML are built from false, true and the variables p € YW by means of
Boolean connectives A, V, = and modal operators (a) and [a]. That is, if ¢ is a
formula of ML and a € A is an action, then (a)y and [a]y) are also formulae of
ML. If there is only one action in A, one simply writes O and < for [a] and (a),
respectively.

Semantics of ML.  The formulae of ML are evaluated on transition systems at
a particular state. Given a formula ¢ and a transition system K with state v, we
write IC, v |= ¢ to denote that the formula « holds in K at state v. We also write
[¢]* to denote the set of states v, such that K,v = ¢. In the case of atomic
propositions, ¢ = p, we have [p]* = p. Boolean connectives are treated in the
natural way. Finally for the semantics of the modal operators we put

[(a)¥]* := {v : there exists a state w such that (v,w) € E, and w € [¢]*}
[[a]y]* := {v : for all w such that (v,w) € E,, we have w € [¢]*}.

Hence (a) and [a] can be viewed as existential and universal quantifiers ‘along a-
transitions’.

For background on propositional modal logic, we recommend [Blackburn et al.
2001].

2.2 The p-calculus L.

Syntax of L,. The p-calculus extends propositional modal logic ML by the fol-
lowing rule for building fixed point formulae: if ¢ is a formula in L, and X is a
propositional variable that occurs only positively in ¢, then pX.¢) and vX.¢) are
L, formulae.

Semantics of L,,. A formula 1(X) with a propositional variable X defines on every
transition system K (with state set V', and with interpretations for free variables
other than X occurring in ) an operator ¢* : P(V) — P(V) assigning to every
set X CV the set X (X) := []S* ={v eV : (K, X),v | ¢}.

As X occurs only positively in 1, the operator ¥/* is monotone for every K, and
therefore, by a well-known theorem due to Knaster and Tarski, has a least fixed
point Ifp(¢*) and a greatest fixed point gfp (/). Now we put [uX ]~ := Ifp(y*)
and [vX.Y]* := gfp(y*).
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Least (and greatest) fixed points can also be constructed inductively. Given a
formula pX.4(X), we define for each ordinal «, the stage X* of the lfp-induction
of X by X0 := @, Xt .= []*X") and X := Us<a XA if a is a limit ordinal.

By monotonicity, the stages of the 1fp-induction increase until a fixed point is
reached. The first ordinal at which this happens is called the closure ordinal of the
induction. By ordinal induction, one easily proves that this inductively constructed
fixed point coincides with the least fixed point. The cardinality of a closure ordinal
cannot be larger than the cardinality of K.

For any formula ¢, the formula v X.¢ is equivalent to ~uX.—p(=X), where p(-X)
denotes the formula obtained from ¢ by replacing all occurrences of X with —.X.

Simultaneous Fized Points. There is a variant of L, that admits systems of si-
multaneous fixed points. These do not increase the expressive power but some-
times allow for more straightforward formalisations. Here one associates with any
tuple 1 = (¥1,...,¢x) of formulae v;(X) = 9;(X1,...,X), in which all occur-
rences of all X; are positive, a new formula ¢ = pX.1p. The semantics of ¢ is
induced by the least fixed point of the monotone operator ¢/ mapping X to X
where X! = {v € V : (K, X),v |= ¢;}. More precisely, K,v |= ¢ iff v is an ele-
ment of the first component of the least fixed point of the above operator. It is
known that simultaneous least fixed points can be eliminated in favour of nested
individual fixed points (see e.g. [Arnold and Niwinski 2001, page 27]). Indeed,
puXY  [W(X,Y),p(X,Y)] is equivalent to uX.o(X, uY.o(X,Y)), and this equiva-
lence generalises to larger systems in the obvious way.

Bisimulations and Tree Model Property. Bisimulation is a notion of behavioural
equivalence for transition systems. Modal logics, like ML, CTL, the pu-calculus etc.
do not distinguish between transition systems that are bisimulation equivalent.
Formally, given two transition systems K and K', with distinguished states v and
v’ respectively, we say that K, v is bisimulation equivalent to K', v, written K, v ~
K',v', if there is a relation R C V x V' between the states of K and the states
of K' such that: (1) (v,v') € R; (2) for each atomic proposition p € W and each
(u,u') € R, u € [p]* if, and only if, u' € [p]*'; (3) for each (u,u’) € R, and each
t € V such that (u,t) € E,, thereis at' € V' with (uv',t') € E;, and (¢,t') € R; and
(4) for each (u,u') € R, and each t' € V' such that (u',t') € E., thereisat € V
with (u,t) € E, and (t,t') € R.

Bisimulation equivalence corresponds to equivalence in an infinitary modal logic
ML [van Benthem 1983]. This logic is the extension of ML by disjunctions and
conjunctions taken over arbitrary sets of formulae. Thus, if S is any set (possibly
infinite) of formulae of ML, then A S and \/ S are also formulae of ML™. It can
be shown that for any transition systems K and K', K,v ~ K',v' if, and only if,
K, v makes true exactly the same formulae of ML* as K',v'.

A transition system is called a tree, if for every state v, there is at most one state
u, and at most one action a such that (u,v) € E, and there is exactly one state
r, called the root of the tree, for which there is no state having a transition to r,
and if every state is reachable from the root. It is known that for every transition
system K, and any state v, there is a tree 7 with root r such that K, v ~ 7 ,r. One
consequence of this is that any logic that respects bisimulation has the tree model
property. For instance, for any formula ¢ of L, if ¢ is satisfiable, then there is a
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tree T such that 7,7 |= .

2.3 The Modal Iteration Calculus.

We are now ready to introduce MIC. Informally, MIC is propositional modal logic
ML, augmented with simultaneous inflationary fixed points.

DEFINITION 2.1. The modal iteration calculus MIC extends propositional modal
logic by the following rule: if ¢q,..., ¢ are formulae of MIC, and Xy,..., X} are
propositional variables, then

X1 < ¢
S =

Xp < @k
is a system of rules, and (ifp X; : S) is a formula of MIC. If S consists of a

single rule X « ¢ we simplify the notation and write (ifp X <+ ¢) instead of
(ifp X : X « o).

Semantics: On every Kripke structure K, the system S defines, for each ordinal a, a
tuple X" = (X7, ..., Xp) of sets of states, via the following inflationary induction
(fori=1,...,k).

XD =0,
a+1l | __ KX
Xi+ T Xzau[[(pl]]( ):
X = U Xf if @ is a limit ordinal.
B<a
We call (X¢,...,X7) the stage a of the inflationary induction of S on K. As the

stages are increasing (i.e. X C Xf for any a < f8), this induction reaches a fixed
point (X{°,..., X®). Now we put [(ifp X;: S)]* = X*.

Before introducing examples in Section 2.4 and 3, we establish some simple prop-
erties of MIC.

LemMA 2.2. L, CMIC. Further, on every class of structures of bounded cardi-
nality MIC C ML,

Proof. Clearly, if X occurs only positively in ¢, then uX.¢) = ifp X «+ ¢. Hence
L, C MIC.

Now, let S be a system of rules X; < ;(X1,...,Xg). It is clear that for
each ordinal « there exist formulae ¢f, ..., o7 € ML™ defining, over any Kripke
structure, the stage a of the induction by S. As closure ordinals are bounded on
structures of bounded cardinality, the second claim follows. O

COROLLARY 2.3. MIC is invariant under bisimulation and has the tree model
property.
Note that on classes of structures with unbounded cardinality, L,, and MIC are not

contained in ML>. For instance, well-foundedness is expressed by the L,-formula
pX.0X, but is known not to be expressible in ML
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2.4 Non-Regular Languages

We now demonstrate that MIC is strictly more expressive than L,. Recall that
every formula of L, can be translated into a formula of monadic second order logic
(MSO). Moreover, it is a well-known classical result [Biichi 1960] that the only sets
of finite words that are expressible in MSO are the regular languages.

DEFINITION 2.4. For our purposes, a word w of length n, in an alphabet ¥ is a
transition system with n states v1,...,vn, a single action E such that (v;,v;) € E
if, and only if, j =i+ 1 and an atomic proposition s for each s € X, such that for
each v;, there is a unique s with v; € s.

ProproSITION 2.5. There is a language that is expressible in MIC but not in
MSO.

Proof. The language L := {a"b™ : n < m} is not regular, hence not definable
in monadic second-order logic, but it is definable in MIC. To see this, we consider
first the formula n(X) = (ifp YV « G(bA-X)V G(aA X AY)) which (since
the rule is positive in Y') is in fact equivalent to a L,-formula. On every word
w=wp- wp—1 € {a,b}* and X C {0,...,n— 1}, the formula is true if the word w
starts with a (possibly empty) a-sequence inside X followed by a b outside X. Now
the formula (ifp X + (a An(X))V (bAOX)) defines (inside a*b*) the language L.
Note that the language a*b* is definable in L,, so we can conjoin this definition to
the above formula to obtain a definition of L which works on all words in {a,b}*.

O

The observation in Proposition 2.5 was pointed out to us in discussion by Martin
Otto, and was the starting point of the investigation reported here.

