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Abstract. We introduce a generic extension of the popular branching-
time logic CTL which refines the temporal until and release operators
with formal languages. For instance, a language may determine the mo-
ments along a path that an until property may be fulfilled. We consider
several classes of languages leading to logics with different expressive
power and complexity, whose importance is motivated by their use in
model checking, synthesis, abstract interpretation, etc.
We show that even with context-free languages on the until operator
the logic still allows for polynomial time model-checking despite the sig-
nificant increase in expressive power. This makes the logic a promising
candidate for applications in verification.
In addition, we analyse the complexity of satisfiability and compare the
expressive power of these logics to CTL∗ and extensions of PDL.

1 Introduction

Computation Tree Logic (CTL) is one of the main logical formalisms for program
specification and verification. It appeals because of its intuitive syntax and its
very reasonable complexities: model checking is P-complete [9] and satisfiability
checking is EXPTIME-complete [12]. However, its expressive power is low.

CTL can be embedded into richer formalisms like CTL∗ [13] or the modal µ-
calculus Lµ [21]. This transition comes at a price. For CTL∗ the model checking
problem increases to PSPACE-complete [29] and satisfiability to 2EXPTIME-
complete [14, 32]. Furthermore, CTL∗ cannot express regular properties like
“something holds after an even number of steps”. The modal µ-calculus is ca-
pable of doing so, and its complexities compare reasonably to CTL: satisfiability
is also EXPTIME-complete, and model checking sits between P and NP∩coNP.
However, it is much worse from a pragmatic perspective. For example, its syntax
is notoriously unintuitive.

Common to all these (and many other) formalisms is a restriction of their
expressive power to at most regular properties. This follows since they can be
embedded into (the bisimulation-invariant) fragment of monadic second-order
logic on graphs. This restriction yields some nice properties — like the finite



model property and decidability — but implies that these logics cannot be used
for certain specification purposes.

For example, specifying the correctness of a communication protocol that
uses a buffer requires a non-underflow property: an item cannot be removed
when the buffer is empty. The specification language must therefore be able to
track the buffer’s size. If the buffer is unbounded, as is usual in software, this
property is non-regular and a regular logic is unsuitable. If the buffer is bounded,
the property is regular but depends on the actual buffer capacity, requiring a
different formula for each size. This is unnatural for verification purposes. The
formulas are also likely to be complex as they essentially have to hard-code
numbers up to the buffer length. To express such properties naturally one has
to step beyond regularity and consider logics of corresponding expressive power.

A second example is program synthesis, where, instead of verifying a program,
one wants to automatically generate a correct program (skeleton) from the spec-
ification. This problem is very much linked to satisfiability checking, except, if a
model exists, one is created and transformed into a program. This is known as
controller synthesis and has been done mainly based on satisfiability checking
for Lµ [4]. The finite model property restricts the synthesization to finite state
programs, i.e. hardware and controllers, etc. In order to automatically synthesize
software (e.g. recursive functions) one has to consider non-regular logics.

Finally, a third example occurs when verifying programs with infinite or very
large state spaces. A standard technique is to abstract the large state space into
a smaller one [10]. This usually results in spurious traces which then have to
be excluded in universal path quantification on the small system. If the original
system was infinite then the language of spurious traces is typically non-regular
and, again, a logic of suitable expressive power is needed to increase precision.

We introduce a generic extension of CTL which provides a specification for-
malism for such purposes. We refine the usual until operator (and its dual, the
release operator) with a formal language defining the moments at which the un-
til property can be fulfilled. This leads to a family of logics parametrised by a
class of formal languages. CTL is an ideal base logic because of its wide-spread
use in actual verification applications. Since automata easily allow for an unam-
biguous measure of input size, we present the precise definition of our logics in
terms of classes of automata instead of formal languages. However, we do not
promote the use of automata in temporal formulas. For pragmatic considerations
it may be sensible to allow more intuitive descriptions of formal languages such
as Backus-Naur-Form or regular expressions.

As a main result we add context-free languages to the path quantifiers, sig-
nificantly increasing expressive power, while retaining polynomial time model-
checking. Hence, we obtain a good balance between expressiveness — as non-
regular properties become expressible — and low model-checking complexity,
which makes this logic very promising for applications in verification. We also
study model-checking for the new logics against infinite state systems represented
by (visibly) pushdown automata, as they arise in software model-checking, and
obtain tractability results for these. For satisfiability testing, equipping the path
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quantifiers with visibly pushdown languages retains decidability. However, the
complexity increases from EXPTIME for CTL to 3EXPTIME for this new logic.

The paper is organised as follows. We formally introduce the logics and give
an example demonstrating their expressive power in Sect. 2. Sect. 3 discusses
related formalisms. Sect. 4 presents results on the expressive power of these
logics, and Sect. 5 and 6 contain results on the complexities of satisfiability and
model checking. Finally, Sect. 7 concludes with remarks on further work.

2 Extended Computation Tree Logic

Let P = {p, q, . . .} be a countably infinite set of propositions and Σ be a finite
set of action names. A labeled transition system (LTS) is a T = (S,−→, ℓ), where
S is a set of states, −→ ⊆ S × Σ × S and ℓ : S → 2P . We usually write s

a−→ t
instead of (s, a, t) ∈ −→. A path is a maximal sequence of alternating states and

actions π = s0, a1, s1, a2, s2, . . ., s.t. si
ai+1−−−→ si+1 for all i ∈ N. We also write a

path as s0
a1−−→ s1

a2−−→ s2 . . . Maximality means that the path is either infinite or
it ends in a state sn s.t. there are no a ∈ Σ and t ∈ S with sn

a−→ t. In the latter
case, the domain dom(π) of π is {0, . . . , n}. And otherwise dom(π):=N.

We focus on automata classes between deterministic finite automata (DFA)
and nondeterministic pushdown automata (PDA), with the classes of nondeter-
ministic finite automata (NFA), (non-)deterministic visibly pushdown automata
(DVPA/VPA) [2] and deterministic pushdown automata (DPDA) in between.
Beyond PDA one is often faced with undecidability. Note that some of these
automata classes define the same class of languages. However, translations from
nondeterministic to deterministic automata usually involve an exponential blow-
up. For complexity estimations it is therefore advisable to consider such classes
separately.

We call a class A of automata reasonable if it contains automata recognising
Σ and Σ∗ and is closed under equivalences, i.e. if A ∈ A and L(A) = L(B) and
B is of the same type then B ∈ A. L(A) denotes the language accepted by A.

Let A,B be two reasonable classes of finite-word automata over the alphabet
Σ. Formulas of Extended Computation Tree Logic over A and B (CTL[A,B]) are
given by the following grammar, where A ∈ A, B ∈ B and q ∈ P.

ϕ ::= q | ϕ ∨ ϕ | ¬ϕ | E(ϕUAϕ) | E(ϕRBϕ)

Formulas are interpreted over states of a transition system T = (S,−→, ℓ) in the
following way.

– T , s |= q iff q ∈ ℓ(s)
– T , s |= ϕ ∨ ψ iff T , s |= ϕ or T , s |= ψ and T , s |= ¬ϕ iff T , s 6|= ϕ
– T , s |= E(ϕUAψ) iff there exists a path π = s0, a1, s1, . . . with s0 = s and

∃n ∈ dom(π) s.t. a1 . . . an ∈ L(A) and T , sn |= ψ and ∀i < n : T , si |= ϕ.
– T , s |= E(ϕRAψ) iff there exists a path π = s0, a1, s1, . . . with s0 = s and for

all n ∈ dom(π): a1 . . . an 6∈ L(A) or T , sn |= ψ or ∃i < n s.th. T , si |= ϕ.
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As usual, further syntactical constructs, like other boolean operators, are intro-
duced as abbreviations. Similarly, we define A(ϕUAψ) := ¬E(¬ϕRA¬ψ), A(ϕRAψ) :=
¬E(¬ϕUA¬ψ), as well as QFAϕ := Q(ttUAϕ), QGAϕ := Q(ffRAϕ) for Q ∈ {E, A}.
For presentation, we also use languages L instead of automata in the tempo-
ral operators. For instance, EGLϕ is EGAϕ for some A with L(A) = L. This
also allows us to easily define the original CTL operators: QXϕ := QFΣϕ,
Q(ϕUψ) := Q(ϕUΣ∗

ψ), Q(ϕRψ) := Q(ϕRΣ∗

ψ), etc. The size of a formula ϕ
is the number of its unique subformulas plus the sum of the sizes of all automata
in ϕ, with the usual measure of size of an automaton.

The distinction between A and B is motivated by the complexity analysis.
For instance, when model checking E(ϕUAψ) the existential quantifications over
system paths and runs of A commute and we can step-wise guess a path and
an accepting run. On the other hand, when checking E(ϕRAψ) the existential
quantification on paths and universal quantification on runs (by R – “on all
prefixes . . . ”) does not commute unless we determinise A, which is not always
possible or may lead to exponential costs.

However, A and B can also be the same and in this case we denote the
logic by CTL[A]. Equally, by EF[A], resp. EG[B] we denote the fragments of
CTL[A,B] built from atomic propositions, boolean operators and the temporal
operators EFAϕ, resp. EGBϕ only. Since the expressive power of the logic only
depends on its class of languages rather than automata, we will write CTL[REG],
CTL[VPL], CTL[CFL], etc. to denote the logic over regular, visibly pushdown,
and context-free languages, represented by any type of automaton.

Example. We close this section with a CTL[VPL] example demonstrating the
buffer-underflow property discussed in the introduction. Consider a concurrent
producer/consumer scenario over a shared buffer. If the buffer is empty, the
consumer process requests a new resource and halts until the producer delivers
a new one. Any parallel execution of these processes should obey a non-underflow
property (NBU): at any moment, the number of produce actions is sufficient for
the number of consumes.

If the buffer is realised in software it is reasonable to assume that it is un-
bounded, and thus, non-regular. Let Σ = {p, c, r}, where p stands for production
of a buffer object, c for consume and r for request. The NBU property is given
by the VPL L = {w ∈ Σ∗ | |w|c = |w|p and |v|c ≤ |v|p for all v ¹ w}, where ¹
denotes the prefix relation. We express the requirements in CTL[VPL].

1. AGEXptt : “at any time it is possible to produce an object”
2. AGL(AXcff∧EXrtt): “whenever the buffer is empty, it is impossible to consume

and possible to request”

3. AGL(EXctt ∧ AXrff): “whenever the buffer is non-empty it is possible to con-
sume and impossible to request”

4. EFEGc∗ff: “at some point there is a consume-only path”

Combining the first three properties yields a specification of the scenario
described above and states that a request can only be made if the buffer is
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empty. For the third properly, recall that VPL are closed under complement [2].
Every satisfying model gives a raw implementation of the main characteristics of
the system. Note that if it is always possible to produce and possible to consume
iff the buffer is not empty, then a straight-forward model with self-loops p, c and
r does not satisfy the specification. Instead, we require a model with infinitely
many different p transitions. If we strengthen the specification by adding the
fourth formula, it becomes unsatisfiable.

3 Related Formalisms

Several suggestions to integrate formal languages into temporal logics have been
made so far. The goal is usually to extend the expressive power of a logic whilst
retaining its intuitive syntax. A classic example is Propositional Dynamic Logic
(PDL) [16] which extends Modal Logic with regular expressions. There are simi-
lar extensions of LTL [33, 18, 22] and of CTL [5, 7, 26] refining the temporal oper-
ators with regular languages in some form. The need for extensions beyond the
use of pure temporal operators is also witnessed by the industry-standard Prop-
erty Specification Language (PSL) [1] and its predecessor ForSpec [3]. However,
both logics do not reach beyond regular properties, whereas we are mostly inter-
ested in non-regular properties. Furthermore, ForSpec is a linear-time formalism,
whereas we are concerned with branching-time. PSL does contain branching-time
operators but they have been introduced for backwards-compatibility only, and
nowadays, PSL is also mainly understood to be linear-time.

While much effort has been put into regular extensions of standard temporal
logics, little is known about extensions using richer classes of formal languages.
We are only aware of extensions of PDL by context-free languages [17] or visibly
pushdown languages [24].

The main yardstick for measuring the expressive power of CTL[A,B] will
be PDL and one of its variants, namely PDL with the ∆-construct and tests,
∆PDL?[REG], [16, 30]. This was in detail only considered for regular, visibly
pushdown and context-free languages so far, but it can of course be straight-
forwardly extended to arbitrary classes of formal languages represented by au-
tomata. It is, however, necessary to define automata over a potentially un-
bounded alphabet arising from the interleaving of letters with tests in a word.

We briefly recall its syntax and semantics here as it will be needed below.

Semantics of PDL with the ∆-operator and tests. Formulas Form and
programs Prog of ∆PDL?[A] for some A over an alphabet Σ are the least sets
satisfying the following.

1. P ⊆ Form.
2. If ϕ,ψ ∈ Form then ϕ ∨ ψ ∈ Form,¬ϕ ∈ Form.
3. If ϕ ∈ Form, A ∈ Prog then 〈A〉ϕ ∈ Form.
4. A ⊆ Prog.
5. For every A-automaton A over Σ ∪ {ϕ? | ϕ ∈ Form} we have A ∈ Prog.
6. If A ∈ Prog and A′ results from A by equipping it with a Büchi condition

on states, then ∆A′ ∈ Form.
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∆PDL?[A] consists of all elements of Form which are constructed in this way. The
fragment PDL[A] is obtained by removing clauses (5) and (6). The semantics is
again defined over states of transition systems. The clauses for atomic proposi-
tions and the boolean operators are as usual. For the other constructs, we use
the fact that programs and formulas are defined inductively. For a T = (S,−→, ℓ)
with edge labels in Σ′ and a finite subset Φ ⊂ Form of formulas let T Φ result

from T by adding, for every s ∈ S and every ϕ ∈ Φ, a transition s
ϕ?

−−→ s if
T , s |= ϕ. For a formula ϕ let ?(ϕ) be the set of all tests ψ? occurring in ϕ
syntactically.

T , s |= 〈A〉ϕ iff ∃π = s0
a1−−→ s1

a2−−→ . . .
an−−→ sn in

T ?(〈A〉ϕ) with s0 = s s.t.

(i) a1 . . . an ∈ L(A), and

(ii) T , sn |= ϕ.

