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Abstract Legendre 2005) in the context of Cognitive Science, where

a similar problem exists between the connectionist and sym-
bolic models of mind, the first author and Pulman argued for
the use of the tensor product of vector spaces. They sug-
gested that to implement this idea in linguistics one can, for
example, traverse the parse tree of a sentence and tensor the
vectors of the meanings of words with the vectors of their

roles:

We propose a mathematical framework for a unifica-
tion of the distributional theory of meaning in terms
of vector space models, and a compositional theory for
grammatical types, namely Lambek’s pregroup seman-
tics. A key observation is that the monoidal category of
(finite dimensional) vector spaces, linear maps and the
tensor product, as well as any pregroup, are examples
of compact closed categories. Since, by definition, a

pregroup is a compact closed category with trivial mor-
phisms, its compositional content is reflected within the
compositional structure of any non-degenerate compact
closed category. The (slightly refined) category of vec-
tor spaces enables us to compute the meaning of a com-
pound well-typed sentence from the meaning of its con-
stituents, by ‘lifting’ the type reduction mechanisms of
pregroup semantics to the whole category. These sen-

(John® subj) © likes® (Mary ® oby)

This vector in the tensor product space should then be re-
garded as the meaning of the sentence ‘John likes Mary’. In
this paper we will also pair vectors in meaning spaces and
grammatical types, but in a way which overcomes some of
the shortcomings of (Clark & Pulman 2007). One short-
coming is that, since inner-products can only be computed

tence meanings live in a single space, independent of
the grammatical structure of the sentence. Hence we
can use the inner-product to compare meanings of ar-
bitrary sentences. A variation of this procedure which
involves constraining the scalars of the vector spaces
to the semiring of Booleans results in the well-known
Montague semantics.

between vectors which live in the same space, sentences can
only be compared if they have the same grammatical struc-
ture. In this paper we provide a procedure to compute the
meaning of any sentence as a vector within a single space. A
second problem is the lack of a method to compute the vec-
tors representing the grammatical type; the procedure pre-
sented here does not require such vectors.

) Abramsky and the second author proposedategori-
Introduction cal quantum axiomaticas a high-level framework to rea-

This paper combines, and then exploits, three results pre- SON about quantum phenomena. Primarily this categori-
sented at the 2007 Quantum Interaction symposium. The cal axiomatics is a logic which lives on top of linear and
first author and Pulman proposed the use of the Hilbert space Multi-linear algebra and hence also applies to the use of
tensor product to assign a distributional meaning to sen- VEctor space machinery outside the domain of quantum
tences (Clark & Pulman 2007). The second author showed Physics. The passage to the category-theoretic level al-
that the Hilbert space formalism for quantum mechanics, lows for much_ s_|mpler math_ematlcal structures than vector
when recast in category-theoretic terms, admits a true logic SPaces to exhibit quantum-like features. For example, while
which enables automation (Coecke 2007). The third author there is nothing quantum about sets, when organised in a
showed that the logic of pregroup semantics for grammati- category with relations (not functions) as morphisms and
cal types is an essential fragment of this logic of the Hilbert Ccartesian product (not disjoint union) as tensor, many typ-
space formalism (Sadrzadeh 2007). ical quantum features emerge (Abramsky & Coecke 2004;
The symbolic (Dowty, Wall, & Peters 1981) and distri- Coecke 2005b). A syntax for thejse more ge_neral ‘p_seudo
butional (Schuetze 1998) theories of meaning are some- duantum categories’ — more precisely, tensorial matrix cal-
what orthogonal with competing pros and cons: the for- Culi over some semiring — can be found in (Abramsky &
mer is compositional but only qualitative, the latter is non- Duncan 2006). In this paper we will exploit both the cate-

compositional but quantitative.Following (Smolensky & gorical logic which lives on top of vector spaces as well as
the fact that it also lives on a much simper relational variant.

