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2 � A. Dawar, E. Gr�adel, and S. Kreutzer�rst order logi in muh the same way as L� relates to propositional modal logi.However, a number of other �xed point operators have been extensively studied in�nite model theory, inluding inationary, partial, nondeterministi and alternating�xed points. All of these have in ommon that they allow the onstrution of �xedpoints of operators that are not neessarily monotone.Furthermore, a variety of fragments of the �xed point logis formed have beenstudied, suh as existential and strati�ed fragments, bounded �xed point logis,transitive losure logi and varieties of Datalog. Thus, there is a rih theory of thestruture and expressive power of �xed point logis on �nite relational struturesand, to a lesser extent, on in�nite strutures.In the present paper, we take a �rst step in the study of extensions of proposi-tional modal logi by operators that allow us to form �xed points of non-monotoneformulae. We fous on the simplest of these, that is the inationary �xed point(also sometimes alled the iterative �xed point). Though the inationary �xedpoint extension of �rst order logi (IFP) is often used interhangeably with LFP,as the two have the same expressive power on �nite strutures, we show that in theontext of modal logi, the inationary �xed point behaves quite di�erently fromthe least �xed point.Least and Inationary Indutions. We begin by reviewing the known results on thelogis LFP and IFP.(1) On �nite strutures, LFP and IFP have the same expressive power [Gurevihand Shelah 1986℄. A reent result shows that this equivalene of LFP andIFP also extends to in�nite strutures (see [Kreutzer 2002℄).(2) On ordered �nite strutures, LFP and IFP express preisely the propertiesthat are deidable in polynomial time.(3) Simultaneous least or inationary indutions do not provide more expressivepower than simple indutions.(4) The omplexity of evaluating a formula  in LFP or IFP on a given �nitestruture A is polynomial in the size of the struture, but exponential in thelength of the formula. For formulae with a bounded number k of variables,the evaluation problem is Pspae-omplete [Dziembowski 1996℄, even fork = 2 and on �xed (and very small) strutures. If, in addition to boundingthe number of variables one also forbids parameters in �xed point formulae,the evaluation problem for LFP is omputationally equivalent to the modelheking problem for L� [Gr�adel and Otto 1999; Vardi 1995℄ whih is knownto be in NP \ Co-NP, in fat in UP \ Co-UP [Jurdzinski 1998℄, and hardfor Ptime. It is an open problem whether this problem an be solved inpolynomial time. The model heking problem for bounded variable IFPdoes not appear to have been studied previously.We also note that even though IFP does not provide more expressive power thanLFP on �nite strutures, it is often more onvenient to use inationary indutionsin expliit onstrutions. The advantage of using IFP is that one is not restrited toindutions over positive formulae. A non-trivial ase in point is the formula de�ningan order on the k-variable types in a �nite struture, an essential ingredient of theproof of the Abiteboul-Vianu Theorem, saying that least and partial �xed pointACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 3logis oinide if and only if Ptime = Pspae (see [Abiteboul and Vianu 1995;Dawar 1993; Dawar et al. 1995; Ebbinghaus and Flum 1999℄). Furthermore, IFPis more robust, in the sense that inationary �xed points are well-de�ned, evenwhen other, non-monotone, operators are added to the language (see, for instane,[Dawar and Hella 1995℄).Inationary Indutions in Modal Logi. Given the lose relationship between LFPand IFP on �nite strutures, and the importane of the �-alulus, it is natural tostudy also the properties and expressive power of inationary �xed points in modallogi. In this paper, we undertake a study of an analogue of IFP for modal logi.We de�ne a modal iteration alulus, MIC, by extending basi multi-modal logiwith simultaneous inationary indutions. While deferring formal de�nitions untilSetion 2, we begin with an informal explanation.In L�, we an write formulae �X:', whih are true in state s of a transitionsystem K if, and only if, s is in the least set X satisfying X $ ' in K. We an dothis, provided that the variable X appears only positively in '. This guaranteesthat ' de�nes a monotone operator and has a least �xed point. Moreover, the�xed point an be obtained by an iterative proess. Starting with the empty set,if we repeatedly apply the operator de�ned by ' (possibly through a trans�niteseries of stages), we obtain an inreasing sequene of sets, whih onverges to thedesired least �xed point. If, on the other hand, ' is not positive in X , we an stillde�ne an inreasing sequene of sets, by starting with the empty set, and iterativelytaking the union of the urrent set X with the set of states satisfying '(X), andthis sequene must eventually onverge to a �xed point (not neessarily of ', butof the operator that maps X to X _ '(X)). More generally, we allow formulaeifp Xi : [X1  '1; : : : ; Xk  'k℄ that onstrut sets by a simultaneous inationaryindution. At eah stage �, we have a tuple of sets X�1 ; : : : ; X�k . Substituting theseinto the formulae '1; : : : ; 'k we obtain a new tuple of sets, whih we add to theexisting sets X�1 ; : : : ; X�k , to obtain the next stage.It is lear that MIC is a modal logi in the sense that it is invariant underbisimulation. In fat, on every lass of bounded ardinality, inationary �xed pointsan be unwound to obtain equivalent in�nitary modal formulae. As a onsequene,MIC has the tree model property. It is also lear that MIC is at least as expressiveas L�. The following natural questions now arise.(1) Is MIC more expressive than L�?(2) Does MIC have the �nite model property?(3) What are the algorithmi properties of MIC? Is the satis�ability problemdeidable? Can model heking be performed eÆiently (as eÆiently as forL�)?(4) Can we eliminate, as in the �-alulus and as in IFP, simultaneous indutionswithout losing expressive power?(5) What is the relationship of MIC with monadi seond-order logi (MSO) andwith �nite automata? Or more generally, what are the `right' automata forMIC?(6) Is MIC the bisimulation-invariant fragment of any natural logi (as L� is thebisimulation-invariant fragment of MSO [Janin and Walukiewiz 1996℄)? ItACM Transations on Computational Logi, Vol. V, No. N, November 2002.



4 � A. Dawar, E. Gr�adel, and S. Kreutzerhas reently been proved that the bisimulation invariant fragment of the mostnatural andidate for this, the monadi fragment of inationary �xed-pointlogi, has muh greater expressive power than MIC [Dawar and Kreutzer2002℄. Thus, if suh a logi exists, its expressive power must be somewherebetween MSO and monadi IFP.We provide answers to most of these questions. From an algorithmi point ofview, most of the answers are negative. From the point of view of expressiveness,we an say that in the ontext of modal logi, inationary �xed points providemuh more expressive power than least �xed points, and MIC has very di�erentstrutural properties to L�. In partiular, we establish the following results:(1) There exist MIC-de�nable languages that are not regular. Hene MIC is moreexpressive than the �-alulus, and does not translate to monadi seond-order logi.(2) MIC does not have the �nite model property.(3) The satis�ability problem for MIC is undeidable. In fat, it is not even inthe arithmeti hierarhy.(4) The model heking problem for MIC is Pspae-omplete.(5) Simultaneous inationary indutions do provide more expressive power thansimple inationary indutions. Nevertheless the algorithmi intratabilityresults for MIC apply also to MIC without simultaneous indutions.(6) There are bisimulation-invariant polynomial time properties that are notexpressible in MIC.(7) All languages in Dtime(O(n)) are MIC-de�nable.No doubt, these properties exlude MIC as a andidate logi for hardware veri�-ation. On the other hand, the present study is an investigation into the strutureof the inationary �xed point operator and may suggest tratable fragments of thelogi MIC, whih involve ruial use of an inationary operator, just as logis likeCTL and alternation-free L� arve out eÆiently tratable fragments of L�. Inany ase, it delineates the di�erenes between inationary and least �xed pointonstruts in the ontext of modal logi.In the rest of this paper, we begin in Setion 2 by giving the neessary bakgroundon modal logi and �xed points, and giving the de�nition of MIC, along with anexample that illustrates how this alulus has higher expressive power than L�.Setion 3 establishes that MIC fails to have the �nite model property and that thesatis�ability problem is highly undeidable. In Setion 4 we investigate questionsof the omputational omplexity of MIC in the ontext of �nite transition systems.We show that the model heking problem is Pspae-omplete and that the lass ofmodels of any MIC formula is deidable in both polynomial time and linear spae.In Setion 5 we investigate the expressive power of MIC on �nite words, establishingthat there are languages de�nable in MIC that are not ontext-free, and that everylinear time deidable language is expressible in MIC. In Setion 6 we prove thatthere are polynomial time bisimulation-invariant properties that are not expressiblein MIC. Further, we disuss the automatiity of MIC-de�nable sets of �nite wordsand �nite trees. Finally, in Setion 7 we prove that 1MIC, the fragment of MICthat uses only simple indution, has less expressive power than full MIC.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 52. THE MODAL ITERATION CALCULUSBefore we de�ne the modal iteration alulus, we briey reall the de�nitions ofpropositional modal logi ML and the �-alulus L�.2.1 Propositional Modal Logi.Transition Systems. Modal logis are interpreted on transition systems (also alledKripke strutures). Fix a set A of ations and a set W of atomi propositions. Atransition system for A andW is a struture K with universe V (whose elements arealled states) binary relations Ea � V � V for eah a 2 A and monadi relationsp � V for eah atomi proposition p 2 W (we do not distinguish notationallybetween atomi propositions and their interpretations.)Syntax of ML. For a set A of ations and a set W of proposition variables, theformulae of ML are built from false , true and the variables p 2 W by means ofBoolean onnetives ^, _, : and modal operators hai and [a℄. That is, if  is aformula of ML and a 2 A is an ation, then hai and [a℄ are also formulae ofML. If there is only one ation in A, one simply writes 2 and 3 for [a℄ and hai,respetively.Semantis of ML. The formulae of ML are evaluated on transition systems ata partiular state. Given a formula  and a transition system K with state v, wewrite K; v j=  to denote that the formula  holds in K at state v. We also write[[ ℄℄K to denote the set of states v, suh that K; v j=  . In the ase of atomipropositions,  = p, we have [[p℄℄K = p. Boolean onnetives are treated in thenatural way. Finally for the semantis of the modal operators we put[[hai ℄℄K := fv : there exists a state w suh that (v; w) 2 Ea and w 2 [[ ℄℄Kg[[[a℄ ℄℄K := fv : for all w suh that (v; w) 2 Ea, we have w 2 [[ ℄℄Kg:Hene hai and [a℄ an be viewed as existential and universal quanti�ers `along a-transitions'.For bakground on propositional modal logi, we reommend [Blakburn et al.2001℄.2.2 The �-alulus L�.Syntax of L�. The �-alulus extends propositional modal logi ML by the fol-lowing rule for building �xed point formulae: if  is a formula in L� and X is apropositional variable that ours only positively in  , then �X: and �X: areL� formulae.Semantis of L�. A formula  (X) with a propositional variableX de�nes on everytransition system K (with state set V , and with interpretations for free variablesother than X ourring in  ) an operator  K : P(V ) ! P(V ) assigning to everyset X � V the set  K(X) := [[ ℄℄K;X = fv 2 V : (K; X); v j=  g:As X ours only positively in  , the operator  K is monotone for every K, andtherefore, by a well-known theorem due to Knaster and Tarski, has a least �xedpoint lfp( K) and a greatest �xed point gfp( K). Now we put [[�X: ℄℄K := lfp( K)and [[�X: ℄℄K := gfp( K):ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