T , s |= ∆A iff ∃π = s0
a1−−→ s1

a2−−→ . . . in T ?(〈A〉ϕ)

with s0 = s and a1a2 . . . ∈ L(A).

In the following we will use some of the known results about ∆PDL?[A] for
some classes A of automata.

Theorem 3.1. Satisfiability testing for

1. ∆PDL?[Reg] is in EXPTIME [15].
2. ∆PDL?[VPL] is in 2EXPTIME [24].
3. CTL is EXPTIME-hard [12].
4. PDL[DVPA] is 2EXPTIME-hard [24].

There are also temporal logics which obtain higher expressive power through
other means. These are usually extensions of Lµ like the Modal Iteration Cal-
culus [11] which uses inflationary fixpoint constructs or Higher-Order Fixpoint
Logic [34] which uses higher-order predicate transformers. While most regular
extensions of standard temporal logics like CTL and LTL can easily be embed-
ded into Lµ, little is known about the relationship between richer extensions of
these logics.

4 Expressivity and Model Theory

We write L ≤f L′ with f ∈ {lin, exp} to state that for every formula ϕ ∈ L
there is an equivalent ψ ∈ L′ with at most a linear or exponential (respectively)
blow up in size. We use ¯f to denote that such a translation exists, but there
are formulas of L′ which are not equivalent to any formla in L. Also, we write
L ≡f L′ if L ≤f L′ and L′ ≤f L. We will drop the index if a potential blow-up
is of no concern.
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Fig. 1. The expressive power of Extended Computation Tree Logic.

A detailed picture of the expressivity results regarding the most important
CTL[A] logics is given in Fig. 1. A (dashed) line moving upwards indicates (strict)
inclusion w.r.t. expressive power. A horizontal continuous line states expressive
equivalence. It is currently unknown whether or not CTL[CFL] is embeddable
into ∆PDL?[CFL]. If such an embedding exists, it has to be strict. Note that
CFL does not admit deterministic automata. Hence, Thm. 4.2 (3) (given below)
is not applicable in this case.

The following proposition collects some simple observations.

Proposition 4.1. 1. For all A,B: CTL ¯lin CTL[A,B].
2. For all A,A′,B,B′: if A ≤ A

′ and B ≤ B
′ then CTL[A,B] ≤ CTL[A’,B’].

Proof. 1. CTL can be embedded into CTL[A,B] because A is assumed to con-
tain automata for the languages Σ and Σ∗. It is then easy to translate
CTL formulas inductively. Atomic propositions and boolean operators are
translated straight-forwardly. The temporal operators are translated using
E(ϕUψ) ≡ E(ϕUΣ∗

ψ), E(ϕRψ) ≡ E(ϕRΣ∗

ψ), and EXϕ ≡ EFΣϕ. Note that Σ
and Σ∗ can be defined by NFA of constant size. Hence, the blow-up is linear.
Strictness of the inclusion is a simple consequence of the fact that CTL is
usually interpreted over transition systems with no transition labels. Hence,
EXatt := EF{a}tt says that a state has an a-successor and is therefore not
expressible in CTL. However, it is also known that properties like AG(aa)∗q –
proposition q holds on all even moments – are not expressible in CTL.

2. Clearly, with more automata as arguments of the temporal operators one
cannot decrease the expressive power. ⊓⊔
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CTL[A] is properly situated between PDL[A] and ∆PDL?[A]. In fact, PDL[A]
is just a syntactic variation of the EF[A] fragment. The upper bound imposed
by ∆PDL?[A], however, only holds for certain classes A.

Theorem 4.2. 1. For all A: PDL[A] ≡lin EF[A].

2. For all A,B: EF[A] ¯lin CTL[A,B].

3. For all A,B: if B is a class of deterministic automata then CTL[A,B] ≤lin

∆PDL?[A ∪ B].

Proof. 1. Both embeddings of PDL[A] into EF[A] and back are done by a simple
induction on the structure of formulas. Note that the PDL[A] formulas do
not contain tests nor the ∆ operator. Both inductions are easily carried out
using the equivalence 〈A〉ϕ ≡ EFAϕ.

2. Clearly, EF[A] is a fragment of CTL[A,B] for any B. In order to show
strictness of the inclusion we extend – in a straight-forward manner – the
proof of the corresponding result for the logics EF and CTL [12]. First we
define the quotient of a transition system T = (S,−→, ℓ) under a set of
formulas Φ ⊆ EF[A]. It is T /Φ = (S/Φ,−→, ℓ/Φ) with

– S/Φ = {[s] | s ∈ S} where [s] = {t ∈ S | s ∼Φ t} and s ∼Φ t iff
∀ϕ ∈ Φ : T , s |= ϕ iff T , t |= ϕ},

– [s] a−→[t] iff ∃s′, t′ with s′ ∼Φ s, t′ ∼Φ t, and s′ a−→ t′,

– ℓ/Φ([s]) = ℓ(s) ∩ Φ.

It is then easy to show that for all T with states s and all ϕ ∈ EF[A] we
have T , s |= ϕ iff T /Sub(ϕ), [s] |= ϕ. Furthermore, |S/Sub(ϕ)| ≤ 2|Sub(ϕ)|.

On the other hand, consider the transition system T = (N,−→, ℓ) with i−→ j
iff j = i − 1, and ℓ(i) = ∅ for all i ∈ N. Clearly, we have T , i |= AFAXff

for all i ∈ N. However, suppose there was an EF[A] formula ϕ0 equivalent
to AFAXff. Then T /Sub(ϕ0), [i] 6|= ϕ0 for some i > 2|Sub(ϕ)| because this
quotient must contain a cycle without the state [0]. But this contradicts the
fact that EF[A]-definable properties are invariant under these quotients.

3. We focus on finite state automaton only. However, the proof can be ex-
tended to the two kinds of pushdown automata considered in the report—
every subsequent replacement can be extended to push, pop and internal
operations. Tests are internal operations, anyway. The proposed translation
of the ER-formulas relies on an translation of the possibly larger formula
AXff ≡ ¬E(ttUΣtt). As latter does not involve any ER-formula we may as-
sume an appropriate induction principle. The translations of proposition and
boolean operation are straight forward. Given a CTL-formula E(ψ1U

Aψ2), we
construct an automaton A′ by modifying A as follows.

objective in A replacement to get A′

p a // q p
τ(ψ1)? //?>=<89:; a // q

?>=<89:;/.-,()*+p ?>=<89:;p
τ(ψ2)? //?>=<89:;/.-,()*+
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Each dotted circle matches either a final or non-final state. The function τ
refers to the translation for those formulas for which the induction hypothesis
is applicable. Obviously T , s |= E(ψ1U

Aψ2) iff T , s |= 〈A′〉tt.
And as for a formula ϕ:=E(ψ1R

Aψ2), the automaton A is assumed to be com-
plete, and is turned into a safety ω-automaton A′ as follows. The translation
of ϕ is ∆A′.

objective in A replacement to get A′

?>=<89:;p ?>=<89:;/.-,()*+p

τ(AXff)?

ÄÄ¡¡
¡¡

¡¡
¡¡

¡

τ(ψ1)?

²²
?>=<89:;/.-,()*+

tt? $$ ?>=<89:;/.-,()*+
Σ

oo

+3?>=<89:;/.-,()*+ +3 +3?>=<89:;/.-,()*+ τ(ψ2)? //?>=<89:;/.-,()*+
τ(AXff)?

ÄÄ¡¡
¡¡

¡¡
¡¡

¡

τ(ψ1)?

²²

+3

?>=<89:;/.-,()*+
tt? $$ ?>=<89:;/.-,()*+

Σ
oo

The double arrows indicate either in- or outgoing edges. For the later discus-
sions we wish A′ to be deterministic. Therefore, the edge τ(ψ1)? is omitted
iff τ(AXff) = τ(ψ1). Note that in this case, the Σ-transition is not eligible
anyway as τ(ψ1)? reports a dead-end state in the LTS.
Let π = s0, a1, s1, . . . be a path witnessing T , s0 |= E(ψ1R

Aψ2). As A is
deterministic, the run of A on a prefix π′ of π is a prefix of the run on π.
Thus the witnessing path can be turned into a run in A′: As long as ψ1 does
not hold we follow the trace of A. In particular, if a final state in A is reached
then the respective edge τ(ψ2)? can be passed. Now, if the current state has
no children then A′ can follow the edges τ(AXff)?, and for ever tt? . And
if ψ1 holds in the current state of the LTS the proof obligation vanishes for
the next state onwards. Hence A′ can take the way τ(ψ1)?.
Conversely, let π = s0, a1, s1, . . . be a path witnessing T , s0 |= ∆A′. The
run on this path has a prefix—maybe the whole run—which corresponds to
a run of A on π where ψ2 is ensured every time A recognizing the present
word, that is, the states in the lower line of replacement are not taken. If the
prefix is infinite the run is an infinite witness for ϕ. Otherwise, the suffix has
the shape (τ(AXtt)?) (tt?)∗ or (τ(ψ1)?) Σ (tt?)∗. Both alternatives presents
a finite witness of ϕ. In particular, the last state of the first witness has no
successors.
Finally, the transition is only linearly increasing.

⊓⊔

If for some classes A,B the inclusion in Part 3 holds, then it must be strict.
This is because fairness is not expressible in CTL[A] regardless of what A is, as
demonstrated by the following lemma.

Lemma 4.3. The CTL∗-formula EGFq expressing fairness is not equivalent to
any CTL[A, B] formula, for any A, B.
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Proof. To simplify notation we denote by ϕfair the CTL∗-formula EGFq which
can equivalently be defined by the ∆PDL?[REG] formula ∆Afair.

For n, k ≥ 0 we define a pair of transition systems Tn,k and Sn,k as follows.
For n = 0, we define T0,k and S0,k as

T0,k

S0,k

For n > 0, we define Tn,k and Sn,k as .

Tn,k

Sn,k

Formally, Tn,k := (T,→, l) where T := {tl,m : 0 ≤ l ≤ n, 0 ≤ m ≤ k + 1} and

– tl,m −→ tl,m for all l and 0 < m ≤ k + 1,
– tl,m −→ tl,m+1 for all 0 ≤ l ≤ n and 0 ≤ m < k + 1 and
– tl,k+1 −→ tl−1,0 for 1 ≤ l ≤ n.

Finally, l(tl,0) = {q} for all l and l(x) := ∅ for all other states x. Sn,k := (S,→, l)
is defined analogously over the set S := {sl,m : 0 ≤ l ≤ n, 0 ≤ m ≤ k + 1} of
states but in addition there is a transition sn,k+1 −→ sn,0. Note that there are no
actions at the transitions so that automata in CTL[A,B]-formulas run over a
unary alphabet.

We first establish a simple property of the transition systems defined above
which follows immediately from the fact that if r < min{n, n′} then Sn′,k, sr,d ∼
Tn,k, tr,d for all d.

Claim 1. If χ ∈ CTL[A,B] and r < min{n, n′} then for all 0 ≤ d ≤ k + 1

Tn,k, tr,d |= χ ⇐⇒ Sn,k, sr,d |= χ.

Let M := {(T , s) : T , s |= ϕfair}. Clearly, Sn,k, sn,0 ∈ M whereas Tn,k, sn,0 6∈
M, for all n, k. We show next that for every ϕ ∈ CTL[A,B] there are n, k such
that Tn,k, tn,0 |= ϕ if, and only if, Sn,k, sn,0 |= ϕ. This clearly implies that there
is no CTL[A,B]-formula defining M and therefore proves the theorem.

Towards this aim, we define the following two complexity measures for formu-
las CTL[A,B]. W.l.o.g. we assume that L(A) 6= ∅ and ε 6∈ L(A) for all automata
A occurring in ϕ, where ε denotes the empty word.
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– The temporal depth td(ϕ) is defined in the usual way as the maximal nesting
depth of temporal operators in ϕ.

– Let A be an automaton occurring in ϕ. If L(A) is finite we define ad(A) :=
max{|w| : w ∈ L(A)}. Otherwise, ad(A) := min{|w| : w ∈ L(A)}.
The automata depth ad(ϕ) is defined as max{ad(A) : A occurs in ϕ}.

Claim 2. If n, n′, k ≥ 0 are such that k > ad(ϕ) and n, n′ > td(ϕ) then for all
0 ≤ m ≤ k + 1

Tn,k, tn,m |= ϕ if, and only if, Sn′,k, sn′,m |= ϕ.

The claim is proved by induction on the structure of formulas ϕ ∈ CTL[A,B].
This is obvious for atomic formulas and follows immediately from the induction
hypothesis for Boolean combinations ¬ϕ,ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2.

Suppose ϑ := E(ϕRAψ). Let n, n′, k ≥ 0 be such that k > ad(ϕ) and n, n′ >
td(ϑ). Suppose Sn′,k, sn′,0 |= ϑ and let π′ := v0v1 . . . |= ϕRAψ, with v0 = sn′,0,
be a path witnessing this. Let w be a shortest word in L(A). By construction,
0 < |w| ≤ k. Let sn′,d := v|w| for some 0 ≤ d ≤ k. Suppose first that Sn′,k, sn′,d |=
ψ. By induction hypothesis, Tn,k, tn,d |= ψ and therefore the path π := tn,0 ·
tn,1 · · · tn,d(tn,d)

ω witnesses that Tn,k |= ϑ as ψ holds continuously from tn,d

onwards and no prefix of π of length < d forms a word in L(A). Otherwise, i.e. if
Sn′,k, sn′,d 6|= ψ then there must be a d′ < d such that Sn′,k, sn′,d′ |= ϕ. Again,
by induction hypothesis, Tn,k, sn,d′ |= ϕ and hence the same path π as before
witnesses Tn,k, tn,0 |= ϑ. This shows that if Sn′,k, sn′,0 |= ϑ then Tn,k, tn,0 |= ϑ.
The other cases, where Sn′,k, sn′,r |= ϑ for some 0 < r ≤ k + 1, and the converse
direction are proved analogously.

Suppose ϑ := E(ϕUAψ). Let n, n′, k ≥ 0 be such that k > ad(ϕ) and n, n′ >
td(ϕ). Again we only consider the case where Sn′,k, sn′,0 |= ϑ and show that
Tn,k, tn,0 |= ϑ. All other cases can be proved analogously.

