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henWe 
onsider an extension of modal logi
 with an operator for 
onstru
ting in
ationary �xed points,just as the modal �-
al
ulus extends basi
 modal logi
 with an operator for least �xed points.Least and in
ationary �xed point operators have been studied and 
ompared in other 
ontexts,parti
ularly in �nite model theory, where it is known that the logi
s IFP and LFP that result fromadding su
h �xed point operators to �rst order logi
 have equal expressive power. As we show,the situation in modal logi
 is quite di�erent, as the modal iteration 
al
ulus (MIC) we introdu
ehas mu
h greater expressive power than the �-
al
ulus. Greater expressive power 
omes at a 
ost:the 
al
ulus is algorithmi
ally mu
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omplexity1. INTRODUCTIONThe modal �-
al
ulus L� is an extension of multi-modal logi
 with an operator forforming least �xed points. This logi
 has been extensively studied, having a
quiredimportan
e for a number of reasons. In terms of expressive power, it subsumesa variety of modal and temporal logi
s used in veri�
ation, in parti
ular LTL,CTL, CTL�, PDL and also many logi
s used in other areas of 
omputer s
ien
e,for instan
e des
ription logi
s. On the other hand, L� has a ri
h theory, and iswell-behaved in model-theoreti
 and algorithmi
 terms.The logi
 L� is only one instan
e of a logi
 with an expli
it operator for formingleast �xed points. Indeed, in re
ent years, a number of �xed point extensions of�rst order logi
 have been studied in the 
ontext of �nite model theory. It maybe argued that �xed point logi
s play a 
entral role in �nite model theory, moreimportant than �rst order logi
 itself. The best known of these �xed point logi
sis LFP, whi
h extends �rst order logi
 with an operator for forming the least �xedpoints of positive formulae, de�ning monotone operators. In this sense, it relates toAuthor's Addresses: A. Dawar, University of Cambridge Computer Laboratory, Cambridge CB30FD, UK, anuj.dawar�
l.
am.a
.uk. Resear
h supported by EPSRC grant GR/N23028.E. Gr�adel and S. Kreutzer, Aa
hen University of Te
hnology, Mathemati
al Foundations of Com-puter S
ien
e, D-52065 Aa
hen, fgraedel,kreutzerg�informatik.rwth-aa
hen.de.Permission to make digital/hard 
opy of all or part of this material without fee for personalor 
lassroom use provided that the 
opies are not made or distributed for pro�t or 
ommer
ialadvantage, the ACM 
opyright/server noti
e, the title of the publi
ation, and its date appear, andnoti
e is given that 
opying is by permission of the ACM, In
. To 
opy otherwise, to republish,to post on servers, or to redistribute to lists requires prior spe
i�
 permission and/or a fee.

 2002 ACM 1529-3785/2002/0700-0001 $5.00ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002, Pages 1{33.



2 � A. Dawar, E. Gr�adel, and S. Kreutzer�rst order logi
 in mu
h the same way as L� relates to propositional modal logi
.However, a number of other �xed point operators have been extensively studied in�nite model theory, in
luding in
ationary, partial, nondeterministi
 and alternating�xed points. All of these have in 
ommon that they allow the 
onstru
tion of �xedpoints of operators that are not ne
essarily monotone.Furthermore, a variety of fragments of the �xed point logi
s formed have beenstudied, su
h as existential and strati�ed fragments, bounded �xed point logi
s,transitive 
losure logi
 and varieties of Datalog. Thus, there is a ri
h theory of thestru
ture and expressive power of �xed point logi
s on �nite relational stru
turesand, to a lesser extent, on in�nite stru
tures.In the present paper, we take a �rst step in the study of extensions of proposi-tional modal logi
 by operators that allow us to form �xed points of non-monotoneformulae. We fo
us on the simplest of these, that is the in
ationary �xed point(also sometimes 
alled the iterative �xed point). Though the in
ationary �xedpoint extension of �rst order logi
 (IFP) is often used inter
hangeably with LFP,as the two have the same expressive power on �nite stru
tures, we show that in the
ontext of modal logi
, the in
ationary �xed point behaves quite di�erently fromthe least �xed point.Least and In
ationary Indu
tions. We begin by reviewing the known results on thelogi
s LFP and IFP.(1) On �nite stru
tures, LFP and IFP have the same expressive power [Gurevi
hand Shelah 1986℄. A re
ent result shows that this equivalen
e of LFP andIFP also extends to in�nite stru
tures (see [Kreutzer 2002℄).(2) On ordered �nite stru
tures, LFP and IFP express pre
isely the propertiesthat are de
idable in polynomial time.(3) Simultaneous least or in
ationary indu
tions do not provide more expressivepower than simple indu
tions.(4) The 
omplexity of evaluating a formula  in LFP or IFP on a given �nitestru
ture A is polynomial in the size of the stru
ture, but exponential in thelength of the formula. For formulae with a bounded number k of variables,the evaluation problem is Pspa
e-
omplete [Dziembowski 1996℄, even fork = 2 and on �xed (and very small) stru
tures. If, in addition to boundingthe number of variables one also forbids parameters in �xed point formulae,the evaluation problem for LFP is 
omputationally equivalent to the model
he
king problem for L� [Gr�adel and Otto 1999; Vardi 1995℄ whi
h is knownto be in NP \ Co-NP, in fa
t in UP \ Co-UP [Jurdzinski 1998℄, and hardfor Ptime. It is an open problem whether this problem 
an be solved inpolynomial time. The model 
he
king problem for bounded variable IFPdoes not appear to have been studied previously.We also note that even though IFP does not provide more expressive power thanLFP on �nite stru
tures, it is often more 
onvenient to use in
ationary indu
tionsin expli
it 
onstru
tions. The advantage of using IFP is that one is not restri
ted toindu
tions over positive formulae. A non-trivial 
ase in point is the formula de�ningan order on the k-variable types in a �nite stru
ture, an essential ingredient of theproof of the Abiteboul-Vianu Theorem, saying that least and partial �xed pointACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



In
ationary Fixed Points in Modal Logi
 � 3logi
s 
oin
ide if and only if Ptime = Pspa
e (see [Abiteboul and Vianu 1995;Dawar 1993; Dawar et al. 1995; Ebbinghaus and Flum 1999℄). Furthermore, IFPis more robust, in the sense that in
ationary �xed points are well-de�ned, evenwhen other, non-monotone, operators are added to the language (see, for instan
e,[Dawar and Hella 1995℄).In
ationary Indu
tions in Modal Logi
. Given the 
lose relationship between LFPand IFP on �nite stru
tures, and the importan
e of the �-
al
ulus, it is natural tostudy also the properties and expressive power of in
ationary �xed points in modallogi
. In this paper, we undertake a study of an analogue of IFP for modal logi
.We de�ne a modal iteration 
al
ulus, MIC, by extending basi
 multi-modal logi
with simultaneous in
ationary indu
tions. While deferring formal de�nitions untilSe
tion 2, we begin with an informal explanation.In L�, we 
an write formulae �X:', whi
h are true in state s of a transitionsystem K if, and only if, s is in the least set X satisfying X $ ' in K. We 
an dothis, provided that the variable X appears only positively in '. This guaranteesthat ' de�nes a monotone operator and has a least �xed point. Moreover, the�xed point 
an be obtained by an iterative pro
ess. Starting with the empty set,if we repeatedly apply the operator de�ned by ' (possibly through a trans�niteseries of stages), we obtain an in
reasing sequen
e of sets, whi
h 
onverges to thedesired least �xed point. If, on the other hand, ' is not positive in X , we 
an stillde�ne an in
reasing sequen
e of sets, by starting with the empty set, and iterativelytaking the union of the 
urrent set X with the set of states satisfying '(X), andthis sequen
e must eventually 
onverge to a �xed point (not ne
essarily of ', butof the operator that maps X to X _ '(X)). More generally, we allow formulaeifp Xi : [X1  '1; : : : ; Xk  'k℄ that 
onstru
t sets by a simultaneous in
ationaryindu
tion. At ea
h stage �, we have a tuple of sets X�1 ; : : : ; X�k . Substituting theseinto the formulae '1; : : : ; 'k we obtain a new tuple of sets, whi
h we add to theexisting sets X�1 ; : : : ; X�k , to obtain the next stage.It is 
lear that MIC is a modal logi
 in the sense that it is invariant underbisimulation. In fa
t, on every 
lass of bounded 
ardinality, in
ationary �xed points
an be unwound to obtain equivalent in�nitary modal formulae. As a 
onsequen
e,MIC has the tree model property. It is also 
lear that MIC is at least as expressiveas L�. The following natural questions now arise.(1) Is MIC more expressive than L�?(2) Does MIC have the �nite model property?(3) What are the algorithmi
 properties of MIC? Is the satis�ability problemde
idable? Can model 
he
king be performed eÆ
iently (as eÆ
iently as forL�)?(4) Can we eliminate, as in the �-
al
ulus and as in IFP, simultaneous indu
tionswithout losing expressive power?(5) What is the relationship of MIC with monadi
 se
ond-order logi
 (MSO) andwith �nite automata? Or more generally, what are the `right' automata forMIC?(6) Is MIC the bisimulation-invariant fragment of any natural logi
 (as L� is thebisimulation-invariant fragment of MSO [Janin and Walukiewi
z 1996℄)? ItACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



4 � A. Dawar, E. Gr�adel, and S. Kreutzerhas re
ently been proved that the bisimulation invariant fragment of the mostnatural 
andidate for this, the monadi
 fragment of in
ationary �xed-pointlogi
, has mu
h greater expressive power than MIC [Dawar and Kreutzer2002℄. Thus, if su
h a logi
 exists, its expressive power must be somewherebetween MSO and monadi
 IFP.We provide answers to most of these questions. From an algorithmi
 point ofview, most of the answers are negative. From the point of view of expressiveness,we 
an say that in the 
ontext of modal logi
, in
ationary �xed points providemu
h more expressive power than least �xed points, and MIC has very di�erentstru
tural properties to L�. In parti
ular, we establish the following results:(1) There exist MIC-de�nable languages that are not regular. Hen
e MIC is moreexpressive than the �-
al
ulus, and does not translate to monadi
 se
ond-order logi
.(2) MIC does not have the �nite model property.(3) The satis�ability problem for MIC is unde
idable. In fa
t, it is not even inthe arithmeti
 hierar
hy.(4) The model 
he
king problem for MIC is Pspa
e-
omplete.(5) Simultaneous in
ationary indu
tions do provide more expressive power thansimple in
ationary indu
tions. Nevertheless the algorithmi
 intra
tabilityresults for MIC apply also to MIC without simultaneous indu
tions.(6) There are bisimulation-invariant polynomial time properties that are notexpressible in MIC.(7) All languages in Dtime(O(n)) are MIC-de�nable.No doubt, these properties ex
lude MIC as a 
andidate logi
 for hardware veri�-
ation. On the other hand, the present study is an investigation into the stru
tureof the in
ationary �xed point operator and may suggest tra
table fragments of thelogi
 MIC, whi
h involve 
ru
ial use of an in
ationary operator, just as logi
s likeCTL and alternation-free L� 
arve out eÆ
iently tra
table fragments of L�. Inany 
ase, it delineates the di�eren
es between in
ationary and least �xed point
onstru
ts in the 
ontext of modal logi
.In the rest of this paper, we begin in Se
tion 2 by giving the ne
essary ba
kgroundon modal logi
 and �xed points, and giving the de�nition of MIC, along with anexample that illustrates how this 
al
ulus has higher expressive power than L�.Se
tion 3 establishes that MIC fails to have the �nite model property and that thesatis�ability problem is highly unde
idable. In Se
tion 4 we investigate questionsof the 
omputational 
omplexity of MIC in the 
ontext of �nite transition systems.We show that the model 
he
king problem is Pspa
e-
omplete and that the 
lass ofmodels of any MIC formula is de
idable in both polynomial time and linear spa
e.In Se
tion 5 we investigate the expressive power of MIC on �nite words, establishingthat there are languages de�nable in MIC that are not 
ontext-free, and that everylinear time de
idable language is expressible in MIC. In Se
tion 6 we prove thatthere are polynomial time bisimulation-invariant properties that are not expressiblein MIC. Further, we dis
uss the automati
ity of MIC-de�nable sets of �nite wordsand �nite trees. Finally, in Se
tion 7 we prove that 1MIC, the fragment of MICthat uses only simple indu
tion, has less expressive power than full MIC.ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