6 � A. Dawar, E. Gr�adel, and S. KreutzerLeast (and greatest) �xed points an also be onstruted indutively. Given aformula �X: (X), we de�ne for eah ordinal �, the stage X� of the lfp-indutionof  K by X0 := ;, X�+1 := [[ ℄℄(K;X�), and X� := S�<�X� if � is a limit ordinal.By monotoniity, the stages of the lfp-indution inrease until a �xed point isreahed. The �rst ordinal at whih this happens is alled the losure ordinal of theindution. By ordinal indution, one easily proves that this indutively onstruted�xed point oinides with the least �xed point. The ardinality of a losure ordinalannot be larger than the ardinality of K.For any formula ', the formula �X:' is equivalent to :�X::'(:X), where '(:X)denotes the formula obtained from ' by replaing all ourrenes of X with :X .Simultaneous Fixed Points. There is a variant of L� that admits systems of si-multaneous �xed points. These do not inrease the expressive power but some-times allow for more straightforward formalisations. Here one assoiates with anytuple  = ( 1; : : : ;  k) of formulae  i(X) =  i(X1; : : : ; Xk), in whih all our-renes of all Xi are positive, a new formula ' = �X: . The semantis of ' isindued by the least �xed point of the monotone operator  K mapping X to X 0where X 0i = �v 2 V : (K; X); v j=  ig. More preisely, K; v j= ' i� v is an ele-ment of the �rst omponent of the least �xed point of the above operator. It isknown that simultaneous least �xed points an be eliminated in favour of nestedindividual �xed points (see e.g. [Arnold and Niwi�nski 2001, page 27℄). Indeed,�XY : [ (X;Y ); '(X;Y )℄ is equivalent to �X: (X;�Y:'(X;Y )), and this equiva-lene generalises to larger systems in the obvious way.Bisimulations and Tree Model Property. Bisimulation is a notion of behaviouralequivalene for transition systems. Modal logis, like ML, CTL, the �-alulus et.do not distinguish between transition systems that are bisimulation equivalent.Formally, given two transition systems K and K0, with distinguished states v andv0 respetively, we say that K; v is bisimulation equivalent to K0; v0, written K; v �K0; v0, if there is a relation R � V � V 0 between the states of K and the statesof K0 suh that: (1) (v; v0) 2 R; (2) for eah atomi proposition p 2 W and eah(u; u0) 2 R, u 2 [[p℄℄K if, and only if, u0 2 [[p℄℄K0 ; (3) for eah (u; u0) 2 R, and eaht 2 V suh that (u; t) 2 Ea, there is a t0 2 V 0 with (u0; t0) 2 E0a and (t; t0) 2 R; and(4) for eah (u; u0) 2 R, and eah t0 2 V 0 suh that (u0; t0) 2 E0a, there is a t 2 Vwith (u; t) 2 Ea and (t; t0) 2 R.Bisimulation equivalene orresponds to equivalene in an in�nitary modal logiML1 [van Benthem 1983℄. This logi is the extension of ML by disjuntions andonjuntions taken over arbitrary sets of formulae. Thus, if S is any set (possiblyin�nite) of formulae of ML1, then VS and WS are also formulae of ML1. It anbe shown that for any transition systems K and K0, K; v � K0; v0 if, and only if,K; v makes true exatly the same formulae of ML1 as K0; v0.A transition system is alled a tree, if for every state v, there is at most one stateu, and at most one ation a suh that (u; v) 2 Ea and there is exatly one stater, alled the root of the tree, for whih there is no state having a transition to r,and if every state is reahable from the root. It is known that for every transitionsystem K, and any state v, there is a tree T with root r suh that K; v � T ; r. Oneonsequene of this is that any logi that respets bisimulation has the tree modelproperty. For instane, for any formula ' of L�, if ' is satis�able, then there is aACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 7tree T suh that T ; r j= '.2.3 The Modal Iteration Calulus.We are now ready to introdue MIC. Informally, MIC is propositional modal logiML, augmented with simultaneous inationary �xed points.Definition 2.1. The modal iteration alulus MIC extends propositional modallogi by the following rule: if '1; : : : ; 'k are formulae of MIC, and X1; : : : ; Xk arepropositional variables, then S := 8><>: X1  '1...Xk  'kis a system of rules, and (ifp Xi : S) is a formula of MIC. If S onsists of asingle rule X  ' we simplify the notation and write (ifp X  ') instead of(ifp X : X  ').Semantis: On every Kripke struture K, the system S de�nes, for eah ordinal �, atuple X� = (X�1 ; : : : ; X�k ) of sets of states, via the following inationary indution(for i = 1; : : : ; k). X0i := ;;X�+1i := X�i [ [['i℄℄(K;X�);X�i := [�<�X�i if � is a limit ordinal.We all (X�1 ; : : : ; X�k ) the stage � of the inationary indution of S on K. As thestages are inreasing (i.e. X�i � X�i for any � < �), this indution reahes a �xedpoint (X11 ; : : : ; X1k ). Now we put [[(ifp Xi : S)℄℄K := X1i :Before introduing examples in Setion 2.4 and 3, we establish some simple prop-erties of MIC.Lemma 2.2. L� � MIC. Further, on every lass of strutures of bounded ardi-nality MIC � ML1.Proof. Clearly, if X ours only positively in  , then �X: � ifp X   . HeneL� � MIC.Now, let S be a system of rules Xi  'i(X1; : : : ; Xk). It is lear that foreah ordinal � there exist formulae '�1 ; : : : ; '�k 2 ML1 de�ning, over any Kripkestruture, the stage � of the indution by S. As losure ordinals are bounded onstrutures of bounded ardinality, the seond laim follows.Corollary 2.3. MIC is invariant under bisimulation and has the tree modelproperty.Note that on lasses of strutures with unbounded ardinality, L� andMIC are notontained in ML1. For instane, well-foundedness is expressed by the L�-formula�X:2X , but is known not to be expressible in ML1.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



8 � A. Dawar, E. Gr�adel, and S. Kreutzer2.4 Non-Regular LanguagesWe now demonstrate that MIC is stritly more expressive than L�. Reall thatevery formula of L� an be translated into a formula of monadi seond order logi(MSO). Moreover, it is a well-known lassial result [B�uhi 1960℄ that the only setsof �nite words that are expressible in MSO are the regular languages.Definition 2.4. For our purposes, a word w of length n, in an alphabet � is atransition system with n states v1; : : : ; vn, a single ation E suh that (vi; vj) 2 Eif, and only if, j = i+ 1 and an atomi proposition s for eah s 2 �, suh that foreah vi, there is a unique s with vi 2 s.Proposition 2.5. There is a language that is expressible in MIC but not inMSO.Proof. The language L := fanbm : n � mg is not regular, hene not de�nablein monadi seond-order logi, but it is de�nable in MIC. To see this, we onsider�rst the formula �(X) = (ifp Y  3(b ^ :X) _ 3(a ^ X ^ Y )) whih (sinethe rule is positive in Y ) is in fat equivalent to a L�-formula. On every wordw = w0 � � �wn�1 2 fa; bg� and X � f0; : : : ; n�1g, the formula is true if the word wstarts with a (possibly empty) a-sequene inside X followed by a b outside X . Nowthe formula (ifp X  (a^ �(X))_ (b^2X)) de�nes (inside a�b�) the language L.Note that the language a�b� is de�nable in L�, so we an onjoin this de�nition tothe above formula to obtain a de�nition of L whih works on all words in fa; bg�.The observation in Proposition 2.5 was pointed out to us in disussion by MartinOtto, and was the starting point of the investigation reported here.3. INTERPRETING ARITHMETIC IN MICIn this setion we prove that the satis�ability problem of MIC is undeidable in avery strong sense. Given that MIC is invariant under bisimulation, we an restritattention to trees. In fat we will only onsider well-founded trees (i.e. treessatisfying the formula ifp X  2X .) The height h(v) of a node v in a well-founded tree T is an ordinal, namely the least strit upper bound of the heights ofits hildren. For any node v in a tree T , we write T (v) for the subtree of T withroot v. We �rst show that the nodes of �nite height and the nodes of height ! arede�nable in MIC.Lemma 3.1. Let S be the systemX  2false _ (2X ^3:Y )Y  X:Then, on every tree T , [[ifp X : S℄℄T = [[ifp Y : S℄℄T = fv : h(v) < !g.Proof. By indution we see that for eah i < !, X i = fv : h(v) < ig andY i = X i�1 = fv : h(v) < i � 1g. As a onsequene X! = Y ! = fv : h(v) < !g.One further iteration shows that X!+1 = Y !+1 = X!.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 9With the system S exhibited in Lemma 3.1 we obtain the formulae�nite-height := (ifp X : S)and !-height := :�nite-height ^ 2�nite-heightwhih de�ne, respetively, the nodes of �nite height and the nodes of height !.Note that !-height is a satis�able formula all of whose models are in�nite.Proposition 3.2. MIC does not have the �nite model property.We next show that the satis�ability problem of MIC is undeidable. In fat MICinterprets full arithmeti on the heights of nodes. To prove this we �rst de�ne someauxiliary formulae that will be used frequently throughout the paper. We alwaysassume that the underlying struture is a well-founded tree.|The formula somewhere(') := (ifp Xs  ' _ 3Xs) expresses that ' holdssomewhere in the subtree of the urrent node: T ; v j= somewhere(') i� [['℄℄T \T (v) 6= ;.|Dually everywhere(') := (ifp Xe  ' ^ 2Xe) says that ' holds at all nodes ofthe subtree T (v).|We say that a set X (in a tree T ) enodes the ordinal � if X = fv : h(v) < �g.Let ordinal(X) be the onjuntion of the formula everywhere(X ! 2X) with:(ifp Z : Y  2YZ  somewhere(:Y ^ 2Y ^X) ^ somewhere(:Y ^ 2Y ^ :X)):It expresses that X enodes some ordinal. Indeed everywhere(X ! 2X) saysthat with eah node v 2 X , the entire subtree rooted at v is ontained in X .The seond onjunt is intended to ensure that two nodes of the same height areeither both in X or both outside it. To see that it does this, note that at stage� + 1 of the indution nodes of height � are added to Y . At this stage, theseare exatly the nodes satisfying :Y ^ 2Y . Thus, a node r is added to Z at thisstage if, and only if, somewhere in the subtree rooted at r there are two nodes ofheight � +1, one of whih is in X and the other is not. Hene, at the end of theindution the root of the tree will not be ontained in Z if, and only if, X doesnot distinguish between nodes of the same height. Together the two onjuntsimply that X ontains all nodes up to some height.|The formula number(X) = ordinal(X)^somewhere(�nite-height^:X) says thatX enodes a natural number n (inside a tree of height > n).Lemma 3.3. Let T be a well-founded tree of height !. There exist formulaeplus(S; T ) and times(S; T ) of MIC suh that, whenever the sets S and T enode,in the tree T , the natural numbers s and t, then [[plus(S; T )℄℄T enodes s + t, and[[times(S; T )℄℄T enodes st.Proof. Letplus(S; T ) := ifp Y : X  2XY  S _ (2Y ^ somewhere(X) ^ everywhere(X ! T )):ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