We first establish the following claim which follows from a straight forward
application of the induction hypothesis.

Claim 3. Let χ ∈ CTL[A,B] be a formula such that td(χ) ≤ td(ψ) ≤ td(ϑ) − 1
and ad(χ) ≤ ad(ψ) ≤ ad(ϑ) < k and let n ≥ r, r′ > td(χ) and n′ ≥ r′′ >
td(χ). Then

Tn,k, tr,d |= χ ⇐⇒ Tn,k, tr′,d |= χ
⇐⇒ Sn′,k, sr′′,d |= χ

for all 0 ≤ d ≤ k + 1.

Let π′ := v0v1 . . . |= ϕUAψ be a path witnessing that Sn′,k, sn′,0 |= ϑ. Hence,
there is a j ≥ 0 such that Sn′,k, vj |= ψ and Sn′,k, vi |= ϕ for all 0 ≤ i < j.
Let vj := sr,d for some r, d. Suppose first that r ≤ td(ϑ) < min{n, n′}. Hence,
Sn′,k, sr,d′ |= ϕ for all 0 ≤ d < d′ and Sn′,k, sr′,d′ |= ϕ for all 0 ≤ d′ ≤ k + 1 and
r < r′ ≤ n′. By applying Claim 1, Claim 3 and the induction hypothesis we get
that
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– Tn,k, tr,d |= ψ
– Tn,k, tr,d′ |= ϕ , for all d′ < d, and
– Tn,k, tr,d′ |= ϕ for all n ≥ r′ > r and all 0 ≤ d ≤ k + 1.

Now we can choose any path π1 from tn,0 to tr,d in Tn,k such that L(A) contains
a word of length |π1|. Then π ·(tr,d)

ω (or π ·tr,d ·(tr,d+1)
ω in case d = 0) witnesses

that Tn,k, tn,0 |= ϑ.
Finally, suppose that r > td(ϑ). But then, by Claim 2, Tn,k, tn,d |= ψ and

Tn,k, tn,d′ |= ϕ for all d′ < d. Hence, if we choose a path π1 := tn,0 ·(tn,1)
m · · · tn,d

such that there is a word in L(A) of length |π1|, then π1 · (tn,d)
ω (or π1 · tn,d ·

(tn,d+1)
ω if d = 0) witnesses that Tn,k, tn,0 |= ϑ. This concludes the proof. ⊓⊔

Fairness can be expressed by ∆Afair, where Afair is the standard Büchi au-
tomaton over some alphabet containing a test predicate q? that recognises the
language of all infinite paths on which infinitely many states satisfy q.

Corollary 4.4. 1. For all A,B: CTL∗ 6≤ CTL[A,B].
2. There are no A,B such that any CTL[A,B] is equivalent to the ∆PDL?[REG]

formula ∆Afair.

Finally, we provide some model-theoretic results which will also allow us to
separate some of the logics with respect to expressive power. Not surprisingly,
CTL[REG] has the finite model property which is a consquence of its embedding
into ∆PDL?[REG]. It is also not hard to bound the size of such a model given
that ∆PDL?[REG] has the small model property of exponential size.

Proposition 4.5. Every satisfiable CTL[REG] formula has a finite model. In
fact, every satisfiable CTL[NFA,DFA], resp. CTL[NFA,NFA] formula has a model
of at most exponential, resp. double exponential size.

We show now that the bound for CTL[NFA] cannot be improved.

Theorem 4.6. There is a sequence of satisfiable CTL[NFA]-formulas (ψn)n∈N

such that the size of any model of ψn is at least doubly exponential in |ψn|.

Proof. Fix an even number n > 0. Let [n]:={1, . . . , n}. Let A be the following
NFA over the alphabet Σ:={−n, . . . ,−1,#, 1, . . . , n}.

?>=<89:;
ε

ÄÄ¡¡
¡¡

¡¡
¡¡

¡
ε

ÂÂ?
??

??
??

??
//

?>=<89:;[n]\{1}
((

#

²²

. . . ?>=<89:; [n]\{n}
vv

#

²²?>=<89:;1Σ\{−1}
((

−1

²²

. . . ?>=<89:;n Σ\{−n}
uu

−n

²²
?>=<89:;/.-,()*+Σ
((

. . . ?>=<89:;/.-,()*+ Σ
vv
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Let Q ⊃ [n] be set of its states. The ǫ-transition can be eliminated with a lin-
ear overhead. However, the ǫ-transitions are more convenient for presentation
purposes. In any case, the size of A is linear in n. Let D be a deterministic au-
tomaton for A obtained from the standard powerset construction [27]. Although
we do not use D explicitly, it allows us to say that at a node of a model there is
a proof obligation for AFA in a state S ⊆ Q, for instance.

Let S ⊆ [n]. Consider a Hintikka model of some formula ϕ and let AFAp occur
in some node. Suppose that we have the control over the formulas ϕ, or over the
Hintikka model, respectively. Now, we can set up A with the set S as follows.
Let [n]\S = {s1, . . . , sℓ}. Consider a path π passing the labels s1, . . . , sℓ,# such
that along the path p does not hold. At the end of this path, there is a proof
obligation for AFAp in the state S (w.r.t to D). Iterating this construction with
different sets S yields to many proof obligations for the AFA along the iteration.

As for the lower bound, we construct a formula ϕ polynomially sized in n
such that any of its tree model consists of two phases. The first one creates
exponential many proof obligations for some instances AFAp along the path.
There are doubly exponential many such paths. In the second phase the model
satisfies these obligations but it also materializes all the obligations. The set of
proof obligations will be so that the materialization is characteristic for this set.
This property prevents any model from sharing the different materializations.
To be more precise, the first phase is built from smaller blocks, called S-blocks.
For each set S ⊆ [n] of size n/2 there is a leaf such that the block imposes
an additional proof obligation for AFAp in the state S. The first phase consists
of b :=

(

n
n/2

)

/2 many1 layers of S-blocks. For each list S := S1, . . . , Sn/2 with

each element in
(

[n]
n/2

)

, there is a path (starting from the root) which reaches the

second phase and which has collected proof obligations for AFAp in the state Si

for any i ∈ [n/2]. In the last phase, the model can pick out b =
(

n
n/2

)

− b sets in
(

[n]
n/2

)

. Only for these sets the model has a path. For a set {a1, . . . , an/2} ∈
(

[n]
n/2

)

,

the path touches the labels −a1, . . . , −an/2 in some order. The node after the
last label has no successor, and it is the only state on the path at which p holds.
The passed labels transform the proof obligations. The only node which can
fulfill the the proof obligations is a dead-end node. The combination of both
properties implement the said materialization. This final phase is implemented
by a so-called T-block.

The encoding of this paradigm uses two kinds of counters: one to iterate the
S-blocks, and the others to control the branching in any T-block. We write C for
a list of n (distinct) propositions which are intended to be used as n-bit counter.

Let A, B, C—possibly indexed—be counters, ℓ ∈ N, v ∈ {0, . . . , 2n − 1},
and ∆ ⊆ Σ. There are CTL-formulas of polynomial size (in n) which encode the
following properties.

1 Indeed,
`

n
n/2

´

= (n−1)! · n
(n/2)!(n/2−1)! · n/2

= 2
`

n−1
n/2

´

is even.
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Formula Property

pC = vq, pC 6= vq The counter C has (not) the value v.
pAX∆A = Bq The value of A in any ∆-successor is the value of B of the

current state.
pAX∆A = B + 1q The value of A in any ∆-successor is the successor value of

B of the current state. If B represents 2n the behavior is
undefined.

pA =
∑ℓ

i=0 Bi
q The value of A is the sum of the values of Bi for all

i = 0 . . . ℓ. Here, we allow (polynomial many) additional
counters, respectively variables, to compute the sum suc-
cessively.

The final formula ϕ uses the propositions p, and the counters C and Ci for
i = 0, . . . , n.

Encoding of S-blocks. For ∆ ⊆ Σ and ψ a CTL-formula, the formula

!X∆ψ :=AXΣ\∆ff ∧ EX∆tt ∧ AX∆ψ

forces that for any of its models there are only ∆-successors and at each of them
ψ holds. Note that for an a ∈ ∆ there might be more than one a-successors.

The enumeration of all S ∈
(

n
n/2

)

is constructed level by level. An element S

is enumerated increasingly. Thereto, the auxiliary formulas ϕm,ℓ are introduced
for ℓ the number of levels remaining and m the maximal number seen along an
enumeration so far.

ϕm,0 :=!X{#}tt

ϕm,ℓ :=!X{m+1,...,n+1−ℓ}¬p if ℓ > 0

Finally, an S-block is forced by

σ := AFAp ∧ ¬p ∧ ϕ0,n/2 ∧
∧

m∈[n]

k∈[n/2]

AXΣk−1{m}ϕm,n/2−k.

Any (tree) model of σ enumerates all subsets of [n] of size n/2, and ensures
that along the enumeration p does not hold while the proof obligation AFAp is
imposed on the root. That is, for any sequence a1, . . . , an/2+1 in Σ the following
properties are equivalent.

– a1, . . . , an/2 is a strictly increasing sequence in [n], and an/2+1 = #.

– there exists a path s0, a1, s1, a2, s2, . . . starting at s such that si |= ¬p for all
i ∈ {0, . . . , n/2}, and s0 |= AFAp.

Encoding of T-blocks. An T-block is a tree with b leaves. The encoding is similar
to that of an S-block. Additionally, at each node v we use a counter C0 and
counters Ci for each outgoing label −i. The counter C0 contains the number
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of leaves of the tree2 at v. Similarly, Ci stands for the number of leaves at the
respective subtree. The counters Ci must sum up to C0. In analogy to ϕm,ℓ, each
formula ψm,ℓ is responsible for a certain level. However, the expression !X∆ is
replaced by a variation additionally depending on the counter Ci.

ψm,0 :=pC0 = 1q ∧ p ∧ AXff

ψm,ℓ :=¬p ∧
∧

a∈Σ\{−n,...,−1}

AX{a}ff

∧
n+1−ℓ

∧

i=m+1

{(

pCi 6= 0q ↔ EX{−i}tt

)

∧ pAX{−i}C0 = Ciq

}

A T-block is represented by the formula τ defined as

pC0 = bq ∧ ψ0,n/2 ∧
∧

m∈[n]

k∈[n/2]

AXΣk−1{−m}ψm,n/2−k

Encoding. Now, the S-blocks can be iterated b-times.

ϕ := pC = 0q ∧ AGΣ∗
(

pAXΣ\{#}C = Cq∧

pAX{#}C = C + 1q

)

∧ AGΣ∗{#} (pC 6= bq → σ)

∧ AGΣ∗{#} (pC = bq → τ)

ϕ is satisfiable. We construct a tree model of ϕ. Obviously, the existence of the
first phase—as mentioned in the introductive text—is guaranteed because τ and
ϕ without its last conjunct have bisimilar models only. Given a path π from the
root to the last element of the first phase, it remains to show how to continue
with a T-blocks. By the construction of σ and ϕ, there are sets S1, . . . , Sb ∈

(

[n]
n/2

)

such that the path has collected only proof obligation of AFAp for the states S1

to Sb. Let S := {Si | i ∈ [b]}. Now, set

T :=
{

T ∈
(

[n]
n/2

)

| [n] \ T /∈ S
}

.

Note that |T | =
(

n
n/2

)

− |S| ≥
(

n
n/2

)

− b = b. Choose a subset T ′ ⊆ T of

size
(

n
n/2

)

− b. The formula τ forces b branches. Therefore, for each T ∈ T ′ we

construct a branch which passes the labels −t1, . . . ,−tb, where t1, . . . , tb is an
increasing enumeration of T . For any S ∈ S, the sets S and T are not disjoint.

2 Because CTL is bisimilar, there might be more than one out-going edge with a given
label a ∈ Σ. In this case, we pick out one such edge. So, the term “tree” refers to
the tree thinned out.
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Indeed, if they are disjoint then [n] \ T = S as both have the same size n/2.
But this is contradiction to T ∈ T . The non-disjointness ensures that any proof
obligation in S is turned into an obligation for a set of states containing a final
state, after passing the labels −t1, . . . ,−tb. However, this state models p, and
hence all proof obligations disappear.
Lower bound. Consider a model T of ϕ. Because

(

2k
k

)

≥ 2k for any k ∈ N, the

set
(( [n]

n/2)
b

)

has at least doubly exponential size in n. For any set S ∈
(( [n]

n/2)
b

)

there
is a rooted path πS through the S-blocks of T which got proof obligations for
AFAp for every S ∈ S and ends at the first node of a T-block. Let S and S ′ two

different sets in
(( [n]

n/2)
b

)

. As for the lower bound, it suffices to show that the last
nodes of πS and πS′ are different. Assume that they are identical. The T-block
starting at the last node shows b branches, each naming (the negative of each
element of) a set T ⊆ [n] of size n/2. As in the case of satisfiability, the proof
obligations got transformed by each branch. Since a T-block is a dead end, a
transformed proof obligation must refer to a set which contains a final state of A.
Therefore, T must intersect with any element of S∪S ′. That is, ([n]\T ) /∈ S∪S ′.
In total, each of the b =

(

n
n/2

)

− b branches names a different set which is not in

S∪S ′. So, |S∪S ′| = b. Being of size b, both S and S ′ are identical. Contradiction.
⊓⊔

The next theorem provides information about the type of models we can
expect – which is useful for synthesis purposes.

Theorem 4.7. 1. There is a satisfiable CTL[VPL] formula which does not
have a finite model.

2. There is a satisfiable ϕ ∈ CTL[DCFL] s.t. no pushdown system is a model
of ϕ.

3. Every satisfiable CTL[VPL] formula has a model which is a visibly pushdown
system.

We prove the first two parts here. Due to its length, the proof of Part 3 is
given as a separate lemma (Lemma 4.8) below.

Proof (Part 1. and 2.).