3. INTERPRETING ARITHMETIC IN MIC

In this section we prove that the satisfiability problem of MIC is undecidable in a
very strong sense. Given that MIC is invariant under bisimulation, we can restrict
attention to trees. In fact we will only consider well-founded trees (i.e. trees
satisfying the formula ifp X < OX.) The height h(v) of a node v in a well-
founded tree 7 is an ordinal, namely the least strict upper bound of the heights of
its children. For any node v in a tree T, we write T (v) for the subtree of 7 with
root v. We first show that the nodes of finite height and the nodes of height w are
definable in MIC.

LEMMA 3.1. Let S be the system

X « Ofalse vV (OX A ORY)
Y + X.

Then, on every tree T, [ifp X : S]7 = [ifp Y : S]7 = {v: h(v) < w}.

Proof. By induction we see that for each i < w, X! = {v : h(v) < i} and
Vi= X! ={v:h(v) <i-1}. As a consequence X* = Y% = {v : h(v) < w}.
One further iteration shows that X«+! = Y«+! = X, O
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With the system S exhibited in Lemma 3.1 we obtain the formulae
finite-height := (ifp X : S)
and
w-height := —finite-height A Ofinite-height

which define, respectively, the nodes of finite height and the nodes of height w.
Note that w-height is a satisfiable formula all of whose models are infinite.

ProprosITION 3.2. MIC does not have the finite model property.

We next show that the satisfiability problem of MIC is undecidable. In fact MIC
interprets full arithmetic on the heights of nodes. To prove this we first define some
auxiliary formulae that will be used frequently throughout the paper. We always
assume that the underlying structure is a well-founded tree.

—The formula somewhere(p) = (ifp X5 < ¢ V OX;) expresses that ¢ holds
somewhere in the subtree of the current node: 7,v = somewhere(p) iff [¢]7 N
T (v) # 0.

—Dually everywhere(yp) := (ifp X, + ¢ A OX,) says that ¢ holds at all nodes of
the subtree T (v).

—We say that a set X (in a tree 7) encodes the ordinal « if X = {v: h(v) < a}.
Let ordinal(X) be the conjunction of the formula everywhere(X — OX) with

~(ifp Z:Y « OV
Z « somewhere(=Y AOY A X) A somewhere(=Y AOY A =X)).

It expresses that X encodes some ordinal. Indeed everywhere(X — OX) says
that with each node v € X, the entire subtree rooted at v is contained in X.
The second conjunct is intended to ensure that two nodes of the same height are
either both in X or both outside it. To see that it does this, note that at stage
B + 1 of the induction nodes of height 8 are added to Y. At this stage, these
are exactly the nodes satisfying =Y A OY. Thus, a node r is added to Z at this
stage if, and only if, somewhere in the subtree rooted at r there are two nodes of
height 8 + 1, one of which is in X and the other is not. Hence, at the end of the
induction the root of the tree will not be contained in Z if, and only if, X does
not distinguish between nodes of the same height. Together the two conjuncts
imply that X contains all nodes up to some height.

—The formula number(X) = ordinal(X) A somewhere(finite-height A = X) says that
X encodes a natural number n (inside a tree of height > n).

LEMMA 3.3. Let T be a well-founded tree of height w. There exist formulae
plus(S,T) and times(S,T) of MIC such that, whenever the sets S and T encode,
in the tree T, the natural numbers s and t, then [plus(S,T)]” encodes s +t, and
[times(S,T)]” encodes st.

Proof. Let
plus(S,T) :=ifp YV : X «+ 0OX
Y + SV (OY A somewhere(X) A everywhere(X — T)).
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Obviously at each stage n, we have X™ = {v : h(v) < n}. We claim that for each
n, Y"1 = {v: h(v) < s+ min(n,t)}. For n = 0 this is clear (note that for the case
s = 0 this is true because the conjunct somewhere(X) prevents the Y-rule from
being active at stage 1). For n > 0 the inclusion X™ C T is true iff n < ¢. Hence we
have Y"*! = {v: h(v) < s +n} in the case that n <t and Y =yn =... =Y
otherwise. To express multiplication we define

times(S,T) :=ifp YV : X «+ OX
Y + plus(Y, S) A everywhere(DX — T).
We claim that Y™ = {v : h(v) < s-min(n,¢)}. This is trivially true for n = 0.
If it is true for n < ¢, then Y"1 = {v : h(v) < sn + s} = {v: h(v) < s(n + 1)}.

Finally for n > ¢, the extension of OX™ is {v : h(v) < n+ 1} which is not contained
in T = {v:h(v) <t}, hence Y"1 =y" =... =Yt O

COROLLARY 3.4. For every polynomial f(z1,...,z,) with coefficients in the nat-
ural numbers there exists a formula ¢(X1,...,X,) € MIC such that for every tree
T of height w and all sets Sy,...,S, encoding numbers sy,...,8, € w

[ (St,. .y ST = {v: h(v) < f(s1,...,8:)}
Proof. By induction on f.

—)g := false.
—q := Ofalse.
71)[)1,' = Xz

—p4q 1= plus[S/¢y, T /1p,], i.e. the formula obtained by replacing in plus(S,T)
the variables S and T by, respectively, ¢y and 1,.

—)g.g 1= times[S/v¢, T /1))
O

THEOREM 3.5. For every first order sentence 1) in the vocabulary {+,+,0,1} of
arithmetic, there ezists a formula ¥* € MIC such that v is true in the standard
model (N, +,-,0,1) of arithmetic if, and only if, ¥* is satisfiable.

Proof. We have already seen that there exists a MIC-axiom w-height axiomatis-
ing the models that are bisimilar to a tree of height w. Further, we can express set
equalities X =Y by everywhere(X « Y) and we know how to represent polyno-
mials by MIC-formulae. What remains is to translate quantifiers.

More precisely, we need to show that for each first order formula ¥ (y1,...,y,)
in the language of arithmetic there exists a MIC-formula ¢*(Y7,...,Y;) such that
on rooted trees 7, w of height w and for all sets Si,...,S, that encode numbers
$1,...,8 on T we have that (N, +,-,0,1) = ¢(s1,...,s.) it T,w E ¥*(S1,...,S).

Only the case of formulae of the form ¢ (y) := Jxp(z, ) remains to be considered.
By induction hypothesis, we assume that for ¢(z,7) the corresponding MIC-formula
¢*(X,Y) has already been constructed. Now let

(V) :=ifp Z: X + 0OX
Z + ¢*(X,Y) A number(X).
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O

COROLLARY 3.6. The satisfiability problem for MIC is undecidable. In fact, it
is not even in the arithmetical hierarchy.

The proof given above appears to rely crucially on the use of simultaneous in-
ductions. Indeed, one can show that formulae of MIC involving simultaneous in-
ductions, in particular the formula constructed in the proof of Lemma 3.1, cannot
be expressed without simultaneous inductions (see Theorem 7.2).

However, we will prove in Section 7 that first order arithmetic can actually also
be reduced to the satisfiability problem for IMIC (MIC without simultaneous in-
ductions).

Countable models.  While MIC does not have the finite model property, it
does have the Loéwenheim-Skolem property, i.e. every satisfiable MIC-formula has
a countable model. Indeed the proof of the Lowenheim-Skolem property for LFP
(see e.g. [Flum 1999; Gradel 2003]), readily extends to the inflationary fixed point
logic IFP which contains MIC. As a consequence, the satisfiability problem for MIC
is in X1, the second level of the analytical hierarchy.

4. THE MODEL CHECKING PROBLEM FOR MIC

Recall that the model checking problem for the u-calculus is in UP N Co-UP, and
is conjectured by some to be solvable in polynomial time. We now show that MIC
is algorithmically more complicated (unless PSPACE = NP).

We first observe that the naive bottom-up evaluation algorithm for MIC-formulae
uses polynomial time with respect to the size of the input structure, and polynomial
space (and exponential time) with respect to the length of the formula. Let K
be a transition system with n nodes and m edges. The size ||K]|| of appropriate
encodings of K as an input for a model checking algorithm is O(n + m). It is well
known that the extension []* of a basic modal formula ¢ (without fixed points)
on a finite transition system K can be computed in time O(|¢|-[|K]||). Further, any
inflationary induction ifp X; : [X1 + ¢1,..., Xk ¢ @] reaches a fixed point on K
after at most kn iterations. Hence, the bottom-up evaluation of a MIC-formula
with d nested simultaneous inflationary fixed points, each of width k&, on K needs
at most O((kn)?) basic evaluation steps. For each fixed point variable occurring in
the formula, 2n bits of workspace are needed to record the current value and the
last value of the induction. This gives the following complexity results.

PROPOSITION 4.1. Any MIC formula v of nesting depth d and simultaneous

inductions of width at most k on a transition system KC with n nodes can be evaluated
in time O((kn)?2| - ||K||) and space O(|3)] - n).

In terms of common complexity classes the results can be stated as follows.
THEOREM 4.2. (1) The combined complexity of the model checking problem

for MIC on finite structures is in PSPACE.

(2) For any fized formula ¢ € MIC, the model checking problem for 1) on finite
structures is solvable in polynomial time and linear space.
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We now show that, contrary to the case of the p-calculus, the complexity results
obtained by this naive algorithm cannot be essentially improved.

THEOREM 4.3. There exist transition systems K, such that the model checking
problem for MIC on K is PSPACE-complete (even for MIC-formulae without simul-
taneous inductions).