In
ationary Fixed Points in Modal Logi
 � 52. THE MODAL ITERATION CALCULUSBefore we de�ne the modal iteration 
al
ulus, we brie
y re
all the de�nitions ofpropositional modal logi
 ML and the �-
al
ulus L�.2.1 Propositional Modal Logi
.Transition Systems. Modal logi
s are interpreted on transition systems (also 
alledKripke stru
tures). Fix a set A of a
tions and a set W of atomi
 propositions. Atransition system for A andW is a stru
ture K with universe V (whose elements are
alled states) binary relations Ea � V � V for ea
h a 2 A and monadi
 relationsp � V for ea
h atomi
 proposition p 2 W (we do not distinguish notationallybetween atomi
 propositions and their interpretations.)Syntax of ML. For a set A of a
tions and a set W of proposition variables, theformulae of ML are built from false , true and the variables p 2 W by means ofBoolean 
onne
tives ^, _, : and modal operators hai and [a℄. That is, if  is aformula of ML and a 2 A is an a
tion, then hai and [a℄ are also formulae ofML. If there is only one a
tion in A, one simply writes 2 and 3 for [a℄ and hai,respe
tively.Semanti
s of ML. The formulae of ML are evaluated on transition systems ata parti
ular state. Given a formula  and a transition system K with state v, wewrite K; v j=  to denote that the formula  holds in K at state v. We also write[[ ℄℄K to denote the set of states v, su
h that K; v j=  . In the 
ase of atomi
propositions,  = p, we have [[p℄℄K = p. Boolean 
onne
tives are treated in thenatural way. Finally for the semanti
s of the modal operators we put[[hai ℄℄K := fv : there exists a state w su
h that (v; w) 2 Ea and w 2 [[ ℄℄Kg[[[a℄ ℄℄K := fv : for all w su
h that (v; w) 2 Ea, we have w 2 [[ ℄℄Kg:Hen
e hai and [a℄ 
an be viewed as existential and universal quanti�ers `along a-transitions'.For ba
kground on propositional modal logi
, we re
ommend [Bla
kburn et al.2001℄.2.2 The �-
al
ulus L�.Syntax of L�. The �-
al
ulus extends propositional modal logi
 ML by the fol-lowing rule for building �xed point formulae: if  is a formula in L� and X is apropositional variable that o

urs only positively in  , then �X: and �X: areL� formulae.Semanti
s of L�. A formula  (X) with a propositional variableX de�nes on everytransition system K (with state set V , and with interpretations for free variablesother than X o

urring in  ) an operator  K : P(V ) ! P(V ) assigning to everyset X � V the set  K(X) := [[ ℄℄K;X = fv 2 V : (K; X); v j=  g:As X o

urs only positively in  , the operator  K is monotone for every K, andtherefore, by a well-known theorem due to Knaster and Tarski, has a least �xedpoint lfp( K) and a greatest �xed point gfp( K). Now we put [[�X: ℄℄K := lfp( K)and [[�X: ℄℄K := gfp( K):ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



6 � A. Dawar, E. Gr�adel, and S. KreutzerLeast (and greatest) �xed points 
an also be 
onstru
ted indu
tively. Given aformula �X: (X), we de�ne for ea
h ordinal �, the stage X� of the lfp-indu
tionof  K by X0 := ;, X�+1 := [[ ℄℄(K;X�), and X� := S�<�X� if � is a limit ordinal.By monotoni
ity, the stages of the lfp-indu
tion in
rease until a �xed point isrea
hed. The �rst ordinal at whi
h this happens is 
alled the 
losure ordinal of theindu
tion. By ordinal indu
tion, one easily proves that this indu
tively 
onstru
ted�xed point 
oin
ides with the least �xed point. The 
ardinality of a 
losure ordinal
annot be larger than the 
ardinality of K.For any formula ', the formula �X:' is equivalent to :�X::'(:X), where '(:X)denotes the formula obtained from ' by repla
ing all o

urren
es of X with :X .Simultaneous Fixed Points. There is a variant of L� that admits systems of si-multaneous �xed points. These do not in
rease the expressive power but some-times allow for more straightforward formalisations. Here one asso
iates with anytuple  = ( 1; : : : ;  k) of formulae  i(X) =  i(X1; : : : ; Xk), in whi
h all o

ur-ren
es of all Xi are positive, a new formula ' = �X: . The semanti
s of ' isindu
ed by the least �xed point of the monotone operator  K mapping X to X 0where X 0i = �v 2 V : (K; X); v j=  ig. More pre
isely, K; v j= ' i� v is an ele-ment of the �rst 
omponent of the least �xed point of the above operator. It isknown that simultaneous least �xed points 
an be eliminated in favour of nestedindividual �xed points (see e.g. [Arnold and Niwi�nski 2001, page 27℄). Indeed,�XY : [ (X;Y ); '(X;Y )℄ is equivalent to �X: (X;�Y:'(X;Y )), and this equiva-len
e generalises to larger systems in the obvious way.Bisimulations and Tree Model Property. Bisimulation is a notion of behaviouralequivalen
e for transition systems. Modal logi
s, like ML, CTL, the �-
al
ulus et
.do not distinguish between transition systems that are bisimulation equivalent.Formally, given two transition systems K and K0, with distinguished states v andv0 respe
tively, we say that K; v is bisimulation equivalent to K0; v0, written K; v �K0; v0, if there is a relation R � V � V 0 between the states of K and the statesof K0 su
h that: (1) (v; v0) 2 R; (2) for ea
h atomi
 proposition p 2 W and ea
h(u; u0) 2 R, u 2 [[p℄℄K if, and only if, u0 2 [[p℄℄K0 ; (3) for ea
h (u; u0) 2 R, and ea
ht 2 V su
h that (u; t) 2 Ea, there is a t0 2 V 0 with (u0; t0) 2 E0a and (t; t0) 2 R; and(4) for ea
h (u; u0) 2 R, and ea
h t0 2 V 0 su
h that (u0; t0) 2 E0a, there is a t 2 Vwith (u; t) 2 Ea and (t; t0) 2 R.Bisimulation equivalen
e 
orresponds to equivalen
e in an in�nitary modal logi
ML1 [van Benthem 1983℄. This logi
 is the extension of ML by disjun
tions and
onjun
tions taken over arbitrary sets of formulae. Thus, if S is any set (possiblyin�nite) of formulae of ML1, then VS and WS are also formulae of ML1. It 
anbe shown that for any transition systems K and K0, K; v � K0; v0 if, and only if,K; v makes true exa
tly the same formulae of ML1 as K0; v0.A transition system is 
alled a tree, if for every state v, there is at most one stateu, and at most one a
tion a su
h that (u; v) 2 Ea and there is exa
tly one stater, 
alled the root of the tree, for whi
h there is no state having a transition to r,and if every state is rea
hable from the root. It is known that for every transitionsystem K, and any state v, there is a tree T with root r su
h that K; v � T ; r. One
onsequen
e of this is that any logi
 that respe
ts bisimulation has the tree modelproperty. For instan
e, for any formula ' of L�, if ' is satis�able, then there is aACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



In
ationary Fixed Points in Modal Logi
 � 7tree T su
h that T ; r j= '.2.3 The Modal Iteration Cal
ulus.We are now ready to introdu
e MIC. Informally, MIC is propositional modal logi
ML, augmented with simultaneous in
ationary �xed points.Definition 2.1. The modal iteration 
al
ulus MIC extends propositional modallogi
 by the following rule: if '1; : : : ; 'k are formulae of MIC, and X1; : : : ; Xk arepropositional variables, then S := 8><>: X1  '1...Xk  'kis a system of rules, and (ifp Xi : S) is a formula of MIC. If S 
onsists of asingle rule X  ' we simplify the notation and write (ifp X  ') instead of(ifp X : X  ').Semanti
s: On every Kripke stru
ture K, the system S de�nes, for ea
h ordinal �, atuple X� = (X�1 ; : : : ; X�k ) of sets of states, via the following in
ationary indu
tion(for i = 1; : : : ; k). X0i := ;;X�+1i := X�i [ [['i℄℄(K;X�);X�i := [�<�X�i if � is a limit ordinal.We 
all (X�1 ; : : : ; X�k ) the stage � of the in
ationary indu
tion of S on K. As thestages are in
reasing (i.e. X�i � X�i for any � < �), this indu
tion rea
hes a �xedpoint (X11 ; : : : ; X1k ). Now we put [[(ifp Xi : S)℄℄K := X1i :Before introdu
ing examples in Se
tion 2.4 and 3, we establish some simple prop-erties of MIC.Lemma 2.2. L� � MIC. Further, on every 
lass of stru
tures of bounded 
ardi-nality MIC � ML1.Proof. Clearly, if X o

urs only positively in  , then �X: � ifp X   . Hen
eL� � MIC.Now, let S be a system of rules Xi  'i(X1; : : : ; Xk). It is 
lear that forea
h ordinal � there exist formulae '�1 ; : : : ; '�k 2 ML1 de�ning, over any Kripkestru
ture, the stage � of the indu
tion by S. As 
losure ordinals are bounded onstru
tures of bounded 
ardinality, the se
ond 
laim follows.Corollary 2.3. MIC is invariant under bisimulation and has the tree modelproperty.Note that on 
lasses of stru
tures with unbounded 
ardinality, L� andMIC are not
ontained in ML1. For instan
e, well-foundedness is expressed by the L�-formula�X:2X , but is known not to be expressible in ML1.ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