1. Consider a visibly pushdown alphabet with some push-action a and a pop-
action b. Let L := {anbn | n ≥ 1} which is known to be a VPL. Note
that VPL are closed under complement and under intersections with regular
languages. Let

ϕ := EFaAGa∗

EFatt ∧ AGLAXff ∧ AGL∩a∗b∗EFbtt

The first conjunct requires an infinite a-path to exist. The second states that
every path of the form anbn ends in a state without successor, and the third
one says that every path of the form anbm with m < n can be extended
by at least another b-action. It is not hard to see that ϕ cannot be satisfied
in a finite model. Furthermore, ϕ is satisfiable, for instance in the following
model.
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a

b

a a a

b b

b b b

2. Note that the following languages are DCFLs: L1 := {anbm | 1 ≤ m < n},
L2 := {anbn | n ∈ N}, L3 := {a∗bncm | 1 ≤ m < n}, and L4 := {a∗bncn |
n ∈ N}. Now we construct a formula ϕ ∈ CTL[DCFL] whose models are
bisimilar to the following transition system.

a

b

a a a

b b

b b

b

c

c

c c c

c

It is defined as follows.

ϕ := AGb∪cff ∧ EFaAGa∗

(EFatt ∧ EFbtt)

∧ AGL1(EFbtt ∧ AGa∪cff) ∧ AGL2EFctt

∧ AGL3(EFctt ∧ AGa∪bff) ∧ AGL4AXff

The first line requires an infinite a-path with b-successors for every state
apart from the first one. The second line requires every path of the form anb
to be followed by paths of the form bn−1c and nothing else, the third line
requires every path of the form a∗bnc – which then has to be in fact anbnc
– to be followed by cn−1 ending in a deadlock state.
Note that such a model cannot be represent as a pushdown model because the
set of all maximal paths in a pushdown model forms a context-free language
but {anbncn | n ∈ N} is known not to be a CFL. ⊓⊔

Lemma 4.8. Every satisfiable CTL[VPL] formula has a model which is a visibly
pushdown system.

Proof. Beforehand, we harmonize the definitions of two kinds of automata, and
of a push down system.

Let Σ = (Σc, Σr, Σi) be a pushdown alphabet [2]. For the following three
definitions, Q refers to a set of states, q0 ∈ Q to an initial state, Γ to a stack
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alphabet containing the bottom-of-stack symbol ⊥, and col : Q → N to a function
coloring the states Q. Moreover, we implicitly use the standard [2, 20] notations
of a configuration, and of a run on ω-words over Σ and on infinite trees over Σ,
respectively. For simplicity, let T be the set (Q × Σc × (Γ \ {⊥} × Q)∗) ∪ (Q ×
Σi × Q∗) ∪ (Q × Σr × Γ × Q∗). We write 〈(q1, B1), . . . (qn, Bn)〉 for an element
in (Γ \ {⊥}×Q)∗. A ordered visibly pushdown system (oVPS) over Σ is a tuple
P = (Q,Γ, δ, q0) such that δ ⊆ T and δ is deterministic. An oVPS P induces
an Σ-labeled and ordered tree by unrolling δ. A parity tree automaton over Σ
is a tuple A = (Q, δ, q0, col) such that δ ⊆ Q × Σ × Q∗. A stair parity visibly
pushdown tree automaton [25] over Σ is a tuple A = (Q,Γ, δ, q0, col) such that
δ ⊆ T . Any such automaton is said to be satisfiable if there exists a tree which
it accepts.

Given a stair parity VPTA A, we construct an oVPS such that its induced
tree is accepted by A. As for the claim of Thm. 4.7 Part 3, for any ∆PDL?[VPA]-
and any CTL[VPA]-formula ϕ there is a stair parity VPTA which accepts exactly
the unique diamond path and unique ∆-path Hintikka tree models of ϕ [24,
Lem. 24]. By the announced implication there exists a oVPS which admits such
a Hintikka model for ϕ. From this, one obtains a VPS [25] satisfying ϕ, as just
as one gets a tree model from a Hintikka model [24, Prop. 23].

Let A = (QA, Γ, δA, qA0 , colA) be a stair parity visibly pushdown tree au-
tomaton over a a pushdown alphabet Σ = (Σc, Σr, Σi).

Definition 4.9. Wlog. colA : QA → N \ {0}, and QA = {1, . . . , |QA|}. The par-
ity tree automaton B := (QB, δB, qB0 , colB) is defined as follows.

– QB :=
(

QA × Γ × 2QA)

∪̇ {X}.
– qB0 := (qA0 ,⊥, ∅).
– colB

(

(q, , )
)

:= colA(q) for all q ∈ QA, and colB(X) := 0.

The relation δB is given by case distinction on Σ.

Always: (X, a, 〈X〉) ∈ δB for all a ∈ Σ.
For all a ∈ Σi and (q, a, 〈q1, . . . , qk〉) ∈ δA: Then ((q, γ,R), a, 〈(q1, γ, R), . . . , (qk, γ, R)〉) ∈

δB for all γ ∈ Γ .
For all a ∈ Σr and (q, γ, a, 〈q1, . . . , qk〉) ∈ δA: Then ((q,⊥, R), a, 〈(q1,⊥, R), . . . , (qk,⊥, R)〉) ∈

δB. And ((q, γ,R), a, 〈X〉) ∈ δB if qi ∈ R for all i = 1, . . . , k.
For all a ∈ Σc and (q, a, 〈(γ1, q1), . . . , (γk, qk)〉) ∈ δA: Let R1, . . . , Rk ⊆ QA be

arbitrary. Then ((q, γ′, R′), a, 〈w1 . . . wk〉) ∈ δB where wi for i = 1, . . . , k is
a vector over QB of length 1+|QA|. Its first component is (qi, γi, Ri), followed
by (r, γ′, R′) if r ∈ Ri, or by X otherwise, for all r ∈ QA increasingly.

Note that from any transition in B its generating transition in A can be recon-
structed.

Lemma 4.10. If A is satisfiable then so B is.

Proof. Suppose that A accepts a tree tA. Let t′A be the tree tA but additionally
annotated with configurations of A witnessing that tA is accepted by A. Starting

18



from the root, the tree t′A is successively rearranged to a tree tB accepted by B.
Let a node v be given. If at v the automaton A does an internal operation
or a pop operation then this nodes remains. Now, assume that A does a push
operation along v to a child w. Consider the occurrences of all pop operations
corresponding to the push operation from v to w on all branches arising from
w. Let R be the states reached by A as a result of the exhibited pop operation.
Hence, for any r ∈ R there is a subtree tr below w annotated with the state r.
For all r ∈ QA, increasingly, the node v got the following subtree as a sibling. If
r ∈ R then we take tr and otherwise some (infinite) tree. The new sibling are
inserted right after v and a head of its siblings in the first place.

The construction ensures that the resulting tree is accepted by B. Indeed,
let π be a path starting in qB0 . If π touches X, it keeps doing so. Hence, the
path is accepted. Otherwise, the path corresponds to a branch in A where the
immediate run corresponding to a maximally matching word [2] are omitted. For
each such word, a branch is forked, cf. the first component of the wis in Def. 4.9.
Hence, π corresponds to a branch in A. However, the positions of the maximally
matching words are not taken into account for the acceptance condition. But,
this restriction is just the stair parity condition. Hence, π is accepted.

Definition 4.11. Let C be a parity tree automaton over Σ with states Q and
transitions δ. A triple (V,E, r, ℓ) is a finite interpretation for C iff V is a finite
set of nodes, E : V → V + is a successor function with ordered children, r ∈ V
is its root, and ℓ : V → (Q × Σ) is a labeling function which in conform with
C. That is, E(v0) = (v1, . . . , vn) and ℓ(vi) = (qi, ai) for all i ∈ {0, . . . , n} imply
(q0, a0, (a1, . . . , qn)) ∈ δ, for any v0, . . . , vn ∈ V , q0, . . . , qn ∈ Q, and a0, . . . , an ∈
Σ. Such a finite interpretation is a finite model of C iff C accepts the tree resulting
from unrolling (V,E, r, ℓ) at its root. The labels of this tree follow the Σ-part of
ℓ.

Theorem 4.12. Any satisfiable parity tree automaton has a finite model.

Proof. The emptiness problem can be reduced to the question whether or not
the automaton player has a winning strategy for a finite parity game [20]. The set
of winning position is computable. Hence, fixing one outgoing edge of a position
of the automaton player leads directly to the claimed graph.

Finally, the translation in Def. 4.9 and the reduction in Lem. 4.10 can be
reversed.

Definition 4.13. Let G = (V,E, r, ℓ) a finite model of B. Then G induces an
oVPS P := (V, ΓP , δP , r), where the stack alphabet ΓP is (Q → V ) ∪̇ {⊥}. The
transition relation δP is given as follows. Let v ∈ V be labeled with ( , a) ∈ Q×Σ.
For any a ∈ Σi, δP contains (v, a, E(v)). And for any a ∈ Σr, δP contains
(v, a,⊥, E(v)) and (v, a, ρ, ρ(v)) for any function ρ : Q → V . As for the push
operations, let E(v) = v1 . . . vk and let vi = vi,0, . . . , vi,|Q| for each i, due to the
conformity of G with B. Then δp contains (v, a, ((ρ1, v1,0), . . . , (ρk, vk,0))) where
ρi : Q → V is some (fixed) function such that ρi(q) = vi,q if the Σ-part of ℓ(vi,q)
is not X.
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Because, in the tree resulting from unrolling G, no rooted branch reaches the
state X, transitions leaving this state need not be translated.

Theorem 4.14. Let G be a finite model of B. Then the oVPS P is a model of
A.

Proof. In the unrolled tree of P , any maximal path π which starts at the root is
infinite, following the labeling function. Analogously to the proof of Lem. 4.10,
such a path meets the stair parity condition. Indeed, it suffices to consider the
interrupted path which skips the minimally matching words in the factorization
of (the word labeling) π. Such an interrupted path corresponds to a path in G
meeting the parity condition of B. Hence, π fulfills the stair parity condition
for A.

As for the underdetermination of the functions ρi in the case Σc: if the Σ-
part of ℓ(vi,q) is X, the value of ρi(q) is irrelevant as the function will be never
evaluated at q—as long as only rooted paths are considered. This is ensured by
the condition “qi ∈ R” in the case Σr of Def. 4.9 and by the conformity of G
with B.

This completes the proof of Lemma 4.8 and therefore Thm. 4.7 Part 3. ⊓⊔

Putting Prop. 4.5 and Thm. 4.7 together we obtain the following separations.
We expect that CTL[DCFL] ¯ CTL[CFL] also holds but have no formal proof
at the moment. Note that the corollary can also be obtained from language
theoretical observations.

Corollary 4.15. CTL[REG] ¯ CTL[VPL] ¯ CTL[DCFL].

Proof (Alternative proof). Here we give an alternative proof of the corollary,
based on language theoretical observations.

We show that CTL[REG] ¯ CTL[VPL] ¯ CTL[DCFL]. In fact, the logics
can be separated already on finite words (with the obvious modification of their
semantics) and this extends in the usual way to a full separation of the logics
with the standard semantics. For, on finite words, every formula of CTL[REG]
translates into an equivalent formula of Monadic Second-Order Logic (MSO) and
thus into a DFA. As there is a VPL which is not regular, it is trivial to construct a
CTL[VPL]-formula which on finite words is not equivalent to any DFA and hence
not equivalent to any CTL[REG]-formula. Similarly, a correspondence between
VPL and MSOµ (see [2]) can be used to separate CTL[VPL] from CTL[DCFL].

⊓⊔

5 Satisfiability

In this section we study the complexity of the satisfiability problem for a variety
of CTL[A,B] logics. The presented lower and upper bounds, as shown in Fig. 2,
also yield sharp bounds for EF[ ] and CTL[ ].

20



complexity DFA NFA DVPA VPA DPDA, PDA

DFA, NFA 1 2 2 3
DVPA, VPA 2 3 2 3 undecidable
DPDA, PDA undecidable

Fig. 2. The complexities of checking satisfiability for a CTL[A,B] formula. The rows
contain different values for A as the results are independent of whether or not the au-
tomata from this class are deterministic. A natural number k means that the respective
logic is complete for k-EXPTIME.

Theorem 5.1. The satisfiability problems for CTL[DPDA, ] and for CTL[ ,
DPDA] are undecidable.

Proof. Harel et al. [17] show that PDL over regular programs with the one
additional language L:={anban | n ∈ N} is undecidable. Since L ∈ DCFL ⊇
REG, EF[DPDA] is undecidable and hence so is CTL[DPDA, ]. As for the
second claim, the undecidable intersection problem of two DPDA, say A and
B, can be reduced to the satisfiability problem of the CTL[ , DPDA]-formula
AUAAXff ∧ AUBAXff. ⊓⊔

Theorem 5.2. The upper bounds for the satisfiability problem are as in Fig. 2.

Proof. By Thm. 4.2(3), CTL[A, B] can be translated into ∆PDL?[A ∪ B] with
a blow-up that is determined by the worst-case complexity of transforming an
arbitrary A-automaton into a deterministic one. The claim follows using that
REG ⊆ VPL and that the satisfiability problem for ∆PDL?[REG] is in EXP-

TIME [15] and for ∆PDL?[VPL] is in 2EXPTIME [24]. ⊓⊔

Theorem 5.3. 1. CTL[DFA, NFA] and CTL[ , DVPA] are 2EXPTIME-hard.
2. CTL[DVPA, NFA] and CTL[ , DVPA ∪ NFA] are hard for 3EXPTIME.

The reduction uses the alternating tiling problem.

Definition 5.4. The alternating tiling problem is the following. Given a set
T of tiles, H,V ⊆ T 2, s ∈ T , f : N → N, and α : T → {0, 1, 2} such that
H ⊆ {(t, t′) | α(t) = α(t′)} decide whether there is a tiling tree. That is, a finite
tree such that

– any node is labeled with t1, . . . , tm for m:=f(|T |),
– t1 = s for the root,
– tiHti+1 for all 1 ≤ i < m,
– the node has α(tm) successors, and
– for each successor labeled with t′1, . . . , t

′
m holds tiV t′i for all 1 ≤ i ≤ m.

The function α realizes alternation. Note that, if the range of α is {0, 1} the
definition corresponds the usual one version for one player [31]. Therefore, we
refer to a node in a tiling tree as a row and to its components as columns. So,
H represent the horizontal and V the vertical matching relation.
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To describe the complexity of alternating tiling we assume a reasonable en-
coding of T , H et cetera. In particular, the function f is given as a term. As we
want to characterize complexity classes far beyond EXPTIME the usual corridor
tiling [31] does not suffice because an explicit naming of the width would require
to much space.