Proof. The proof is by reduction from QBF (the evaluation problem for quantified
Boolean formulae). For MIC with simultaneous inductions, this is trivial. Let K
be the “structure” consisting just of a single point v. We associate with every
quantified Boolean formula ¢ a MIC-formula ¢*. First, we eliminate the universal
quantifiers in ¢ in favour of negations and existential quantifiers. Then we replace
inductively all subformulae p(Y) := 3X9(X,Y) by inflationary fixed points

©*(Y):=ifp Z: X  true
Z + 9*(X,Y).

We have to show that, for any interpretation of Y, we have (K,Y),v = ¢*(Y) iff
¢(Y) is true. (We identify truth values for Y with their truth values at v.) Note
that X° = () and X! = {v}. Hence v is included into Z! if ©(0,Y) holds, and into
Z2if p(1,Y) is true.

Note that we have translated quantified Boolean formulae into purely proposi-
tional formulae with inflationary fixed points (no modal operators are used).

For MIC without simultaneous fixed points, the construction is somewhat more
complicated. Let K be the Kripke-structure consisting of two points 0,1, the atomic
proposition p = {1} and the complete transition relation {0,1} x {0,1}.

Let a(X) := =X A (p —» ©X). Further, let p[X/a(X)] denote the formula
obtained from ¢ by replacing every free occurrence of X by a(X). The transforma-
tion from QBF-formulae ¢ to MIC-formulae * without simultaneous fixed points
is defined inductively as follows.

(1) For ¢ := X we set ¢* := (pAX)V (-pAOX),

(2) (—)* := —p* and (¢ 0 p)* := Y* 0 * for o € {A,V},

(3) for ¢ := VX we put ¢* :=0(ifp X < a(X) A p*[X/a(X))]).

We say that a set Y* C {0, 1} represents Y = trueif 1 € Y*, and that it represents

Y = false otherwise. We claim that for any QBF-formula w, any interpretation ¥
for the free variables of 1) and any representation of Y by Y , we have

[ = {0,1}  if ¢(Y) is true
0 if (Y) is false.

(1) For ¢ := X and for Boolean combinations of formulae the verification of the
claim is straightforward.

(2) Let Y = VX@(X,?). Note that, for X = 0, [a(X)]*%) = {0} and, for

= {0}, [a(X)]*X) = {1}. Thus, the first induction step of (ifp X «

( JA@*[X /a(X)]) produces X' = {0}N]e*(0)]*Y"), which, by induction,

is {0} if »(0,Y) evaluates to true and X! = () otherwise. Tf the value X1 =
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{0} was produced, then the second iteration step produces X2 =Xu({1}n
" (]0Y). Thus,

_ 0 if —(0,Y)
[(ifp X « a(X) A *[X/a(X)N]™Y) = < {0} if 9(0,Y) A =p(1,Y)
{0,1} if @(0,7) Ap(1,Y)

As required, in the first two cases the formula O(ifp X + a(X)Ap*[X/a(X)])
is false at both states, and in the last case it is true at both states.

Finally note that the formula ¢* can be computed in linear time from 1. O

5. LANGUAGES

In this section we investigate the expressive power of MIC on finite strings. In
other words we attempt to determine what languages are definable by formulae of
MIC. As in Definition 2.4, we represent a word by a transition system consisting
of a single path.

We have already seen in Proposition 2.5, that there are non-regular languages
that are definable in MIC. We begin this section by strengthening this result and
showing that there are languages definable in MIC that are not even context-free.

5.1 Non-CFLs in MIC
THEOREM 5.1. There is a language definable in MIC that is not context-free.

Proof. We show that the language L = {ww | w € {a,b}*} is definable in MIC.
To be precise, it is given by the formula

p:=ifp Y : X <« 0OX
Y « ),
where 1 is given by:
Y:=ifp W :U «+ X ANOU
U+ U
Ve« (-XADOX)vOav
V'V
W« (diff Vlen< V lens)
where, further,

diff :=(somewhere(a AU A =U') A somewhere(b AV A=V'))V
(somewhere(b A U A =U') A somewhere(a AV A =V")),

len< :=V A somewhere(X A -U)
lens :==V Aeverywhere(X — U).
To understand the construction of the formula, note that in the outermost induc-

tion defined by ¢ interpreted on a word, at stage ¢, X contains the last ¢ symbols in
the word. We claim that at this stage v is true at all positions in the word except
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14 . A. Dawar, E. Gradel, and S. Kreutzer

the one at distance 2i from the end and it is false at this position if, and only if,
the word of length 2i starting from here is of the form ww. Thus, in the induction
defined by ¢, Y eventually contains all positions from which the rest of the word
is of the form ww.

To verify the claim regarding v, note that at stage j of its induction (j < i), U
contains the last j positions in the word while V' contains the j positions immedi-
ately preceding those in X, while U’ and V' lag one stage behind. A position is
included in W if one of three conditions holds: all of X is included in U, but V
has not yet reached the current position (lens) which indicates that the current
position is at distance greater than 2i from the end; V has reached the current
position but not all of X is in U (len<) which indicates that the positions is at
distance less than 2i from the end; or the last symbol added to U is different to the
one added to V' (diff). Thus, as intended, the only position not included in W is
the one at distance 2i from the end and then only if it is the beginning of a word
of the form ww. O

While the above construction relies crucially on simultaneous inductions, it is
not difficult to construct examples of non-context-free languages definable even in
1MIC. For example, in [Dawar et al. 2001], we exhibit a IMIC formula defining the
language {cwdw | w € {a,b}*}.

Finally, to place the expressive power of MIC in the Chomsky hierarchy, we
note that every language definable in MIC can be defined by a context-sensitive
grammar. This follows from the observation made in Section 4 that any class of
finite structures defined by a formula of MIC is decidable in linear space, and the
result that all languages decidable by nondeterministic linear space machines are
definable by context-sensitive grammars.

5.2 Capturing Linear Time Languages

We have seen in Section 4 that the data complexity of evaluating MIC-formulae is
in polynomial time and linear space. It is also clear that MIC can express PTIME-
complete properties, as this is already the case for the p-calculus.

On words the situation is somewhat different. The pu-calculus defines precisely
the regular languages. On the other hand we have already seen that there exist
MIC-definable languages that are not even context-free. We will now show that
MIC can in fact define all languages that are decidable in linear time (by a Turing
machine).

An observation that we will use in the proof, but which may well be of inde-
pendent interest, is that cardinality comparisons and addition of cardinalities are
expressible in MIC on words (recall that none of these are MSO-definable).

LEMMA 5.2. There exists a formula o(X,Y) of MIC such that on every word
w, we have w, X,Y = ¢ if and only if |X| = |Y|. Similarly for |X| < |Y| and
X[+ Y] =1[Z].
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Proof. |X| # |Y] is equivalent to
ifp Z: Xt « X A Oeverywhere(X — X)
Yt < Y A Oeverywhere(Y — YT)
Z « everywhere(X — XT) @ everywhere(Y — Y™)

where @ means exclusive or. Each iteration of this system includes into X+ the
rightmost node of X that is not yet included in X . Hence after | X| iterations X+
will contain all of X. Analogously for Y. Hence the root will be included into Z if
and only if | X| # |Y]. For | X| < |Y| replace the last rule by Z < everywhere(X —
X*) A somewhere(Y A=Y T).

For expressing | X | + |Y| = |Z| a similar technique is used. We count |X| + |Y|
by the number of stages of an inflationary induction. We hence have to make sure
that nodes contained in X or Y, but not in X NY trigger one iteration, and nodes
in X NY trigger two iterations. To ensure this we use two variables U and V where
V' will always be a subset of U and there will always be at most one node in U — V.
At each iteration we put into U the rightmost node in X UY that is not yet in V
and we put into V' the rightmost node in X UY not yet in V provided it is already
in U, or it is not contained in X NY. Hence, as desired, nodes in X NY take two
iterations to be included in V' whereas nodes in (X UY) — (X NY) only take one
iteration. Otherwise the construction is the same as above. Thus, | X|+ Y| = |Z|
is expressed by the formula

—-ifp W: U <+ (X VY) A Oeverywhere((X VY) = V)
V+ (X VY)AQeverywhere((X VY) = V) A(UV-XV-Y)
Z% < Z A Oeverywhere(Z — Z7)
W « everywhere((X VY) = V) & everywhere(Z — Z7T).

THEOREM 5.3. Every language L € DTIME(O(n)) is MIC-definable.

Proof. Let M be a deterministic Turing machine, that works on strings w =
wp ... wp—1 € A* and decides after at most kn moves, whether w € L (for some
fixed constant k).

To show that L is MIC-definable we view input words w as (Kripke) structures
with universe {n — 1,...,0}, the predecessor relation F = {(i + 1,i) : i < n — 1},
and atomic propositions (unary predicates) P,, for each symbol a € A encoding the
positions of the letters. Hence w,i + 1 = ¢ and w,i + 1 = Ogp both mean that
w,i = ¢. (The use of O or & makes a difference only at point 0, where Oy is true
and Oy is false (no matter what ¢ is).

For simplicity of notation we will first treat the case where M has only one tape
and where k£ = 1, i.e. the machine makes at most n steps on words of length n.
This case is not very interesting as the machine can either not move backwards or
not read the entire input, but as we will see, the proof easily extends to the general
case.