10 � A. Dawar, E. Gr�adel, and S. KreutzerObviously at eah stage n, we have Xn = fv : h(v) < ng. We laim that for eahn, Y n+1 = fv : h(v) < s+min(n; t)g. For n = 0 this is lear (note that for the ases = 0 this is true beause the onjunt somewhere(X) prevents the Y -rule frombeing ative at stage 1). For n > 0 the inlusion Xn � T is true i� n � t. Hene wehave Y n+1 = fv : h(v) < s+ ng in the ase that n � t and Y n+1 = Y n = � � � = Y totherwise. To express multipliation we de�netimes(S; T ) := ifp Y : X  2XY  plus(Y; S) ^ everywhere(2X ! T ):We laim that Y n = fv : h(v) < s � min(n; t)g. This is trivially true for n = 0.If it is true for n < t, then Y n+1 = fv : h(v) < sn + sg = fv : h(v) < s(n + 1)g.Finally for n � t, the extension of 2Xn is fv : h(v) < n+1g whih is not ontainedin T = fv : h(v) < tg, hene Y n+1 = Y n = � � � = Y t.Corollary 3.4. For every polynomial f(x1; : : : ; xr) with oeÆients in the nat-ural numbers there exists a formula  f (X1; : : : ; Xr) 2 MIC suh that for every treeT of height ! and all sets S1; : : : ; Sr enoding numbers s1; : : : ; sr 2 ![[ f (S1; : : : ; Sr)℄℄T = fv : h(v) < f(s1; : : : ; sr)g:Proof. By indution on f .| 0 := false .| 1 := 2false .| xi := Xi.| f+g := plus[S= f ; T= g℄, i.e. the formula obtained by replaing in plus(S; T )the variables S and T by, respetively,  f and  g .| f �g := times[S= f ; T= g℄.Theorem 3.5. For every �rst order sentene  in the voabulary f+; �; 0; 1g ofarithmeti, there exists a formula  � 2 MIC suh that  is true in the standardmodel (N;+; �; 0; 1) of arithmeti if, and only if,  � is satis�able.Proof. We have already seen that there exists a MIC-axiom !-height axiomatis-ing the models that are bisimilar to a tree of height !. Further, we an express setequalities X = Y by everywhere(X $ Y ) and we know how to represent polyno-mials by MIC-formulae. What remains is to translate quanti�ers.More preisely, we need to show that for eah �rst order formula  (y1; : : : ; yr)in the language of arithmeti there exists a MIC-formula  �(Y1; : : : ; Yr) suh thaton rooted trees T ; w of height ! and for all sets S1; : : : ; Sr that enode numberss1; : : : ; sr on T we have that (N;+; �; 0; 1) j=  (s1; : : : ; sr) i� T ; w j=  �(S1; : : : ; Sr).Only the ase of formulae of the form  (y) := 9x'(x; y) remains to be onsidered.By indution hypothesis, we assume that for '(x; y) the orrespondingMIC-formula'�(X;Y ) has already been onstruted. Now let �(Y ) := ifp Z : X  2XZ  '�(X;Y ) ^ number(X):ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 11Corollary 3.6. The satis�ability problem for MIC is undeidable. In fat, itis not even in the arithmetial hierarhy.The proof given above appears to rely ruially on the use of simultaneous in-dutions. Indeed, one an show that formulae of MIC involving simultaneous in-dutions, in partiular the formula onstruted in the proof of Lemma 3.1, annotbe expressed without simultaneous indutions (see Theorem 7.2).However, we will prove in Setion 7 that �rst order arithmeti an atually alsobe redued to the satis�ability problem for 1MIC (MIC without simultaneous in-dutions).Countable models. While MIC does not have the �nite model property, itdoes have the L�owenheim-Skolem property, i.e. every satis�able MIC-formula hasa ountable model. Indeed the proof of the L�owenheim-Skolem property for LFP(see e.g. [Flum 1999; Gr�adel 2003℄), readily extends to the inationary �xed pointlogi IFP whih ontains MIC. As a onsequene, the satis�ability problem for MICis in �12, the seond level of the analytial hierarhy.4. THE MODEL CHECKING PROBLEM FOR MICReall that the model heking problem for the �-alulus is in UP \ Co-UP, andis onjetured by some to be solvable in polynomial time. We now show that MICis algorithmially more ompliated (unless Pspae = NP).We �rst observe that the naive bottom-up evaluation algorithm for MIC-formulaeuses polynomial time with respet to the size of the input struture, and polynomialspae (and exponential time) with respet to the length of the formula. Let Kbe a transition system with n nodes and m edges. The size jjKjj of appropriateenodings of K as an input for a model heking algorithm is O(n +m). It is wellknown that the extension [['℄℄K of a basi modal formula ' (without �xed points)on a �nite transition system K an be omputed in time O(j'j � jjKjj). Further, anyinationary indution ifp Xi : [X1  '1; : : : ; Xk  'k℄ reahes a �xed point on Kafter at most kn iterations. Hene, the bottom-up evaluation of a MIC-formula  with d nested simultaneous inationary �xed points, eah of width k, on K needsat most O((kn)d) basi evaluation steps. For eah �xed point variable ourring inthe formula, 2n bits of workspae are needed to reord the urrent value and thelast value of the indution. This gives the following omplexity results.Proposition 4.1. Any MIC formula  of nesting depth d and simultaneousindutions of width at most k on a transition system K with n nodes an be evaluatedin time O((kn)dj j � jjKjj) and spae O(j j � n).In terms of ommon omplexity lasses the results an be stated as follows.Theorem 4.2. (1) The ombined omplexity of the model heking problemfor MIC on �nite strutures is in Pspae.(2) For any �xed formula  2 MIC, the model heking problem for  on �nitestrutures is solvable in polynomial time and linear spae.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



12 � A. Dawar, E. Gr�adel, and S. KreutzerWe now show that, ontrary to the ase of the �-alulus, the omplexity resultsobtained by this naive algorithm annot be essentially improved.Theorem 4.3. There exist transition systems K, suh that the model hekingproblem for MIC on K is Pspae-omplete (even for MIC-formulae without simul-taneous indutions).Proof. The proof is by redution from QBF (the evaluation problem for quanti�edBoolean formulae). For MIC with simultaneous indutions, this is trivial. Let Kbe the \struture" onsisting just of a single point v. We assoiate with everyquanti�ed Boolean formula  a MIC-formula  �. First, we eliminate the universalquanti�ers in  in favour of negations and existential quanti�ers. Then we replaeindutively all subformulae '(Y ) := 9X#(X;Y ) by inationary �xed points'�(Y ) := ifp Z : X  trueZ  #�(X;Y ):We have to show that, for any interpretation of Y , we have (K; Y ); v j= '�(Y ) i�'(Y ) is true. (We identify truth values for Y with their truth values at v.) Notethat X0 = ; and X1 = fvg. Hene v is inluded into Z1 if '(0; Y ) holds, and intoZ2 if '(1; Y ) is true.Note that we have translated quanti�ed Boolean formulae into purely proposi-tional formulae with inationary �xed points (no modal operators are used).For MIC without simultaneous �xed points, the onstrution is somewhat moreompliated. Let K be the Kripke-struture onsisting of two points 0,1, the atomiproposition p = f1g and the omplete transition relation f0; 1g� f0; 1g.Let �(X) := :X ^ (p ! 3X). Further, let '[X=�(X)℄ denote the formulaobtained from ' by replaing every free ourrene of X by �(X). The transforma-tion from QBF-formulae  to MIC-formulae  � without simultaneous �xed pointsis de�ned indutively as follows.(1) For  := X we set  � := (p ^X) _ (:p ^3X),(2) (: )� := : � and ( Æ ')� :=  � Æ '� for Æ 2 f^;_g,(3) for  := 8X' we put  � := 2(ifp X  �(X) ^ '�[X=�(X)℄):We say that a set Y � � f0; 1g represents Y = true if 1 2 Y �, and that it representsY = false otherwise. We laim that for any QBF-formula  , any interpretation Yfor the free variables of  and any representation of Y by Y �, we have[[ �℄℄(K;Y �) = (f0; 1g if  (Y ) is true; if  (Y ) is false .(1) For  := X and for Boolean ombinations of formulae the veri�ation of thelaim is straightforward.(2) Let  = 8X'(X;Y ). Note that, for X = ;, [[�(X)℄℄(K;X) = f0g and, forX = f0g, [[�(X)℄℄(K;X) = f1g. Thus, the �rst indution step of (ifp X  �(X)^'�[X=�(X)℄) produesX1 = f0g\[['�(0)℄℄(K;Y �), whih, by indution,is f0g if '(0; Y ) evaluates to true and X1 = ; otherwise. If the value X1 =ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 13f0g was produed, then the seond iteration step produes X2 = X1[ (f1g\[['�(1)℄℄(K;Y �)). Thus,[[(ifp X  �(X) ^ '�[X=�(X)℄)℄℄(K;Y �) =8><>:; if :'(0; Y )f0g if '(0; Y ) ^ :'(1; Y )f0; 1g if '(0; Y ) ^ '(1; Y ):As required, in the �rst two ases the formula2(ifp X  �(X)^'�[X=�(X)℄)is false at both states, and in the last ase it is true at both states.Finally note that the formula  � an be omputed in linear time from  .5. LANGUAGESIn this setion we investigate the expressive power of MIC on �nite strings. Inother words we attempt to determine what languages are de�nable by formulae ofMIC. As in De�nition 2.4, we represent a word by a transition system onsistingof a single path.We have already seen in Proposition 2.5, that there are non-regular languagesthat are de�nable in MIC. We begin this setion by strengthening this result andshowing that there are languages de�nable in MIC that are not even ontext-free.5.1 Non-CFLs in MICTheorem 5.1. There is a language de�nable in MIC that is not ontext-free.Proof. We show that the language L = fww j w 2 fa; bg�g is de�nable in MIC.To be preise, it is given by the formula' := ifp Y : X  2XY  : ;where  is given by:  := ifp W : U  X ^2UU 0  UV  (:X ^ 2X) _ 2VV 0  VW  (di� _ len< _ len>)where, further,di� :=(somewhere(a ^ U ^ :U 0) ^ somewhere(b ^ V ^ :V 0))_(somewhere(b ^ U ^ :U 0) ^ somewhere(a ^ V ^ :V 0));len< :=V ^ somewhere(X ^ :U)len> :=:V ^ everywhere(X ! U):To understand the onstrution of the formula, note that in the outermost indu-tion de�ned by ' interpreted on a word, at stage i, X ontains the last i symbols inthe word. We laim that at this stage  is true at all positions in the word exeptACM Transations on Computational Logi, Vol. V, No. N, November 2002.