Combining the technique of tiling and alternation [8], we obtain the following
characterization.

Lemma 5.5. The class of alternating tiling problems where their functions f is
exponential is 2EXPTIME-complete. Similar, the restriction to doubly exponen-
tial functions is complete for 3EXPTIME.

In Def. 5.4, the restriction on H with respect to α is not necessary for the
completeness for the respective completity class. However, it simplifies that sub-
sequent hardness proof for CTL[DFA,NFA].

Proof (of Thm. 5.3(1)). Given an alternating tiling problem consisting of T , H,
V , s, f and α as in Def. 5.4 such that f is exponential. Set n:=|T |, m:=f(n) and
let m′ be the number of bits to count from 0 to m−1, that is n′:=⌊log2(m−1)⌋+1.
Note that n′ is polynomially bounded in n. W.l.o.g. T = {1, . . . , n}.

It is pretty easy to find a CTL-formula ϕ such that any of its models looks like
an tiling tree (up to bisimulation). Thereto, the tiles are encoded by propositions,
say t1, . . . , tn. Any sequent of tiles in a node of the tree is represented by a chain
of nodes in the model of the respective length. The length is ensured by a binary
counter with n′ bits. In (pure) CTL all properties can specified except for the
constraint on V . Therefore, the formula would need to look about m steps into
the future while have a size polynomial in n.

The V -constraint refers only to any those two immediately consecutive posi-
tions on which the counter has the same value. To bridge between those two po-
sitions, a proof obligation is created by an AUA-subformula. The key idea is that
for the correctness we can replace A by the deterministic automaton obtained
from the standard powerset-construction [27]. In other words, we are allowed to
construct an exponentially sized automaton but which has a small description.
The mentioned obligation reflects the value of the counter and the expected tile
at the second position. However, its creating requires that the outgoing edge is
replaced by a chain of edges. Each edge copies another bit from the counter to
the proof obligation. As long as the nodes of the model represent the same row,
the programmed proof obligation are not armed, that is, they can not reach any
final state. The change to the next row arms the obligations. Along the path
to the second position, at every tile position an appendix in the model checks
every proof obligation. If the current value of the counter does not match the
stored value in the obligation the model ensures that the obligation is satisfied
trivially. Otherwise, the (only remaining) obligation matches the chosen tile with
the expected tile. Finally at every second change of the row, the model disposes
of the proof obligations.

Formally, we will construct a formula ϕ over the alphabet

Σ:={nextCol, nextRow, ifNeq, then, else} ∪ Γ
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where Γ :={bitb
i | i ∈ [n], b ∈ B}. As boolean values we use 0 and 1. The label

nextCol separates two columns in the same row, and nextRow indicates a new
node in the tiling tree. The set Γ is used to program the proof obligations, which
are verified with help of ifNeq, then and else. Besides the already mentioned
propositions t1, . . . , tn for tiles, we use c1, . . . , cn′≡:c as an n′ bit counter ranging
from 0 to m − 1. Arithmetical operations involving this counter are described
informally in quotes because these only plays a minor role. However, these oper-
ations have short encodings as CTL-formulas, that is, their size is polynomially
bounded in n′. Additionally, the proposition dir is used to force two sons when-
ever α gets two.

Define p0:=¬p and p1:=p for any proposition p. For a label a ∈ Σ and a CTL-
formula ψ, !Xaψ:=EXatt∧AXaψ denotes that there is at least one a-successor and
ψ hold at these successors. Moreover, instead of automata we also use regular
expressions as annotations to CTL-formulas.

The tiling problem is translated into the formula

ϕ := “c = 0” ∧ AG{ε}∪Σ∗{nextCol,nextRow}ψ

where ψ is the conjunction of the following lines and the automaton A is depicted
in Fig. 3.
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Fig. 3. Automaton A. Overlined labels mean their complement with respect to Σ. The
individual part is present for any i ∈ [n] and for any b ∈ B. So, it has 10n + 3 states
where 2n are initial ones.
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∧

i∈[n′]

∧

b∈B

cb
i → AXifNeq Γ i−1

EXbit
b
itt (4)

AXifNeq Γ n′

!Xthendispose (5)

AXifNeq Γ n′

then!Xelse(¬dispose ∧ AXff) (6)
∧

i∈[n]

(AXifNeq Γ n′

then elseti) ↔ ti (7)

∧

i∈[n],α(i) 6=0

ti → AFA





∨

j∈[n],iV j

tj ∨ dispose



 (8)

“c < m − 1” →
∨

i,j∈[n],iHj

ti ∧ AXΓ n′

!XnextColtj (9)

“c < m − 1” → “AXΓ n′

nextCol
c = c + 1” (10)



“c = m − 1” ∧
∨

i∈[n],α(i)>0

ti



 → AXΓ n′

!XnextRow(dispose ∧ “c = 0”) (11)



“c = m − 1” ∧
∨

i∈[n],α(i)=2

ti



 →
∧

b∈B

AXΓ n′

EXnextRowdirb (12)



“c = m − 1” ∧
∨

i∈[n],α(i)=0

ti



 → EXifNeq elsedispose (13)

The formula ϕ is obviously a CTL[DFA,NFA]-formula and its size is polyno-
mially bounded in n.

The formula (1) ensures that exactly one tile is chosen, (2) programs the proof
obligation (for the V -constraint) generated by (8). The verification is performed
by (3)–(7). The formulas (9)–(12) ensure that the columns of a node in the
tiling tree are enumerated, and that the tree is branching with respect to α. The
formula (13) is the counterpart to (9) and just ensures that proof obligation at
the leaves are satisfied. (Alternatively, (2)–(7) could be excluded for the very
last column.)

If we neglect the V -constraint, the reduction is sound and complete. As for
the V -constraint, we describe the life of a proof obligation on a tree model of ϕ.
An excerpt is given in Fig. 4.

Let Q be the set of states of A. If we say that there is a proof obligation in
a certain state Q′ ⊆ Q, we refer to the deterministic substitute of A obtained
from the powerset construction. Beginning at the node 1, the formula (8) admits
a proof obligation for tj ∨ dispose (for some j ∈ [n]) in the state {pb

i | i ∈
[n], b ∈ B}. The intended trace is the first line in Fig. 4. After passing the label
nextRow the automaton reaches the state {qb

i | i ∈ [n], b ∈ B, 1 |= cb
i}, that is,

the state reflect the content of the counter at node 1. As for the second line, the
proof obligation vanishes because dispose holds at the node 6. Moreover, the
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. . . nextCol // 765401231
bit01 //

ifNeq

²²

bit12 // bit03 // 765401232
nextCol // 765401233 _____

765401234
bit01 // bit12 // bit03 // 765401235

then // 765401236
else // 765401237

Fig. 4. Excerpt of a model for ϕ. This part depicts a single column which is neither
the first nor the last one of a row. The second line shows the appendix which verifies
the proof obligation for the V -constraint. At the node 1 the formulas t7, ¬c1

3, c2 and
¬c1 shall hold, at the node 6 the proposition dispose, and at node 7 the proposition
t7.

obligation remains while passing another columns of the same row. Changing
the row for the first time, the obligation changes to {rb

i | i ∈ [n], b ∈ B, 1 |= cb
i}

where the node 1 refers to the node which admits the proof obligation. As long as
we follow the first line, the state remains until we change the row for the second
time. This brings the obligation in the state {†}. The formulas 5 and 13 offers a
node with models dispose and ensure that the proof obligation disappears. Note
that after the first change of the row there is also a node modelling dispose.
But the state of the obligation does not contain a final state of A at this time.

Now, we consider a proof obligation in the second line after passing nextCol

for the first time. The label ifNeq switches the state to {§, sb
i | i ∈ [n], b ∈ B, 1 |=

cb
i}. Again the node 1 refers to the node which admits the proof obligation. At

node 5 the obligation either reaches the state {§} or some proper super set. The
second case can only happen if the programmed counter and the counter of
the current column differ. In this case, the formula (5) disposes the obligation.
Otherwise, the state of the obligation does not contain a final state when reaching
the node 6. By (6) and (7), the tile tj—as represented by the obligation—must
be the tile of the current column.

For the other parts involving DVPA, again, the constructed formula ϕ shall
imitate a successful tree of T on the input. The space bound can be controlled
by a counter with appropriate domain. The constraints between cells of consec-
utive configurations, however, are implemented differently. We use a determin-
istic VPA to push all cells along the whole branch of the run on the stack—
configuration by configuration. At the end, we successively take the cells from
the stack and branch. Along each branch, we use the counter to remove expo-
nential or doubly exponential, resp., many elements from stack to access the cell
at the same position in the previous configuration. So, as a main component of
ϕ we use either AUAAXff or AGAff for some VPA A. In the case of a counter
with a doubly exponential domain, the technique explained for CTL[DFA, NFA]
can be applied. But this time, a proof obligation expresses a bit number and its
value. ⊓⊔

Corollary 5.6. The lower bounds for the satisfiability problem are as in Fig. 2.

Proof. As CTL is EXPTIME-hard [12], so is CTL[ , ]. The lower bound for
PDL[DVPA], that is 2EXPTIME [24], is also a lower bound for CTL[DVPA,
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] due to Thm. 4.2. The picture is completed by Thm. 5.3 combined with
Prop. 4.1(2). ⊓⊔

6 Model Checking

In this section we consider model-checking of CTL[A, B] against finite and
infinite transition systems, represented by (visibly) pushdown systems.

6.1 Finite State Systems

The following table summarises the complexities of model checking CTL[A,B]
in finite transition systems. Surprisingly, despite its greatly increased expressive
power compared to CTL, CTL[PDA,DPDA] remains in P. In general, it is the
class B which determines the complexity. The table therefore only contains one
row (A) and several columns (B). Note that PDA covers everything down to
DFA while DPDA covers DVPA and DFA.

DPDA NFA VPA PDA

PDA P-complete PSPACE-complete EXP-complete undecidable

Theorem 6.1. Model checking finite state systems against CTL[PDA,DPDA]
is in P, CTL[PDA,VPA] is in EXPTIME, and CTL[PDA,NFA] is in PSPACE.

Proof. To obtain a PTIME algorithm for CTL[PDA,DPDA] we observe that – as
for plain CTL – we can model check a CTL[A,B] formula bottom-up for any A

and B. Starting with the atomic propositions one computes for all subformulas
the set of satisfying states, then regards the subformula as a proposition. Hence,
it suffices to give algorithms for E(xUAy) and E(xRBy) for propositions x and y,
which is done in the following two lemmas below.

That model-checking for CTL[PDA,VPA] is in EXPTIME then follows from
the fact that every VPA can be translated into an equivalent DPDA, with po-
tentially an exponential blow-up.

Lemma 6.2. Model checking E(xUAy) over a finite-state system for a PDA A
is in P.

Proof. We reduce the problem to the reachability problem for PDS. Let T =
(S,−→, ℓ) be an LTS and A = (Q,Σ, Γ, δ, q0, F ). We construct a PDS AT = (Q×
S, Γ,∆, ℓ), where ∆ = {((p, s), γ) → ((q, t), w) | exists a ∈ Σ s.t. s

a−→ t and (p, a, γ) →
(q, w) and x ∈ ℓ(s)}.

Now consider the set of configurations R = {((p, s), w) | p ∈ F and y ∈
ℓ(s) and w ∈ Γ ∗}. This set is clearly regular and hence, using the algorithm of
Bouajjani et al [6] we can compute the set of predecessor configurations PC =
{((p, s), w) ∈ C(AT ) | ((p, s), w) ⇒∗ ((q, t), w′) ∈ R} in polynomial time.

We claim s |= E(xUAy) iff ((q0, s), ǫ) ∈ PC. Let ((q0, s), ǫ) ∈ PC. Then
((q0, s), ǫ) ⇒∗ ((q, t), w′) for some ((q, t), w′) ∈ R. But this means that there
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exists a sequence of configurations c0, . . . , cn, s.t. c0 = ((q0, s), ǫ) and cn =
((q, t), w′) and ci ⇒ ci+1. This entails that there is a w ∈ Σ∗, s.t. s

w−−→ s′, along
that path in every state x holds (except for s’) and w is accepted by A since
q ∈ F . Finally, since t ∈ ℓ(y), we have s |= E(xUAy).

The other direction is similar. Note that by the construction in [6], the set
PC is regular and hence membership can be checked in polynomial time as well.

⊓⊔

Lemma 6.3. Model checking E(xRBy) over a finite-state system for a DPDA B
is in P.

Proof. The problem can be reduced to model checking a fixed LTL formula on
a PDS. Let T = (S,−→, ℓ) be an LTS and A = (Q,Σ, Γ, δ, q0, F ). We construct
a PDS AT = (Q × S ∪ {g, b}, Γ,∆, ℓ′), where ℓ′ extends ℓ by ℓ′(b) = {pb}, for a
fresh proposition pb and

((p, s), γ) →























































(g, ǫ) if s ∈ ℓ′(x) and
(p ∈ F implies s ∈ ℓ′(y))

(b, ǫ) if p ∈ F and s /∈ ℓ′(y)

((q, t), w) if none of the above match
and there exists a ∈ Σ, s.t.

s a−→ t and (p, a, γ) → (q, w)
for some γ ∈ Γ,w ∈ Γ ∗

Let F be the LTL formula Fpb. We show that s |=T E(xRAy) iff ((q0, s), ǫ) 6|=TA

F . Assume s 6|= E(xRAy). This means that on all paths starting in s, (¬xUA¬y)
holds and hence on all paths a w = a1 . . . an ∈ L(A) and s0, . . . , sn exist, s.t.
s0

a1−−→ s1 . . .
an−−→ sn, s = s0 and for all i ≤ n we have si |= ¬x and sn |= ¬y.