The use of pregroups for analysing the structure of nat-
ural languages is a recent development by (Lambek 1999)

1See (Gazdar 1996) for a discussion of the two competing
paradigms in Natural Languge Processing.



which builds on the original Lambek calculus (Lambek be summed up by Firth’s oft-quoted dictum that “you shall
1958) where types are used to analyze the syntax of natu- know a word by the company it keeps”. The basic idea is
ral languages in a simple algebraic setting. Pregroups have that the meaning of a word can be determined by the words
been used to analyze the syntax of many languages, for ex- which appear in its contexts, where context can be a simple
ample English (Lambek 2004), French (Bargelli & Lambek n-word window, or the argument slots of grammatical rela-
2001b), Arabic (Bargelli & Lambek 2001a), Italian (Casadio tions, such as the direct object of the vexdit Intuitively,
& Lambek 2001), and Persian (Sadrzadeh 2006). They have catanddoghave similar meanings (in some sense) because
also been provided with a Montague-style semantics (Preller cats and dogs sleep, run, walk; cats and dogs can be bought,
2007) which equips them with a translation into the lambda cleaned, stroked; cats and dogs can be small, big, furry. This
calculus and predicate logic. As discussed in (Sadrzadeh intuition is reflected in text becausatanddogappear as the
2007) pregroups are posetal instances of the categorical subject ofsleep run, walk; as the direct object dbought
logic of vector spaces as in (Abramsky & Coecke 2004) cleanedstroked and as the modifiee aimall big, furry.
where juxtaposition of types corresponds to the tensor prod- Meanings of words can be represented as vectors in a
uct of the monoidal category of vector spaces, linear maps high-dimensional “meaning space”, in which the orthogo-
and the tensor product. The diagrammatic toolkit of ‘non- nal basis vectors are represented by context words. To give a
commutative’ categorical quantum logic introduces reduc- simple example, if the basis vectors corresponedipsleep
tion diagrams for typing sentences and allows the compar- andrun, and the wordlog haseatin its context 6 times (in
ison of the grammatical patterns of sentences in different some text)sleep5 times, andun 7 times, then the vector
languages (Sadrzadeh 2006). for dogin this space is (6,5,7). The advantage of represent-
Here we blend these three ideas together, and articulate ing meanings in this way is that the vector space gives us a
the result in a rigourous formal manner. We provide a math- notion of distance between words, so that the inner product
ematical structure where the meanings of words are vectors (or some other measure) can be used to determine how close
in vector spaces, their grammatical roles are types in a pre- in meaning one word is to another. Computational models
group, and tensor product is used for the composition of along these lines have been built using large vector spaces
meanings and types. We will pass from vector spaces to the (tens of thousands of context words/basis vectors) and large
category of vector spaces equipped with the tensor product, bodies of text (up to a billion words in some experiments).
and refine this structure with the non-commutative aspects Experiments in constructing thesauri using these methods
of the pregroup structure. Type-checking is now an essential have been relatively successful. For example, the top 10
fragment of the overall categorical logic. The vector spaces most similar nouns tintroduction according to the system
enrich these types with quantities: the reduction scheme to of (Curran 2004), araunch, implementation, advent, addi-
verify grammatical correctness of sentences will not only tion, adoption, arrival, absence, inclusion, creation
provide a statement on the well-typedness of a sentence, but

will also assign a vector in a vector space to each sentence. o Pregroup semantics for grammatical types. Pregroup
Hence we obtain a theory with both pregroup analysis and semantics was proposed by Lambek as a substitute for the
vector space models as constituents, but which is inherently | smpek Calculus (Lambek 1958), a well-studied type cate-
compositional and assigns a meaning to a sentence givengorial grammar (Moortgat 1997). The main reason we chose
the meanings of its words. The vectorsrepresenting the  the theory of pregroup semantics is its mathematical struc-
meanings of sentences all live in the same meaning sPace  tyre, which is ideal for the mathematical developments in
Hence we can compare the meanings of any two sentencesthis paper. The key ingredient is the mathematical object
s, t € S by computing their inner-products’| ¢'). of a pregroup, which provides a tidy and simple algebraic