8 � A. Dawar, E. Gr�adel, and S. Kreutzer2.4 Non-Regular LanguagesWe now demonstrate that MIC is stri
tly more expressive than L�. Re
all thatevery formula of L� 
an be translated into a formula of monadi
 se
ond order logi
(MSO). Moreover, it is a well-known 
lassi
al result [B�u
hi 1960℄ that the only setsof �nite words that are expressible in MSO are the regular languages.Definition 2.4. For our purposes, a word w of length n, in an alphabet � is atransition system with n states v1; : : : ; vn, a single a
tion E su
h that (vi; vj) 2 Eif, and only if, j = i+ 1 and an atomi
 proposition s for ea
h s 2 �, su
h that forea
h vi, there is a unique s with vi 2 s.Proposition 2.5. There is a language that is expressible in MIC but not inMSO.Proof. The language L := fanbm : n � mg is not regular, hen
e not de�nablein monadi
 se
ond-order logi
, but it is de�nable in MIC. To see this, we 
onsider�rst the formula �(X) = (ifp Y  3(b ^ :X) _ 3(a ^ X ^ Y )) whi
h (sin
ethe rule is positive in Y ) is in fa
t equivalent to a L�-formula. On every wordw = w0 � � �wn�1 2 fa; bg� and X � f0; : : : ; n�1g, the formula is true if the word wstarts with a (possibly empty) a-sequen
e inside X followed by a b outside X . Nowthe formula (ifp X  (a^ �(X))_ (b^2X)) de�nes (inside a�b�) the language L.Note that the language a�b� is de�nable in L�, so we 
an 
onjoin this de�nition tothe above formula to obtain a de�nition of L whi
h works on all words in fa; bg�.The observation in Proposition 2.5 was pointed out to us in dis
ussion by MartinOtto, and was the starting point of the investigation reported here.3. INTERPRETING ARITHMETIC IN MICIn this se
tion we prove that the satis�ability problem of MIC is unde
idable in avery strong sense. Given that MIC is invariant under bisimulation, we 
an restri
tattention to trees. In fa
t we will only 
onsider well-founded trees (i.e. treessatisfying the formula ifp X  2X .) The height h(v) of a node v in a well-founded tree T is an ordinal, namely the least stri
t upper bound of the heights ofits 
hildren. For any node v in a tree T , we write T (v) for the subtree of T withroot v. We �rst show that the nodes of �nite height and the nodes of height ! arede�nable in MIC.Lemma 3.1. Let S be the systemX  2false _ (2X ^3:Y )Y  X:Then, on every tree T , [[ifp X : S℄℄T = [[ifp Y : S℄℄T = fv : h(v) < !g.Proof. By indu
tion we see that for ea
h i < !, X i = fv : h(v) < ig andY i = X i�1 = fv : h(v) < i � 1g. As a 
onsequen
e X! = Y ! = fv : h(v) < !g.One further iteration shows that X!+1 = Y !+1 = X!.ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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ationary Fixed Points in Modal Logi
 � 9With the system S exhibited in Lemma 3.1 we obtain the formulae�nite-height := (ifp X : S)and !-height := :�nite-height ^ 2�nite-heightwhi
h de�ne, respe
tively, the nodes of �nite height and the nodes of height !.Note that !-height is a satis�able formula all of whose models are in�nite.Proposition 3.2. MIC does not have the �nite model property.We next show that the satis�ability problem of MIC is unde
idable. In fa
t MICinterprets full arithmeti
 on the heights of nodes. To prove this we �rst de�ne someauxiliary formulae that will be used frequently throughout the paper. We alwaysassume that the underlying stru
ture is a well-founded tree.|The formula somewhere(') := (ifp Xs  ' _ 3Xs) expresses that ' holdssomewhere in the subtree of the 
urrent node: T ; v j= somewhere(') i� [['℄℄T \T (v) 6= ;.|Dually everywhere(') := (ifp Xe  ' ^ 2Xe) says that ' holds at all nodes ofthe subtree T (v).|We say that a set X (in a tree T ) en
odes the ordinal � if X = fv : h(v) < �g.Let ordinal(X) be the 
onjun
tion of the formula everywhere(X ! 2X) with:(ifp Z : Y  2YZ  somewhere(:Y ^ 2Y ^X) ^ somewhere(:Y ^ 2Y ^ :X)):It expresses that X en
odes some ordinal. Indeed everywhere(X ! 2X) saysthat with ea
h node v 2 X , the entire subtree rooted at v is 
ontained in X .The se
ond 
onjun
t is intended to ensure that two nodes of the same height areeither both in X or both outside it. To see that it does this, note that at stage� + 1 of the indu
tion nodes of height � are added to Y . At this stage, theseare exa
tly the nodes satisfying :Y ^ 2Y . Thus, a node r is added to Z at thisstage if, and only if, somewhere in the subtree rooted at r there are two nodes ofheight � +1, one of whi
h is in X and the other is not. Hen
e, at the end of theindu
tion the root of the tree will not be 
ontained in Z if, and only if, X doesnot distinguish between nodes of the same height. Together the two 
onjun
tsimply that X 
ontains all nodes up to some height.|The formula number(X) = ordinal(X)^somewhere(�nite-height^:X) says thatX en
odes a natural number n (inside a tree of height > n).Lemma 3.3. Let T be a well-founded tree of height !. There exist formulaeplus(S; T ) and times(S; T ) of MIC su
h that, whenever the sets S and T en
ode,in the tree T , the natural numbers s and t, then [[plus(S; T )℄℄T en
odes s + t, and[[times(S; T )℄℄T en
odes st.Proof. Letplus(S; T ) := ifp Y : X  2XY  S _ (2Y ^ somewhere(X) ^ everywhere(X ! T )):ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



10 � A. Dawar, E. Gr�adel, and S. KreutzerObviously at ea
h stage n, we have Xn = fv : h(v) < ng. We 
laim that for ea
hn, Y n+1 = fv : h(v) < s+min(n; t)g. For n = 0 this is 
lear (note that for the 
ases = 0 this is true be
ause the 
onjun
t somewhere(X) prevents the Y -rule frombeing a
tive at stage 1). For n > 0 the in
lusion Xn � T is true i� n � t. Hen
e wehave Y n+1 = fv : h(v) < s+ ng in the 
ase that n � t and Y n+1 = Y n = � � � = Y totherwise. To express multipli
ation we de�netimes(S; T ) := ifp Y : X  2XY  plus(Y; S) ^ everywhere(2X ! T ):We 
laim that Y n = fv : h(v) < s � min(n; t)g. This is trivially true for n = 0.If it is true for n < t, then Y n+1 = fv : h(v) < sn + sg = fv : h(v) < s(n + 1)g.Finally for n � t, the extension of 2Xn is fv : h(v) < n+1g whi
h is not 
ontainedin T = fv : h(v) < tg, hen
e Y n+1 = Y n = � � � = Y t.Corollary 3.4. For every polynomial f(x1; : : : ; xr) with 
oeÆ
ients in the nat-ural numbers there exists a formula  f (X1; : : : ; Xr) 2 MIC su
h that for every treeT of height ! and all sets S1; : : : ; Sr en
oding numbers s1; : : : ; sr 2 ![[ f (S1; : : : ; Sr)℄℄T = fv : h(v) < f(s1; : : : ; sr)g:Proof. By indu
tion on f .| 0 := false .| 1 := 2false .| xi := Xi.| f+g := plus[S= f ; T= g℄, i.e. the formula obtained by repla
ing in plus(S; T )the variables S and T by, respe
tively,  f and  g .| f �g := times[S= f ; T= g℄.Theorem 3.5. For every �rst order senten
e  in the vo
abulary f+; �; 0; 1g ofarithmeti
, there exists a formula  � 2 MIC su
h that  is true in the standardmodel (N;+; �; 0; 1) of arithmeti
 if, and only if,  � is satis�able.Proof. We have already seen that there exists a MIC-axiom !-height axiomatis-ing the models that are bisimilar to a tree of height !. Further, we 
an express setequalities X = Y by everywhere(X $ Y ) and we know how to represent polyno-mials by MIC-formulae. What remains is to translate quanti�ers.More pre
isely, we need to show that for ea
h �rst order formula  (y1; : : : ; yr)in the language of arithmeti
 there exists a MIC-formula  �(Y1; : : : ; Yr) su
h thaton rooted trees T ; w of height ! and for all sets S1; : : : ; Sr that en
ode numberss1; : : : ; sr on T we have that (N;+; �; 0; 1) j=  (s1; : : : ; sr) i� T ; w j=  �(S1; : : : ; Sr).Only the 
ase of formulae of the form  (y) := 9x'(x; y) remains to be 
onsidered.By indu
tion hypothesis, we assume that for '(x; y) the 
orrespondingMIC-formula'�(X;Y ) has already been 
onstru
ted. Now let �(Y ) := ifp Z : X  2XZ  '�(X;Y ) ^ number(X):ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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 � 11Corollary 3.6. The satis�ability problem for MIC is unde
idable. In fa
t, itis not even in the arithmeti
al hierar
hy.The proof given above appears to rely 
ru
ially on the use of simultaneous in-du
tions. Indeed, one 
an show that formulae of MIC involving simultaneous in-du
tions, in parti
ular the formula 
onstru
ted in the proof of Lemma 3.1, 
annotbe expressed without simultaneous indu
tions (see Theorem 7.2).However, we will prove in Se
tion 7 that �rst order arithmeti
 
an a
tually alsobe redu
ed to the satis�ability problem for 1MIC (MIC without simultaneous in-du
tions).Countable models. While MIC does not have the �nite model property, itdoes have the L�owenheim-Skolem property, i.e. every satis�able MIC-formula hasa 
ountable model. Indeed the proof of the L�owenheim-Skolem property for LFP(see e.g. [Flum 1999; Gr�adel 2003℄), readily extends to the in
ationary �xed pointlogi
 IFP whi
h 
ontains MIC. As a 
onsequen
e, the satis�ability problem for MICis in �12, the se
ond level of the analyti
al hierar
hy.4. THE MODEL CHECKING PROBLEM FOR MICRe
all that the model 
he
king problem for the �-
al
ulus is in UP \ Co-UP, andis 
onje
tured by some to be solvable in polynomial time. We now show that MICis algorithmi
ally more 
ompli
ated (unless Pspa
e = NP).We �rst observe that the naive bottom-up evaluation algorithm for MIC-formulaeuses polynomial time with respe
t to the size of the input stru
ture, and polynomialspa
e (and exponential time) with respe
t to the length of the formula. Let Kbe a transition system with n nodes and m edges. The size jjKjj of appropriateen
odings of K as an input for a model 
he
king algorithm is O(n +m). It is wellknown that the extension [['℄℄K of a basi
 modal formula ' (without �xed points)on a �nite transition system K 
an be 
omputed in time O(j'j � jjKjj). Further, anyin
ationary indu
tion ifp Xi : [X1  '1; : : : ; Xk  'k℄ rea
hes a �xed point on Kafter at most kn iterations. Hen
e, the bottom-up evaluation of a MIC-formula  with d nested simultaneous in
ationary �xed points, ea
h of width k, on K needsat most O((kn)d) basi
 evaluation steps. For ea
h �xed point variable o

urring inthe formula, 2n bits of workspa
e are needed to re
ord the 
urrent value and thelast value of the indu
tion. This gives the following 
omplexity results.Proposition 4.1. Any MIC formula  of nesting depth d and simultaneousindu
tions of width at most k on a transition system K with n nodes 
an be evaluatedin time O((kn)dj j � jjKjj) and spa
e O(j j � n).In terms of 
ommon 
omplexity 
lasses the results 
an be stated as follows.Theorem 4.2. (1) The 
ombined 
omplexity of the model 
he
king problemfor MIC on �nite stru
tures is in Pspa
e.(2) For any �xed formula  2 MIC, the model 
he
king problem for  on �nitestru
tures is solvable in polynomial time and linear spa
e.ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



12 � A. Dawar, E. Gr�adel, and S. KreutzerWe now show that, 
ontrary to the 
ase of the �-
al
ulus, the 
omplexity resultsobtained by this naive algorithm 
annot be essentially improved.Theorem 4.3. There exist transition systems K, su
h that the model 
he
kingproblem for MIC on K is Pspa
e-
omplete (even for MIC-formulae without simul-taneous indu
tions).Proof. The proof is by redu
tion from QBF (the evaluation problem for quanti�edBoolean formulae). For MIC with simultaneous indu
tions, this is trivial. Let Kbe the \stru
ture" 
onsisting just of a single point v. We asso
iate with everyquanti�ed Boolean formula  a MIC-formula  �. First, we eliminate the universalquanti�ers in  in favour of negations and existential quanti�ers. Then we repla
eindu
tively all subformulae '(Y ) := 9X#(X;Y ) by in
ationary �xed points'�(Y ) := ifp Z : X  trueZ  #�(X;Y ):We have to show that, for any interpretation of Y , we have (K; Y ); v j= '�(Y ) i�'(Y ) is true. (We identify truth values for Y with their truth values at v.) Notethat X0 = ; and X1 = fvg. Hen
e v is in
luded into Z1 if '(0; Y ) holds, and intoZ2 if '(1; Y ) is true.Note that we have translated quanti�ed Boolean formulae into purely proposi-tional formulae with in
ationary �xed points (no modal operators are used).For MIC without simultaneous �xed points, the 
onstru
tion is somewhat more
ompli
ated. Let K be the Kripke-stru
ture 
onsisting of two points 0,1, the atomi
proposition p = f1g and the 
omplete transition relation f0; 1g� f0; 1g.Let �(X) := :X ^ (p ! 3X). Further, let '[X=�(X)℄ denote the formulaobtained from ' by repla
ing every free o