Encoding the computation. We describe a system I' of rules of the form X; «

¢(X) (with MIC-formulae (X)) such that, for each m < n, the stage X of
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16 . A. Dawar, E. Gradel, and S. Kreutzer

the inflationary induction of I' on w describes the computation of M on w up to
time m. The description of the computation is slightly non-standard (compared to
the usual proofs of this kind) in the sense that only the current state, the moves
and the symbols written at each time are explicitly recorded by the second-order
variables, but not the storage content and the current position of the head on the
tape. Rather, the currently read symbol is at every iteration reconstructed by a
MIC-formula, based on the history of moves and written symbols up to that time.

The variables of I' are T' (for time), S, (for every state ¢ of M), L and R (for left
and right moves on the tape), and W (for every symbol used by M). The intended
interpretation, after m iterations, are:

—T™={i:i <m}.
—S; ={i <m: M is in state q at time i + 1}.
—L™ = {i < m: M makes a move to the left on the work tape at time i}.

Analogously for R™.

—W™ = {i <m: M wrote symbol b on the work tape at time i}.

Let us assume for the moment, that we have defined, for each symbol ¢, a MIC-

formula CURRENT|c], which on any word w expanded by the relations 7", S;", L™,
R™, W™ is true at position m if, and only if, the currently read symbol on the tape
is ¢. Under this assumption (which will be proved below) the construction of I is a
relatively straightforward adaption of the usual techniques in descriptive complexity
theory to our situation.
Construction of T'. Let § : Q@ x £ — @ x ¥ x {L, R} be the transition function of
M, and let gy be the initial state. For every element s € Q UX U {L, R} we denote
by 6~1(s) the set of all pairs (¢, a) € Q x X such that s is one of the components of
0(q,a). The system T consists of the rule T' <— OT that updates the time variables
and rules for each S,, W;, L and R. We describe the rules for a state variable S,.
At each iteration step, we want to include the current time m (satisfying =T A OT')
into S, if M goes into state ¢ at time m. This happens if one of the following two
conditions hold.

(1) We are at time 0, the input starts with some a such that (go,a) € §1(q).

(2) There exist (¢',a) € 6 1(q) such that M went into state ¢’ in the last step

and currently reads the symbol a.

Hence the rule for S, has the form
Sy < (Ofalse A \/ P,V
(90,0)€67"(q)
(=T AOTA \/ (0Sy ACURRENTIa])).
(¢',a)€6-(q)

The rules for L, R and W, are analogous. Further, we can assume that the

machine has a unique accepting state acc. Then M accepts a word w if, and only
if, w =ifp Saee : T

Construction of CURRENT|c]. It remains to show that the formula CURRENT](]
can indeed by constructed. What the formula needs to assert is that one of the
following two cases holds:
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(1) At the last time where M was at the current position the symbol ¢ was
written. In other words, there is some node i € W, (i.e. ¢ has been written
at time 4) such that between time i and now (i.e. time m), there have been
equally many left and right moves, and that ¢ was the last time with this
property.

(2) M has never before been at the current position, and the input symbol at
this position is c.

Here is where we use cardinality comparisons.

To express condition (1) we go systematically to all previous times (by iterating
arule T' «+ OT"), and put the current node m (which is the unique node satisfying
=T AOT) into Z if after the time i described by the current value of 7" there have
been the same number of left and right moves (i.e. |[LA=T"'| = |[RA—T"]), if at the
time described by T, symbol ¢ was written, and if since then this position has not
been visited again. All this is expressed by

ifp Z : T' «<-OT'
Z =T AOTA|LA=T'| =|RA-T'IA
somewhere(—~T' A OT' A W,)A
nowhere(T A =OT' A |L A=T'| = |R A =T')),
where nowhere(yp) := —somewhere(yp). Note that the formula in the last line is false
if, and only if, there exists a node j € T — OT" (i.e. a time j with i < j < m) such
that between ¢ and j there have been the same number of left and right moves.

Hence the last line indeed says that the position reached at times ¢ and m has not
been visited in between.

To express condition (2) note that the current position at time m is |L| —|R|. We
go systematically through all positions (by iterating a rule P + OP), and put the
current node m into Z if P describes the current position (i.e. if |P|+|L| = |R|) and
if at the node defined by P (the unique node satisfying =P A OP) the proposition
P. is true. Putting this into a formula, we obtain

ifp Z: P«+0OP
Z =T ANOT A(|P| +|L| = |R|) A somewhere(—~P AOP A P,)
which is true at the current node m described by T if, and only if, the input symbol
at the current position is c. We have to take the conjunction of this with a formula

expressing that the current position has not been visited before. This is done by
the formula

—ifp Z : T' «+OT'
Z «+(|[LA=T'| = |RA=T'))).
Z becomes true at the current time if there is some earlier time since which we

have seen the same number of left and right moves. Hence Z does not become true
if, and only if, we have never visited before the current cell.
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Arbitrary Values of k and Multi-tape Machines. The construction easily extends to
linear time computations of length kn for arbitrary values of k. We replace each
of the variables T, S;, W, L and R by a k-tuple of variables. The iteration of the
time parameter is described by rules

T, + OT;,
TQ — T1

Ty < Ti_1

The iteration of these rules on a word of length n has kn stages. At iteration
ik + j+ 1 (where i < n,j < k) the node i is put into T; . Also the rules for S, are
replaced by k-rules for variables Sy 1,...,S,, constructed in a similar way. That is
the rule for S, ;11 refers to variables Sy ; for the possible predecessor states and
the rule for S o refers to &Sy . Similarly for the other variables. Also the formula
CURRENT|¢] has to be reformulated, but this poses no essential difficulties.

Finally the extension to multi-tape Turing machines is completely straightforward
by taking additional variables for the symbols written on each tape and the moves
of each head. O

Note that we cannot expect to extend the result for linear time to quadratic time
or higher. This is because, as we have seen, every language definable in MIC is
decidable in linear space, and it is not expected that quadratic time is included in
linear space.

6. BISIMULATION-INVARIANT PTIME AND AUTOMATICITY

In [Otto 1999], Otto introduced a higher-dimensional u-calculus, denoted L, which
extends ML with an operator for forming least fixed points of arbitrary arity,
rather than just sets. He showed that L] can express every bisimulation-invariant,
polynomial-time decidable property of finite structures. He further showed that
every formula of LFP that expresses a bisimulation-invariant property is equivalent
to a formula of L{}. Combining this with the result of Kreutzer [Kreutzer 2002]
that every formula of IFP is equivalent to one of LFP and the fact that MIC is a
fragment of IFP that only expresses bisimulation-invariant properties immediately
yields the following proposition.

PROPOSITION 6.1. Every formula of MIC is equivalent to a formula of LS.

We now show that the converse of Proposition 6.1 fails. In particular, there
are properties of finite trees that are bisimulation-invariant and polynomial time
decidable that cannot be expressed in MIC.

THEOREM 6.2. There is a collection F of finite trees in PTIME, closed under
bisimulation, which is not expressible in MIC.

Proof. We take F to be the collection of all trees 7 of finite height such that if ¢;
and ¢, are any two children of the root of 7, then T,¢; ~ T ,t. Since it is known
that bisimulation equivalence is polynomial time decidable, it follows that F is in
PTiME. It is also obvious that F is closed under bisimulations.
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To show that F is not definable in MIC, assume, towards a contradiction, that
there is a formula ¢ defining it. Assume, without loss of generality, that all bound
variables in ¢ are distinct. Let these variables be Xj,..., X;. We note that if
T is a tree of height n, then for any formula ifp X : S, the closure ordinal is at
most [(n + 1), where [ is the number of variables involved in the system S. For any
k-tuple (i1, ...,1x), where each i; is in the range [0, k(n +1)], and any subformula ¢
of ¢, we write T = ¢[i1,...,ix] if ¢ holds at the root of 7, when any free variable
X in ¢ is interpreted by X;’.

If & denotes the collection of subformulae of ¢, we define the p-type of 7 to be
the function ¢7 : (k(n+1)+1)* — 2% such that ¢ € 7 (i) if, and only if, T |= ¥[i].
Now, if we denote by [T1, 73] the tree whose root has two children, one being the
root of a subtree 71, and the other being the root of a subtree 73, we can establish
the following facts:

LEMMA 6.3. If o7t = T2 then @[T T2l = ([T Ti],

Proof of Lemma 6.3. We assume, without loss of generality, that the variables
Xi1,..., X} are ordered such that, if X is bound inside the scope of the ifp operator
that binds X/, then j' < j.

Let P denote the collection of pairs (¢,7), where v is a subformula of ¢, and 7 is
a tuple in (k(n + 1) 4+ 1)* such that, if X; is bound in ¢, then i; = k(n + 1).

We prove Lemma 6.3 by showing, by an induction on the lexicographical ordering
of k-tuples in (k(n + 1) + 1)* that, for every pair in (,7) € P,

[Ti, W] E ¥ if, and only if, [T, 72] = ¢[il. (1)

Since, if X; is not free in 1, the value of i; is not relevant to whether or not
T [ +[7], this suffices to establish the lemma.