Surprisingly, Montague semantics emerges as a simplified structure to mechanically check if sentences of a language
variant of our setting, by restricting the vectors to range over are grammatical.
B = {0, 1}, where sentences are simply true or false. The- A partially ordered monoidis a triple (P, <,-) where
oretically, this is nothing but the passage from the category (P, <) is a partially ordered setp, -) is a monoid with unit
of vector spaces to the category of relations as described in 1, and for alla, b, c € P with a < b we have
(Abramsky & Coecke 2004; Coecke 2005b). In the same a<c-b nd e<h. 1
spirit, one can look at vectors ranging owéror Q and ob- cra=c a S (1)
tain degrees or probabilities of meaning. As a final remark, A pregroupis a partially ordered monoidP, <, -) where
in this paper we only set up our general mathematical frame- each typep € P has aleft adjointp' and aright adjoint
work and leave a practical implementation for future work.  p”, which means that, p', p" € P satisfy

l 1 r T

Linguistic background popsl=<p-p and p-p"<1<p"-p.
We briefly present two domains of Computational Linguis- —— —~
tics which provide the linguistic background for this paper, Roughly speaking, the passage from Lambek Calculus to Pre-

and refer the reader to the literature for more details. groups is obtained by replacing the two residuals of the juxtapo-
sition operator (monoid multiplication) with two unary operations.
] ] This enables us to work with a direct encoding of function argu-
1. Vector space models of meaning. The key idea be- ments as adjoints rather than an indirect encoding of them through
hind vector space models of meaning (Schuetze 1998) can negation (implication by bottom).

From this it also follows that! = 17 = 1.2



Similar to type categorial grammars, one starts by fixing Category-theoretic background
some basic grammatical roles and a partial ordering between \ne now sketch the mathematical prerequisites which consti-
them. We then freely generate a pregroup tute the formal skeleton for the developments in this paper.
(P,<,-, (=) (=) Note that, in contrast to (Abramsky & Coecke 2004), here
we consider the non-symmetric case of a compact closed
category, non-degenerate pregroups being examples of es-
sentially non-commutative compact closed categories. See

of these types whereis now the unit of juxtaposition, that
is, the empty type. Examples of the basic types are:

e  for pronoun (Freyd & Yetter 1989) for more details. Other references
e s for declarative statement can be found in (Abramsky & Coecke 2004; Coecke 2005a;
e ¢ for yes-no question 2006).

e ¢ for infinitive of the verb . . o

for direct obiect 1. Monoidal categories. The formal definition of
¢ ofordirect object. monoidal categories is somewhat involved. It does admit
In cases where the person of the pronoun and tense of thean intuitive operational interpretation and an elegant, purely

verb matters, we also havs, si,q. € P for j'th person  diagrammatic calculus. A (stricty monoidal categafy
pronoun andk’th tense sentence and question. We require requires the following data and axioms:
the following partial orders: . .
o afamily|C| of objects
— for each ordered pair of objedtd, B) a corresponding

The adjoints and juxtapositions of these types are used 0 setC(4, B) of morphismsit is convenient to abbrevi-
form the compound types. A type is assigned to each word atef € C(A,B)by f: A — B;

in a sentence and the monoid multiplication is used for juxta-
position. The juxtaposition of adjacent adjoint types causes
reduction to 1. This process is repeated until no more reduc-
tion is possible and a type is returned as the main type of

m; < S <8 ax < q

— for each ordered triple of objects!, B, C'), and each
f:A— Bandg : B — C, there is asequential
compositgg o f : A — C; we moreover require that:

the juxtaposition. If this type is thga desirec_l type (esdor (hog)of=ho(gof);

statement and for question), the juxtaposition is a gram- ) ) ) ) )
matical sentence. It has been shown in (Buszkowski 2001) — for each objectd there is andentity morphisml 4 :
that this procedure is decidable. Thus we obtain a decision A — A;jfor f: A— B we moreover require that:
procedure to determine if a given sentence of a language is - s
grammatical. fela=f —and  Igpof=f;

For simplicity, we use an arrow- for < and drop the
between juxtaposed types. For the example sentence “He
likes her”, we have the following type assignment:

He likes her (A®B)®C=A® (B®C);
73 (77sd) o
for which we obtain the following reduction:

o for each ordered pair of objectd, B) acomposite object
A ® B; we moreover require that:

e there is aunit objectl which satisfies":
IA=A=ARI;

m3(n"s0')o — w(n"s0!)o — 1s1 — s

The reduction can be represented diagrammatically by con- e for each ordered pair of morphisrig: A — C,g: B —
joining the adjacent adjoint types. For example, for the D) aparallel compositef ® g : A® B — C ® D; we

above reduction we have the following diagram: moreover requirdifunctorialityi.e.
r !
Mfm (91 ®g2) 0 (/1 @ f2) = (910 /1) @ (920 f2) -