urren
e of X by �(X). The transforma-tion from QBF-formulae  to MIC-formulae  � without simultaneous �xed pointsis de�ned indu
tively as follows.(1) For  := X we set  � := (p ^X) _ (:p ^3X),(2) (: )� := : � and ( Æ ')� :=  � Æ '� for Æ 2 f^;_g,(3) for  := 8X' we put  � := 2(ifp X  �(X) ^ '�[X=�(X)℄):We say that a set Y � � f0; 1g represents Y = true if 1 2 Y �, and that it representsY = false otherwise. We 
laim that for any QBF-formula  , any interpretation Yfor the free variables of  and any representation of Y by Y �, we have[[ �℄℄(K;Y �) = (f0; 1g if  (Y ) is true; if  (Y ) is false .(1) For  := X and for Boolean 
ombinations of formulae the veri�
ation of the
laim is straightforward.(2) Let  = 8X'(X;Y ). Note that, for X = ;, [[�(X)℄℄(K;X) = f0g and, forX = f0g, [[�(X)℄℄(K;X) = f1g. Thus, the �rst indu
tion step of (ifp X  �(X)^'�[X=�(X)℄) produ
esX1 = f0g\[['�(0)℄℄(K;Y �), whi
h, by indu
tion,is f0g if '(0; Y ) evaluates to true and X1 = ; otherwise. If the value X1 =ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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 � 13f0g was produ
ed, then the se
ond iteration step produ
es X2 = X1[ (f1g\[['�(1)℄℄(K;Y �)). Thus,[[(ifp X  �(X) ^ '�[X=�(X)℄)℄℄(K;Y �) =8><>:; if :'(0; Y )f0g if '(0; Y ) ^ :'(1; Y )f0; 1g if '(0; Y ) ^ '(1; Y ):As required, in the �rst two 
ases the formula2(ifp X  �(X)^'�[X=�(X)℄)is false at both states, and in the last 
ase it is true at both states.Finally note that the formula  � 
an be 
omputed in linear time from  .5. LANGUAGESIn this se
tion we investigate the expressive power of MIC on �nite strings. Inother words we attempt to determine what languages are de�nable by formulae ofMIC. As in De�nition 2.4, we represent a word by a transition system 
onsistingof a single path.We have already seen in Proposition 2.5, that there are non-regular languagesthat are de�nable in MIC. We begin this se
tion by strengthening this result andshowing that there are languages de�nable in MIC that are not even 
ontext-free.5.1 Non-CFLs in MICTheorem 5.1. There is a language de�nable in MIC that is not 
ontext-free.Proof. We show that the language L = fww j w 2 fa; bg�g is de�nable in MIC.To be pre
ise, it is given by the formula' := ifp Y : X  2XY  : ;where  is given by:  := ifp W : U  X ^2UU 0  UV  (:X ^ 2X) _ 2VV 0  VW  (di� _ len< _ len>)where, further,di� :=(somewhere(a ^ U ^ :U 0) ^ somewhere(b ^ V ^ :V 0))_(somewhere(b ^ U ^ :U 0) ^ somewhere(a ^ V ^ :V 0));len< :=V ^ somewhere(X ^ :U)len> :=:V ^ everywhere(X ! U):To understand the 
onstru
tion of the formula, note that in the outermost indu
-tion de�ned by ' interpreted on a word, at stage i, X 
ontains the last i symbols inthe word. We 
laim that at this stage  is true at all positions in the word ex
eptACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



14 � A. Dawar, E. Gr�adel, and S. Kreutzerthe one at distan
e 2i from the end and it is false at this position if, and only if,the word of length 2i starting from here is of the form ww. Thus, in the indu
tionde�ned by ', Y eventually 
ontains all positions from whi
h the rest of the wordis of the form ww.To verify the 
laim regarding  , note that at stage j of its indu
tion (j � i), U
ontains the last j positions in the word while V 
ontains the j positions immedi-ately pre
eding those in X , while U 0 and V 0 lag one stage behind. A position isin
luded in W if one of three 
onditions holds: all of X is in
luded in U , but Vhas not yet rea
hed the 
urrent position (len>) whi
h indi
ates that the 
urrentposition is at distan
e greater than 2i from the end; V has rea
hed the 
urrentposition but not all of X is in U (len<) whi
h indi
ates that the positions is atdistan
e less than 2i from the end; or the last symbol added to U is di�erent to theone added to V (di� ). Thus, as intended, the only position not in
luded in W isthe one at distan
e 2i from the end and then only if it is the beginning of a wordof the form ww.While the above 
onstru
tion relies 
ru
ially on simultaneous indu
tions, it isnot diÆ
ult to 
onstru
t examples of non-
ontext-free languages de�nable even in1MIC. For example, in [Dawar et al. 2001℄, we exhibit a 1MIC formula de�ning thelanguage f
wdw j w 2 fa; bg�g.Finally, to pla
e the expressive power of MIC in the Chomsky hierar
hy, wenote that every language de�nable in MIC 
an be de�ned by a 
ontext-sensitivegrammar. This follows from the observation made in Se
tion 4 that any 
lass of�nite stru
tures de�ned by a formula of MIC is de
idable in linear spa
e, and theresult that all languages de
idable by nondeterministi
 linear spa
e ma
hines arede�nable by 
ontext-sensitive grammars.5.2 Capturing Linear Time LanguagesWe have seen in Se
tion 4 that the data 
omplexity of evaluating MIC-formulae isin polynomial time and linear spa
e. It is also 
lear that MIC 
an express Ptime-
omplete properties, as this is already the 
ase for the �-
al
ulus.On words the situation is somewhat di�erent. The �-
al
ulus de�nes pre
iselythe regular languages. On the other hand we have already seen that there existMIC-de�nable languages that are not even 
ontext-free. We will now show thatMIC 
an in fa
t de�ne all languages that are de
idable in linear time (by a Turingma
hine).An observation that we will use in the proof, but whi
h may well be of inde-pendent interest, is that 
ardinality 
omparisons and addition of 
ardinalities areexpressible in MIC on words (re
all that none of these are MSO-de�nable).Lemma 5.2. There exists a formula '(X;Y ) of MIC su
h that on every wordw, we have w;X; Y j= ' if and only if jX j = jY j. Similarly for jX j < jY j andjX j+ jY j = jZj.ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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 � 15Proof. jX j 6= jY j is equivalent toifp Z : X+  X ^ 2everywhere(X ! X+)Y +  Y ^ 2everywhere(Y ! Y +)Z  everywhere(X ! X+)� everywhere(Y ! Y +)where � means ex
lusive or. Ea
h iteration of this system in
ludes into X+ therightmost node of X that is not yet in
luded in X+. Hen
e after jX j iterations X+will 
ontain all of X . Analogously for Y . Hen
e the root will be in
luded into Z ifand only if jX j 6= jY j. For jX j < jY j repla
e the last rule by Z  everywhere(X !X+) ^ somewhere(Y ^ :Y +).For expressing jX j + jY j = jZj a similar te
hnique is used. We 
ount jX j+ jY jby the number of stages of an in
ationary indu
tion. We hen
e have to make surethat nodes 
ontained in X or Y , but not in X \ Y trigger one iteration, and nodesin X \Y trigger two iterations. To ensure this we use two variables U and V whereV will always be a subset of U and there will always be at most one node in U �V .At ea
h iteration we put into U the rightmost node in X [ Y that is not yet in Vand we put into V the rightmost node in X [ Y not yet in V provided it is alreadyin U , or it is not 
ontained in X \ Y . Hen
e, as desired, nodes in X \ Y take twoiterations to be in
luded in V whereas nodes in (X [ Y )� (X \ Y ) only take oneiteration. Otherwise the 
onstru
tion is the same as above. Thus, jX j+ jY j = jZjis expressed by the formula:ifp W : U  (X _ Y ) ^ 2everywhere((X _ Y )! V )V  (X _ Y ) ^ 2everywhere((X _ Y )! V )) ^ (U _ :X _ :Y )Z+  Z ^ 2everywhere(Z ! Z+)W  everywhere((X _ Y )! V )� everywhere(Z ! Z+):Theorem 5.3. Every language L 2 Dtime(O(n)) is MIC-de�nable.Proof. Let M be a deterministi
 Turing ma
hine, that works on strings w =w0 : : : wn�1 2 A� and de
ides after at most kn moves, whether w 2 L (for some�xed 
onstant k).To show that L is MIC-de�nable we view input words w as (Kripke) stru
tureswith universe fn� 1; : : : ; 0g, the prede
essor relation E = f(i + 1; i) : i < n � 1g,and atomi
 propositions (unary predi
ates) Pa, for ea
h symbol a 2 A en
oding thepositions of the letters. Hen
e w; i + 1 j= 3' and w; i + 1 j= 2' both mean thatw; i j= '. (The use of 2 or 3 makes a di�eren
e only at point 0, where 2' is trueand 3' is false (no matter what ' is).For simpli
ity of notation we will �rst treat the 
ase where M has only one tapeand where k = 1, i.e. the ma
hine makes at most n steps on words of length n.This 
ase is not very interesting as the ma
hine 
an either not move ba
kwards ornot read the entire input, but as we will see, the proof easily extends to the general
ase.En
oding the 
omputation. We des
ribe a system � of rules of the form Xi  '(X) (with MIC-formulae '(X)) su
h that, for ea
h m � n, the stage Xm ofACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



16 � A. Dawar, E. Gr�adel, and S. Kreutzerthe in
ationary indu
tion of � on w des
ribes the 
omputation of M on w up totime m. The des
ription of the 
omputation is slightly non-standard (
ompared tothe usual proofs of this kind) in the sense that only the 
urrent state, the movesand the symbols written at ea
h time are expli
itly re
orded by the se
ond-ordervariables, but not the storage 
ontent and the 
urrent position of the head on thetape. Rather, the 
urrently read symbol is at every iteration re
onstru
ted by aMIC-formula, based on the history of moves and written symbols up to that time.The variables of � are T (for time), Sq (for every state q of M), L and R (for leftand right moves on the tape), and Wb (for every symbol used byM). The intendedinterpretation, after m iterations, are:|Tm = fi : i < mg.|Smq = fi < m :M is in state q at time i+ 1g.|Lm = fi < m :M makes a move to the left on the work tape at time ig.Analogously for Rm.|Wmb = fi < m :M wrote symbol b on the work tape at time ig.Let us assume for the moment, that we have de�ned, for ea
h symbol 
, a MIC-formula CURRENT[
℄, whi
h on any wordw expanded by the relations Tm; Smq ; Lm;Rm;Wmb is true at position m if, and only if, the 
urrently read symbol on the tapeis 
. Under this assumption (whi
h will be proved below) the 
onstru
tion of � is arelatively straightforward adaption of the usual te
hniques in des
riptive 
omplexitytheory to our situation.Constru
tion of �. Let Æ : Q � � ! Q � � � fL;Rg be the transition fun
tion ofM , and let q0 be the initial state. For every element s 2 Q[�[ fL;Rg we denoteby Æ�1(s) the set of all pairs (q; a) 2 Q�� su
h that s is one of the 
omponents ofÆ(q; a). The system � 
onsists of the rule T  2T that updates the time variablesand rules for ea
h Sq, Wb, L and R. We des
ribe the rules for a state variable Sq .At ea
h iteration step, we want to in
lude the 
urrent time m (satisfying :T ^2T )into Sq if M goes into state q at time m. This happens if one of the following two
onditions hold.(1) We are at time 0, the input starts with some a su
h that (q0; a) 2 Æ�1(q).(2) There exist (q0; a) 2 Æ�1(q) su
h that M went into state q0 in the last stepand 
urrently reads the symbol a.Hen
e the rule for Sq has the formSq  (2false ^ _(q0;a)2Æ�1(q)Pa)_(:T ^3T ^ _(q0;a)2Æ�1(q)(3Sq0 ^ CURRENT[a℄)):The rules for L, R and Wb are analogous. Further, we 
an assume that thema
hine has a unique a