Basis: (1 = 0). We proceed by induction on the structure of ¢. If ¢ = X, since
i; =0, ¢ is false in both [T, 7i] and [T, 72]. The cases of the Boolean connectives
are trivial. If ¢ is &, we know by hypothesis that 77 |= J[7] if, and only if,
T2 = 9[1], and therefore, [T1,T1] = ¢I[7] if, and only if, [T1, T2] &= ©9[i]. Finally,
¢ cannot be of the form ifp X; : S, as X; would be a bound variable in ¢, and
therefore the pair (¢,0) is not in P.

Induction Step: Assume that for all 7’ lexicographically below 7, and all pairs
(,7") € P, (1) holds. We prove it for all pairs (¢,7) € P, again by induction
on the structure of .

Suppose that ¢ is atomic, i.e. of the form X, and let ifp X; : [--- ,X; < 9, -]
be the minimal subformula of ¢ in which X; is bound. In other words, ¥ is the
formula defining X;. Then, if [T1, 71] = X,[7], by the inflationary semantics, there
must be some 7’ lexicographically earlier than 7, such that [T, 71] = 9[7']. By the
induction hypothesis, we then have [Ti, T3] = 9[7'], and therefore [T1, 2] | X;[7].
A similar argument establishes [T, 71] = X;[7], if we assume [71, 72] = X;[7].

The case of the Boolean connectives is trivial, and if ¢ is of the form O, we
again rely on the hypothesis that the ¢-types of 71 and 7> are the same.

Finally, if ¢ is of the form ifp X; : S, where S is [---,X; « ¢,---], then
i; = k(n + 1), by the definition of P. Therefore, if [Ti,71] = ®[i], there must
be an i’ < ij such that [77,7:] = 9[7'], where 7’ is the tuple obtained from 7 by
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replacing 4; by i', where | ranges over the indices of all variables bound by the
system S, including j. The tuple 7’ is lexicographically prior to 7, and therefore, by

induction hypothesis, [T1, 73] = 9[7'], and then by the inflationary semantics, we
have [T1, Ta] = ¢[7].
This completes the proof of Lemma 6.3. O

We next observe that there is a constant ¢ (depending only on ¢) and a poly-
nomial p such that the number of distinct p-types of trees of height n is at most
¢®™) Indeed, we can take ¢ to be the cardinality of 2%, i.e. the number of sets of
subformulae of ¢, and we can take p to be (k(n + 1) + 1)*.

However, the number of distinct ~-equivalence classes of trees of height n grows
as a non-elementary function of n. This follows from the fact that, if there are e
distinct equivalence classes of trees of height n, there are 2¢ — 1 distinct classes
of trees of height n + 1. For, if 71,..., 7. is an enumeration of representatives of
the equivalence classes of trees of height n, we can form, for any non-empty set
S C{1,...,e}, a tree of height n + 1 whose root has a child which is the root of
a subtree 7; if, and only if, j € S. It is easily seen that for distinct sets S, the
resulting trees are not bisimilar.

It now follows that we can find two trees 7; and 75 which have the same @-type,
but 73 # Ta. Thus, [T1,72] ¢ F, while [T1,T1] € F, however, [T1,Ti] E ¢ if,
and only if, [T1, Ta] E ¢, contradicting the assumption that ¢ defines the class F.

O

Automaticity. Another way of understanding the proof above is in terms of au-
tomaticity. This is a measure of the complexity of a formal language, considered,
for instance, in [Shallit and Breitbart 1996].

The automaticity of a language L C ¥* is the function A;, which gives for each
n the number of states in the smallest deterministic automaton which accepts a
language that agrees with L on all strings of length at most n. Clearly, a language
L is regular if, and only if, A, is bounded by a constant. Moreover, for any language
L whatsoever, including undecidable ones, Ay, is, at worst, exponential.

Here, we observe that the language L = {ww | w € {a,b}*} used in the proof of
Theorem 5.1 has exponential automaticity, which is worst possible. To be precise,
we can show that Ay (n) > 2"/2. For, suppose to the contrary that, for some n,
Ar(n) < 272 and let A be a minimal deterministic finite automaton accepting
Ln{a,b}". Then, there must be two distinct strings w; and ws of length n/2 such
that A, starting in its initial state ends up in the same state on inputs w; and
wa. It then follows that A accepts the string w;w; if, and only if, it accepts wow; .
However, since both of these strings are of length n, and the former is in L but the
latter is not, we have a contradiction.

The observation that MIC can express languages of exponential automaticity,
which is worst possible, would suggest that this is not a good measure of complexity
for studying the expressive power of MIC. However, automaticity may be useful if we
generalise it from strings to finite trees as MIC can still express only tree languages
of at most exponential automaticity but this is no longer maximal.

Automata on trees have been extensively studied (see, for instance, [Gécseg and
Steinby 1997]). For finite trees, we define a finite automaton as a tuple 4 =
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(Q,A,0,F,S), where @ is a set of states, A is the alphabet, S C @ is a collection of
start states, F' C @ is the set of final states, and § : Q x A — 2% is the transition
function. If 7 is a finite tree, where edges are labelled by elements of A, we say
that A accepts T, if there is a labelling [ : T — @ of the nodes of T such that

—the root of T is labelled gy € S;
—if I(v) = g, then {l(w) : v % w} = 6(q,a), for each a € A; and
—for every leaf v, l(v) € F.

DEFINITION 6.4. For a class C of finite trees, closed under bisimulation, the
automaticity Ac of C is the function mapping n to the number of states in the

smallest automaton that accepts a tree of height at most n if, and only if, it is in
C.

With this definition, we can extract the observations contained in the following
two theorems from the proof of Theorem 6.2.

THEOREM 6.5. There is a polynomial time decidable, bisimulation-invariant,
collection of finite trees with non-elementary automaticity.

Proof. Let F be the class of trees used in the proof of Theorem 6.2, i.e. it is the
collection of all trees 7 of finite height such that if ¢; and ¢y are any two children
of the root, then T,t; ~ T,ts. Suppose, towards a contradiction, that there is
a k such that the automaticity Az of this class is bounded by a tower of 2s of
height k. We can then choose n > k so that the number of bisimulation equivalence
classes of trees of height n is greater than A4x(n + 1), and let A, ; be the minimal
automaton accepting trees of height n + 1 if, and only if, they are in F. Now, there
must be two trees 71 and 73 of height n such that the same set of states occurs at
children of the root in an accepting run of A,1 on [T1,7T1] as it does on [T, Tz].
It then follows that these two runs can be combined into an accepting run of A,
on [T1, T2], which is a contradiction, as this tree is not in F. O

THEOREM 6.6. FEvery class of finite trees that is definable in MIC has at most
exponential automaticity.

Proof. Let ¢ be a formula of MIC. For each n, we can construct an automaton

A=(Q,A,6,S, F) that accepts the trees of height n satisfying ¢. Here:

—(Q is the collection of all ¢-types ¢ of trees whose height is at most n;

—A is the set of actions occurring in the formula ¢;

—q' € §(q,a) if, and only if, ¢’ is the ¢-type of an a-child of the root of a tree whose
¢-type is g;

—S is the set of all p-types g such that ¢ € g(k(n + 1)); and

—F is the set of all p-types of trees with only one node.

It is easily checked that a tree 7 is accepted by this automaton if, and only if,

T = ¢. Moreover, the number of states is exponential in n, by the argument given
in the proof of Theorem 6.2. O
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7. SIMPLE INDUCTIONS

In the previous sections we have seen a couple of expressibility results for MIC.
Many of these made use of simultaneous inductions and we remarked at several
places that the formulae used there could not be defined in 1IMIC. In this section
we investigate the relationship between simple and simultaneous inductions in the
modal iteration calculus.

It is easy to see that the equivalence uXY.(¢, @) = uX.4(X, uY.@(X,Y)) (some-
times called the Bekic-principle [Arnold and Niwinski 2001]) fails in both direc-
tions when we take inflationary instead of least fixed points. However, it still is
conceivable that simultaneous inductions could be eliminated by more complicated
techniques. We show here that this is not the case, i.e. simultaneous inflationary
inductions provide more expressive power than simple ones. However, we have seen
in Section 4 that the model checking problem was PSPACE-complete even for for-
mulae without simultaneous inductions. In the second part of this section we show
that, similar to MIC, the satisfiability problem for formulae without simultaneous
inductions is still undecidable and not in the arithmetical hierarchy.

Let 1IMIC denote the fragment of MIC that does not involve simultaneous induc-
tions.

7.1 Simple vs. Simultaneous Inductions

For any ordinal «, let O, denote the structure ({8 : f < a},>). That is, the
elements of the structure are all ordinals less than or equal to a, and - is accessible
from g if 8 > v. Note that a is the maximal ordinal in the set, and we refer to it as
the root of the structure O,. For a formula ¢, we write O, = ¢ as shorthand for
Oa,a |E p. Tt is easily seen that for any ordinal 8 < a, O,,f [ ¢ if, and only if,
Op = . This is because the elements reachable by >-paths from 3 are exactly the
ordinals below 3, since > is transitive. As a final bit of notation, if X is any atomic
proposition on Oy, we write O, 8 = ¢(X ) to denote that On, 8 = @(X — {8}).