14 � A. Dawar, E. Gr�adel, and S. Kreutzerthe one at distane 2i from the end and it is false at this position if, and only if,the word of length 2i starting from here is of the form ww. Thus, in the indutionde�ned by ', Y eventually ontains all positions from whih the rest of the wordis of the form ww.To verify the laim regarding  , note that at stage j of its indution (j � i), Uontains the last j positions in the word while V ontains the j positions immedi-ately preeding those in X , while U 0 and V 0 lag one stage behind. A position isinluded in W if one of three onditions holds: all of X is inluded in U , but Vhas not yet reahed the urrent position (len>) whih indiates that the urrentposition is at distane greater than 2i from the end; V has reahed the urrentposition but not all of X is in U (len<) whih indiates that the positions is atdistane less than 2i from the end; or the last symbol added to U is di�erent to theone added to V (di� ). Thus, as intended, the only position not inluded in W isthe one at distane 2i from the end and then only if it is the beginning of a wordof the form ww.While the above onstrution relies ruially on simultaneous indutions, it isnot diÆult to onstrut examples of non-ontext-free languages de�nable even in1MIC. For example, in [Dawar et al. 2001℄, we exhibit a 1MIC formula de�ning thelanguage fwdw j w 2 fa; bg�g.Finally, to plae the expressive power of MIC in the Chomsky hierarhy, wenote that every language de�nable in MIC an be de�ned by a ontext-sensitivegrammar. This follows from the observation made in Setion 4 that any lass of�nite strutures de�ned by a formula of MIC is deidable in linear spae, and theresult that all languages deidable by nondeterministi linear spae mahines arede�nable by ontext-sensitive grammars.5.2 Capturing Linear Time LanguagesWe have seen in Setion 4 that the data omplexity of evaluating MIC-formulae isin polynomial time and linear spae. It is also lear that MIC an express Ptime-omplete properties, as this is already the ase for the �-alulus.On words the situation is somewhat di�erent. The �-alulus de�nes preiselythe regular languages. On the other hand we have already seen that there existMIC-de�nable languages that are not even ontext-free. We will now show thatMIC an in fat de�ne all languages that are deidable in linear time (by a Turingmahine).An observation that we will use in the proof, but whih may well be of inde-pendent interest, is that ardinality omparisons and addition of ardinalities areexpressible in MIC on words (reall that none of these are MSO-de�nable).Lemma 5.2. There exists a formula '(X;Y ) of MIC suh that on every wordw, we have w;X; Y j= ' if and only if jX j = jY j. Similarly for jX j < jY j andjX j+ jY j = jZj.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 15Proof. jX j 6= jY j is equivalent toifp Z : X+  X ^ 2everywhere(X ! X+)Y +  Y ^ 2everywhere(Y ! Y +)Z  everywhere(X ! X+)� everywhere(Y ! Y +)where � means exlusive or. Eah iteration of this system inludes into X+ therightmost node of X that is not yet inluded in X+. Hene after jX j iterations X+will ontain all of X . Analogously for Y . Hene the root will be inluded into Z ifand only if jX j 6= jY j. For jX j < jY j replae the last rule by Z  everywhere(X !X+) ^ somewhere(Y ^ :Y +).For expressing jX j + jY j = jZj a similar tehnique is used. We ount jX j+ jY jby the number of stages of an inationary indution. We hene have to make surethat nodes ontained in X or Y , but not in X \ Y trigger one iteration, and nodesin X \Y trigger two iterations. To ensure this we use two variables U and V whereV will always be a subset of U and there will always be at most one node in U �V .At eah iteration we put into U the rightmost node in X [ Y that is not yet in Vand we put into V the rightmost node in X [ Y not yet in V provided it is alreadyin U , or it is not ontained in X \ Y . Hene, as desired, nodes in X \ Y take twoiterations to be inluded in V whereas nodes in (X [ Y )� (X \ Y ) only take oneiteration. Otherwise the onstrution is the same as above. Thus, jX j+ jY j = jZjis expressed by the formula:ifp W : U  (X _ Y ) ^ 2everywhere((X _ Y )! V )V  (X _ Y ) ^ 2everywhere((X _ Y )! V )) ^ (U _ :X _ :Y )Z+  Z ^ 2everywhere(Z ! Z+)W  everywhere((X _ Y )! V )� everywhere(Z ! Z+):Theorem 5.3. Every language L 2 Dtime(O(n)) is MIC-de�nable.Proof. Let M be a deterministi Turing mahine, that works on strings w =w0 : : : wn�1 2 A� and deides after at most kn moves, whether w 2 L (for some�xed onstant k).To show that L is MIC-de�nable we view input words w as (Kripke) strutureswith universe fn� 1; : : : ; 0g, the predeessor relation E = f(i + 1; i) : i < n � 1g,and atomi propositions (unary prediates) Pa, for eah symbol a 2 A enoding thepositions of the letters. Hene w; i + 1 j= 3' and w; i + 1 j= 2' both mean thatw; i j= '. (The use of 2 or 3 makes a di�erene only at point 0, where 2' is trueand 3' is false (no matter what ' is).For simpliity of notation we will �rst treat the ase where M has only one tapeand where k = 1, i.e. the mahine makes at most n steps on words of length n.This ase is not very interesting as the mahine an either not move bakwards ornot read the entire input, but as we will see, the proof easily extends to the generalase.Enoding the omputation. We desribe a system � of rules of the form Xi  '(X) (with MIC-formulae '(X)) suh that, for eah m � n, the stage Xm ofACM Transations on Computational Logi, Vol. V, No. N, November 2002.



16 � A. Dawar, E. Gr�adel, and S. Kreutzerthe inationary indution of � on w desribes the omputation of M on w up totime m. The desription of the omputation is slightly non-standard (ompared tothe usual proofs of this kind) in the sense that only the urrent state, the movesand the symbols written at eah time are expliitly reorded by the seond-ordervariables, but not the storage ontent and the urrent position of the head on thetape. Rather, the urrently read symbol is at every iteration reonstruted by aMIC-formula, based on the history of moves and written symbols up to that time.The variables of � are T (for time), Sq (for every state q of M), L and R (for leftand right moves on the tape), and Wb (for every symbol used byM). The intendedinterpretation, after m iterations, are:|Tm = fi : i < mg.|Smq = fi < m :M is in state q at time i+ 1g.|Lm = fi < m :M makes a move to the left on the work tape at time ig.Analogously for Rm.|Wmb = fi < m :M wrote symbol b on the work tape at time ig.Let us assume for the moment, that we have de�ned, for eah symbol , a MIC-formula CURRENT[℄, whih on any wordw expanded by the relations Tm; Smq ; Lm;Rm;Wmb is true at position m if, and only if, the urrently read symbol on the tapeis . Under this assumption (whih will be proved below) the onstrution of � is arelatively straightforward adaption of the usual tehniques in desriptive omplexitytheory to our situation.Constrution of �. Let Æ : Q � � ! Q � � � fL;Rg be the transition funtion ofM , and let q0 be the initial state. For every element s 2 Q[�[ fL;Rg we denoteby Æ�1(s) the set of all pairs (q; a) 2 Q�� suh that s is one of the omponents ofÆ(q; a). The system � onsists of the rule T  2T that updates the time variablesand rules for eah Sq, Wb, L and R. We desribe the rules for a state variable Sq .At eah iteration step, we want to inlude the urrent time m (satisfying :T ^2T )into Sq if M goes into state q at time m. This happens if one of the following twoonditions hold.(1) We are at time 0, the input starts with some a suh that (q0; a) 2 Æ�1(q).(2) There exist (q0; a) 2 Æ�1(q) suh that M went into state q0 in the last stepand urrently reads the symbol a.Hene the rule for Sq has the formSq  (2false ^ _(q0;a)2Æ�1(q)Pa)_(:T ^3T ^ _(q0;a)2Æ�1(q)(3Sq0 ^ CURRENT[a℄)):The rules for L, R and Wb are analogous. Further, we an assume that themahine has a unique aepting state a. Then M aepts a word w if, and onlyif, w j= ifp Sa : �.Constrution of CURRENT[℄. It remains to show that the formula CURRENT[℄an indeed by onstruted. What the formula needs to assert is that one of thefollowing two ases holds:ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 17(1) At the last time where M was at the urrent position the symbol  waswritten. In other words, there is some node i 2 W (i.e.  has been writtenat time i) suh that between time i and now (i.e. time m), there have beenequally many left and right moves, and that i was the last time with thisproperty.(2) M has never before been at the urrent position, and the input symbol atthis position is .Here is where we use ardinality omparisons.To express ondition (1) we go systematially to all previous times (by iteratinga rule T 0  2T 0), and put the urrent node m (whih is the unique node satisfying:T ^2T ) into Z if after the time i desribed by the urrent value of T 0 there havebeen the same number of left and right moves (i.e. jL^:T 0j = jR^:T 0j), if at thetime desribed by T 0, symbol  was written, and if sine then this position has notbeen visited again. All this is expressed byifp Z : T 0  2T 0Z  :T ^ 2T ^ jL ^ :T 0j = jR ^ :T 0j^somewhere(:T 0 ^ 2T 0 ^W)^nowhere(T ^ :2T 0 ^ jL ^ :T 0j = jR ^ :T 0j);where nowhere(') := :somewhere('). Note that the formula in the last line is falseif, and only if, there exists a node j 2 T �2T 0 (i.e. a time j with i < j < m) suhthat between i and j there have been the same number of left and right moves.Hene the last line indeed says that the position reahed at times i and m has notbeen visited in between.To express ondition (2) note that the urrent position at time m is jLj�jRj. Wego systematially through all positions (by iterating a rule P  2P ), and put theurrent node m into Z if P desribes the urrent position (i.e. if jP j+jLj = jRj) andif at the node de�ned by P (the unique node satisfying :P ^ 2P ) the propositionP is true. Putting this into a formula, we obtainifp Z : P  2PZ  :T ^ 2T ^ (jP j+ jLj = jRj) ^ somewhere(:P ^ 2P ^ P)whih is true at the urrent node m desribed by T if, and only if, the input symbolat the urrent position is . We have to take the onjuntion of this with a formulaexpressing that the urrent position has not been visited before. This is done bythe formula :ifp Z : T 0  2T 0Z  (jL ^ :T 0j = jR ^ :T 0j)):Z beomes true at the urrent time if there is some earlier time sine whih wehave seen the same number of left and right moves. Hene Z does not beome trueif, and only if, we have never visited before the urrent ell.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