It is clear that since A is deterministic, every path in the corresponding PDS
(starting in ((q0, s), ǫ)) labeled with such a w runs through the state ((p, sn), v),
where p ∈ F and v ∈ Γ ∗. Since y /∈ ℓ′(sn), every such path ends in the next
state which is (b, ǫ), where pb holds. Therefore the LTL formula F holds in AT

with the initial state being ((q0, s), ǫ). The reverse direction is similar.
Finally, it is well known that model checking a fixed LTL formula on a PDS

is in P [6]. Hence, model checking E(xRAy) for a DPDA A is P-time. ⊓⊔

Finally, we can adapt Lemma 6.3 to obtain a PSPACE algorithm for CTL[PDA,NFA].
We reduce E(xRBy) to the problem of checking a fixed LTL formula against a
determinisation of the NFA B. This can be further reduced to a repeated reach-
ability problem over the product of a Büchi automaton and a determinisation of
the NFA. Since we can determinise by a subset construction, we can use Savitch’s
algorithm [28] and an on-the-fly computation of the edge relation. Because Sav-
itch’s algorithm requires LOGSPACE over an exponential graph, the complete
algorithm runs in PSPACE. This completes the proof of theorem 6.1. ⊓⊔

We now consider the lower bounds.
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Theorem 6.4. For fixed finite state transition systems of size 1, model checking
for EF[VPA] is PTIME-hard, EG[NFA] is PSPACE-hard, EG[VPA] is EXPTIME-
hard, and EG[PDA] is undecidable.

We split the proof into separate lemmas.

Lemma 6.5. For fixed transition finite-state systems of size 1, model checking
for EF[VPA] is PTIME-hard.

Proof. It is known that the emptiness problem for VPA is PTIME-hard. Now
let A be a VPA and consider the transition system T = ({s},−→, ℓ) with s a−→ s
for every a ∈ Σ. Then L(A) 6= ∅ iff T , s |= EFLtt. Note that T has one state
but as many transitions as there are symbols in the underlying alphabet. Using
a binary encoding of the alphabet reduces the number of transitions to two. ⊓⊔

Lemma 6.6. For fixed finite-state transition systems of size 1, model checking
for EG[NFA] is PSPACE-hard.

Proof. The following problem, known as the n-tiling problem, is known to be
PSPACE-hard [31]: the input is a unarily encoded number n, a finite set T of
elements called tiles, and two relations H,V ⊆ T 2. The tiling problem is then to
decide whether or not there is a mapping f : N×[n] → T , s.t. for all i ∈ N and all
j with 0 ≤ j < n we have: (f(i, j), f(i, j + 1)) ∈ H and (f(i, j), f(i + 1, j)) ∈ V .
Such a mapping is called a valid tiling of the n-corridor.

Now, given such n, T,H, V , we construct a transition system TT with one
state s only and a EG[NFA] formula ϕn,T

H,V s.t. TT , s |= ϕn,T
H,V iff a valid tiling of

the n-corridor exists.

We use Σ = T and P = ∅. Let TT = ({s},−→, ℓ) with s
t−→ s for all t ∈ T .

Note that any path through Tn,T encodes in a straight-forward way a tiling
of the n-corridor, listing the assigned tiles row-by-row. Furthermore, for every
possible tiling of the n-corridor, there is a path in Tn,T starting in any state that
represents this tiling.

Now we let ϕn,T
H,V express that there is a tiling (i.e. a path) which is valid in

the sense that no pair of tiles occurring in a position i, i + 1 with i 6= 0 mod n
is not in H, and no pair occurring in positions i, i + n is not in V . Let L :=

(

⋃

(t,t′) 6∈V

T ∗ t Tn t′
)

∪
(

⋃

(t,t′) 6∈H

(Tn)∗
(

n−2
⋃

i=0

T i t t′
)

)

.

It is well-known that there is an NFA A with L(A) = L and |A| = O(|T |2 · n2).

Hence, let ϕn,T
H,V := EGAff. A binary encoding of the tiles yields a transition

system of truely fixed size again. ⊓⊔

Lemma 6.7. For fixed finite-state transition systems of size 1, model checking
for EG[VPA] is EXPTIME-hard.
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Proof. Let M = (Q, Γ, δ, λ) be a linear-space alternating Turing machine, where
λ is a function labelling each state in Q as existential, universal, accepting or
rejecting. We assume, without loss of generality, that for each q ∈ Q and a ∈ Γ ,
|δ(q, a)| = 2, and that the successor configurations are ordered into the first
and second successor. There is some constant k such that for every word w of
length n accepted by M , M uses at most kn space. Furthermore, since M is
space-bounded, we can assume there are no infinite computations.

For a given word w, we define a transition system T with one state s only
and a EG[VPA] formula ϕM,w s.t. T , s |= ϕM,w iff w is accepted by M .

Let ΣM = Γ ∪ (Γ × Q). We use Σ =
←−−
ΣM ∪ ΣM ∪

−−→
ΣM ∪ δ ∪ {

←−
# ,#,

−→
#, ∗},

where
←−
# ,#,

−→
#, ∗ /∈ Γ , ΣM = { a | a ∈ ΣM } and similarly for

←−−
ΣM and

−−→
ΣM ,

and P = ∅. Let TT = ({s},−→, ℓ) with s t−→ s for all t ∈ Σ. TT simply generates
arbitrary infinite words.

We define ϕM,w := EGAff such that A accepts invalid or rejecting computa-
tions of M over w. Configurations are encoded as words of the form Γ ∗(Γ×Q)Γ ∗

and length kn. A computation of a space-bounded alternating Turing machine
is a finite tree (since all computations are terminating). We encode a computa-
tion tree as a word, which traverses the tree in infix order. When progressing

down the tree to an internal node c we write r
−−→
#c#, where r ∈ δ is the rule ap-

plied (for convenience, we assume a null rule setting up the initial configuration),
when reaching a leaf node we write r#c#, and when backtracking to a node c

we write
←−−−−
#cR#, where −→c is the configuration c with each character a replaced

by −→a , similarly for the other notations, and cR is the configuration c reversed.
Note that a node is only backtracked to once, from its first child. The second
child backtracks to the node’s parent. More precisely, let leaf(c, r) denote a leaf
node with configuration c reached by rule r, and int(tl, c, tr, r) denote a node
with configuration c reached by the rule r and with the left sub-tree l and right
sub-tree r. Let

fl(leaf(c, r)) = r#c#

fl(int(tl, c, tr, r)) = r
−−→
#c#fl(tl)

←−−−−
#cR#fl(tr) .

Given a tree T , we flatten it to the word fl(T )∗ω.
The VPA A is the union of A1, . . . ,A9 asserting the following properties.

1. The word is not of the form d0 . . . dm∗ω where for all i, di is of the form
←−−
#c#,

r#c# or r
−−→
#c#, where c is a valid configuration, all leaf configurations are

followed by backtracks, and backtracks only occur after leaf configurations
or backtrack configurations.

2. The word does not begin with the initial configuration.
3. The word does not encode a complete tree structure.
4. There is a leaf that is not an accepting configuration.

5. There is a di = r
−−→
#c# encoding an existential configuration, and di+1 is not

r′
−−−→
#c′# or r′#c′# for a successor configuration c′ derived from c by r′. That

is, an existential node has no valid child.

29



6. There is a di =
←−−
#c# encoding an existential configuration, and di+1 =

r
−−−→
#c′# or r#c′# for some c′. That is, an existential node has more than one

child.

7. There is a di = r
−−→
#c# encoding a universal configuration c, and di+1 is not

r′
−−−→
#c′# or r′#c′# where c′ is the first successor configuration derived by the

rule r′. That is, the first child visited is not the first successor.

8. There is di =
←−−−−
#cR# encoding a universal configuration c, and di+1 is

←−−−
#c′#.

That is, after returning to a universal node, the second successor is not
visited.

9. There is di =
←−−−−
#cR# encoding a universal configuration c, and di+1 is r

−−−→
#c′#

or r#c′# but c′ is not the second successor configuration of c derived by the
rule r. That is, after returning to a universal node, and visiting a child, the
child is not the second successor.

The automata A1, A2, A4, A6 and A8 are NFA that are straightforward to
construct.

The automaton A3 is the complement of the deterministic VPA that pushes
each character −→a it reads onto the stack, and pops each character ←−a , provided
that −→a is the current top stack character. Leaf characters a and rules r do not
affect the stack. The ∗ symbol can only be seen when the stack is empty, and
is the only character seen after its first appearance. The automaton accepts all
words ending with a sequence of ∗. The complement of this automaton accepts
all words that do not encode trees.

The automaton A5 is the union of the NFA Ar for each r ∈ δ. Each NFA Ar

accepts the union of the languages

1. Σ∗
−−−−−−−−−−→
#Γ ∗(a, q)Γ ∗#r where r is not applicable at (existential) state q and head

character a.

2.
⋃n

j=1 Σ∗
−−−−−−−−−−−−→
#Γ j−1(a, q)Γ ∗#r(−→w ∪ w) where w = #Γ kΓ and k = j − 2 if r

moves left, and k = j if r moves right, and q is existential.

3.
⋃n

j=1 Σ∗
−−−−−−−−−−−−→
#Γ j−1(a, q)Γ ∗#r(−→w ∪w) where w = #Γ j−1b and r does not write

a b character and q is existential.

4.
⋃n

j=1 Σ∗
−−−−−−−−−−→
#Σj−1

M aΣ∗
M#r(−→w ∪ w) where w = #Σj−1

M (b ∪ (b, q)) with a, b ∈ Γ
and a 6= b or q is not the state moved to by r.

The automaton A7 is the union of the NFA Ar for each r ∈ δ. Each NFA Ar

accepts the union of the languages

1. Σ∗
−−−−−−−−−−→
#Γ ∗(a, q)Γ ∗#r where r is not applicable at (universal) state q and head

character a, or r is not a first successor rule.

2.
⋃n

j=1 Σ∗
−−−−−−−−−−−−→
#Γ j−1(a, q)Γ ∗#r(−→w ∪ w) where w = #Γ kΓ and k = j − 2 if r

moves left, and k = j if r moves right, and q is universal.

3.
⋃n

j=1 Σ∗
−−−−−−−−−−−−→
#Γ j−1(a, q)Γ ∗#r(−→w ∪w) where w = #Γ j−1b and r does not write

a b character and q is universal.
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4.
⋃n

j=1 Σ∗
−−−−−−−−−−→
#Σj−1

M aΣ∗
M#r(−→w ∪ w) where w = #Σj−1

M (b ∪ (b, q)) with a, b ∈ Γ
and a 6= b or q is not the state moved to by r.

Finally A9 is the union of the NFA Ar for each rule r ∈ δ. Each NFA Ar

accepts the union of the languages

1. Σ∗
←−−−−−−−−−−
#Γ ∗(a, q)Γ ∗#r where r is not applicable at (universal) state q and head

character a, or r is not a second successor rule.

2.
⋃n

j=1 Σ∗
←−−−−−−−−−−−−
#Γ j−1(a, q)Γ ∗#r(−→w ∪w) where w = #Γ kΓ and k = n− j + 2 if r

moves left, and k = n − j if r moves right, and q is universal.

3.
⋃n

j=1 Σ∗
←−−−−−−−−−−−−
#Γ j−1(a, q)Γ ∗#r(−→w ∪ w) where w = #Γn−j−1b and r does not

write a b character and q is existential.

4.
⋃n

j=1 Σ∗
←−−−−−−−−−−
#Σj−1

M aΣ∗
M#r(−→w ∪w) where w = #Σn−j−1

M (b∪(b, q)) with a, b ∈ Γ
and a 6= b or q is not the state moved to by r.

⊓⊔

Lemma 6.8. For fixed finite-state transition systems of size 1, model checking
for EG[PDA] is undecidable.

Proof. The proof is by a reduction from the octant tiling problem, which is known
to be undecidable. Let Oct = { (i, j) | 0 ≤ j ≤ i }, T be a finite set of tiles, and
H,V ⊂ T 2 be two relations. The problem is to find a mapping F : Oct → T
such that, for all (i, j) ∈ Oct, (f(i, j), f(i + 1, j)) ∈ V and whenever j < i,
(f(i, j), f(i, j + 1)) ∈ H.

Given T , H and V , we construct a transition system TT with one state s
only and a EG[PDA] formula ϕT

H,V s.t. TT , s |= ϕT
H,V iff a valid tiling exists.

We use Σ = T ∪ {#}, where # /∈ T and P = ∅. Let TT = ({s},−→, ℓ) with

s
t−→ s for all t ∈ Σ. TT simply generates arbitrary words. Let ϕT

H,V := EGAff.
We define A to accept all words that do not represent a valid tiling, encoded as
a word #t1,1#t2,1t2,2#t3,1t3,2t3,3# · · · , where ti,j = f(i, j).

The automaton A accepts the language L = L1 ∪ L# ∪ ∪LH ∪ LV where,

L1 = #T 2

L# = Σ∗#Tn#Tn′

# where n′ 6= n + 1
LH = Σ∗tt′ where (t, t′) /∈ H
LV = Σ∗#TntT ∗#Tnt′ where (t, t′) /∈ V

It is straightforward to encode L as a pushdown system. Together L1 and L#

cover the cases when the word does not encode an octant. The language LH finds
violations of the matching H, and LV catches violations of V . Using a binary
encoding of the tiles yields a transition system of fixed size. ⊓⊔

6.2 Visibly Pushdown Automata

We consider model checking over an infinite transition system represented by
a visibly pushdown automaton. We have the following with undecidability for
EF[DPDA].
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DFA/ DVPA NFA/ VPA DPDA

DFA · · · VPA EXPTIME-complete 2EXPTIME-complete undecidable

Theorem 6.9. Model checking VPA against CTL[VPA,DVPA] is in EXPTIME,
and CTL[VPA,VPA] is in 2EXPTIME.

We split the proof into separate lemmas. We write (q, γ, a, push(b), q′), (q, γ, a, rew(b), q′)
and (q, γ, a, pop, q′) for VPA rules, and omit the input character γ for PDS rules.

Lemma 6.10. Model checking CTL[VPA,DVPA] over visibly pushdown automata
is in EXPTIME.

Proof. We reduce the model checking problem for CTL[VPA, DVPA] over VPA
to a Büchi game over a PDS. Since deciding the winner in such a game is EXP-
TIME [35], we obtain an EXPTIME algorithm for the model checking problem.

Without loss of generality, we assume all VPA have a bottom of stack symbol
that is neither popped nor pushed and are complete. We also assume all formulas
are in positive normal form.

The game has the following transitions. The state set and alphabet is defined
implicitly. We begin with some standard formula to game translation. The alpha-
bet becomes a set of pairs, (a, b). The first component corresponds to the model
VPA, the second to the formula VPA being evaluated. All states annotated begin
are controlled by the existential player. The universal positions are (s, ϕ1 ∧ ϕ2).
The following rules are for all characters a and b.