We begin with a few observations about the evaluation of inductive formulae on
the structures O, which will be useful in the proof of the following lemma. First,
we note that in Og, the maximum closure ordinal of any induction is 8 + 1. This
can be proved by a straightforward induction on the ordinals. One consequence is
that if O,, 8 |= (ifp X < ), then § € X+, Furthermore, since the truth of a
formula ¢ at 5 can only depend on elements v < 3, we have that for any sets X and
Vit XNn(B+1)=YN(B+1), then O,,8 | ¢(X) if, and only if, O,, f |= ¢(Y).

LEMMA 7.1. Let ¢ be a formula of IMIC. If X1,..., X, C w are atomic propo-
sitions such that O, = ¢©(X1,...,X}), then there is a finite N such that for all
n>N, Oy nl=eX,..., X))

Proof. Note that, by the hypothesis of the lemma w ¢ X; for any i. As we are
now working in a fixed structure O, we will say a formula ¢ holds (or is true) at
a, to mean that O,,a = ¢, which is the case if, and only if, O, E .

The lemma is proved by induction on the depth d of nesting of ifp-operators.
Basis: If d = 0, the formula contains no occurrences of the ifp operator, and
is therefore equivalent to a formula of ML, where all negations are at the atoms.
A simple induction on the structure of the formula then establishes the result.
Any atomic formula X; is false at w by hypothesis, and, by definition, for all n,
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Ou,n = X, and therefore the claim holds for all atoms. For negated atoms the
dual argument holds, i.e. any formula =X is true at w and for all n, O, n = =X;".
The case of the Boolean connectives A and V is trivial. If ¢ is $ep, then it is clear
that O, [ ¢ if, and only if, there is an N < w such that On | ¢ if, and only
if, for all n. > N, O,,n = O and therefore O,,n = ¢(X ). Similarly, if ¢ is
Oy, O, E ¢ if, and only if, for all n, O,,n E ¢ if, and only if, for all n < w,
Oy,n =0¢9(X ).

Induction step: 1If ¢ is a formula with depth d+ 1 of nesting of ifp operators, then
it is a Boolean combination of formulae 1;, each of which either has depth at most
d, is of the form ifp X < 9, where 1 is a formula of depth at most d, or is of the
form O4p or Oy, where ¢ has depth at most d + 1. We assume that negations are
always pushed inside modalities.

Clearly, if the claim holds for formulae ¥; and ¥, then it also holds for ¢; A ¥,
and ¥; V9;, just by taking N to be the maximum of N; and IN;, which witness the
claim for the two formulae. Thus, it suffices to prove the claim for the following
four cases.

(1) 9 = Oy, If O, [ 0, then there is an N < w such that O,, N E ¢, and

therefore, for all n. > N, O,,n EJ9(X ).
(2) ¥ = Oy If O, = O, then for all n, Oy, n |= 9 and therefore O,,n = I(X ).
(3) 9 = (ifp X < ). Suppose O, = 9. Then, there is a stage a such that
w¢ X% and O, = ¥(Xy,..., Xk, X*). By induction hypothesis, there is an
N such that for all n > N, O,,n = ¢(X{,...,X;,X*"). Now, for each
such n, if n is in stage a of the induction of ¥ (X ,..., X, ), then, by the
inflationary semantics O,,n |= (ifp X < ¢)(X[,..., X, ), and we are done.

3

So, suppose n is not in stage a of the induction of (X, ,..., X, ). However,
since X; Nn = X;Nn, it follows that stage a of the induction of (X", ..., X,)
on O, is exactly X*~ N (n+1) . Thus, O,,n = ¢(X;,..., X, , X*) implies
Ou,n = (ifp X <« ¢)(X7,..., X,).

(4) 9 :==(ifp X < ). Suppose O, | 9. We have to show that there is some
N < w such that for all n > N, O,,n | 9. Towards a contradiction, assume
that there are infinitely many n such that O,,n = (ifp X < ¢)(X7,..., X,).
Since O, |= —(ifp X <+ ), it is the case that O, = - (Xy,..., Xk, X¥), and
therefore, by induction hypothesis, there is an N < w such that

foralln > N,Oy,n =-(X{,..., X, X“7). (%)

As we have noted, in any Og, the closure ordinal of any induction is at most
B+ 1. Hence, for any 8 < N, O,,8 E ¥(Xi,..., Xk, X¥) if, and only if,
Ou, B FE ¢¥(X1,..., X, XN). As, by assumption, there are infinitely many n
such that O,,n = (ifp X < ¢)(X,..., X, ), there are infinitely many such
greater than N. For each of these, there must be a least finite ordinal a,, such
that O,,n = ¢(X[,..., X, ,X%). We distinguish two cases:

(a) There is a finite ordinal « that is the upper bound of all such a,. In
this case, we can show that there is a finite bound on the elements sat-
isfying (ifp X « ¢)(X;,..., X, ), from which the claim follows. To
establish the finite bound, we show by induction on the stages, that
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each stage X7 contains only nodes up to some finite height. Clearly,
this is the case for 3 = 0, as X? is empty. Inductively, if X7 is
bounded in height, then there is a formula of ML defining the set. Sub-
stituting this formula for X in ¢, we obtain a formula v’ equivalent
to ¢(XP), with ifp nesting depth d. Therefore, by the main induc-
tion hypothesis, since O, |= ~¢'(Xy,..., X}), there is an M such that
Ou,n =" (X7 ,..., X, ) for all n > M. It follows that for all n > M,
n ¢ XA+, This implies that there is a finite bound on the height of the
elements in X°, contradicting the assumption that there are infinitely
many n such that O,,,n = (ifp X < ¢)(X,..., X, ).

(b) There is no finite bound on the stages a,,. Thus, for any finite stage «
there is some a,, > a with n ¢ X and O,,n = ¢¥(X;,..., X, X").
Choose a and a,, such that a,, > N. Let ¢ be the minimal node such that
cd X% but ¢ € XP for some 8 > a,. Clearly, for every node m < a,,
m € X% if, and only if, m € X¢. It follows that ¢ > a, and thus ¢ > N.
Further, as ¢ was chosen minimal,

{m:m<eNX ={m:m<c}nN X,

i.e. on the set of nodes reachable but different from ¢ the fixed point of
X is reached at stage a,. Therefore,

Ou,c =Xy ,..., X, X%) if, and only if,
Ou,el=(Xy, .., X, X97).

As ¢ > a, > N and, by (%), O,,c £ (X, ,..., X, , X“7) we get that

c & XP for some B > a,, contradicting the assumption.

O

It is a straightforward consequence of this lemma that the formula finite-height
defined in Sect. 3 is not equivalent to any formula of 1IMIC. This is because O,
is bisimulation equivalent to a well-founded tree of height a. Suppose there was a
formula ¢ € IMIC equivalent to finite-height. By definition, O, = ¢ and therefore
there is some N < w such that O, = - for all n > N. As these O, are of finite
height, we get a contradiction to ¢ being equivalent to finite-height. We hence have
established the following separation result.

THEOREM 7.2. MIC is strictly more powerful than 1MIC.

While the separation given in Theorem 7.2 is proved on an infinite structure, the
proof of Lemma 7.1 actually shows that the separation holds even when we restrict
ourselves to finite structures. For, consider the collection of finite structures O,,,
for all finite ordinals nn. The construction in Lemma 7.1 shows that for any formula
¢ of IMIC, the set {n : O, |= ¢} is either finite or co-finite. Now, consider the
formula 7

ifpY: X+ 00X
Y «+ =X AOX.
It can be verified that O, = 7 if, and only if, n is even. Hence, 7 is not equivalent
to any formula of 1MIC.
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The notation 1IMIC was chosen, naturally, to suggest that we can define, for any
natural number £, the fragment kMIC consisting of those formulae of MIC in which
no ifp operation is defined over a system with more than & simultaneous formulae.
The natural question that arises is whether increasing k gives rise to a hierarchy
of increasing expressive power. We do not, at the moment, know of a method to
settle this question one way or the other.

7.2 Infinity Axioms and the Satisfiability Problem for 1IMIC

We have seen above that simple inductions in MIC provide less expressive power
than simultaneous inductions. We show now that even without simultaneous in-
ductions the finite model property fails and the satisfiability problem remains un-
decidable, in fact not even arithmetical.

Essentially, we use the same method as in Section 3 to reduce the decision prob-
lem for the first-order theory of arithmetic to Sat(1MIC). The proofs there relied
crucially on simultaneous inductions on two variables X and Y and we have seen
above that the formulae used there are not equivalent to any formulae of 1MIC.
Instead, we use the following trick to simulate the simultaneous induction. Let T
be a tree of height w as used in Section 3. To simulate an induction on two variables
we recursively make two copies of the successors of each node in 7 and label the
root of one of the copies by the proposition a and the root of the other by b. Let 7'
be this new tree. Thus, every node in 7' of finite height is labelled by a or b and
the height of each of these nodes u equals the length of the longest path entirely
labelled by a’s from a successor of u to a leaf which, again, is the same as the length
of the longest path entirely labelled by b’s from a successor of u to a leaf. On this
model, we can simulate the simultaneous induction on two variables X and Y by
an induction on one variable Z by letting Z contain all copies of nodes contained
in X which are labelled by a and all copies of nodes contained in Y labelled by b.