18 � A. Dawar, E. Gr�adel, and S. KreutzerArbitrary Values of k and Multi-tape Mahines. The onstrution easily extends tolinear time omputations of length kn for arbitrary values of k. We replae eahof the variables T; Sq;Wb; L and R by a k-tuple of variables. The iteration of thetime parameter is desribed by rulesT1  2TkT2  T1... ...Tk  Tk�1The iteration of these rules on a word of length n has kn stages. At iterationik + j + 1 (where i < n; j < k) the node i is put into Tj . Also the rules for Sq arereplaed by k-rules for variables Sq;1; : : : ; Sqk onstruted in a similar way. That isthe rule for Sq;i+1 refers to variables Sq0;i for the possible predeessor states andthe rule for Sq;0 refers to 3Sq0;k. Similarly for the other variables. Also the formulaCURRENT[℄ has to be reformulated, but this poses no essential diÆulties.Finally the extension to multi-tape Turing mahines is ompletely straightforwardby taking additional variables for the symbols written on eah tape and the movesof eah head.Note that we annot expet to extend the result for linear time to quadrati timeor higher. This is beause, as we have seen, every language de�nable in MIC isdeidable in linear spae, and it is not expeted that quadrati time is inluded inlinear spae.6. BISIMULATION-INVARIANT PTIME AND AUTOMATICITYIn [Otto 1999℄, Otto introdued a higher-dimensional �-alulus, denoted L!� , whihextends ML with an operator for forming least �xed points of arbitrary arity,rather than just sets. He showed that L!� an express every bisimulation-invariant,polynomial-time deidable property of �nite strutures. He further showed thatevery formula of LFP that expresses a bisimulation-invariant property is equivalentto a formula of L!� . Combining this with the result of Kreutzer [Kreutzer 2002℄that every formula of IFP is equivalent to one of LFP and the fat that MIC is afragment of IFP that only expresses bisimulation-invariant properties immediatelyyields the following proposition.Proposition 6.1. Every formula of MIC is equivalent to a formula of L!�.We now show that the onverse of Proposition 6.1 fails. In partiular, thereare properties of �nite trees that are bisimulation-invariant and polynomial timedeidable that annot be expressed in MIC.Theorem 6.2. There is a olletion F of �nite trees in Ptime, losed underbisimulation, whih is not expressible in MIC.Proof. We take F to be the olletion of all trees T of �nite height suh that if t1and t2 are any two hildren of the root of T , then T ; t1 � T ; t2. Sine it is knownthat bisimulation equivalene is polynomial time deidable, it follows that F is inPtime. It is also obvious that F is losed under bisimulations.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 19To show that F is not de�nable in MIC, assume, towards a ontradition, thatthere is a formula ' de�ning it. Assume, without loss of generality, that all boundvariables in ' are distint. Let these variables be X1; : : : ; Xk. We note that ifT is a tree of height n, then for any formula ifp X : S, the losure ordinal is atmost l(n+1), where l is the number of variables involved in the system S. For anyk-tuple (i1; : : : ; ik), where eah ij is in the range [0; k(n+1)℄, and any subformula  of ', we write T j=  [i1; : : : ; ik℄ if  holds at the root of T , when any free variableXj in  is interpreted by X ijj .If � denotes the olletion of subformulae of ', we de�ne the '-type of T to bethe funtion 'T : (k(n+1)+1)k ! 2� suh that  2 'T (i) if, and only if, T j=  [i℄.Now, if we denote by [T1; T2℄ the tree whose root has two hildren, one being theroot of a subtree T1, and the other being the root of a subtree T2, we an establishthe following fats:Lemma 6.3. If 'T1 = 'T2 , then '[T1;T2℄ = '[T1;T1℄.Proof of Lemma 6.3. We assume, without loss of generality, that the variablesX1; : : : ; Xk are ordered suh that, ifXj is bound inside the sope of the ifp operatorthat binds Xj0 , then j0 < j.Let P denote the olletion of pairs ( ; {), where  is a subformula of ', and { isa tuple in (k(n+ 1) + 1)k suh that, if Xj is bound in  , then ij = k(n+ 1).We prove Lemma 6.3 by showing, by an indution on the lexiographial orderingof k-tuples in (k(n+ 1) + 1)k that, for every pair in ( ; {) 2 P ,[T1; T1℄ j=  [{℄ if, and only if, [T1; T2℄ j=  [{℄: (1)Sine, if Xj is not free in  , the value of ij is not relevant to whether or notT j=  [{℄, this suÆes to establish the lemma.Basis: ({ = 0). We proeed by indution on the struture of  . If  � Xj , sineij = 0,  is false in both [T1; T1℄ and [T1; T2℄. The ases of the Boolean onnetivesare trivial. If  is 3#, we know by hypothesis that T1 j= #[{℄ if, and only if,T2 j= #[{℄, and therefore, [T1; T1℄ j= 3#[{℄ if, and only if, [T1; T2℄ j= 3#[{℄. Finally, annot be of the form ifp Xj : S, as Xj would be a bound variable in  , andtherefore the pair ( ; 0) is not in P .Indution Step: Assume that for all {0 lexiographially below {, and all pairs( ; {0) 2 P , (1) holds. We prove it for all pairs ( ; {) 2 P , again by indutionon the struture of  .Suppose that  is atomi, i.e. of the form Xj , and let ifp Xj : [� � � ; Xj  #; � � � ℄be the minimal subformula of ' in whih Xj is bound. In other words, # is theformula de�ning Xj . Then, if [T1; T1℄ j= Xj [{℄, by the inationary semantis, theremust be some {0 lexiographially earlier than {, suh that [T1; T1℄ j= #[{0℄. By theindution hypothesis, we then have [T1; T2℄ j= #[{0℄, and therefore [T1; T2℄ j= Xj [{℄.A similar argument establishes [T1; T1℄ j= Xj [{℄, if we assume [T1; T2℄ j= Xj [{℄.The ase of the Boolean onnetives is trivial, and if  is of the form 3#, weagain rely on the hypothesis that the '-types of T1 and T2 are the same.Finally, if  is of the form ifp Xj : S, where S is [� � � ; Xj  #; � � � ℄, thenij = k(n + 1), by the de�nition of P . Therefore, if [T1; T1℄ j=  [{℄, there mustbe an i0 < ij suh that [T1; T1℄ j= #[{0℄, where {0 is the tuple obtained from { byACM Transations on Computational Logi, Vol. V, No. N, November 2002.



20 � A. Dawar, E. Gr�adel, and S. Kreutzerreplaing il by i0, where l ranges over the indies of all variables bound by thesystem S, inluding j. The tuple {0 is lexiographially prior to {, and therefore, byindution hypothesis, [T1; T2℄ j= #[{0℄, and then by the inationary semantis, wehave [T1; T2℄ j=  [{℄.This ompletes the proof of Lemma 6.3.We next observe that there is a onstant  (depending only on ') and a poly-nomial p suh that the number of distint '-types of trees of height n is at mostp(n). Indeed, we an take  to be the ardinality of 2�, i.e. the number of sets ofsubformulae of ', and we an take p to be (k(n+ 1) + 1)k.However, the number of distint �-equivalene lasses of trees of height n growsas a non-elementary funtion of n. This follows from the fat that, if there are edistint equivalene lasses of trees of height n, there are 2e � 1 distint lassesof trees of height n + 1. For, if T1; : : : ; Te is an enumeration of representatives ofthe equivalene lasses of trees of height n, we an form, for any non-empty setS � f1; : : : ; eg, a tree of height n + 1 whose root has a hild whih is the root ofa subtree Tj if, and only if, j 2 S. It is easily seen that for distint sets S, theresulting trees are not bisimilar.It now follows that we an �nd two trees T1 and T2 whih have the same '-type,but T1 6� T2. Thus, [T1; T2℄ 62 F , while [T1; T1℄ 2 F , however, [T1; T1℄ j= ' if,and only if, [T1; T2℄ j= ', ontraditing the assumption that ' de�nes the lass F .Automatiity. Another way of understanding the proof above is in terms of au-tomatiity. This is a measure of the omplexity of a formal language, onsidered,for instane, in [Shallit and Breitbart 1996℄.The automatiity of a language L � �� is the funtion AL whih gives for eahn the number of states in the smallest deterministi automaton whih aepts alanguage that agrees with L on all strings of length at most n. Clearly, a languageL is regular if, and only if, AL is bounded by a onstant. Moreover, for any languageL whatsoever, inluding undeidable ones, AL is, at worst, exponential.Here, we observe that the language L = fww j w 2 fa; bg�g used in the proof ofTheorem 5.1 has exponential automatiity, whih is worst possible. To be preise,we an show that AL(n) � 2n=2. For, suppose to the ontrary that, for some n,AL(n) < 2n=2 and let A be a minimal deterministi �nite automaton aeptingL\fa; bgn. Then, there must be two distint strings w1 and w2 of length n=2 suhthat A, starting in its initial state ends up in the same state on inputs w1 andw2. It then follows that A aepts the string w1w1 if, and only if, it aepts w2w1.However, sine both of these strings are of length n, and the former is in L but thelatter is not, we have a ontradition.The observation that MIC an express languages of exponential automatiity,whih is worst possible, would suggest that this is not a good measure of omplexityfor studying the expressive power of MIC. However, automatiity may be useful if wegeneralise it from strings to �nite trees as MIC an still express only tree languagesof at most exponential automatiity but this is no longer maximal.Automata on trees have been extensively studied (see, for instane, [G�eseg andSteinby 1997℄). For �nite trees, we de�ne a �nite automaton as a tuple A =ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 21(Q;A; Æ; F; S), where Q is a set of states, A is the alphabet, S � Q is a olletion ofstart states, F � Q is the set of �nal states, and Æ : Q� A ! 2Q is the transitionfuntion. If T is a �nite tree, where edges are labelled by elements of A, we saythat A aepts T , if there is a labelling l : T ! Q of the nodes of T suh that|the root of T is labelled q0 2 S;|if l(v) = q, then fl(w) : v a! wg = Æ(q; a), for eah a 2 A; and|for every leaf v, l(v) 2 F .Definition 6.4. For a lass C of �nite trees, losed under bisimulation, theautomatiity AC of C is the funtion mapping n to the number of states in thesmallest automaton that aepts a tree of height at most n if, and only if, it is inC.With this de�nition, we an extrat the observations ontained in the followingtwo theorems from the proof of Theorem 6.2.Theorem 6.5. There is a polynomial time deidable, bisimulation-invariant,olletion of �nite trees with non-elementary automatiity.Proof. Let F be the lass of trees used in the proof of Theorem 6.2, i.e. it is theolletion of all trees T of �nite height suh that if t1 and t2 are any two hildrenof the root, then T ; t1 � T ; t2. Suppose, towards a ontradition, that there isa k suh that the automatiity AF of this lass is bounded by a tower of 2s ofheight k. We an then hoose n > k so that the number of bisimulation equivalenelasses of trees of height n is greater than AF (n+1), and let An+1 be the minimalautomaton aepting trees of height n+1 if, and only if, they are in F . Now, theremust be two trees T1 and T2 of height n suh that the same set of states ours athildren of the root in an aepting run of An+1 on [T1; T1℄ as it does on [T2; T2℄.It then follows that these two runs an be ombined into an aepting run of An+1on [T1; T2℄, whih is a ontradition, as this tree is not in F .Theorem 6.6. Every lass of �nite trees that is de�nable in MIC has at mostexponential automatiity.Proof. Let ' be a formula of MIC. For eah n, we an onstrut an automatonA = (Q;A; Æ; S; F ) that aepts the trees of height n satisfying '. Here:|Q is the olletion of all '-types 'T of trees whose height is at most n;|A is the set of ations ourring in the formula ';|q0 2 Æ(q; a) if, and only if, q0 is the '-type of an a-hild of the root of a tree whose'-type is q;|S is the set of all '-types q suh that ' 2 q(k(n+ 1)); and|F is the set of all '-types of trees with only one node.It is easily heked that a tree T is aepted by this automaton if, and only if,T j= '. Moreover, the number of states is exponential in n, by the argument givenin the proof of Theorem 6.2.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