epting state a

. Then M a

epts a word w if, and onlyif, w j= ifp Sa

 : �.Constru
tion of CURRENT[
℄. It remains to show that the formula CURRENT[
℄
an indeed by 
onstru
ted. What the formula needs to assert is that one of thefollowing two 
ases holds:ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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 � 17(1) At the last time where M was at the 
urrent position the symbol 
 waswritten. In other words, there is some node i 2 W
 (i.e. 
 has been writtenat time i) su
h that between time i and now (i.e. time m), there have beenequally many left and right moves, and that i was the last time with thisproperty.(2) M has never before been at the 
urrent position, and the input symbol atthis position is 
.Here is where we use 
ardinality 
omparisons.To express 
ondition (1) we go systemati
ally to all previous times (by iteratinga rule T 0  2T 0), and put the 
urrent node m (whi
h is the unique node satisfying:T ^2T ) into Z if after the time i des
ribed by the 
urrent value of T 0 there havebeen the same number of left and right moves (i.e. jL^:T 0j = jR^:T 0j), if at thetime des
ribed by T 0, symbol 
 was written, and if sin
e then this position has notbeen visited again. All this is expressed byifp Z : T 0  2T 0Z  :T ^ 2T ^ jL ^ :T 0j = jR ^ :T 0j^somewhere(:T 0 ^ 2T 0 ^W
)^nowhere(T ^ :2T 0 ^ jL ^ :T 0j = jR ^ :T 0j);where nowhere(') := :somewhere('). Note that the formula in the last line is falseif, and only if, there exists a node j 2 T �2T 0 (i.e. a time j with i < j < m) su
hthat between i and j there have been the same number of left and right moves.Hen
e the last line indeed says that the position rea
hed at times i and m has notbeen visited in between.To express 
ondition (2) note that the 
urrent position at time m is jLj�jRj. Wego systemati
ally through all positions (by iterating a rule P  2P ), and put the
urrent node m into Z if P des
ribes the 
urrent position (i.e. if jP j+jLj = jRj) andif at the node de�ned by P (the unique node satisfying :P ^ 2P ) the propositionP
 is true. Putting this into a formula, we obtainifp Z : P  2PZ  :T ^ 2T ^ (jP j+ jLj = jRj) ^ somewhere(:P ^ 2P ^ P
)whi
h is true at the 
urrent node m des
ribed by T if, and only if, the input symbolat the 
urrent position is 
. We have to take the 
onjun
tion of this with a formulaexpressing that the 
urrent position has not been visited before. This is done bythe formula :ifp Z : T 0  2T 0Z  (jL ^ :T 0j = jR ^ :T 0j)):Z be
omes true at the 
urrent time if there is some earlier time sin
e whi
h wehave seen the same number of left and right moves. Hen
e Z does not be
ome trueif, and only if, we have never visited before the 
urrent 
ell.ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



18 � A. Dawar, E. Gr�adel, and S. KreutzerArbitrary Values of k and Multi-tape Ma
hines. The 
onstru
tion easily extends tolinear time 
omputations of length kn for arbitrary values of k. We repla
e ea
hof the variables T; Sq;Wb; L and R by a k-tuple of variables. The iteration of thetime parameter is des
ribed by rulesT1  2TkT2  T1... ...Tk  Tk�1The iteration of these rules on a word of length n has kn stages. At iterationik + j + 1 (where i < n; j < k) the node i is put into Tj . Also the rules for Sq arerepla
ed by k-rules for variables Sq;1; : : : ; Sqk 
onstru
ted in a similar way. That isthe rule for Sq;i+1 refers to variables Sq0;i for the possible prede
essor states andthe rule for Sq;0 refers to 3Sq0;k. Similarly for the other variables. Also the formulaCURRENT[
℄ has to be reformulated, but this poses no essential diÆ
ulties.Finally the extension to multi-tape Turing ma
hines is 
ompletely straightforwardby taking additional variables for the symbols written on ea
h tape and the movesof ea
h head.Note that we 
annot expe
t to extend the result for linear time to quadrati
 timeor higher. This is be
ause, as we have seen, every language de�nable in MIC isde
idable in linear spa
e, and it is not expe
ted that quadrati
 time is in
luded inlinear spa
e.6. BISIMULATION-INVARIANT PTIME AND AUTOMATICITYIn [Otto 1999℄, Otto introdu
ed a higher-dimensional �-
al
ulus, denoted L!� , whi
hextends ML with an operator for forming least �xed points of arbitrary arity,rather than just sets. He showed that L!� 
an express every bisimulation-invariant,polynomial-time de
idable property of �nite stru
tures. He further showed thatevery formula of LFP that expresses a bisimulation-invariant property is equivalentto a formula of L!� . Combining this with the result of Kreutzer [Kreutzer 2002℄that every formula of IFP is equivalent to one of LFP and the fa
t that MIC is afragment of IFP that only expresses bisimulation-invariant properties immediatelyyields the following proposition.Proposition 6.1. Every formula of MIC is equivalent to a formula of L!�.We now show that the 
onverse of Proposition 6.1 fails. In parti
ular, thereare properties of �nite trees that are bisimulation-invariant and polynomial timede
idable that 
annot be expressed in MIC.Theorem 6.2. There is a 
olle
tion F of �nite trees in Ptime, 
losed underbisimulation, whi
h is not expressible in MIC.Proof. We take F to be the 
olle
tion of all trees T of �nite height su
h that if t1and t2 are any two 
hildren of the root of T , then T ; t1 � T ; t2. Sin
e it is knownthat bisimulation equivalen
e is polynomial time de
idable, it follows that F is inPtime. It is also obvious that F is 
losed under bisimulations.ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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 � 19To show that F is not de�nable in MIC, assume, towards a 
ontradi
tion, thatthere is a formula ' de�ning it. Assume, without loss of generality, that all boundvariables in ' are distin
t. Let these variables be X1; : : : ; Xk. We note that ifT is a tree of height n, then for any formula ifp X : S, the 
losure ordinal is atmost l(n+1), where l is the number of variables involved in the system S. For anyk-tuple (i1; : : : ; ik), where ea
h ij is in the range [0; k(n+1)℄, and any subformula  of ', we write T j=  [i1; : : : ; ik℄ if  holds at the root of T , when any free variableXj in  is interpreted by X ijj .If � denotes the 
olle
tion of subformulae of ', we de�ne the '-type of T to bethe fun
tion 'T : (k(n+1)+1)k ! 2� su
h that  2 'T (i) if, and only if, T j=  [i℄.Now, if we denote by [T1; T2℄ the tree whose root has two 
hildren, one being theroot of a subtree T1, and the other being the root of a subtree T2, we 
an establishthe following fa
ts:Lemma 6.3. If 'T1 = 'T2 , then '[T1;T2℄ = '[T1;T1℄.Proof of Lemma 6.3. We assume, without loss of generality, that the variablesX1; : : : ; Xk are ordered su
h that, ifXj is bound inside the s
ope of the ifp operatorthat binds Xj0 , then j0 < j.Let P denote the 
olle
tion of pairs ( ; {), where  is a subformula of ', and { isa tuple in (k(n+ 1) + 1)k su
h that, if Xj is bound in  , then ij = k(n+ 1).We prove Lemma 6.3 by showing, by an indu
tion on the lexi
ographi
al orderingof k-tuples in (k(n+ 1) + 1)k that, for every pair in ( ; {) 2 P ,[T1; T1℄ j=  [{℄ if, and only if, [T1; T2℄ j=  [{℄: (1)Sin
e, if Xj is not free in  , the value of ij is not relevant to whether or notT j=  [{℄, this suÆ
es to establish the lemma.Basis: ({ = 0). We pro
eed by indu
tion on the stru
ture of  . If  � Xj , sin
eij = 0,  is false in both [T1; T1℄ and [T1; T2℄. The 
ases of the Boolean 
onne
tivesare trivial. If  is 3#, we know by hypothesis that T1 j= #[{℄ if, and only if,T2 j= #[{℄, and therefore, [T1; T1℄ j= 3#[{℄ if, and only if, [T1; T2℄ j= 3#[{℄. Finally, 
annot be of the form ifp Xj : S, as Xj would be a bound variable in  , andtherefore the pair ( ; 0) is not in P .Indu
tion Step: Assume that for all {0 lexi
ographi
ally below {, and all pairs( ; {0) 2 P , (1) holds. We prove it for all pairs ( ; {) 2 P , again by indu
tionon the stru
ture of  .Suppose that  is atomi
, i.e. of the form Xj , and let ifp Xj : [� � � ; Xj  #; � � � ℄be the minimal subformula of ' in whi
h Xj is bound. In other words, # is theformula de�ning Xj . Then, if [T1; T1℄ j= Xj [{℄, by the in
ationary semanti
s, theremust be some {0 lexi
ographi
ally earlier than {, su
h that [T1; T1℄ j= #[{0℄. By theindu
tion hypothesis, we then have [T1; T2℄ j= #[{0℄, and therefore [T1; T2℄ j= Xj [{℄.A similar argument establishes [T1; T1℄ j= Xj [{℄, if we assume [T1; T2℄ j= Xj [{℄.The 
ase of the Boolean 
onne
tives is trivial, and if  is of the form 3#, weagain rely on the hypothesis that the '-types of T1 and T2 are the same.Finally, if  is of the form ifp Xj : S, where S is [� � � ; Xj  #; � � � ℄, thenij = k(n + 1), by the de�nition of P . Therefore, if [T1; T1℄ j=  [{℄, there mustbe an i0 < ij su
h that [T1; T1℄ j= #[{0℄, where {0 is the tuple obtained from { byACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



20 � A. Dawar, E. Gr�adel, and S. Kreutzerrepla
ing il by i0, where l ranges over the indi
es of all variables bound by thesystem S, in
luding j. The tuple {0 is lexi
ographi
ally prior to {, and therefore, byindu
tion hypothesis, [T1; T2℄ j= #[{0℄, and then by the in
ationary semanti
s, wehave [T1; T2℄ j=  [{℄.This 
ompletes the proof of Lemma 6.3.We next observe that there is a 
onstant 
 (depending only on ') and a poly-nomial p su
h that the number of distin
t '-types of trees of height n is at most
p(n). Indeed, we 
an take 
 to be the 
ardinality of 2�, i.e. the number of sets ofsubformulae of ', and we 
an take p to be (k(n+ 1) + 1)k.However, the number of distin
t �-equivalen
e 
lasses of trees of height n growsas a non-elementary fun
tion of n. This follows from the fa
t that, if there are edistin
t equivalen
e 
lasses of trees of height n, there are 2e � 1 distin
t 
lassesof trees of height n + 1. For, if T1; : : : ; Te is an enumeration of representatives ofthe equivalen
e 
lasses of trees of height n, we 
an form, for any non-empty setS � f1; : : : ; eg, a tree of height n + 1 whose root has a 
hild whi
h is the root ofa subtree Tj if, and only if, j 2 S. It is easily seen that for distin
t sets S, theresulting trees are not bisimilar.It now follows that we 
an �nd two trees T1 and T2 whi
h have the same '-type,but T1 6� T2. Thus, [T1; T2℄ 62 F , while [T1; T1℄ 2 F , however, [T1; T1℄ j= ' if,and only if, [T1; T2℄ j= ', 
ontradi
ting the assumption that ' de�nes the 
lass F .Automati
ity. Another way of understanding the proof above is in terms of au-tomati
ity. This is a measure of the 
omplexity of a formal language, 
onsidered,for instan
e, in [Shallit and Breitbart 1996℄.The automati
ity of a language L � �� is the fun
tion AL whi
h gives for ea
hn the number of states in the smallest deterministi
 automaton whi
h a

epts alanguage that agrees with L on all strings of length at most n. Clearly, a languageL is regular if, and only if, AL is bounded by a 
onstant. Moreover, for any languageL whatsoever, in
luding unde
idable ones, AL is, at worst, exponential.Here, we observe that the language L = fww j w 2 fa; bg�g used in the proof ofTheorem 5.1 has exponential automati
ity, whi
h is worst possible. To be pre
ise,we 
an show that AL(n) � 2n=2. For, suppose to the 
ontrary that, for some n,AL(n) < 2n=2 and let A be a minimal deterministi
 �nite automaton a

eptingL\fa; bgn. Then, there must be two distin
t strings w1 and w2 of length n=2 su
hthat A, starting in its initial state ends up in the same state on inputs w1 andw2. It then follows that A a