There is a very intuitive operational interpretation of

The same method is used to analyze other types of sen- monoidal categories. We think of the objectstgges of
tences; for example, to type a yes-no question we assign SystemsWe think of a morphisny : A — B as aprocess
(io') to the infinitive of the transitive verb an@i'x!) to which takes a system of type (say, in some state) as
‘does’, and obtain the following reduction for ‘Does he like ~ input and provides a system of tyi#e (say, in statef(¢))

91. e —

her?" 3In the standard definition of monoidal categories this ‘strict’
o - equality is not required but rather the existence ofatural iso-
(qi 7|T ) 773 (ZIO ) T’ - q morphismbetweenA ® B) ® C andA ® (B ® C). We assume

‘ \—1 strictness in order to avoid talking about natural transformations,
. . . . and the correspondingpherence conditionsetween these natural
The reduction diagrams are helpful in demonstrating the or- isomorphisms. This simplification is justified by the fact that each
der of reductions, especially in compound sentences. They monoidal category is categorically equivalent to a strict one, which
can also be used to compare the grammatical patterns of dif- is obtained by imposing appropriate congruences.
ferent languages (Sadrzadeh 2006). 4Again we assume strictness in contrast to the usual definition.

Does he like her? — question




as output. Composition of morphisms is sequential appli-
cation of processes. The compound type B represents
joint systemsWe think ofI as the trivial system, which can
be either ‘nothing’ or ‘unspecified’. More on this intuitive
interpretation can be found in (Coecke 2006).

In the graphical calculus for monoidal categories we de-
pict morphisms by boxes, with incoming and outgoing wires
labelled by the corresponding types, with sequential compo-
sition depicted by connecting matching outputs and inputs,
and with parallel composition depicted by locating boxes
side by side. For example, the morphisms

la f gof 1a®lp f®lc f®g (f®g)oh

are depicted as:
B D E
A B C

A

C
The unit object is represented by ‘no wire’; for example
Pp:1— A T A—1 mo:I—1

are depicted as:

& +
®-5
A =
Morphismsy : I — A are calledelementof A. Opera-
tionally one can think of them as tlstatesof systemaA.

|8

B A

A

2. Compact closed categories. A monoidal category is
compact closed if for each object there are also objects
A" andA!, and morphisms

n:l— A A e Al9A-T
n:1—-A"® A €T AQA" =1
which satisfy®

(1a@Yo(®@14) =14 (@140)0(10@7") =14
(€@14)0(1a@7) =14 (Iar®@)o(N®@1ar) = 1ar
When depicting the morphismg, €', ", ¢” as

A A A A

J U

A A A A

these axioms substantially simplify to
A A A A
A A A A

i.e. they boil down to ‘yanking wires’.

5These conditions guarantee that the category is closed, as ex-
plained in a simple diagrammatical manner in (Coecke 2007).

3. Vector spaces, linear maps and tensor product. Let
FVect be the category which has vector spaces over the
base fieldR as objects, linear maps as morphisms and the
vector space tensor product as the monoidal tensor. To
simplify the presentation we assume that each vector space
comes with an inner product, that is, it is emmer-product
space For the case of vector space models of meaning this is
always the case, since we consider a fixed base, and a fixed
base canonically induces an inner-product. The reader can
verify that compact closure arises, given a vector sgace
with base{e; };, by settingV’! = V" =V,

nl:T]T:RHV@)V::lHZei@ei
and

=" VeV-R: Zcij Y ® ¢ — Zcm<¢l\¢J> .

] v
Soel = € is the inner-product extended by linearity to the
whole tensor product. Recall that{t;}; is a base fol/
and if {¢}}; is a base folV then{e; ® €/ },; is a base for
V @ W. In the bas€e; ® e;};; for V ® V the linear map
el =€ : V®V — R has as its matrix the row vector which
has entryl for the base vectors; ® e; and which has entry
0 for the base vectors; ® e; with ¢ # j. The matrix of
n' = n" is the column vector obained by transposition.