22 � A. Dawar, E. Gr�adel, and S. Kreutzer7. SIMPLE INDUCTIONSIn the previous setions we have seen a ouple of expressibility results for MIC.Many of these made use of simultaneous indutions and we remarked at severalplaes that the formulae used there ould not be de�ned in 1MIC. In this setionwe investigate the relationship between simple and simultaneous indutions in themodal iteration alulus.It is easy to see that the equivalene �XY:( ; ') � �X: (X;�Y:'(X;Y )) (some-times alled the Beki-priniple [Arnold and Niwi�nski 2001℄) fails in both dire-tions when we take inationary instead of least �xed points. However, it still isoneivable that simultaneous indutions ould be eliminated by more ompliatedtehniques. We show here that this is not the ase, i.e. simultaneous inationaryindutions provide more expressive power than simple ones. However, we have seenin Setion 4 that the model heking problem was Pspae-omplete even for for-mulae without simultaneous indutions. In the seond part of this setion we showthat, similar to MIC, the satis�ability problem for formulae without simultaneousindutions is still undeidable and not in the arithmetial hierarhy.Let 1MIC denote the fragment of MIC that does not involve simultaneous indu-tions.7.1 Simple vs. Simultaneous IndutionsFor any ordinal �, let O� denote the struture (f� : � � �g; >). That is, theelements of the struture are all ordinals less than or equal to �, and  is aessiblefrom � if � > . Note that � is the maximal ordinal in the set, and we refer to it asthe root of the struture O�. For a formula ', we write O� j= ' as shorthand forO�; � j= '. It is easily seen that for any ordinal � � �, O�; � j= ' if, and only if,O� j= '. This is beause the elements reahable by >-paths from � are exatly theordinals below �, sine > is transitive. As a �nal bit of notation, if X is any atomiproposition on O�, we write O�; � j= '(X�) to denote that O�; � j= '(X � f�g).We begin with a few observations about the evaluation of indutive formulae onthe strutures O�, whih will be useful in the proof of the following lemma. First,we note that in O� , the maximum losure ordinal of any indution is � + 1. Thisan be proved by a straightforward indution on the ordinals. One onsequene isthat if O�; � j= (ifp X   ), then � 2 X�+1. Furthermore, sine the truth of aformula ' at � an only depend on elements  � �, we have that for any sets X andY , if X \ (� + 1) = Y \ (� + 1), then O�; � j= '(X) if, and only if, O�; � j= '(Y ).Lemma 7.1. Let ' be a formula of 1MIC. If X1; : : : ; Xk � ! are atomi propo-sitions suh that O! j= '(X1; : : : ; Xk), then there is a �nite N suh that for alln > N , O! ; n j= '(X�1 ; : : : ; X�k ):Proof. Note that, by the hypothesis of the lemma ! 62 Xi for any i. As we arenow working in a �xed struture O! , we will say a formula ' holds (or is true) at�, to mean that O!; � j= ', whih is the ase if, and only if, O� j= '.The lemma is proved by indution on the depth d of nesting of ifp-operators.Basis: If d = 0, the formula ontains no ourrenes of the ifp operator, andis therefore equivalent to a formula of ML, where all negations are at the atoms.A simple indution on the struture of the formula then establishes the result.Any atomi formula Xi is false at ! by hypothesis, and, by de�nition, for all n,ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 23O!; n 6j= X�i , and therefore the laim holds for all atoms. For negated atoms thedual argument holds, i.e. any formula :Xi is true at ! and for all n, O!; n j= :X�i .The ase of the Boolean onnetives ^ and _ is trivial. If ' is 3 , then it is learthat O! j= ' if, and only if, there is an N < ! suh that ON j=  if, and onlyif, for all n > N , O!; n j= 3 and therefore O!; n j= '(X�). Similarly, if ' is2 , O! j= ' if, and only if, for all n, O!; n j=  if, and only if, for all n < !,O!; n j= 2 (X�).Indution step: If ' is a formula with depth d+1 of nesting of ifp operators, thenit is a Boolean ombination of formulae #i, eah of whih either has depth at mostd, is of the form ifp X   , where  is a formula of depth at most d, or is of theform 3 or 2 , where  has depth at most d+ 1. We assume that negations arealways pushed inside modalities.Clearly, if the laim holds for formulae #i and #j , then it also holds for #i ^ #jand #i _ #j , just by taking N to be the maximum of Ni and Nj , whih witness thelaim for the two formulae. Thus, it suÆes to prove the laim for the followingfour ases.(1) # � 3 . If O! j= #, then there is an N < ! suh that O!; N j=  , andtherefore, for all n > N , O!; n j= #(X�).(2) # � 2 . If O! j= 2 , then for all n, O! ; n j=  and therefore O!; n j= #(X�).(3) # � (ifp X   ). Suppose O! j= #. Then, there is a stage � suh that! 62 X�, and O! j=  (X1; : : : ; Xk; X�). By indution hypothesis, there is anN suh that for all n > N , O!; n j=  (X�1 ; : : : ; X�k ; X��). Now, for eahsuh n, if n is in stage � of the indution of  (X�1 ; : : : ; X�k ), then, by theinationary semantis O!; n j= (ifp X   )(X�1 ; : : : ; X�k ), and we are done.So, suppose n is not in stage � of the indution of  (X�1 ; : : : ; X�k ). However,sineX�i \n = Xi\n, it follows that stage � of the indution of  (X�1 ; : : : ; X�k )on On is exatly X�� \ (n+1) . Thus, O!; n j=  (X�1 ; : : : ; X�k ; X��) impliesO!; n j= (ifp X   )(X�1 ; : : : ; X�k ).(4) # := :(ifp X   ). Suppose O! j= #. We have to show that there is someN < ! suh that for all n > N , O!; n j= #. Towards a ontradition, assumethat there are in�nitely many n suh that O! ; n j= (ifp X   )(X�1 ; : : : ; X�k ).Sine O! j= :(ifp X   ), it is the ase that O! j= : (X1; : : : ; Xk; X!), andtherefore, by indution hypothesis, there is an N < ! suh thatfor all n > N;O! ; n j= : (X�1 ; : : : ; X�k ; X!�): (�)As we have noted, in any O�, the losure ordinal of any indution is at most� + 1. Hene, for any � < N , O!; � j=  (X1; : : : ; Xk; X!) if, and only if,O!; � j=  (X1; : : : ; Xk; XN). As, by assumption, there are in�nitely many nsuh that O!; n j= (ifp X   )(X�1 ; : : : ; X�k ), there are in�nitely many suhgreater than N . For eah of these, there must be a least �nite ordinal an suhthat O! ; n j=  (X�1 ; : : : ; X�k ; Xan). We distinguish two ases:(a) There is a �nite ordinal � that is the upper bound of all suh an. Inthis ase, we an show that there is a �nite bound on the elements sat-isfying (ifp X   )(X�1 ; : : : ; X�k ), from whih the laim follows. Toestablish the �nite bound, we show by indution on the stages, thatACM Transations on Computational Logi, Vol. V, No. N, November 2002.



24 � A. Dawar, E. Gr�adel, and S. Kreutzereah stage X� ontains only nodes up to some �nite height. Clearly,this is the ase for � = 0, as X� is empty. Indutively, if X� isbounded in height, then there is a formula of ML de�ning the set. Sub-stituting this formula for X in  , we obtain a formula  0 equivalentto  (X�), with ifp nesting depth d. Therefore, by the main indu-tion hypothesis, sine O! j= : 0(X1; : : : ; Xk), there is an M suh thatO!; n j= : 0(X�1 ; : : : ; X�k ) for all n > M . It follows that for all n > M ,n 62 X�+1. This implies that there is a �nite bound on the height of theelements in X�, ontraditing the assumption that there are in�nitelymany n suh that O! ; n j= (ifp X   )(X�1 ; : : : ; X�k ).(b) There is no �nite bound on the stages an. Thus, for any �nite stage �there is some an > � with n 62 Xan and O! ; n j=  (X�1 ; : : : ; X�k ; Xan).Choose � and an suh that an > N . Let  be the minimal node suh that 62 Xan but  2 X� for some � > an. Clearly, for every node m < an,m 2 Xan if, and only if, m 2 X!. It follows that  � an and thus  > N .Further, as  was hosen minimal,fm : m < g \Xan = fm : m < g \X!;i.e. on the set of nodes reahable but di�erent from  the �xed point ofX is reahed at stage an. Therefore,O!;  j=  (X�1 ; : : : ; X�k ; Xan) if, and only if,O!;  j=  (X�1 ; : : : ; X�k ; X!�):As  � an > N and, by (�), O!;  6j=  (X�1 ; : : : ; X�k ; X!�) we get that 62 X� for some � > an, ontraditing the assumption.It is a straightforward onsequene of this lemma that the formula �nite-heightde�ned in Set. 3 is not equivalent to any formula of 1MIC. This is beause O�is bisimulation equivalent to a well-founded tree of height �. Suppose there was aformula ' 2 1MIC equivalent to �nite-height. By de�nition, O! 6j= ' and thereforethere is some N < ! suh that On j= :' for all n > N . As these On are of �niteheight, we get a ontradition to ' being equivalent to �nite-height. We hene haveestablished the following separation result.Theorem 7.2. MIC is stritly more powerful than 1MIC.While the separation given in Theorem 7.2 is proved on an in�nite struture, theproof of Lemma 7.1 atually shows that the separation holds even when we restritourselves to �nite strutures. For, onsider the olletion of �nite strutures On,for all �nite ordinals n. The onstrution in Lemma 7.1 shows that for any formula' of 1MIC, the set fn : On j= 'g is either �nite or o-�nite. Now, onsider theformula � ifp Y : X  22XY  :X ^ 2X:It an be veri�ed that On j= � if, and only if, n is even. Hene, � is not equivalentto any formula of 1MIC.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 25The notation 1MIC was hosen, naturally, to suggest that we an de�ne, for anynatural number k, the fragment kMIC onsisting of those formulae of MIC in whihno ifp operation is de�ned over a system with more than k simultaneous formulae.The natural question that arises is whether inreasing k gives rise to a hierarhyof inreasing expressive power. We do not, at the moment, know of a method tosettle this question one way or the other.7.2 In�nity Axioms and the Satis�ability Problem for 1MICWe have seen above that simple indutions in MIC provide less expressive powerthan simultaneous indutions. We show now that even without simultaneous in-dutions the �nite model property fails and the satis�ability problem remains un-deidable, in fat not even arithmetial.Essentially, we use the same method as in Setion 3 to redue the deision prob-lem for the �rst-order theory of arithmeti to Sat(1MIC). The proofs there reliedruially on simultaneous indutions on two variables X and Y and we have seenabove that the formulae used there are not equivalent to any formulae of 1MIC.Instead, we use the following trik to simulate the simultaneous indution. Let Tbe a tree of height ! as used in Setion 3. To simulate an indution on two variableswe reursively make two opies of the suessors of eah node in T and label theroot of one of the opies by the proposition a and the root of the other by b. Let T 0be this new tree. Thus, every node in T 0 of �nite height is labelled by a or b andthe height of eah of these nodes u equals the length of the longest path entirelylabelled by a's from a suessor of u to a leaf whih, again, is the same as the lengthof the longest path entirely labelled by b's from a suessor of u to a leaf. On thismodel, we an simulate the simultaneous indution on two variables X and Y byan indution on one variable Z by letting Z ontain all opies of nodes ontainedin X whih are labelled by a and all opies of nodes ontained in Y labelled by b.We now turn to the axiomatisation of this tree model. Besides the propositionsymbols a and b already mentioned there are two other propositions, namely w,with whih only the root is labelled, and s, labelling only the diret suessors ofthe root. As in Setion 3, we restrit attention to well-founded tree models, i.e.tree models of the formula �X:2X .We �rst de�ne a formula label ensuring that its models are labelled as desribedabove. Let the formula label be de�ned aslabel := w ^ :a ^ :b ^ :s ^2s ^ 22everywhere(:s) ^2everywhere(:w ^ (a _ b) ^ :(a ^ b));where everywhere is de�ned as in Setion 3 as everywhere(') := ifp X  '^2X .Proposition 7.3. In any model T ; v of label the root and only the root v islabelled by w, all diret suessors of v, and only those, are labelled by s, and allnodes reahable but di�erent from v are either labelled by a or by b but not by both.The next step is to ensure that the models we are going to desribe are of height!. Towards this end, we �rst introdue some notation.Definition 7.4. A node labelled by a is alled an a-node. An a-path betweentwo nodes is a path between them onsisting only of a-nodes. Finally, we indutivelyde�ne the a-height � of an a-node u as follows.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