– (win, (a, b), rew((a, b)), win).
– ((s, p)begin, (a, b), rew((a, b)), win) if s satisfies the atomic proposition p.
– ((s,¬p)begin, (a, b), rew((a, b)), win) if s does not satisfy the atomic proposi-

tion p.
– ((s, ϕ1 ∨ ϕ2)

begin, (a, b), rew((a, b)), (s, ϕi)
begin) for i ∈ {1, 2}.

– ((s, ϕ1 ∧ ϕ2)
begin, (a, b), rew((a, b)), (s, ϕ1 ∧ ϕ2)).

– ((s, ϕ1 ∧ ϕ2), (a, b), rew((a, b)), (s, ϕi)
begin) for i ∈ {1, 2}.

For path formulas, we form a product with the VPA labelling the formula.
We begin by adding a bottom of stack symbol to the stack in the formula VPA’s
component. For E(ϕ1U

Aϕ2) we allow the existential player to decide whether to
complete the until formula or postpone completion until later. When postpon-
ing, the opponent can check whether the until will eventually be completed, or
whether the condition on the until holds. When progressing the game, the existen-
tial player is able to choose both the move of the formula VPA and the model
VPA. The existential positions are (s, E(ϕ1U

Aqϕ2)) and (s, E(ϕ1U
Aqϕ2),move).

The universal positions are (s, E(ϕ1U
Aqϕ2), wait).

– ((s, E(ϕ1U
Aϕ2))

begin, (a, b), rew((a,⊥)), (s, E(ϕ1U
A

qA
0 ϕ2))).

– ((s, E(ϕ1U
Aqϕ2)), (a, b), rew((a, b)), (s, ϕ2)

begin) for all a, b and q is accepting.
– ((s, E(ϕ1U

Aqϕ2)), (a, b), rew((a, b)), (s, E(ϕ1U
Aqϕ2), wait)) for all a, b.

– ((s, E(ϕ1U
Aqϕ2), wait), (a, b), rew(a), (s, ϕ1)

begin) for all a, b.
– ((s, E(ϕ1U

Aqϕ2), wait), (a, b), rew((a, b)), (s, E(ϕ1U
Aqϕ2),move)) for all a, b.
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– ((s, E(ϕ1U
Aqϕ2),move), (a, b), push((a′, b′)), (s′, E(ϕ1U

Aq′ ϕ2))) whenever we
have the rules (s, γ, a, push(a′), s′) and (q, γ, b, push(b′), q′).

– ((s, E(ϕ1U
Aqϕ2),move), (a, b), rew((a′, b′)), (s′, E(ϕ1U

Aq′ ϕ2))) whenever there
is (s, γ, a, rew(a′), s′) and (q, γ, b, rew(b′), q′).

– ((s, E(ϕ1U
Aqϕ2),move), (a, b), pop, (s′, E(ϕ1U

Aq′ ϕ2))) whenever (s, γ, a, pop, s′)
and (q, γ, b, pop, q′).

The remaining path formulas are similar, but the roles of the players are al-
tered accordingly. In the case A(ϕ1U

Aϕ2), when satisfaction is postponed, since
the property must hold for all paths, first the opponent picks a transition of
the model, then the existential player picks a move in A. The existential po-
sitions are (s, A(ϕ1U

Aqϕ2)) and (s, A(ϕ1U
Aqϕ2), ts). The universal positions are

(s, E(ϕ1U
Aqϕ2), wait). Note that A(ϕ1U

Aϕ2) is an abbreviation for a ¬E(¬ϕ1R
A¬ϕ2).

Due to the discussion in Section 2, correctness of the reduction relies on A being
deterministic.

– ((s, A(ϕ1U
Aϕ2))

begin, (a, b), rew((a,⊥)), (s, A(ϕ1U
A

qA
0 ϕ2))).

– ((s, A(ϕ1U
Aqϕ2)), (a, b), rew((a, b)), (s, ϕ2)

begin) and q is accepting.
– ((s, A(ϕ1U

Aqϕ2)), (a, b), rew((a, b)), (s, A(ϕ1U
Aqϕ2), wait)).

– ((s, A(ϕ1U
Aqϕ2), wait), (a, b), rew((a, b)), (s, ϕ1)

begin).
– ((s, A(ϕ1U

Aqϕ2), wait), (a, b), rew((a, b)), (s, A(ϕ1U
Aqϕ2), ts)) where ts is a tran-

sition from s, a.
– ((s, A(ϕ1U

Aqϕ2), ts), (a, b), push((a′, b′)), (s′, A(ϕ1U
Aq′ ϕ2))) whenever we have

ts = (s, γ, a, push(a′), s′) and (q, γ, b, push(b′), q′).
– ((s, A(ϕ1U

Aqϕ2), ts), (a, b), rew((a′, b′)), (s′, A(ϕ1U
Aq′ ϕ2))) whenever we have

ts = (s, γ, a, rew(a′), s′) and (q, γ, b, rew(b′), q′).
– ((s, A(ϕ1U

Aqϕ2), ts), (a, b), pop, (s′, A(ϕ1U
Aq′ ϕ2))) whenever ts = (s, γ, a, pop, s′)

and (q, γ, b, pop, q′).

The release operators are defined analogously. We begin with E(ϕ1R
Aϕ2).

The existential positions are (s, E(ϕ1R
Aqϕ2)) and (s, E(ϕ1R

Aqϕ2),move). The
universal positions are (s, E(ϕ1R

Aqϕ2), wait) and (s, E(ϕ1R
Aqϕ2), ts). Here we

also rely on the fact that the VPA in the formulas are deterministic.

– ((s, E(ϕ1R
Aϕ2))

begin, (a, b), rew((a,⊥)), (s, E(ϕ1R
A

qA
0 ϕ2))).

– ((s, E(ϕ1R
Aqϕ2)), (a, b), rew((a, b)), (s, ϕ1)

begin).
– ((s, E(ϕ1R

Aqϕ2)), (a, b), rew((a, b)), (s, E(ϕ1R
Aqϕ2), wait)).

– ((s, E(ϕ1R
Aqϕ2), wait), (a, b), rew((a, b)), (s, ϕ1)

begin) where q is accepting.
– ((s, E(ϕ1R

Aqϕ2), wait), (a, b), rew((a, b)), (s, A(ϕ1U
Aqϕ2),move)).

– ((s, E(ϕ1R
Aqϕ2),move), (a, b), rew((a, b)), (s, A(ϕ1U

Aqϕ2), ts)) where ts is a
transition from s, a.

– ((s, E(ϕ1R
Aqϕ2), ts), (a, b), push((a′, b′)), (s′, E(ϕ1R

Aq′ ϕ2))) whenever we have
ts = (s, γ, a, push(a′), s′) and (q, γ, b, push(b′), q′).

– ((s, E(ϕ1R
Aqϕ2), ts), (a, b), rew((a′, b′)), (s′, E(ϕ1R

Aq′ ϕ2))) whenever we have
ts = (s, γ, a, rew(a′), s′) and (q, γ, b, rew(b′), q′).

– ((s, E(ϕ1R
Aqϕ2), ts), (a, b), pop, (s′, E(ϕ1R

Aq′ ϕ2))) whenever ts = (s, γ, a, pop, s′)
(q, γ, b, pop, q′).
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And finally, A(ϕ1R
Aϕ2). The existential positions are (s, A(ϕ1R

Aqϕ2)). The
universal positions are (s, E(ϕ1R

Aqϕ2), wait).

– ((s, A(ϕ1R
Aϕ2))

begin, (a, b), rew((a,⊥)), (s, A(ϕ1R
A

qA
0 ϕ2))).

– ((s, A(ϕ1R
Aqϕ2)), (a, b), rew((a, b)), (s, ϕ1)

begin).
– ((s, A(ϕ1R

Aqϕ2)), (a, b), rew((a, b)), (s, A(ϕ1R
Aqϕ2), wait)).

– ((s, A(ϕ1R
Aqϕ2), wait), (a, b), rew(a), (s, ϕ2)

begin) where q is accepting.
– ((s, A(ϕ1R

Aqϕ2), wait), (a, b), push((a′, b′)), (s′, A(ϕ1R
Aq′ ϕ2))) whenever we have

(s, γ, a, push(a′), s′) and (q, γ, b, push(b′), q′).
– ((s, A(ϕ1R

Aqϕ2), wait), (a, b), rew((a′, b′)), (s′, A(ϕ1R
Aq′ ϕ2))) whenever we have

(s, γ, a, rew(a′), s′) and (q, γ, b, rew(b′), q′).
– ((s, A(ϕ1R

Aqϕ2), wait), (a, b), pop, (s′, A(ϕ1R
Aq′ ϕ2))) whenever (s, γ, a, pop, s′)

and (q, γ, b, pop, q′).

The game has a Büchi winning condition. All states are accepting except for
states containing an U operator. Since these formulas must always eventually be
satisfied, they are not accepting. Since we assume all VPA are complete, play
will only get stuck when a literal is not satisfied, in which case the existential
player will lose.

Given a CTL[VPA] formula ϕ and a VPA B, we can check whether B satisfies
ϕ by asking whether the existential player wins the game described above from
the control state (s0, ϕ

begin) with the initial stack contents. Such games can be
solved in EXPTIME [35]. ⊓⊔

Lemma 6.11. Model checking CTL[VPA,VPA] over visibly pushdown automata
is in 2EXPTIME.

Proof. The proof follows from the exponential cost of determinising the VPA,
and Lemma 6.10. ⊓⊔

Theorem 6.12. Model checking VPA against CTL[DFA] is EXPTIME-hard,
EG[NFA] is hard for 2EXPTIME, and EF[DPDA] and EG[DPDA] are undecid-
able.

The theorem is proven in several lemmas.

Lemma 6.13. Model checking EG[NFA] over visibly pushdown automata is 2EXPTIME-
hard.

Proof. We obtain 2EXPTIME-hardness by adapting Bozzelli’s proof of the 2EXPTIME-
hardness of CTL over PDS [23].

We reduce from an alternating TM with an exponential space work tape and
one-way input tape. The VPA we construct manages the alternation by using the
stack to perform a depth first search of the computation tree. The main difficulty
is encoding an exponential space bounded tape with a polynomial formula and
VPA. The trick is to output an arbitrary length tape, and use the power of
CTL[REG] to reject any tape configurations that are not exponential.
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For convenience we will construct a PDS rather than a VPA. To obtain a
VPA, firstly we must add output symbols. Hence, we simply output a tuple
containing the control state and top of stack symbol that has just been left. We
also assume the output symbol contains the propositions from {b, f, l, op, check}
(defined below) that the last configuration satisfied. This is now a PDA, but
not a VPA. However, this can easily be converted into a VPA by marking the
output symbols appropriately. It is then straightforward to adjust the CTL[REG]
formula to be insensitive to this marking, with only a linear blow up. Intuitively,
each occurrence of a letter a in a regular expression, will be replaced with (apush∪
apop ∪ arew).

We write (p, a, pushw, p′) for pushdown rules: when the current control state
is p, and top of stack a, move to p′ and replace a with the word w.

Let Σ be the tape alphabet of the TM and Q be the set of control states.
The tape configurations are represented as words of the form

binn(0)c0binn(1)c1 · · · binn(2n − 1)c2n−1

where binn(i) is the n-digit binary representation of i with the least significant
bit first. It is beyond the power, however, of a polynomially sized VPA to output
only sequences that count correctly from 0 to 2n − 1. Hence, the VPA generates,
nondeterministically, a word of the form

({0, 1}n
(Σ ∪ (Σ ×Q)))

∗
.

One can check whether a configuration of this form is of the correct length as
follows: first assert that the first n-digit binary number is 0n. Then check that
every pair bicibi+1ci+1 has bi = bi+1 +1. Finally, the last number must be all 1s.

Execution proceeds as follows. We first write the initial configuration to the
stack. We then guess the next configuration. Afterwards we have a branch. Either
we can continue the execution, or we can check the last configuration against
the previous configuration. The execution branches are marked op, and the check
branch marked check. The CTL[REG] formula takes the shape

E(op ∧ AX(check ⇒ ϕgood)Ufin) .

That is, we look for an execution branch that passes all checks on the way. To
implement the alternation, we back track by popping from the stack when an
accepting path has been found. Upon returning to a universal configuration, we
continue the execution by exploring the next successor configuration until all
possibilities have be tried.

The checking phase of branch proceeds as follows. One branch simply pops
the configuration from the stack. This branch allows the CTL[REG] formula to
check the length of the configuration.

The remaining branches remove the tape configuration from the stack, but
nondeterministically mark one position with the proposition check1 (hence there
are a number of branches for this step). Then the PDA moves to the previous
configuration and does the same as before: pops the tape from the stack, non-
deterministically marking a position with check2. The CTL[REG] formula can
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test consistency by checking whether the two positions correspond to the same
position in the work tape. If so, the markers check1 and check2 can be used to
test the contents of the cell (and it’s neighbours) to ensure a valid update has
taken place.

More formally, given a word w of length n and an alternating TM T aug-
mented with an 2n-space bounded two-way work-tape, we define the pushdown
automaton Pw

T . We assume without loss of generality that two rules can be
applied from each configuration, and which can be referred to as the first and
second rules respectively. We also assume the initial state is existential.

To aid notation, we will write (p, a, o, p′) for a pushdown rule moving from
control state p to p′, when a is on top of the stack, and o is pushw or pop. Our
push command replaces a with the word w. Sometimes o will be a sequence of
commands that can be easily simulated using intermediate states.

We define Pw
T to have the following transitions. The set of states is defined

implicitly. The initial state is init. To initialise the automaton we have

– (init,⊥, (pushfin⊥; pushw), (continue, 0, p0,2)) where w = E0n(2, p0)({0, 1}n
2)k#

for any arbitrary k.

The main loop of the simulation is given by the continue states, which have
the following rules. We store the current word position i, TM state p and read cell
character a on the stack (to aid backtracking) before continuing the execution.
We the simulate a move by guessing the next configuration. The branch phase
is where the automaton can either check the consistency of the guessed tape, or
continue the execution.