4. Pregroups as compact closed categoriesA pregroup

is an example of posetal categorythat is, a category which

is also a poset. For a category this means that for any two
objects there is either one or no morphism between them.
In the case that this morphism is of type — B then we
write A < B, and in the case it is of typ®& — A we
write B < A. The reader can then verify that the axioms of
a category guarantee that the relatioron |C| is indeed a
partial order. Conversely, any partially ordered (@&t<) is

a category. For ‘objectsi, b € P we takeP(a, b) to be the
singleton{a < b} whenever < b, and empty otherwise. If

a < bandb < ¢ we defines < ¢ to be the composite of the
‘morphisms’a < b andb < c.

A partially ordered monoid is a monoidal category with
the monoid multiplication as tensor on objects; whenever
a < candb < d then we have: - b < ¢ - d by equation (1),
and we define this to be the tensor of ‘morphisms: ¢ and
b < d. Bifunctoriality, as well as any equational statement
between morphisms in posetal categories, is trivially satis-
fied, since there can only be one morphism between any two
objects.

Finally, each pregroup is a compact closed category for

n=[1<pp] =p-p<y]

n=0<pp €=[p-p <]
and so the required equations are again trivially satisfied.
Diagrammatically, the links representing the type reductions
in
(7" so') o

| L

are exactly the ‘caps’



Al = A" = A. Moreover, there are canonical isomorphisms
. | VoW — W ® V which translate to posetal categories as
A ABC C a-b=b-a. Therefore we have to refine types to retain the
of the compact closed structure. The symbolic counterpart full grammatical content obtained from the pregroup analy-
of this diagrammatically depicted morphism is: sis. There is an easy way of doing this: rather than objects
- . - . in FVect we will consider objects in the product category
€4a®lp®ec: ARA®BR®C ®C — B. FVect x P, whereP is the pregroup generated from ba-
. . _ . . sic types. ExplicitlyF'Vect is the category which has pairs
Composing meanings = quantifying type logic (V,a) with V a vector space and € P as objects, and the
We have described two approaches to analysing structure following pairs as morphisms:
and meaning in natural language, one in which vector spaces )
are used to assi [ i (f:V=W,p<q)
gn meanings to words in a language, and .
another in which pregroups are used to assign grammatical Which we can also write as

structure to sentences: (f,<): (V,p) — (W, q).
vector space pregroup Note that ifp £ ¢ then there are no morphisms of type
N . 0/ (V,p) — (W, q). Itis easy to verify that the compact closed
2 & structure ofF Vect and P lifts component-wise to one on
%, o FVect x P
% &N}‘Q
N Y FVect x P
language / N
\)% G
We aim for a theory that unifies both approaches, in \&@Q %,
which the compositional structure of pregroups would lift %,
to the level of assigning meaning to sentences and their con- / N
stituents. Our approach proceeds as follows: we look for a vector space pregroup
mathematical structure which comprises both the composi- \,)2 N
tional pregroup structure and the vector space structure as <, \0
fragments. 2 QY
?9\ /&“5
‘some mathe\n}atical structure’ language
N : : -~
@@’“ "?9 We can now also lift the mechanism for establishing well-
Q)«*‘ ., typedness of sentences within pregroups to morphisms in
us\&@ @8‘9, FVect: given a reductiop - - - ¢ — s, there is a morphism
»
vector space prggroup (f,2):(Vip)®...0 (W,q) — (S,s)
AN e which assignstoeachvectof @ ... W c V®...0 W
;)?e% \0%“ (the meaning of a sentence of type- - ¢) a vector:
%, o f(T®..0W)eS,
l;‘lgu(:;e where S is the meaning space of all sentences. Note that

this resulting vectorf (v’ ® ... ® w) does not depend on
Our previous mathematical analysis suggests the following: the grammatical typg - - - g.

FVect Computing the meaning of a sentence
/ . We define a meaning space to be a pair consisting of a vec-
&P % tor spacé/ and a grammatical type, where, following the
NN Q@% vector space model of meaning, the vector¥iencode the
/0 2. meaning of words of typ@.6 To assign meaning to a sen-
x tence of typer(7"so')o, we take the tensor product of the
vector space pregroup . . . L
N s meaning spaces of its constituents, that is:
e, e W (V,m) @ (T, "so') @ (W,0) = (V& T @ W,n(r"s0')o) .
2. 0 -
A o The pair(7’, p), where @ is a vector which represents the
N meaning of a word angd is the pregroup element which represents
language its type, is our counterpart of the pure tengd® p in the proposal

) o ) of (Clark & Pulman 2007), in whichp’ is a genuine vector. The
This suggestion is problematic, however. The compact structure proposed here can easily be adapted to also allow types to
closed structure oFVect is somewhat degenerate since be represented in a vector space.