epts the string w1w1 if, and only if, it a

epts w2w1.However, sin
e both of these strings are of length n, and the former is in L but thelatter is not, we have a 
ontradi
tion.The observation that MIC 
an express languages of exponential automati
ity,whi
h is worst possible, would suggest that this is not a good measure of 
omplexityfor studying the expressive power of MIC. However, automati
ity may be useful if wegeneralise it from strings to �nite trees as MIC 
an still express only tree languagesof at most exponential automati
ity but this is no longer maximal.Automata on trees have been extensively studied (see, for instan
e, [G�e
seg andSteinby 1997℄). For �nite trees, we de�ne a �nite automaton as a tuple A =ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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ationary Fixed Points in Modal Logi
 � 21(Q;A; Æ; F; S), where Q is a set of states, A is the alphabet, S � Q is a 
olle
tion ofstart states, F � Q is the set of �nal states, and Æ : Q� A ! 2Q is the transitionfun
tion. If T is a �nite tree, where edges are labelled by elements of A, we saythat A a

epts T , if there is a labelling l : T ! Q of the nodes of T su
h that|the root of T is labelled q0 2 S;|if l(v) = q, then fl(w) : v a! wg = Æ(q; a), for ea
h a 2 A; and|for every leaf v, l(v) 2 F .Definition 6.4. For a 
lass C of �nite trees, 
losed under bisimulation, theautomati
ity AC of C is the fun
tion mapping n to the number of states in thesmallest automaton that a

epts a tree of height at most n if, and only if, it is inC.With this de�nition, we 
an extra
t the observations 
ontained in the followingtwo theorems from the proof of Theorem 6.2.Theorem 6.5. There is a polynomial time de
idable, bisimulation-invariant,
olle
tion of �nite trees with non-elementary automati
ity.Proof. Let F be the 
lass of trees used in the proof of Theorem 6.2, i.e. it is the
olle
tion of all trees T of �nite height su
h that if t1 and t2 are any two 
hildrenof the root, then T ; t1 � T ; t2. Suppose, towards a 
ontradi
tion, that there isa k su
h that the automati
ity AF of this 
lass is bounded by a tower of 2s ofheight k. We 
an then 
hoose n > k so that the number of bisimulation equivalen
e
lasses of trees of height n is greater than AF (n+1), and let An+1 be the minimalautomaton a

epting trees of height n+1 if, and only if, they are in F . Now, theremust be two trees T1 and T2 of height n su
h that the same set of states o

urs at
hildren of the root in an a

epting run of An+1 on [T1; T1℄ as it does on [T2; T2℄.It then follows that these two runs 
an be 
ombined into an a

epting run of An+1on [T1; T2℄, whi
h is a 
ontradi
tion, as this tree is not in F .Theorem 6.6. Every 
lass of �nite trees that is de�nable in MIC has at mostexponential automati
ity.Proof. Let ' be a formula of MIC. For ea
h n, we 
an 
onstru
t an automatonA = (Q;A; Æ; S; F ) that a

epts the trees of height n satisfying '. Here:|Q is the 
olle
tion of all '-types 'T of trees whose height is at most n;|A is the set of a
tions o

urring in the formula ';|q0 2 Æ(q; a) if, and only if, q0 is the '-type of an a-
hild of the root of a tree whose'-type is q;|S is the set of all '-types q su
h that ' 2 q(k(n+ 1)); and|F is the set of all '-types of trees with only one node.It is easily 
he
ked that a tree T is a

epted by this automaton if, and only if,T j= '. Moreover, the number of states is exponential in n, by the argument givenin the proof of Theorem 6.2.ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



22 � A. Dawar, E. Gr�adel, and S. Kreutzer7. SIMPLE INDUCTIONSIn the previous se
tions we have seen a 
ouple of expressibility results for MIC.Many of these made use of simultaneous indu
tions and we remarked at severalpla
es that the formulae used there 
ould not be de�ned in 1MIC. In this se
tionwe investigate the relationship between simple and simultaneous indu
tions in themodal iteration 
al
ulus.It is easy to see that the equivalen
e �XY:( ; ') � �X: (X;�Y:'(X;Y )) (some-times 
alled the Beki
-prin
iple [Arnold and Niwi�nski 2001℄) fails in both dire
-tions when we take in
ationary instead of least �xed points. However, it still is
on
eivable that simultaneous indu
tions 
ould be eliminated by more 
ompli
atedte
hniques. We show here that this is not the 
ase, i.e. simultaneous in
ationaryindu
tions provide more expressive power than simple ones. However, we have seenin Se
tion 4 that the model 
he
king problem was Pspa
e-
omplete even for for-mulae without simultaneous indu
tions. In the se
ond part of this se
tion we showthat, similar to MIC, the satis�ability problem for formulae without simultaneousindu
tions is still unde
idable and not in the arithmeti
al hierar
hy.Let 1MIC denote the fragment of MIC that does not involve simultaneous indu
-tions.7.1 Simple vs. Simultaneous Indu
tionsFor any ordinal �, let O� denote the stru
ture (f� : � � �g; >). That is, theelements of the stru
ture are all ordinals less than or equal to �, and 
 is a

essiblefrom � if � > 
. Note that � is the maximal ordinal in the set, and we refer to it asthe root of the stru
ture O�. For a formula ', we write O� j= ' as shorthand forO�; � j= '. It is easily seen that for any ordinal � � �, O�; � j= ' if, and only if,O� j= '. This is be
ause the elements rea
hable by >-paths from � are exa
tly theordinals below �, sin
e > is transitive. As a �nal bit of notation, if X is any atomi
proposition on O�, we write O�; � j= '(X�) to denote that O�; � j= '(X � f�g).We begin with a few observations about the evaluation of indu
tive formulae onthe stru
tures O�, whi
h will be useful in the proof of the following lemma. First,we note that in O� , the maximum 
losure ordinal of any indu
tion is � + 1. This
an be proved by a straightforward indu
tion on the ordinals. One 
onsequen
e isthat if O�; � j= (ifp X   ), then � 2 X�+1. Furthermore, sin
e the truth of aformula ' at � 
an only depend on elements 
 � �, we have that for any sets X andY , if X \ (� + 1) = Y \ (� + 1), then O�; � j= '(X) if, and only if, O�; � j= '(Y ).Lemma 7.1. Let ' be a formula of 1MIC. If X1; : : : ; Xk � ! are atomi
 propo-sitions su
h that O! j= '(X1; : : : ; Xk), then there is a �nite N su
h that for alln > N , O! ; n j= '(X�1 ; : : : ; X�k ):Proof. Note that, by the hypothesis of the lemma ! 62 Xi for any i. As we arenow working in a �xed stru
ture O! , we will say a formula ' holds (or is true) at�, to mean that O!; � j= ', whi
h is the 
ase if, and only if, O� j= '.The lemma is proved by indu
tion on the depth d of nesting of ifp-operators.Basis: If d = 0, the formula 
ontains no o

urren
es of the ifp operator, andis therefore equivalent to a formula of ML, where all negations are at the atoms.A simple indu
tion on the stru
ture of the formula then establishes the result.Any atomi
 formula Xi is false at ! by hypothesis, and, by de�nition, for all n,ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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 � 23O!; n 6j= X�i , and therefore the 
laim holds for all atoms. For negated atoms thedual argument holds, i.e. any formula :Xi is true at ! and for all n, O!; n j= :X�i .The 
ase of the Boolean 
onne
tives ^ and _ is trivial. If ' is 3 , then it is 
learthat O! j= ' if, and only if, there is an N < ! su
h that ON j=  if, and onlyif, for all n > N , O!; n j= 3 and therefore O!; n j= '(X�). Similarly, if ' is2 , O! j= ' if, and only if, for all n, O!; n j=  if, and only if, for all n < !,O!; n j= 2 (X�).Indu
tion step: If ' is a formula with depth d+1 of nesting of ifp operators, thenit is a Boolean 
ombination of formulae #i, ea
h of whi
h either has depth at mostd, is of the form ifp X   , where  is a formula of depth at most d, or is of theform 3 or 2 , where  has depth at most d+ 1. We assume that negations arealways pushed inside modalities.Clearly, if the 
laim holds for formulae #i and #j , then it also holds for #i ^ #jand #i _ #j , just by taking N to be the maximum of Ni and Nj , whi
h witness the
laim for the two formulae. Thus, it suÆ
es to prove the 
laim for the followingfour 
ases.(1) # � 3 . If O! j= #, then there is an N < ! su
h that O!; N j=  , andtherefore, for all n > N , O!; n j= #(X�).(2) # � 2 . If O! j= 2 , then for all n, O! ; n j=  and therefore O!; n j= #(X�).(3) # � (ifp X   ). Suppose O! j= #. Then, there is a stage � su
h that! 62 X�, and O! j=  (X1; : : : ; Xk; X�). By indu
tion hypothesis, there is anN su
h that for all n > N , O!; n j=  (X�1 ; : : : ; X�k ; X��). Now, for ea
hsu
h n, if n is in stage � of the indu
tion of  (X�1 ; : : : ; X�k ), then, by thein
ationary semanti
s O!; n j= (ifp X   )(X�1 ; : : : ; X�k ), and we are done.So, suppose n is not in stage � of the indu
tion of  (X�1 ; : : : ; X�k ). However,sin
eX�i \n = Xi\n, it follows that stage � of the indu
tion of  (X�1 ; : : : ; X�k )on On is exa
tly X�� \ (n+1) . Thus, O!; n j=  (X�1 ; : : : ; X�k ; X��) impliesO!; n j= (ifp X   )(X�1 ; : : : ; X�k ).(4) # := :(ifp X   ). Suppose O! j= #. We have to show that there is someN < ! su
h that for all n > N , O!; n j= #. Towards a 
ontradi
tion, assumethat there are in�nitely many n su
h that O! ; n j= (ifp X   )(X�1 ; : : : ; X�k ).Sin
e O! j= :(ifp X   ), it is the 
ase that O! j= : (X1; : : : ; Xk; X!), andtherefore, by indu
tion hypothesis, there is an N < ! su
h thatfor all n > N;O! ; n j= : (X�1 ; : : : ; X�k ; X!�): (�)As we have noted, in any O�, the 
losure ordinal of any indu
tion is at most� + 1. Hen
e, for any � < N , O!; � j=  (X1; : : : ; Xk; X!) if, and only if,O!; � j=  (X1; : : : ; Xk; XN). As, by assumption, there are in�nitely many nsu
h that O!; n j= (ifp X   )(X�1 ; : : : ; X�k ), there are in�nitely many su
hgreater than N . For ea
h of these, there must be a least �nite ordinal an su
hthat O! ; n j=  (X�1 ; : : : ; X�k ; Xan). We distinguish two 
ases:(a) There is a �nite ordinal � that is the upper bound of all su
h an. Inthis 
ase, we 
an show that there is a �nite bound on the elements sat-isfying (ifp X   )(X�1 ; : : : ; X�k ), from whi
h the 
laim follows. Toestablish the �nite bound, we show by indu
tion on the stages, thatACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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h stage X� 
ontains only nodes up to some �nite height. Clearly,this is the 
ase for � = 0, as X� is empty. Indu
tively, if X� isbounded in height, then there is a formula of ML de�ning the set. Sub-stituting this formula for X in  , we obtain a formula  0 equivalentto  (X�), with ifp nesting depth d. Therefore, by the main indu
-tion hypothesis, sin
e O! j= : 0(X1; : : : ; Xk), there is an M su
h thatO!; n j= : 0(X�1 ; : : : ; X�k ) for all n > M . It follows that for all n > M ,n 62 X�+1. This implies that there is a �nite bound on the height of theelements in X�, 
ontradi
ting the assumption that there are in�nitelymany n su
h that O! ; n j= (ifp X   )(X�1 ; : : : ; X�k ).(b) There is no �nite bound on the stages an. Thus, for any �nite stage �there is some an > � with n 62 Xan and O! ; n j=  (X�1 ; : : : ; X�k ; Xan).Choose � and an su
h that an > N . Let 
 be the minimal node su
h that
 62 Xan but 
 2 X� for some � > an. Clearly, for every node m < an,m 2 Xan if, and only if, m 2 X!. It follows that 
 � an and thus 
 > N .Further, as 
 was 
hosen minimal,fm : m < 
g \Xan = fm : m < 
g \X!;i.e. on the set of nodes rea
hable but di�erent from 
 the �xed point ofX is rea
hed at stage an. Therefore,O!; 
 j=  (X�1 ; : : : ; X�k ; Xan) if, and only if,O!; 
 j=  (X�1 ; : : : ; X�k ; X!�):As 
 � an > N and, by (�), O!; 
 6j=  (X�1 ; : : : ; X�k ; X!�) we get that
 62 X� for some � > an, 
ontradi
ting the assumption.It is a straightforward 
onsequen
e of this lemma that the formula �nite-heightde�ned in Se
t. 3 is not equivalent to any formula of 1MIC. This is be
ause O�is bisimulation equivalent to a well-founded tree of height �. Suppose there was aformula ' 2 1MIC equivalent to �nite-height. By de�nition, O! 6j= ' and thereforethere is some N < ! su
h that On j= :' for all n > N . As these On are of �niteheight, we get a 
ontradi
tion to ' being equivalent to �nite-height. We hen
e haveestablished the following separation result.Theorem 7.2. MIC is stri
tly more powerful than 1MIC.While the separation given in Theorem 7.2 is proved on an in�nite stru
ture, theproof of Lemma 7.1 a
tually shows that the separation holds even when we restri
tourselves to �nite stru
tures. For, 
onsider the 
olle
tion of �nite stru
tures On,for all �nite ordinals n. The 
onstru
tion in Lemma 7.1 shows that for any formula' of 1MIC, the set fn : On j= 'g is either �nite or 
o-�nite. Now, 
onsider theformula � ifp Y : X  22XY  :X ^ 2X:It 
an be veri�ed that On j= � if, and only if, n is even. Hen
e, � is not equivalentto any formula of 1MIC.ACM Transa
tions on Computational Logi
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ationary Fixed Points in Modal Logi
 � 25The notation 1MIC was 
hosen, naturally, to suggest that we 
an de�ne, for anynatural number k, the fragment kMIC 
onsisting of those formulae of MIC in whi
hno ifp operation is de�ned over a system with more than k simultaneous formulae.The natural question that arises is whether in
reasing k gives rise to a hierar
hyof in
reasing expressive power. We do not, at the moment, know of a method tosettle this question one way or the other.7.2 In�nity Axioms and the Satis�ability Problem for 1MICWe have seen above that simple indu
tions in MIC provide less expressive powerthan simultaneous indu
tions. We show now that even without simultaneous in-du
tions the �nite model property fails and the satis�ability problem remains un-de
idable, in fa
t not even arithmeti
al.Essentially, we use the same method as in Se
tion 3 to redu
e the de
ision prob-lem for the �rst-order theory of arithmeti
 to Sat(1MIC). The proofs there relied
ru
ially on simultaneous indu
tions on two variables X and Y and we have seenabove that the formulae used there are not equivalent to any formulae of 1MIC.Instead, we use the following tri
k to simulate the simultaneous indu
tion. Let Tbe a tree of height ! as used in Se
tion 3. To simulate an indu
tion on two variableswe re
ursively make two 
opies of the su