– ((continue, i, p, a), done, pushdone, (back, i))
– ((continue, i, p, a), x, push(i,p,a)x, (move, i, x, p, a)) for all a ∈ Σ and p ∈ Q

and x ∈ {E,A1, A2} and p is not accepting or i 6= |w| + 1.
– ((continue, i, p, a), x, pop1, (back, i)) for all a ∈ Σ and p ∈ Q and x ∈

{E,A1, A2} and p is accepting and i = |w| + 1.
– ((move, i, x, p, a), γ, pushyw, (branch, r, i, p′, a′)) for all a ∈ Σ, p ∈ Q, x ∈

{E,A1, A2}, and some γ. Furthermore when x = E, r is any rule applicable
at p, a, γ, w(i); when x = A1, r is the first transition for p, a, γ, w(i); and
when x = A2, r is the second transition for p, a, γ, w(i). In all cases, r leads
to state p′. The character a′ is the cell contents marked as the current head
positions and y is E when r moves to an existential state, and A1 when
moving to a universal state. Finally, w is any word of the form

({0, 1}n
(Σ ∪ (Σ ×Q)))

∗

containing a single pair (a′, p′). Note, we do not have an exponential number
of rules, one for each w, but rather use polynomial intermediate states, from
which appropriate next characters to push can be chosen.

– ((branch, r, i, p, a), γ, pushγ , (continue, j, p, a)) where j = i if r is an ǫ-transition
in the input, or j = i+1 otherwise; and ((branch, r, i, p, a), γ, pushγ , (check, r))
for all r and γ.
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The back phase implements the backtracking, and requires the following
rules.

– ((back, i), a, pop1, (back, i)) for all a 6= #.
– ((back, i),#, pop1, (back1, i)) for all a 6= #.
– ((back1, i), (j, p, a), pop1, (back2, j, p, a)).
– ((back2, i, p, a), E, pushdone, (continue, i, p, a)).
– ((back2, i, p, a), A1, pushA2

, (continue, i, p, a)).
– ((back2, i, p, a), A2, pushdone, (continue, i, p, a)).

Finally, the check phase is as described above.

– ((check, r), x, pop1, checklen) for all x ∈ {E,A1, A2}.
– ((check, r), x, pop1, checkcells) for all x ∈ {E,A1, A2}.
– (checklen, a, pop1, checklen) for all a 6= # and (checklen,#, push#, done).
– ((checkcells, r), a, pop1, (checkcells, r)) for all a 6= #.
– ((checkcells, r), a, pop1, (check1, r)) for all a 6= #.
– ((check1, r), a, pop1, (check1

cells, r)) for all a 6= #.
– ((check1

cells, r), a, pop1, (check1
cells, r)) for all a 6= #.

– ((check1
cells, r),#, (pop1)

3, (check2
cells, r)).

– ((check2
cells, r), a, pop1, (check2

cells, r)) for all a 6= #.
– ((check2

cells, r), a, pop1, (check2, r)) for all a 6= #.
– ((check2, r), a, pop1, (check3

cells, r)) for all a 6= #.
– ((check3

cells, r), a, pop1, (check3
cells, r)) for all a 6= #.

– ((check3
cells, r),#, push#, done)).

The atomic proposition op is true during the init, continue, clear, move, branch
and back phases. The proposition check is true during the check phase, with
checklen, checkcells, check1 and check2 true at their respective control states,
done true at state done and fin at state fin. Furthermore, there is a proposition
a for each stack character a, which is true whenever a is on the top of the stack.
For binary digits, we have 1 which is true when 1 is on top of the stack and
similarly for 0. Finally b is true at the beginning of each block of n binary digits,
f is true at the first block of a configuration, and l at the last.

The corresponding CTL[REG] formula is defined below. The main part of
the formula is identical to Bozzelli’s. The change is the use of the EG operator
towards the end. For convenience, for every proposition or control state or stack
alphabet component a, we have a regular expression [a] which is the union of all
output tuples containing the proposition a. Call this alphabet Γ .

For any n, we define

ϕn = E ((op ∧ AX(check → (ϕlen ∧ ϕcells)) Ufin)

where

ϕlen = AX(checklen → ϕ′
len)

ϕ′
len = AG















(

(b ∧ f) →
∧n−1

j=0 (AX)j0
)

∧
(

(b ∧ l) →
∧n−1

j=0 (AX)j1
)

∧








(b ∧ ¬f) →

∨n−1
j





(AX)j(0 ∧ (AX)n+21)∧
∧

i>j(AX)i(1 ∧ (AX)n+20)∧
∧

i<j(AX)i(1 ⇐⇒ (AX)n+21)



























.
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and ϕcells is as described below. We look (n+2) steps ahead since there are three
steps between the inspection of each tape: (pop1)

3. First we insist that on every
checkcells branch, either check2 is never defined (which catches the case when
there is no predecessor configuration), or, after every check1 there is some path
where check2 is placed correctly, and the tape is consistent. Again, the formula
is very similar to Bozzelli’s, except we now need to use CTL[REG] rather than
CTL*.

ϕcells = AX(checkcells → ϕ′
cells)

ϕ′
cells = AG(¬check2) ∨ AG((check1 ∧ b) → EGLff)

where EGLff looks for violations of either the positioning of check2 (which must
be at the corresponding location in the tape to check1), or the consistency of the
tape. If there exists a path with no violations, the formula is satisfied and the
check is passed. Note that the choice of paths only depends on the placement of
the checks. We have

L = Lpos ∪ Ltape

where [checkb
2] = [check2] ∩ [b] and

Lpos =
⋃n−1

j=0 Lj
pos

Lj
pos =

(

Γ j [0]Γ ∗[checkb
2]Γ

j [1]
)

∪
(

Γ j [1]Γ ∗[checkb
2]Γ

j [0]
)

and to define Ltape, we use, for shorthand, functions Nextr(σ1, σ2, σ3) = σ4 that
specify the contents of the current (jth) cell d with respect to the rule fired r and
the contents of the previous configuration’s (j−1)th, jth and (j+1)th cells σ1, σ2

and σ3 respectively. Let #l and #r denote, for the benefit of Nextr(σ1, σ2, σ3),
the left and right boundaries of the tape respectively.

Ltape =
⋃

r

(

r ∩
(

(

[f ] ∩ Lr
f

)

∪
(

[f ] ∪ [l] ∩ Lr
i

)

∪ ([l] ∩ Lr
l )

))

where
Lr

f =
⋃

Nextr(#l,σ1,σ2) 6=σ3
[σ3]Γ

∗[checkb
2]Γ

n[σ1]Γ
n+1[σ2]

Lr
i =

⋃

Nextr(σ1,σ2,σ3) 6=σ4
[σ4]Γ

∗[σ1][checkb
2]Γ

n[σ2]Γ
n+1[σ3]

Lr
l =

⋃

Nextr(σ1,σ2,#r) 6=σ3
[σ3]Γ

∗[σ1][checkb
2]Γ

n[σ2]

A word w is accepted by T iff Pw
T satisfies the formula ϕ|w|. Furthermore, Pw

T

and ϕ|w| are polynomial in the size of w and T . This completes the proof. ⊓⊔

Lemma 6.14. Model checking EF[DPDA] against visibly pushdown automata
is undecidable.

Proof. We encode a two-counter machine, whose reachability problem is known
to be undecidable. We write q

o2−→
o1

q′ to indicate a transition from control state q

to q′ while performing oi ∈
{

inci, deci, zero?
i

}

on the ith counter, as usual. We
test reachability of a designated control state qf from an initial state q0.

We first construct a PDA which encodes the machine and the first counter.
It outputs the operations on the second counter. We then have EFAtt, where A
tests for consistency of the second counter.
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More formally, our pushdown system has the following rules. The characters
oc
2 are operations on the second counter, marked as call, return or internal. This

makes the model a VPA.

– (q, oc
2, x, push(1), q′) where x ∈ {0, 1} and q

o2−−−→
inc1

q′.

– (q, or
2, 1, pop, q′) where q

o2−−−→
dec1

q′.

– (q, oi
2, 0, rew(0), q′) where q

o2−−−→
zero?

1

q′.

– (qf , fin, x, rew(x), qdone) where x ∈ {0, 1}.

Let y range over {c, r, i} and x over {0, 1}, then A has the rules: (q, (inc2)
y, x, push(1), q),

(q, (dec2)
y, 1, pop, q), (q, (zero?

2)
y, 0, rew(0), q), and (q, fin, x, rew(x), q′). The ini-

tial control is q and stack is 0. Similarly for the model VPA. The state q′ is
accepting.

It is easy to see that the counter machine can reach qf iff the configuration
q00 satisfies EFAtt. ⊓⊔

Lemma 6.15. Model checking EG[DPDA] over visibly pushdown systems is un-
decidable.

Proof. As above, we encode a two-counter machine. However, instead of reducing
reachability, we ask whether the machine has an infinite computation. This is
also undecidable. We use the formula EGAff where A accepts violations in the
consistency of the second counter, or quit moves. That is, the automaton must
have an infinite run that never cheats. We ensure all maximal paths are infinite
by allowing the automaton to give up at any point, and loop in a (losing) sink
state.

Our pushdown system has the following rules. The characters oc
2 are opera-

tions on the second counter, marked as call, return or internal. This makes the
model a VPA.

– (q, oc
2, x, push(1), q′) where x ∈ {0, 1} and q

o2−−−→
inc1

q′.

– (q, or
2, 1, pop, q′) where q

o2−−−→
dec1

q′.

– (q, oi
2, 0, rew(0), q′) where q

o2−−−→
zero?

1

q′.

– (q, quit, x, rew(x), qquit) where x ∈ {0, 1} and q is a state of the counter
machine, or qquit.

Let y range over {c, r, i} and x over {0, 1}. The automaton A has the rules:
(q, (inc2)

y, x, push(1), q), (q, (dec2)
y, 1, pop, q), (q, (dec2)

y, 0, pop, q′), (q, (zero?
2)

y, 0, rew(0), q),
(q, (zero?

2)
y, 1, rew(1), q′), and (q, quit, x, rew(x), q′). The initial control is q and

stack is 0. Similarly for the model VPA. The state q′ is accepting.

It is easy to see that the counter machine has an infinite computation iff the
configuration q00 satisfies EGAff. ⊓⊔
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6.3 Pushdown Automata

For PDA we have the following, with undecidability for EF[DVPA].

DFA NFA DVPA

DFA/ NFA EXPTIME-complete 2EXPTIME-complete undecidable

Theorem 6.16. Model checking PDA against CTL[NFA,DFA] is in EXPTIME,
and for CTL[NFA,NFA] it is in 2EXPTIME.

Proof. We show first that model checking CTL[NFA,DFA] over pushdown sys-
tems is in EXPTIME. The proof is via a game reduction that is a straightforward
adaptation of the proof of Lemma 6.10. We make the following adjustments: since
the formula automata are finite automata, we do not need a stack component
for them. Hence, the stack is only updated and read by the PDA component.
Because we no longer need to synchronise two stacks, the model can be a PDA.

Model checking CTL[NFA,NFA] over pushdown systems in 2EXPTIME fol-
lows from the previous part and the exponential cost of determinising an NFA.

⊓⊔

Theorem 6.17. Model checking PDA against EF[DVPA] and EG[DVPA] are
undecidable.

We split the proof in two lemmas.

Lemma 6.18. Model checking EF[DVPA] over pushdown systems is undecid-
able.

Proof. The proof is almost identical to the case for VPA, except, since the model
is a PDA, we no longer need to mark the output alphabet. More formally, our
pushdown system has the following rules.

– (q, o2, x, push(1), q′) where x ∈ {0, 1} and q
o2−−−→

inc1

q′.

– (q, o2, 1, pop, q′) where q
o2−−−→

dec1

q′.

– (q, o2, 0, rew(0), q′) where q
o2−−−→

zero?
1

q′.

– (qf , fin, x, rew(x), qdone) where x ∈ {0, 1}.

And A has the following rules where x ranges over {0, 1}: (q, inc2, x, push(1), q),
(q, dec2, 1, pop, q), (q, zero?

2, 0, rew(0), q), and (q, fin, x, rew(x), q′). The initial
control is q and stack is 0. Similarly for the model VPA. The state q′ is accept-
ing.

It is easy to see that the counter machine can reach qf iff the configuration
q00 satisfies EFAtt. ⊓⊔

Lemma 6.19. Model checking EG[DVPA] over pushdown systems is undecid-
able.
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Proof. Again, we proceed as in the VPA case. Our pushdown system has the
following rules.

– (q, o2, x, push(1), q′) where x ∈ {0, 1} and q
o2−−−→

inc1

q′.

– (q, o2, 1, pop, q′) where q
o2−−−→

dec1

q′.

– (q, o2, 0, rew(0), q′) where q
o2−−−→

zero?
1

q′.

– (q, quit, x, rew(x), qquit) where x ∈ {0, 1} and q is a state of the counter
machine, or qquit.

And A has the following rules where x ranges over {0, 1}: (q, inc2, x, push(1), q),
(q, dec2, 1, pop, q), (q, dec2, 0, pop, q′), (q, zero?

2, 0, rew(0), q), (q, zero?
2, 1, rew(1), q′),

and (q, quit, x, rew(x), q′). The initial control is q and stack is 0. Similarly for
the model VPA. The state q′ is accepting.

It is easy to see that the counter machine has an infinite computation iff the
configuration q00 satisfies EGAff. ⊓⊔

7 Conclusion and Further Work

To the best of our knowledge, this is the first work considering a parametric
extension of CTL by arbitrary classes of formal languages characterising the
complexities of satisfiability and model checking as well as the expressive power
and model-theoretic properties of the resulting logics in accordance to the classes
of languages. The results show that some of the logics, in particular CTL[VPL]
may be useful in program verification because of the combination of an intuitive
syntax with reasonably low complexities of the corresponding decision problems.

Some questions still remain to be answered, in particular the relationship be-
tween CTL[CFL] and ∆PDL?[CFL] and whether or not CTL[DCFL] ¯ CTL[CFL]
holds.

Furthermore, there are obvious directions for further work. It is possible to
consider CTL∗ or CTL+ as the base for similar extensions. It is also possible to
extend such logics with automata on infinite words, for instance in the form of
path quantifier relativization. This may be even more suitable in the framework
of abstraction and refinement as mentioned in the introduction.
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