26 � A. Dawar, E. Gr�adel, and S. Kreutzer|The a-height of leaves labelled by a is de�ned to be 0.|For all other a-nodes, their a-height is de�ned as the least strit upper bound ofall � suh that � is the a-height of a suessor of u labelled by a.The notion of b-nodes, b-paths, and the b-height of a node is de�ned analogously.Let the formula # be de�ned as# := (b ^ 2(b! X)) _ (a ^ 2(a! X)):A simple indution on the stages establishes the following lemma.Lemma 7.5. Let T be a tree. Then, for all �, the �-th stage X� of the indutionon # ontains exatly the nodes of a- or b-height less than �.Consider the formulain�nity := label ^ everywhere(3a$ 3b) ^ inf ^ :ifp X  ';where inf := :ifp X  (b ^3b ^ 2(b! 2false)) _ ':and ' := # _ (w ^ 2(b! X) ^3(a ^ :X)) _(w ^ 2(a! X) ^3(b ^ :X)):Lemma 7.6. Let T ; v j= label^ everywhere(3a$ 3b) and let a := supf� : � isthe a-height of a diret suessor of vg and b := supf� : � is the b-height of diretsuessor of vg.(i) T ; v j= :ifp X  ' if, and only if, a = b.(ii) T ; v j= inf if, and only if, a and b are �nite and a + 1 = b or both arein�nite and a = b.Proof.(i) For Part (i), we show that the root v satis�es ifp X  ' if, and only if,there is a b-suessor of v whose b-height is greater than the a-height of anya-suessor of v or vie versa.Towards the forth diretion, suppose T ; v j= ifp X  '. Thus, there isa stage � suh that (T ; X�); v j= '. As T is a model of the formula labelabove, this implies(T ; X�); v j= (w ^ 2(b! X) ^3(a ^ :X)) _(w ^ 2(a! X) ^3(b ^ :X)):Suppose (T ; X�); v j= (w ^ 2(b ! X) ^ 3(a ^ :X)). Thus, using Lemma7.5, all b-suessors of v are of height less than �, whereas there is at leastone a-suessor whose height is greater than or equal to �. The ase where(T ; X�); v j= (w ^ 2(a! X) ^3(b ^ :X)) is analogous.For the onverse, if v has a b-suessor whose b-height � is greater than thea-height of any a-suessor, then X<� ontains all a-suessors but not allACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 27b-suessors of v. Thus, v would be in X�. The ase where there is an a-suessor of v whose a-height is greater than the b-height of any b-suessorof v is analogous.Thus we have shown that the root v satis�es ifp X  ' if, and only if,there is a b-suessor of v whose b-height is greater than the a-height of anya-suessor of v or vie versa. This proves the �rst part of the lemma.(ii) To establish Part (ii); we �rst prove by indution on the �nite stages, thatfor all 0 < n < !, Xn ontains exatly the a-nodes of height less than n andthe b-nodes of height less than or equal to n. For the ase of nodes labelledby a this follows immediately from Lemma 7.5 as the additional disjuntsonly a�et b-nodes (and the root v.)Let n = 1. Obviously, X1 ontains all b-nodes of height 0 and all b-nodessatisfying 3true ^ 22false . Clearly, suh a node u must be of height 1, asit only has leaves as suessors. As T is a model of the formula label, thismeans that u must have a b-suessor and thus is of b-height 1.For the indution step assume the laim has already been proved for alln0 < n. An argument as in the proof of Part (i) above shows that Xnontains all b-nodes of b-height less than or equal to n. This �nishes theindution.Now onsider the stage !. We have seen that X! ontains all nodes of �nitea- or b-height and the same argument as in Lemma 7.5 shows that for all� � !, X� ontains all nodes of a- or b-height less than �.Now suppose that the root v of the tree ours in X1. There must be astage � + 1 suh that v ours in X�+1 but not in X�, i.e. (T ; X�); v j=(w ^2(b! X)^3(a^ :X)) _ (w ^2(a! X) ^3(b^ :X)). Suppose that(T ; X�); v j= (w^2(b! X)^3(a^:X)): Thus, there is an a-suessor of vwhose a-height is greater than the b-height of any b-suessor. If � is in�nite,this means that a > b. If � is �nite, this means that all b-suessors of vare of height less than or equal to � whereas there is an a-suessor of v ofheight greater than or equal to �. This implies that a + 1 > b.On the other hand, if (T ; X�); v j= (w^2(a! X)^3(b^:X)), this impliesthat b > a if � is in�nite and b > a + 1 otherwise.This proves that if T ; v j= inf then a and b are �nite and a + 1 = b orboth are in�nite and a = b. The onverse diretion follows immediately.A simple onsequene of the lemma is the following orollary.Corollary 7.7. For every tree T and node v, if T ; v j= in�nity then the heightof v is in�nite. Thus, 1MIC does not have the �nite model property.To �nish the axiomatisation of the intended model, we have to ensure that themodels of our formula not only have in�nite height but height exatly ! and further,that for all nodes of �nite height, all of their suessors are of the same height.To formalise that the tree has height exatly ! we say that the root is of in�niteheight but none of its suessors is. For this let infs := inf[w=s; b=(b^:s); a=(a^:s)℄be the result of replaing in the formula inf above eah w by s, eah b by (b^:s),ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



28 � A. Dawar, E. Gr�adel, and S. Kreutzerand eah a by (a ^ :s). Analogously, de�ne 's := '[w=s; b=(b ^ :s); a=(a ^ :s)℄.Then a similar argument as in Lemma 7.6 shows the following.Lemma 7.8. Let the formula !-height be de�ned as!-height := in�nity ^ 2:(infs ^ :ifp X  's):Then for any tree T with root v, if T ; v j= !-height then the height of v is in�nitebut the height of all suessors of v is �nite. Thus, the height of v is exatly !.Finally, we formalise that for all nodes of �nite height all of their suessors areof the same height.Lemma 7.9. Consider the formula  de�ned as := :ifp X  (:w ^ 2X) _ (w ^ ifp Y  3Y _ (:w ^3X ^3:X)):Let T ; v j= !-height ^ be a tree. Then, for all nodes u of �nite height all diretsuessors of u are of the same height.Proof. As T ; v j= !-height, no node of �nite height is labelled by w. A simpleindution on the stages proves that at stage n 2 !, Xn ontains all nodes of heightless than n. Now assume that at some stage n the root v is inluded into X , i.e. vsatis�es ifp Y  3Y _ (:w ^3X ^3:X). Thus there is a node u whose heightis greater than n but has a suessor in Xn, i.e. one whose height is less than n,and a suessor not in Xn, i.e. one whose height is greater than or equal to n.Conversely, if there is a node u of some �nite height n whih has a suessor ofheight less than n� 1, then 3X ^3:X beomes true at stage n� 1 and the rootv is inluded into Xn.Together, we get that T ; v j=  if, and only if, for all nodes u of �nite height, allof its suessors are of the same height.We now turn to the redution of the deision problem for the �rst-order theory ofarithmeti to the satis�ability problem for 1MIC. In the remainder of this setionwe only onsider models of the formula !-height ^  . As in Setion 3, we odenatural numbers by sets of nodes of ertain height. The di�erene is, that here anumber n 2 ! is oded by the set of nodes u of height less than or equal to n. Inpartiular, the number 0 is not oded by the empty set but by the set of leaves.To simplify the presentation, we do not redue the �rst-order theory of arithmetito Sat(1MIC) diretly but �rst to the deision problem for the �rst-order theory ofthe following struture.Definition 7.10. Let N0 := (N;+; �; 0; 1) be the struture over the universe N,where the onstants 0N0 ; 1N0 and the funtion +N0 are interpreted as in the standardmodel N of arithmeti, and �N0 is interpreted as follows: s �N0 t := 0 if s = 0 ort = 0, and otherwise s �N0 t := s �N (t+ 1).Clearly, the �rst order theories of N and N0 an be redued to eah other. Thusreduing the deision problem for the theory of N0 to Sat(1MIC) shows this problemto be undeidable.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 29Given the enoding of natural numbers explained above, onsider the formulaplus(S; T ) de�ned asplus(S; T ) := (2(b!  +) ^ :everywhere(T $ 2false) ^:everywhere(S $ 2false)) _2false _ (everywhere(T $ 2false) ^ S) _(everywhere(S $ 2false) ^ T )where  + is de�ned as + := ifp X  (a ^ 2(a! X)) _ (b ^ S) _(b ^ 2(b! X) ^ everywhere(23(a ^X)! T )):Lemma 7.11. If S and T enode natural numbers s and t as desribed above,then plus(S; T ) enodes the sum s+ t.Proof. Let s and t be the natural numbers oded by the sets S and T respetively.Assume s; t > 0 and onsider the sub-formula  +. We laim that at stage i > 0,X i ontains all a-nodes of height less than i and all b-nodes of height at mostminfs+ i� 1; s+ t� 1g. For a-nodes, this is trivial. The laim for the b-nodes isproved by indution on the stages i > 0.|Clearly, X1 ontains exatly the b-nodes ontained in S and thus, as t � 1, onlynodes of height at most s+ t� 1.|Now assume that for 0 < i < t the laim has been proved, i.e.X i ontains all a-nodes of height less than i and all b-nodes of height at most s+(i�1). Therefore,the sub-formula everywhere(23(a ^X)! T ) is globally true and all b-nodes ofheight at most s+ i are inluded into X i+1, as they satisfy b ^ 2(b! X).|Now suppose i = t. Thus, X i ontains all a-nodes of height less than t. Clearly,the sub-formula b^2(b! X) is true only for b-nodes of height at most s+ (t�1) + 1. Let u be a node of height exatly s+ t and thus, as s � 1, greater thani: Then there is a node of height t+ 1 in the subtree rooted at u whih satis�es23(a^X) but not T . Therefore, everywhere(23(a^X)! T ) is false at u andu is not inluded into X i+1.|The same argument shows that at no higher stage, a b-node of height greaterthan s+ t� 1 an be added to the �xed-point. This proves the laim.Now onsider the formula plus(S; T ). By assumption, s; t > 0 and therefore theformulae :everywhere(T $ 2false) and :everywhere(S $ 2false) are true for allnodes exept for the leaves. Further, we have seen that the sub-formula 2(b!  +)beomes true for all nodes whose b-suessors are of height less than or equal tos+t�1 and, as we are working in models of the formula !-height ^  , for all nodesof height less than or equal to s+ t.Now suppose s = 0. Then :everywhere(S $ 2false) is false for all nodes exeptfor the leaves. Thus, 2false_everywhere(S $ 2false)^T de�nes all nodes ontainedin T and plus(S; T ) de�nes the set of nodes representing the sum 0 + t = t. Thease where t = 0 is analogous. This �nishes the proof.We now turn to the formalisation of multipliation in 1MIC. For this, onsiderACM Transations on Computational Logi, Vol. V, No. N, November 2002.