From the typer”so’ of the transitive verb, we know thatthe ~ where we také’ to be the vector space spanned by men and

vector space in which it is described is of the form: W the vector space spanned by wonfeiVe will conve-
niently assume that all men are namihn using indices
Tr=vesSoWw. () to distinguish them:Johr. Similarly every woman will

be referred to adary;, for someyj, and the set of vectors

The linear magf which realizes iy _ )
{Mary;}; spang¥. Let us assume thdbhnin (3) is John

(VeTeW,o(x"sd)o) V) (s, s), and thatMary is Mary,. Assume also that we are only in-
terested in the truth or falsity of a sentence. Therefore we
and arises from the type-reductions, is in this case: take the sentence spaSeto be spanned by a single vector

T, which we identify withtrue, and we identify the origin
—

0 with false The transitive verbikes is encoded as the
Diagrammatically, the linear map can be represented as fol- superposition

f=€,@ls@e, : VRTOW — S.

lows: . fkes— Y John o ikes,; @ Mary,
‘ \ )
VoV l W W . _ .
. ) 5 ) ) 5 wherelikes;; = 1 if John likes Mary; andlikes;; = 0
The matrix of f hasdim(V)* x dim(S) x dim(W) otherwise. ‘Of course, in practice, the vector that we have
columns andiim(5) rows, and its entries are eitheror 1. constructed here would be obtained automatically from data
We canalsoexpref§ v @ V@ w) € Sfor v @ V @ w € using some suitable method. Finally, we obtain:

V ® S ® W in terms of the inner-product. If L
f (Johrg ® likes® Mary4)
W:Zcijk?’i@?j@ﬁk ceVesSeWw

ik = Z <Johrg \ John>® H?gsj®<Maryj | Mary4>
then Y N
= (Sgi ||keS ) i4
FTeVe@) = Y culTT)5(Ww) XJ: Y
ijk T
= likes;y
= <Z Cik<7|7i><ﬁ>kﬁ)>> 5 So we indeed obtain the correct meaning of our sentence.
j ik Note in particular that the transitive verb acts as a function
] ] ) : requiring an argument of type subject on its left and another
This vector is the meaning of the sentence of type’so’ o, argument of type object on its right, in order to output an
and assumes as given the meanings of its constitugns argument of type sentence.
—
V, ¥ € Tandw € W, obtained from data using some
suitable method. In Dirac notatiofi{ v ® ¥ ® w) would Example 2. We alter the above example as follows. 1%t
H . — —
be written as: be spanned by two vectors, and & . Set
(e ®@1s®()) [T ¥ ow) —
v v : loves= Z John ® loves; ® Mary;
As mentioned in the introduction, our focus in this paper i

is not on how to practically exploit the mathematical frame- hates— Joh hates: © M
work, which would require substantial further research, but ates= Z ohn @ hates; © Mary;

to expose the mechanisms which govern it. To show that this K

particular computation does indeed produce a vector which \yhere Ioveésj — T if John loves Mary; and Iove)s,j —

captures the meaning of a sentence, we explicitly compute T otherwise. andate: 7 it John hatesMarv. and
— ;= :
f(V® ¥ ew) for some simple examples, with the intention "~ ; % n i

— .
of providing the reader with some insight into the underly- hates; = 0 otherwise. Set
ing mechanisms and how the approach relates to existing . 3 1
frameworks. likes= 1Ioves+ Zhates

. The reader can verify that we obtain
Example 1. Consider the sentence

— — = — — = 3
John likes Mary (3) <f( J3 @ loves® My) ‘ F(Js ®likes® M4)> =1
We encode this sentence as follows; we have: 7In terms of context vectors this means that each word is its

N N own and only context vector, which is of course a far too simple
Johne V, likese T, Marye W idealisation for practical purposes.