essors of ea
h node in T and label theroot of one of the 
opies by the proposition a and the root of the other by b. Let T 0be this new tree. Thus, every node in T 0 of �nite height is labelled by a or b andthe height of ea
h of these nodes u equals the length of the longest path entirelylabelled by a's from a su

essor of u to a leaf whi
h, again, is the same as the lengthof the longest path entirely labelled by b's from a su

essor of u to a leaf. On thismodel, we 
an simulate the simultaneous indu
tion on two variables X and Y byan indu
tion on one variable Z by letting Z 
ontain all 
opies of nodes 
ontainedin X whi
h are labelled by a and all 
opies of nodes 
ontained in Y labelled by b.We now turn to the axiomatisation of this tree model. Besides the propositionsymbols a and b already mentioned there are two other propositions, namely w,with whi
h only the root is labelled, and s, labelling only the dire
t su

essors ofthe root. As in Se
tion 3, we restri
t attention to well-founded tree models, i.e.tree models of the formula �X:2X .We �rst de�ne a formula label ensuring that its models are labelled as des
ribedabove. Let the formula label be de�ned aslabel := w ^ :a ^ :b ^ :s ^2s ^ 22everywhere(:s) ^2everywhere(:w ^ (a _ b) ^ :(a ^ b));where everywhere is de�ned as in Se
tion 3 as everywhere(') := ifp X  '^2X .Proposition 7.3. In any model T ; v of label the root and only the root v islabelled by w, all dire
t su

essors of v, and only those, are labelled by s, and allnodes rea
hable but di�erent from v are either labelled by a or by b but not by both.The next step is to ensure that the models we are going to des
ribe are of height!. Towards this end, we �rst introdu
e some notation.Definition 7.4. A node labelled by a is 
alled an a-node. An a-path betweentwo nodes is a path between them 
onsisting only of a-nodes. Finally, we indu
tivelyde�ne the a-height � of an a-node u as follows.ACM Transa
tions on Computational Logi
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26 � A. Dawar, E. Gr�adel, and S. Kreutzer|The a-height of leaves labelled by a is de�ned to be 0.|For all other a-nodes, their a-height is de�ned as the least stri
t upper bound ofall � su
h that � is the a-height of a su

essor of u labelled by a.The notion of b-nodes, b-paths, and the b-height of a node is de�ned analogously.Let the formula # be de�ned as# := (b ^ 2(b! X)) _ (a ^ 2(a! X)):A simple indu
tion on the stages establishes the following lemma.Lemma 7.5. Let T be a tree. Then, for all �, the �-th stage X� of the indu
tionon # 
ontains exa
tly the nodes of a- or b-height less than �.Consider the formulain�nity := label ^ everywhere(3a$ 3b) ^ inf ^ :ifp X  ';where inf := :ifp X  (b ^3b ^ 2(b! 2false)) _ ':and ' := # _ (w ^ 2(b! X) ^3(a ^ :X)) _(w ^ 2(a! X) ^3(b ^ :X)):Lemma 7.6. Let T ; v j= label^ everywhere(3a$ 3b) and let 
a := supf� : � isthe a-height of a dire
t su

essor of vg and 
b := supf� : � is the b-height of dire
tsu

essor of vg.(i) T ; v j= :ifp X  ' if, and only if, 
a = 
b.(ii) T ; v j= inf if, and only if, 
a and 
b are �nite and 
a + 1 = 
b or both arein�nite and 
a = 
b.Proof.(i) For Part (i), we show that the root v satis�es ifp X  ' if, and only if,there is a b-su

essor of v whose b-height is greater than the a-height of anya-su

essor of v or vi
e versa.Towards the forth dire
tion, suppose T ; v j= ifp X  '. Thus, there isa stage � su
h that (T ; X�); v j= '. As T is a model of the formula labelabove, this implies(T ; X�); v j= (w ^ 2(b! X) ^3(a ^ :X)) _(w ^ 2(a! X) ^3(b ^ :X)):Suppose (T ; X�); v j= (w ^ 2(b ! X) ^ 3(a ^ :X)). Thus, using Lemma7.5, all b-su

essors of v are of height less than �, whereas there is at leastone a-su

essor whose height is greater than or equal to �. The 
ase where(T ; X�); v j= (w ^ 2(a! X) ^3(b ^ :X)) is analogous.For the 
onverse, if v has a b-su

essor whose b-height � is greater than thea-height of any a-su

essor, then X<� 
ontains all a-su

essors but not allACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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 � 27b-su

essors of v. Thus, v would be in X�. The 
ase where there is an a-su

essor of v whose a-height is greater than the b-height of any b-su

essorof v is analogous.Thus we have shown that the root v satis�es ifp X  ' if, and only if,there is a b-su

essor of v whose b-height is greater than the a-height of anya-su

essor of v or vi
e versa. This proves the �rst part of the lemma.(ii) To establish Part (ii); we �rst prove by indu
tion on the �nite stages, thatfor all 0 < n < !, Xn 
ontains exa
tly the a-nodes of height less than n andthe b-nodes of height less than or equal to n. For the 
ase of nodes labelledby a this follows immediately from Lemma 7.5 as the additional disjun
tsonly a�e
t b-nodes (and the root v.)Let n = 1. Obviously, X1 
ontains all b-nodes of height 0 and all b-nodessatisfying 3true ^ 22false . Clearly, su
h a node u must be of height 1, asit only has leaves as su

essors. As T is a model of the formula label, thismeans that u must have a b-su

essor and thus is of b-height 1.For the indu
tion step assume the 
laim has already been proved for alln0 < n. An argument as in the proof of Part (i) above shows that Xn
ontains all b-nodes of b-height less than or equal to n. This �nishes theindu
tion.Now 
onsider the stage !. We have seen that X! 
ontains all nodes of �nitea- or b-height and the same argument as in Lemma 7.5 shows that for all� � !, X� 
ontains all nodes of a- or b-height less than �.Now suppose that the root v of the tree o

urs in X1. There must be astage � + 1 su
h that v o

urs in X�+1 but not in X�, i.e. (T ; X�); v j=(w ^2(b! X)^3(a^ :X)) _ (w ^2(a! X) ^3(b^ :X)). Suppose that(T ; X�); v j= (w^2(b! X)^3(a^:X)): Thus, there is an a-su

essor of vwhose a-height is greater than the b-height of any b-su

essor. If � is in�nite,this means that 
a > 
b. If � is �nite, this means that all b-su

essors of vare of height less than or equal to � whereas there is an a-su

essor of v ofheight greater than or equal to �. This implies that 
a + 1 > 
b.On the other hand, if (T ; X�); v j= (w^2(a! X)^3(b^:X)), this impliesthat 
b > 
a if � is in�nite and 
b > 
a + 1 otherwise.This proves that if T ; v j= inf then 
a and 
b are �nite and 
a + 1 = 
b orboth are in�nite and 
a = 
b. The 
onverse dire
tion follows immediately.A simple 
onsequen
e of the lemma is the following 
orollary.Corollary 7.7. For every tree T and node v, if T ; v j= in�nity then the heightof v is in�nite. Thus, 1MIC does not have the �nite model property.To �nish the axiomatisation of the intended model, we have to ensure that themodels of our formula not only have in�nite height but height exa
tly ! and further,that for all nodes of �nite height, all of their su

essors are of the same height.To formalise that the tree has height exa
tly ! we say that the root is of in�niteheight but none of its su

essors is. For this let infs := inf[w=s; b=(b^:s); a=(a^:s)℄be the result of repla
ing in the formula inf above ea
h w by s, ea
h b by (b^:s),ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