We now turn to the axiomatisation of this tree model. Besides the proposition
symbols a and b already mentioned there are two other propositions, namely w,
with which only the root is labelled, and s, labelling only the direct successors of
the root. As in Section 3, we restrict attention to well-founded tree models, i.e.
tree models of the formula ¢ X.0X.

We first define a formula label ensuring that its models are labelled as described
above. Let the formula label be defined as

label := w A —a A =b A =s A Os A OOeverywhere(—s) A
Oeverywhere(—w A (aV b) A =(a A D)),
where everywhere is defined as in Section 3 as everywhere(p) := ifp X < pADOX.

PROPOSITION 7.3. In any model T,v of label the root and only the root v is
labelled by w, all direct successors of v, and only those, are labelled by s, and all
nodes reachable but different from v are either labelled by a or by b but not by both.

The next step is to ensure that the models we are going to describe are of height
w. Towards this end, we first introduce some notation.

DEFINITION 7.4. A node labelled by a is called an a-node. An a-path between
two nodes is a path between them consisting only of a-nodes. Finally, we inductively
define the a-height a of an a-node u as follows.
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—The a-height of leaves labelled by a is defined to be 0.
—For all other a-nodes, their a-height is defined as the least strict upper bound of
all B such that B is the a-height of a successor of u labelled by a.
The notion of b-nodes, b-paths, and the b-height of a node is defined analogously.
Let the formula 9 be defined as
9:=(0bA0Ob— X))V (aAO(a— X)).
A simple induction on the stages establishes the following lemma.

LEMMA 7.5. Let T be a tree. Then, for all a, the a-th stage X© of the induction
on 9 contains exactly the nodes of a- or b-height less than a. O

Consider the formula
infinity := label A everywhere(Ga +» Ob) Ainf A —ifp X + ¢,
where
inf :=—ifp X < (bAObAO(b — Ofalse)) V .
and

=9V (wAOb—->X)ANO(aN-X))V
(wAO(a—= X)ANO(bA-X)).

LEMMA 7.6. Let T,v |= label A everywhere($a <+ Ob) and let vy, := sup{a : a is
the a-height of a direct successor of v} and v, := sup{a : a is the b-height of direct
successor of v}.

(i) T,vE-ifp X « ¢ if, and only if, va = V.
(i) T,v |= inf if, and only if, v, and ~y, are finite and v, + 1 = 7, or both are
infinite and v, = Vp.

Proof.

(i) For Part (i), we show that the root v satisfies ifp X « ¢ if, and only if,
there is a b-successor of v whose b-height is greater than the a-height of any
a-successor of v or vice versa.

Towards the forth direction, suppose 7T,v |= ifp X <+ ¢. Thus, there is
a stage « such that (7,X%),v = ¢. As T is a model of the formula label
above, this implies

(T, X*),vE (wAOb— X)AO(aA=X)) V
(wAO(a = X)AO(bA-X)).

Suppose (7,X*),v = (wAOb = X)AO(aA—X)). Thus, using Lemma
7.5, all b-successors of v are of height less than a, whereas there is at least
one a-successor whose height is greater than or equal to a. The case where
(T, X%*),v = (wAO(@— X)AO(bA=X)) is analogous.

For the converse, if v has a b-successor whose b-height « is greater than the
a-height of any a-successor, then X <% contains all a-successors but not all
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b-successors of v. Thus, v would be in X®. The case where there is an a-
successor of v whose a-height is greater than the b-height of any b-successor
of v is analogous.

Thus we have shown that the root v satisfies ifp X ¢« ¢ if, and only if,
there is a b-successor of v whose b-height is greater than the a-height of any
a-successor of v or vice versa. This proves the first part of the lemma.

To establish Part (i7), we first prove by induction on the finite stages, that
for all 0 < n < w, X™ contains exactly the a-nodes of height less than n and
the b-nodes of height less than or equal to n. For the case of nodes labelled
by a this follows immediately from Lemma 7.5 as the additional disjuncts
only affect b-nodes (and the root v.)

Let n = 1. Obviously, X! contains all b-nodes of height 0 and all b-nodes
satisfying Otrue A OOfalse. Clearly, such a node u must be of height 1, as
it only has leaves as successors. As 7 is a model of the formula label, this
means that « must have a b-successor and thus is of b-height 1.

For the induction step assume the claim has already been proved for all
n' < n. An argument as in the proof of Part (i) above shows that X"
contains all b-nodes of b-height less than or equal to n. This finishes the
induction.

Now consider the stage w. We have seen that X“ contains all nodes of finite
a- or b-height and the same argument as in Lemma 7.5 shows that for all
a > w, X% contains all nodes of a- or b-height less than a.

Now suppose that the root v of the tree occurs in X*°. There must be a
stage o + 1 such that v occurs in X2*! but not in X, ie. (7T,X%),v |
(wAOb—>X)AO(aA=-X))V(wAO(a— X)ANO(A-X)). Suppose that
(T, X%, v = (wAOd(b = X)AO(aA—-X)). Thus, there is an a-successor of v
whose a-height is greater than the b-height of any b-successor. If « is infinite,
this means that v, > 5. If « is finite, this means that all b-successors of v
are of height less than or equal to o whereas there is an a-successor of v of
height greater than or equal to a. This implies that vy, + 1 > ;.

On the other hand, if (7, X*),v E (wAO(a = X)AO(bA—X)), this implies
that v, > 7, if a is infinite and v > 7, + 1 otherwise.

This proves that if 7,v = inf then 7, and 7, are finite and v, + 1 = =y, or
both are infinite and 7, = 7;. The converse direction follows immediately.

O

A simple consequence of the lemma is the following corollary.

COROLLARY 7.7. For every tree T and node v, if T, v |= infinity then the height

of v is infinite. Thus, IMIC does not have the finite model property.

To finish the axiomatisation of the intended model, we have to ensure that the

models of our formula not only have infinite height but height exactly w and further,
that for all nodes of finite height, all of their successors are of the same height.

To formalise that the tree has height exactly w we say that the root is of infinite

height but none of its successors is. For this let inf; := inflw/s, b/(bA—s),a/(aA=s)]
be the result of replacing in the formula inf above each w by s, each b by (b A —s),
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and each a by (a A =s). Analogously, define ¢, := p[w/s,b/(b A —s),a/(a A =s)].
Then a similar argument as in Lemma 7.6 shows the following.

LEMMA 7.8. Let the formula w-height be defined as
w-height := infinity A O=(inf, A -ifp X + ¢5).

Then for any tree T with root v, if T,v = w-height then the height of v is infinite
but the height of all successors of v is finite. Thus, the height of v is exactly w.

Finally, we formalise that for all nodes of finite height all of their successors are
of the same height.

LEMMA 7.9. Consider the formula 1) defined as
Yi=-ifp X+ (twAOX)V(wAifp ¥V + OV V(~wAOX AO-X)).

Let T,v |E w-height A1) be a tree. Then, for all nodes u of finite height all direct
successors of u are of the same height.

Proof. As T,v |= w-height, no node of finite height is labelled by w. A simple
induction on the stages proves that at stage n € w, X" contains all nodes of height
less than n. Now assume that at some stage n the root v is included into X, i.e. v
satisfies ifp ¥V + OY V (—mw A OX A &=X). Thus there is a node u whose height
is greater than n but has a successor in X", i.e. one whose height is less than n,
and a successor not in X", i.e. one whose height is greater than or equal to n.

Conversely, if there is a node u of some finite height n which has a successor of
height less than n — 1, then GX A &—X becomes true at stage n — 1 and the root
v is included into X™.

Together, we get that 7, v = ¢ if, and only if, for all nodes u of finite height, all
of its successors are of the same height. O

We now turn to the reduction of the decision problem for the first-order theory of
arithmetic to the satisfiability problem for IMIC. In the remainder of this section
we only consider models of the formula w-height A 4. As in Section 3, we code
natural numbers by sets of nodes of certain height. The difference is, that here a
number n € w is coded by the set of nodes u of height less than or equal to n. In
particular, the number 0 is not coded by the empty set but by the set of leaves.
To simplify the presentation, we do not reduce the first-order theory of arithmetic
to Sat(1MIC) directly but first to the decision problem for the first-order theory of
the following structure.

DEFINITION 7.10. Let M := (N, +,+,0,1) be the structure over the universe N,
where the constants Oml, 1% and the function +2 are interpreted as in the standard
model M of arithmetic, and -® is interpreted as follows: s ™ t =0 if s = 0 or
t =0, and otherwise s ™ t:= 5% (t 4+ 1).

Clearly, the first order theories of 91 and 91 can be reduced to each other. Thus
reducing the decision problem for the theory of 9 to Sat(1MIC) shows this problem
to be undecidable.
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Given the encoding of natural numbers explained above, consider the formula
plus(S,T) defined as

plus(S,T) := (O(b — v¥4) A —everywhere(T < Ofalse) A
—everywhere(S < Ofalse)) V
Ofalse V (everywhere(T <> Ofalse) A S) V
(everywhere(S < Ofalse) AT

where 14 is defined as

Yy =ifp X« (aAO(a— X))V(OHAS)V
(bADO(b — X) A everywhere(OOC(a A X) — T)).