30 � A. Dawar, E. Gr�adel, and S. Kreutzerthe formulatimes(S; T ) := 2false _ (:everywhere(S $ 2false) ^:everywhere(T $ 2false) ^ 2(b!  �));where  � := ifp X  (a ^ 2(a! X) _ (b ^ plus(2(b! X); S) ^everywhere(23(a ^X))! T )):Lemma 7.12. If S and T enode natural numbers s and t as desribed above,then times(S; T ) enodes the produt s � (t+ 1) if s; t > 0 and 0 otherwise.Proof. First, suppose that s or t equals 0. In this ase, one of the sub-formulae:everywhere(S $ 2false) or :everywhere(T $ 2false) beomes false on all nodesexept the leaves and therefore the formula times(S; T ) is true only on the leavesand enodes the result 0.Now suppose s; t > 0 and onsider the indution on X in the sub-formula  �.We laim that at stage i > 0, X i ontains all a-nodes of height less than i and allb-nodes of height at most minfi � s+ i� 1; t � s+ t� 1g: For the a-nodes, the laimis obvious. Now onsider a node labelled by b.|In the �rst stage, X1 ontains all b-nodes satisfying plus(2(b! X); S). As X0 isempty, 2(b ! X) is true only at the leaves and thus the formula plus evaluatesto S.|Now assume the laim has been proved for stage i. If i < t, then X i ontains a-nodes of height less than i < t. Thus, the sub-formula everywhere(23(a^X))!T ) is true for all nodes. By indution hypothesis, X i ontains exatly the b-nodesof height less than or equal to i �s+ i�1 and therefore 2(b! X) beomes true atall nodes of height at most i�s+i. By Lemma 7.11, the formula plus(2(b! X); S)is then true for all nodes of height (i � s+ i+ s) = (i+ 1) � s+ (i+ 1)� 1.|Now suppose i = t. X i ontains exatly all a-nodes of height less than t andall b-nodes of height at most t � s + t � 1. Let u be any b-node not in X i, i.e.of height greater than t � s + t � 1. Then there is a node of height t + 1 inthe subtree rooted at u satisfying 23(a ^ X) but not T . Thus, the formulaeverywhere(23(a ^X)! T ) is false at u and u is not added to the �xed-point.The same argument, of ourse, holds for all stages i > t and thus, in restritionto the b-nodes, the �xed point of X has been reahed. This �nishes the proof ofthe laim.Now onsider the formula times. By assumption, s; t > 0 and therefore the sub-formulae :everywhere(S $ 2false) and :everywhere(T $ 2false) are both truefor all nodes exept the leaves. Thus, times(S; T ) beomes true for all leaves { asthey satisfy 2false { and for all nodes whose b-suessors satisfy  �, i.e. are ofheight ((t+ 1) � s� 1). Together, times(S; T ) represents (t+ 1) � s.The following orollary shows that the evaluation of polynomials in the strutureN0 an be redued to the evaluation of 1MIC formulae.Corollary 7.13. For every polynomial f(x1; : : : ; xr) over N0 with oeÆientsin the natural numbers there exists a formula  f (X1; : : : ; Xr) 2 1MIC suh that forACM Transations on Computational Logi, Vol. V, No. N, November 2002.



Inationary Fixed Points in Modal Logi � 31every tree T ; v j= !-height^ and all sets S1; : : : ; Sr enoding numbers s1; : : : ; sr 2! [[ f (S1; : : : ; Sr)℄℄T = fv : h(v) � fN0(s1; : : : ; sr)g;where fN0(s1; : : : ; sr) denotes the result of f in N0.Proof. The proof is by indution on f .| 0 := 2false .| 1 := 22false .| x := X .| f+g := plus[S= f ; T= g℄, i.e. the formula obtained by replaing in plus(S; T )the variables S and T by  f and  g , respetively.| f �g := times[S= f ; T= g℄.Theorem 7.14. For every FO-sentene  in the voabulary f+; �; 0; 1g of arith-meti, there exists a formula  � 2 1MIC suh that  is true in N0 if, and only if, � is satis�able.Proof. By indution on formulae  (x) 2 FO[+; �; 0; 1℄ we onstrut a formula �(x) 2 1MIC suh that for all n 2 ! with enodings N ,  (n) is true in N0 if, andonly if,  �(N) is true at the root v of any model T ; v of the formula !-height ^  above.We have already seen how to transform polynomials over N0 and equality x = yan be expressed by everywhere(X $ Y ). What remains is to translate quanti�ers.Let  (y) := 9x'(x; y1; : : : ; yk) be a formula in FO[+; �; 0; 1℄. By indution we geta orresponding formula '�(X;Y1; : : : ; Yk) in 1MIC. Let �(Y ) := w ^ ifp X  (:w ^ 2X) _ (w ^ '�(X=:w ^ 2X)):Let T ; v be any model of !-height ^  . We laim that for all numbers n enodedby sets N ,  (y) is true in N0 if, and only if, T ; v j=  �(N). A simple indutionon the stages proves that at stage i < !, X i ontains all a and b-nodes of heightless than i. Further, X1 ontains the root v if at some stage X , the formula '�beomes true at the root where the variable X has been replaed by :w ^2X , i.e.at eah stage i, the variable X in '� is interpreted by the set of nodes of height � i.Thus, in the ourse of the indution, '� is evaluated for all sets enoding naturalnumbers and, by indution hypothesis, beomes true at the root if, and only if, forat least one i 2 N, '(i; n), and thus  (n), beomes true. This proves the laim and�nishes the proof of the theorem.Corollary 7.15. The satis�ability problem for 1MIC is undeidable. In fat,it is not even in the arithmetial hierarhy.8. CONCLUSIONWhile extensions of �rst-order logi by inationary �xed points have been studiedfor a long time in �nite model theory we have introdued and investigated here forthe �rst time an analogous extension of propositional modal logi.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.



32 � A. Dawar, E. Gr�adel, and S. KreutzerThe pitures that emerges from our studies is atually quite surprising. Whilein �nite model theory, least �xed point logi (LFP) and inationary �xed pointlogi (IFP) behave very similarly, both onerning expressive power and algorith-mi properties, the orresponding modal �xed point logis L� and MIC are verydi�erent.|The modal iteration alulus MIC is muh more expressive than the modal �-alulus L�. In partiular, MIC annot be embedded into monadi seond-orderlogi and does not have the �nite model property.|On the other side, one pays a prize for this greater expressive power: MIC isalgorithmially muh less manageable. The satis�ability problem for MIC ishighly undeidable and the model heking problem is Pspae-omplete.|There are other strutural di�erenes. Perhaps the most interesting one is thatsimultaneous inationary indutions annot be redued to nested simple indu-tions.Beyond the theoretial interest in the omparison of monotone and non-monotoneindutions, our results show that MIC is not a useful logi for the ommon ap-pliation areas of L� like automati veri�ation, where the expressive power of(fragments of) L� suÆes for most appliations and where eÆient model hek-ing algorithms are essential. It will be interesting to see whether inationary �xedpoints in modal logi will just remain a theoretial uriosity, or whether there willbe a pratial use for very powerful modal logis like MIC.REFERENCESAbiteboul, S. and Vianu, V. 1995. Computing with �rst-order logi. Journal of Computer andSystem Sienes 50, 309 { 335.Arnold, A. and Niwi�nski, D. 2001. Rudiments of �-alulus. North Holland.Blakburn, P., de Rijke, M., and Venema, Y. 2001. Modal Logi. Cambridge University Press.B�uhi, J. 1960. Weak seond-order arithmeti and �nite automata. Zeitshrift f�ur MathematisheLogik und Grundlagen der Mathematik 6, 66{92.Dawar, A. 1993. Feasible omputation through model theory. Ph.D. thesis, University of Penn-sylvania.Dawar, A., Gr�adel, E., and Kreutzer, S. 2001. Inationary �xed points in modal logi. InPro. of the 10th Conf. on Computer Siene Logi (CSL). Leture Notes in Computer Siene(LNCS), vol. 2142. Springer Verlag, 277{291.Dawar, A. and Hella, L. 1995. The expressive power of �nitely many generalized quanti�ers.Information and Computation 123, 172{184.Dawar, A. and Kreutzer, S. 2002. Generalising automatiity to modal properties of �nite stru-tures. In Foundations of Software Tehnology and Theoretial Computer Siene (FSTTCS).Leture Notes in Computer Siene (LNCS). Springer Verlag.Dawar, A., Lindell, S., and Weinstein, S. 1995. In�nitary logi and indutive de�nability over�nite strutures. Information and Computation 119, 160{175.Dziembowski, S. 1996. Bounded-variable �xpoint queries are PSPACE-omplete. In 10th AnnualConferene on Computer Siene Logi CSL 96. Seleted papers. Leture Notes in ComputerSiene, vol. 1258. Springer, 89{105.Ebbinghaus, H.-D. and Flum, J. 1999. Finite Model Theory, 2nd ed. Springer.Flum, J. 1999. On the (in�nite) model theory of �xed-point logis. In Models, algebras, andproofs, X. Caiedo and C. Montenegro, Eds. Number 2003 in Leture Notes in Pure and AppliedMathematis Series. Marel Dekker, 67{75.ACM Transations on Computational Logi, Vol. V, No. N, November 2002.
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