28 � A. Dawar, E. Gr�adel, and S. Kreutzerand ea
h a by (a ^ :s). Analogously, de�ne 's := '[w=s; b=(b ^ :s); a=(a ^ :s)℄.Then a similar argument as in Lemma 7.6 shows the following.Lemma 7.8. Let the formula !-height be de�ned as!-height := in�nity ^ 2:(infs ^ :ifp X  's):Then for any tree T with root v, if T ; v j= !-height then the height of v is in�nitebut the height of all su

essors of v is �nite. Thus, the height of v is exa
tly !.Finally, we formalise that for all nodes of �nite height all of their su

essors areof the same height.Lemma 7.9. Consider the formula  de�ned as := :ifp X  (:w ^ 2X) _ (w ^ ifp Y  3Y _ (:w ^3X ^3:X)):Let T ; v j= !-height ^ be a tree. Then, for all nodes u of �nite height all dire
tsu

essors of u are of the same height.Proof. As T ; v j= !-height, no node of �nite height is labelled by w. A simpleindu
tion on the stages proves that at stage n 2 !, Xn 
ontains all nodes of heightless than n. Now assume that at some stage n the root v is in
luded into X , i.e. vsatis�es ifp Y  3Y _ (:w ^3X ^3:X). Thus there is a node u whose heightis greater than n but has a su

essor in Xn, i.e. one whose height is less than n,and a su

essor not in Xn, i.e. one whose height is greater than or equal to n.Conversely, if there is a node u of some �nite height n whi
h has a su

essor ofheight less than n� 1, then 3X ^3:X be
omes true at stage n� 1 and the rootv is in
luded into Xn.Together, we get that T ; v j=  if, and only if, for all nodes u of �nite height, allof its su

essors are of the same height.We now turn to the redu
tion of the de
ision problem for the �rst-order theory ofarithmeti
 to the satis�ability problem for 1MIC. In the remainder of this se
tionwe only 
onsider models of the formula !-height ^  . As in Se
tion 3, we 
odenatural numbers by sets of nodes of 
ertain height. The di�eren
e is, that here anumber n 2 ! is 
oded by the set of nodes u of height less than or equal to n. Inparti
ular, the number 0 is not 
oded by the empty set but by the set of leaves.To simplify the presentation, we do not redu
e the �rst-order theory of arithmeti
to Sat(1MIC) dire
tly but �rst to the de
ision problem for the �rst-order theory ofthe following stru
ture.Definition 7.10. Let N0 := (N;+; �; 0; 1) be the stru
ture over the universe N,where the 
onstants 0N0 ; 1N0 and the fun
tion +N0 are interpreted as in the standardmodel N of arithmeti
, and �N0 is interpreted as follows: s �N0 t := 0 if s = 0 ort = 0, and otherwise s �N0 t := s �N (t+ 1).Clearly, the �rst order theories of N and N0 
an be redu
ed to ea
h other. Thusredu
ing the de
ision problem for the theory of N0 to Sat(1MIC) shows this problemto be unde
idable.ACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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ationary Fixed Points in Modal Logi
 � 29Given the en
oding of natural numbers explained above, 
onsider the formulaplus(S; T ) de�ned asplus(S; T ) := (2(b!  +) ^ :everywhere(T $ 2false) ^:everywhere(S $ 2false)) _2false _ (everywhere(T $ 2false) ^ S) _(everywhere(S $ 2false) ^ T )where  + is de�ned as + := ifp X  (a ^ 2(a! X)) _ (b ^ S) _(b ^ 2(b! X) ^ everywhere(23(a ^X)! T )):Lemma 7.11. If S and T en
ode natural numbers s and t as des
ribed above,then plus(S; T ) en
odes the sum s+ t.Proof. Let s and t be the natural numbers 
oded by the sets S and T respe
tively.Assume s; t > 0 and 
onsider the sub-formula  +. We 
laim that at stage i > 0,X i 
ontains all a-nodes of height less than i and all b-nodes of height at mostminfs+ i� 1; s+ t� 1g. For a-nodes, this is trivial. The 
laim for the b-nodes isproved by indu
tion on the stages i > 0.|Clearly, X1 
ontains exa
tly the b-nodes 
ontained in S and thus, as t � 1, onlynodes of height at most s+ t� 1.|Now assume that for 0 < i < t the 
laim has been proved, i.e.X i 
ontains all a-nodes of height less than i and all b-nodes of height at most s+(i�1). Therefore,the sub-formula everywhere(23(a ^X)! T ) is globally true and all b-nodes ofheight at most s+ i are in
luded into X i+1, as they satisfy b ^ 2(b! X).|Now suppose i = t. Thus, X i 
ontains all a-nodes of height less than t. Clearly,the sub-formula b^2(b! X) is true only for b-nodes of height at most s+ (t�1) + 1. Let u be a node of height exa
tly s+ t and thus, as s � 1, greater thani: Then there is a node of height t+ 1 in the subtree rooted at u whi
h satis�es23(a^X) but not T . Therefore, everywhere(23(a^X)! T ) is false at u andu is not in
luded into X i+1.|The same argument shows that at no higher stage, a b-node of height greaterthan s+ t� 1 
an be added to the �xed-point. This proves the 
laim.Now 
onsider the formula plus(S; T ). By assumption, s; t > 0 and therefore theformulae :everywhere(T $ 2false) and :everywhere(S $ 2false) are true for allnodes ex
ept for the leaves. Further, we have seen that the sub-formula 2(b!  +)be
omes true for all nodes whose b-su

essors are of height less than or equal tos+t�1 and, as we are working in models of the formula !-height ^  , for all nodesof height less than or equal to s+ t.Now suppose s = 0. Then :everywhere(S $ 2false) is false for all nodes ex
eptfor the leaves. Thus, 2false_everywhere(S $ 2false)^T de�nes all nodes 
ontainedin T and plus(S; T ) de�nes the set of nodes representing the sum 0 + t = t. The
ase where t = 0 is analogous. This �nishes the proof.We now turn to the formalisation of multipli
ation in 1MIC. For this, 
onsiderACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.



30 � A. Dawar, E. Gr�adel, and S. Kreutzerthe formulatimes(S; T ) := 2false _ (:everywhere(S $ 2false) ^:everywhere(T $ 2false) ^ 2(b!  �));where  � := ifp X  (a ^ 2(a! X) _ (b ^ plus(2(b! X); S) ^everywhere(23(a ^X))! T )):Lemma 7.12. If S and T en
ode natural numbers s and t as des
ribed above,then times(S; T ) en
odes the produ
t s � (t+ 1) if s; t > 0 and 0 otherwise.Proof. First, suppose that s or t equals 0. In this 
ase, one of the sub-formulae:everywhere(S $ 2false) or :everywhere(T $ 2false) be
omes false on all nodesex
ept the leaves and therefore the formula times(S; T ) is true only on the leavesand en
odes the result 0.Now suppose s; t > 0 and 
onsider the indu
tion on X in the sub-formula  �.We 
laim that at stage i > 0, X i 
ontains all a-nodes of height less than i and allb-nodes of height at most minfi � s+ i� 1; t � s+ t� 1g: For the a-nodes, the 
laimis obvious. Now 
onsider a node labelled by b.|In the �rst stage, X1 
ontains all b-nodes satisfying plus(2(b! X); S). As X0 isempty, 2(b ! X) is true only at the leaves and thus the formula plus evaluatesto S.|Now assume the 
laim has been proved for stage i. If i < t, then X i 
ontains a-nodes of height less than i < t. Thus, the sub-formula everywhere(23(a^X))!T ) is true for all nodes. By indu
tion hypothesis, X i 
ontains exa
tly the b-nodesof height less than or equal to i �s+ i�1 and therefore 2(b! X) be
omes true atall nodes of height at most i�s+i. By Lemma 7.11, the formula plus(2(b! X); S)is then true for all nodes of height (i � s+ i+ s) = (i+ 1) � s+ (i+ 1)� 1.|Now suppose i = t. X i 
ontains exa
tly all a-nodes of height less than t andall b-nodes of height at most t � s + t � 1. Let u be any b-node not in X i, i.e.of height greater than t � s + t � 1. Then there is a node of height t + 1 inthe subtree rooted at u satisfying 23(a ^ X) but not T . Thus, the formulaeverywhere(23(a ^X)! T ) is false at u and u is not added to the �xed-point.The same argument, of 
ourse, holds for all stages i > t and thus, in restri
tionto the b-nodes, the �xed point of X has been rea
hed. This �nishes the proof ofthe 
laim.Now 
onsider the formula times. By assumption, s; t > 0 and therefore the sub-formulae :everywhere(S $ 2false) and :everywhere(T $ 2false) are both truefor all nodes ex
ept the leaves. Thus, times(S; T ) be
omes true for all leaves { asthey satisfy 2false { and for all nodes whose b-su

essors satisfy  �, i.e. are ofheight ((t+ 1) � s� 1). Together, times(S; T ) represents (t+ 1) � s.The following 
orollary shows that the evaluation of polynomials in the stru
tureN0 
an be redu
ed to the evaluation of 1MIC formulae.Corollary 7.13. For every polynomial f(x1; : : : ; xr) over N0 with 
oeÆ
ientsin the natural numbers there exists a formula  f (X1; : : : ; Xr) 2 1MIC su
h that forACM Transa
tions on Computational Logi
, Vol. V, No. N, November 2002.
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 � 31every tree T ; v j= !-height^ and all sets S1; : : : ; Sr en
oding numbers s1; : : : ; sr 2! [[ f (S1; : : : ; Sr)℄℄T = fv : h(v) � fN0(s1; : : : ; sr)g;where fN0(s1; : : : ; sr) denotes the result of f in N0.Proof. The proof is by indu
tion on f .| 0 := 2false .| 1 := 22false .| x := X .| f+g := plus[S= f ; T= g℄, i.e. the formula obtained by repla
ing in plus(S; T )the variables S and T by  f and  g , respe
tively.| f �g := times[S= f ; T= g℄.Theorem 7.14. For every FO-senten
e  in the vo
abulary f+; �; 0; 1g of arith-meti
, there exists a formula  � 2 1MIC su
h that  is true in N0 if, and only if, � is satis�able.Proof. By indu
tion on formulae  (x) 2 FO[+; �; 0; 1℄ we 
onstru
t a formula �(x) 2 1MIC su
h that for all n 2 ! with en
odings N ,  (n) is true in N0 if, andonly if,  �(N) is true at the root v of any model T ; v of the formula !-height ^  above.We have already seen how to transform polynomials over N0 and equality x = y
an be expressed by everywhere(X $ Y ). What remains is to translate quanti�ers.Let  (y) := 9x'(x; y1; : : : ; yk) be a formula in FO[+; �; 0; 1℄. By indu
tion we geta 
orresponding formula '�(X;Y1; : : : ; Yk) in 1MIC. Let �(Y ) := w ^ ifp X  (:w ^ 2X) _ (w ^ '�(X=:w ^ 2X)):Let T ; v be any model of !-height ^  . We 
laim that for all numbers n en
odedby sets N ,  (y) is true in N0 if, and only if, T ; v j=  �(N). A simple indu
tionon the stages proves that at stage i < !, X i 
ontains all a and b-nodes of heightless than i. Further, X1 
ontains the root v if at some stage X , the formula '�be
omes true at the root where the variable X has been repla
ed by :w ^2X , i.e.at ea
h stage i, the variable X in '� is interpreted by the set of nodes of height � i.Thus, in the 
ourse of the indu
tion, '� is evaluated for all sets en
oding naturalnumbers and, by indu
tion hypothesis, be
omes true at the root if, and only if, forat least one i 2 N, '(i; n), and thus  (n), be
omes true. This proves the 
laim and�nishes the proof of the theorem.Corollary 7.15. The satis�ability problem for 1MIC is unde
idable. In fa
t,it is not even in the arithmeti
al hierar
hy.8. CONCLUSIONWhile extensions of �rst-order logi
 by in
ationary �xed points have been studiedfor a long time in �nite model theory we have introdu
ed and investigated here forthe �rst time an analogous extension of propositional modal logi
.ACM Transa
tions on Computational Logi
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32 � A. Dawar, E. Gr�adel, and S. KreutzerThe pi
tures that emerges from our studies is a
tually quite surprising. Whilein �nite model theory, least �xed point logi
 (LFP) and in
ationary �xed pointlogi
 (IFP) behave very similarly, both 
on
erning expressive power and algorith-mi
 properties, the 
orresponding modal �xed point logi
s L� and MIC are verydi�erent.|The modal iteration 
al
ulus MIC is mu
h more expressive than the modal �-
al
ulus L�. In parti
ular, MIC 
annot be embedded into monadi
 se
ond-orderlogi
 and does not have the �nite model property.|On the other side, one pays a prize for this greater expressive power: MIC isalgorithmi
ally mu
h less manageable. The satis�ability problem for MIC ishighly unde
idable and the model 
he
king problem is Pspa
e-
omplete.|There are other stru
tural di�eren
es. Perhaps the most interesting one is thatsimultaneous in
ationary indu
tions 
annot be redu
ed to nested simple indu
-tions.Beyond the theoreti
al interest in the 
omparison of monotone and non-monotoneindu
tions, our results show that MIC is not a useful logi
 for the 
ommon ap-pli
ation areas of L� like automati
 veri�
ation, where the expressive power of(fragments of) L� suÆ
es for most appli
ations and where eÆ
ient model 
he
k-ing algorithms are essential. It will be interesting to see whether in
ationary �xedpoints in modal logi
 will just remain a theoreti
al 
uriosity, or whether there willbe a pra
ti
al use for very powerful modal logi
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