LEMMA 7.11. If S and T encode natural numbers s and t as described above,
then plus(S,T') encodes the sum s + t.

Proof. Let s and t be the natural numbers coded by the sets S and T respectively.
Assume s,t > 0 and consider the sub-formula ;. We claim that at stage i > 0,
X! contains all a-nodes of height less than ¢ and all b-nodes of height at most
min{s +i — 1,s + ¢ — 1}. For a-nodes, this is trivial. The claim for the b-nodes is
proved by induction on the stages i > 0.

—Clearly, X! contains exactly the b-nodes contained in S and thus, as ¢t > 1, only
nodes of height at most s + ¢ — 1.

—Now assume that for 0 < i < ¢ the claim has been proved, i.e. X contains all a-
nodes of height less than ¢ and all b-nodes of height at most s+ (i —1). Therefore,
the sub-formula everywhere(O<O(a A X) — T') is globally true and all b-nodes of
height at most s + 4 are included into X*!, as they satisfy b A O(b — X).

—Now suppose i = t. Thus, X? contains all a-nodes of height less than ¢. Clearly,
the sub-formula b A O(b — X) is true only for b-nodes of height at most s + (¢ —
1) + 1. Let u be a node of height exactly s + ¢ and thus, as s > 1, greater than
i. Then there is a node of height ¢ + 1 in the subtree rooted at u which satisfies
OO (a A X) but not T'. Therefore, everywhere(O0O(a A X) — T') is false at u and
u is not included into X*+1,

—The same argument shows that at no higher stage, a b-node of height greater
than s +¢ — 1 can be added to the fixed-point. This proves the claim.

Now consider the formula plus(S,T). By assumption, s,¢ > 0 and therefore the
formulae —everywhere(T <> Ofalse) and —everywhere(S <> Ofalse) are true for all
nodes except for the leaves. Further, we have seen that the sub-formula O(b — ;)
becomes true for all nodes whose b-successors are of height less than or equal to
s+t—1 and, as we are working in models of the formula w-height A %, for all nodes
of height less than or equal to s + t.

Now suppose s = 0. Then —everywhere(S + Ofalse) is false for all nodes except
for the leaves. Thus, OfalseV everywhere(S < Ofalse) AT defines all nodes contained
in T and plus(S,T) defines the set of nodes representing the sum 0+ ¢ = ¢t. The
case where ¢t = 0 is analogous. This finishes the proof. O

We now turn to the formalisation of multiplication in 1IMIC. For this, consider
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the formula

times(S,T) := Ofalse V (—everywhere(S < Ofalse) A
—everywhere(T < Ofalse) A O(b — 1)),

where

Yo :=ifp X < (aAD(a— X)V (bAplus(D(b - X),S) A
everywhere (OO (a A X)) — T)).

LEMMA 7.12. If S and T encode natural numbers s and t as described abowve,
then times(S, T) encodes the product s - (t + 1) if s,t > 0 and 0 otherwise.

Proof. First, suppose that s or ¢t equals 0. In this case, one of the sub-formulae
—everywhere(S < Ofalse) or ~everywhere(T « Ofalse) becomes false on all nodes
except the leaves and therefore the formula times(S,T) is true only on the leaves
and encodes the result 0.

Now suppose s,t > 0 and consider the induction on X in the sub-formula ),.
We claim that at stage i > 0, X’ contains all a-nodes of height less than i and all
b-nodes of height at most min{i-s+i—1,¢- s+t — 1}. For the a-nodes, the claim
is obvious. Now consider a node labelled by b.

—In the first stage, X! contains all b-nodes satisfying plus(d(b — X), S). As X is
empty, O(b — X) is true only at the leaves and thus the formula plus evaluates
to S.

—Now assume the claim has been proved for stage i. If i < ¢, then X’ contains a-
nodes of height less than i < ¢. Thus, the sub-formula everywhere(d<C(aA X)) —
T) is true for all nodes. By induction hypothesis, X! contains exactly the b-nodes
of height less than or equal to i-s+4— 1 and therefore O(b — X) becomes true at
all nodes of height at most i-s+i. By Lemma 7.11, the formula plus(0d(b — X), S)
is then true for all nodes of height (i-s+i+s)=(i+1)-s+ (i +1)—1.

—Now suppose i = t. X' contains exactly all a-nodes of height less than ¢ and
all b-nodes of height at most #- s+t — 1. Let u be any b-node not in X, i.e.
of height greater than ¢ -s 4+ ¢ — 1. Then there is a node of height ¢ + 1 in
the subtree rooted at u satisfying OO (a A X) but not 7. Thus, the formula
everywhere(O0OC(a A X) — T) is false at u and w is not added to the fixed-point.
The same argument, of course, holds for all stages i > t and thus, in restriction
to the b-nodes, the fixed point of X has been reached. This finishes the proof of
the claim.

Now consider the formula times. By assumption, s,t > 0 and therefore the sub-
formulae —everywhere(S < Ofalse) and —everywhere(T < Ofalse) are both true
for all nodes except the leaves. Thus, times(S,T) becomes true for all leaves — as
they satisfy Ofalse — and for all nodes whose b-successors satisfy ., i.e. are of
height ((¢t + 1) - s — 1). Together, times(S,T) represents (¢ + 1) - s. O

The following corollary shows that the evaluation of polynomials in the structure

N’ can be reduced to the evaluation of 1IMIC formulae.

COROLLARY 7.13. For every polynomial f(x1,...,x,) over M with coefficients
in the natural numbers there exists a formula ¥¢(X1,...,X,) € IMIC such that for
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every tree T, v |= w-height A\ and all sets S, ..., S, encoding numbers s1,...,s, €
w

[7 (St ST = {v:hw) < 7 (s1,...,5,)},
where f? (s1,...,s,) denotes the result of f in N

Proof. The proof is by induction on f.

—)g := Ofalse.
—)1 := OOfalse.
—, = X.

—f4q 1= plus[S/yy, T /1p,], i.e. the formula obtained by replacing in plus(S,T)
the variables S and T by ¢ and 1,, respectively.

—)g.g 1= times[S/v¢, T /1))
O

THEOREM 7.14. For every FO-sentence ¢ in the vocabulary {+,-,0,1} of arith-
metic, there exists a formula ¢* € IMIC such that 1 is true in N if, and only if,
Y* is satisfiable.

Proof. By induction on formulae ¢ (Z) € FO[+,,0,1] we construct a formula
Y*(Z) € IMIC such that for all m € w with encodings N, ¢(n) is true in N’ if, and
only if, ¢*(N) is true at the root v of any model 7, v of the formula w-height A ¢
above.

We have already seen how to transform polynomials over 9 and equality z = y
can be expressed by everywhere(X <> Y). What remains is to translate quantifiers.
Let ¢(y) := 3z ¢(x,y1,...,yk) be a formula in FO[+,-,0,1]. By induction we get
a corresponding formula ¢*(X,Yy,...,Y;) in IMIC. Let

(V) :=wAifp X + (~wADOX)V (wA ¢*(X/~w A OX)).
Let 7,v be any model of w-height A . We claim that for all numbers 7 encoded

by sets N, ¢(y) is true in N if, and only if, 7,v = ¢*(N). A simple induction
on the stages proves that at stage i < w, X' contains all a and b-nodes of height
less than i. Further, X°° contains the root v if at some stage X, the formula ¢*
becomes true at the root where the variable X has been replaced by —w A OX, i.e.
at each stage i, the variable X in ¢* is interpreted by the set of nodes of height < i.
Thus, in the course of the induction, ¢* is evaluated for all sets encoding natural
numbers and, by induction hypothesis, becomes true at the root if, and only if, for
at least one i € N, ¢(i,7), and thus ¢ (7), becomes true. This proves the claim and
finishes the proof of the theorem. O

COROLLARY 7.15. The satisfiability problem for 1MIC is undecidable. In fact,
it is not even in the arithmetical hierarchy.

8. CONCLUSION

While extensions of first-order logic by inflationary fixed points have been studied
for a long time in finite model theory we have introduced and investigated here for
the first time an analogous extension of propositional modal logic.
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The pictures that emerges from our studies is actually quite surprising. While
in finite model theory, least fixed point logic (LFP) and inflationary fixed point
logic (IFP) behave very similarly, both concerning expressive power and algorith-
mic properties, the corresponding modal fixed point logics L, and MIC are very
different.

—The modal iteration calculus MIC is much more expressive than the modal u-
calculus L. In particular, MIC cannot be embedded into monadic second-order
logic and does not have the finite model property.

—On the other side, one pays a prize for this greater expressive power: MIC is
algorithmically much less manageable. The satisfiability problem for MIC is
highly undecidable and the model checking problem is PSPACE-complete.

—There are other structural differences. Perhaps the most interesting one is that
simultaneous inflationary inductions cannot be reduced to nested simple induc-
tions.

Beyond the theoretical interest in the comparison of monotone and non-monotone
inductions, our results show that MIC is not a useful logic for the common ap-
plication areas of L, like automatic verification, where the expressive power of
(fragments of) L, suffices for most applications and where efficient model check-
ing algorithms are essential. It will be interesting to see whether inflationary fixed
points in modal logic will just remain a theoretical curiosity, or whether there will
be a practical use for very powerful modal logics like MIC.
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