<f(73®@® M,) ’ f(73®rﬁ5®1\74)> :i

— — = — — —
<f(J3®Ioves®M4) ‘ f(J3®hates®M4)> =0.

Hence the meaning of the distinct verhses, likes and
hates in the different sentences propagates through the re-
duction mechanism and reveals itself when computing inner-
products between sentences in the sentence space.

Due to lack of space we leave more involved examples to
future papers, including those which involve comparing the
meanings of sentences of different types. Of course in a full-
blown vector space model, which has been automatically ex-
tracted from large amounts of text, we obtain ‘imperfect’
vector representations for words, rather than the ‘ideal’ ones
presented here. But the mechanism of how the meanings of

words propagate to the meanings of sentences remains the

same.

Change of model while retaining the logic

When fixing a base for each vector space we can think of
FVect as a category of which the morphisms are matrices
expressed in this base. These matrices have real number
as entries. It turns out that if we consider matrices with en-
tries not in(R, -+, x ), but in any other semirirfy( R, +, x),
we again obtain a compact closed category. This semiring
does not have to be a field, and can for example be the pos-
itive reals(R™, +, x), positive integergN, +, x) or even
BooleangB, v, A).

In the case of B, V, A), we obtain an isomorphic copy
of the categoryi"Rel of finite sets and relations with the
cartesian product as tensor, as follows. Kebe a set whose
elements we have enumeratedas= {z; | 1 <i < |X]| }.
Each element can be seen as a column witha& the row
equal to its number andin all other rows. Left” = {y; |
1 <j<|Y] } be another enumerated set. A relation
r C X x Y is represented by apX| x |Y'| matrix, where
the entry in theith column andjth row is1 iff (z;,y;) € r
and0 otherwise. The composite>r of relationsr C X xY
ands CY x Zis

{(z,2) |y eY:(z,y) er(y,2) €s}.

The reader can verify that this composition induces matrix
multiplication of the corresponding matrices.

Interestingly, in the world of relations (but not functions)
there is a notion ofuperpositionCoecke 2006). The rela-
tions of typer C {x} x X (in matricial terms, all column
vectors with0’s and1’s as entries) are in bijective correspon-
dence with the subsets &f via the correspondence

r—{reX|(xz)er}.

Each such subset can be seen as the superposition of th
elements it contains. Thener-productof two subsets if if

they are disjoint and if they have a hon-empty intersection.
So we can think of two disjoint sets as beimghogonal

8A semiring is a set together with two operations, addition and
multiplication, for which we have a distributive law but no additive
nor multiplicative inverses. Having an addition and multiplication
of this kind sulffices to have a matrix calculus.

€

Since the abstract nature of our procedure for assigning
meaning to sentences did not depend on the particular choice
of FVect we can now repeat it for the following situation:

pT’ (& g T Oup
.NQ/
O
N
NS

language

Montague-style semantics

dn FRel x P we recover Montague semantics. Example

1 above was chosen in such a manner that it is essentially
relational. The singleton{x} has two subsets, namefy}
and®, which we respectively identify witlrue and false

We now have set®¥’, W andT =V x {x} x W with

V:={John};, likesCT, W :={Mary,},
such that:

likes:= {(John, x,Mary;) | John likes Mary; }

- U{John} x %ij x {Mary,}
ij
wherex;; is either{«} or (). Finally we have
f ({Johns} x likesx {Mary, })

LJ ({John }n{John}) x «;; x ({Mary; }n{Mary, })

j
*34 .

Future Work

There are several implementation issues which need to be
investigated. It would be good to have a Curry-Howard like
isomorphism between non-commutative compact closed
categories, bicompact linear logic (Buszkowski 2001), and
Abramsky’s planar lambda calculus. This will enable us to
automatically obtain computations for the meaning and type
assignments of our categorical setting. Also, Montague-
style semantics lives iFRel x P whereas truly distributed
semantics lives irfVect x P. It would be interesting to
see where the so called ‘non-logical’ axioms of Montague
live and how they are manifested at the leveFdfect x P.
Categorical axiomatics is flexible enough to accommodate
mixed stategSelinger 2007), so in principle we can imple-
ment the proposals of (Bruza & Widdows 2007).
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