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Typical Output of a Statistical Parser

It V‘ ADJP
is ADJ S‘
difficult VP
'|'(‘) VP
N
to V‘ SBAR
understand  WHNP N
N
what NP VP
N
" [
want VP
Taken from Dienes(2004) o e
Lol
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Parsing with the Penn Treebank (Marcus et al., 1993)

o Largest treebank available for English

¢ 40,000 sentences of mostly newspaper text (wsJ) each manually
annotated with a phrase-structure tree

o (head-lexicalised) Context-free grammar rules can be read off the
treebank

¢ Probabilities of rules can be estimated from the treebank (using
relative frequencies)

e Search algorithm (eg Viterbi + beam) can find most probable tree
for a new sentence

Stephen Clark
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Linguistically Motivated Statistical Parsing

o Key benefits from statistical corpus-based approach are
robustness and efficiency

e Accuracy is improving
(with more sophisticated Machine Learning, eg CRFs, Perceptron)

e Recent development is the combination of statistical methods and
grammar formalisms such as LFG, HPSG, TAG, and CCG

Stephen Clark
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Towards Richer Output (Bos, 2005)

From 1953 to 1955 , 9.8 billion Kent cigarettes with the filters were
sold , the company said .

| xt | | x2 x3 |
| (I |
(| company(x1) |A| say(x2) B}
| single(x1) | | agent(x2,x1) |
. | | theme(x2,x3) |
| proposition(x3) |
| |
| | x4 I | x5 I | x6 x7 x8 | |
| x3: | [ I [
| (I card(x4)=billion |;(| filter(x5) |A| with(x4,x5) 1)1
| | 9.8(x4) | | plural(x5) | | sell(x6) | |
| | kent(x4) I . | | patient(x6,x4) | |
| | cigarette(x4) | | 1953(x7) | |
| | plural(x4) | | single(x7) | |
| | | | 1955(x8) [
| | single(x8) | |
| | to(x7,x8) | |
| | from(x6,x7) | |
| | event(x6) | |
| e [
| event(x2) |
| |
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Statistical Parsing with cca

® CCG is a lexicalised grammar formalism

e CCG was designed to handle the long-range dependencies in, e.g.,
extraction and coordination

e Transparent interface between surface syntax and underlying
semantic representation

Stephen Clark
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Statistical Parsing with cca

® CCG is a lexicalised grammar formalism

e CCG was designed to handle the long-range dependencies in, e.g.,
extraction and coordination

e Transparent interface between surface syntax and underlying
semantic representation
e But surely we sacrifice efficiency and robustness?

e robustness obtained from using statistical methods and a grammar
extracted from a CCG treebank

e (surprising) efficiency obtained from exploiting lexicalised nature of
the formalism (supertagging)

Stephen Clark
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Outline

Combinatory Categorial Grammar (ccG)

Parsing with cca

Perceptron parsing model

Parser evaluation on DepBank

Stephen Clark
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Combinatory Categorial Grammar (CCG)

o Categorial grammar is one of the oldest grammar formalisms
(Ajdukiewicz, 1935; Bar-Hillel, 1953)

e Classical categorial grammar is context free

e CCG is mildly context-sensitive (Vijay-Shanker & Weir, 1994)
— weakly equivalent to Tree Adjoining Grammar

e CCG can analyse crossing dependencies in Dutch (non
context-free)

Stephen Clark
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Lexical Categories

e The category is the basic grammatical unit in ccc
lexical categories are the categories assigned to words

e Atomic categories: S, N, NP, PP, ... (not many more)

e Complex categories are built recursively from atomic categories
and slashes, which indicate the directions of arguments

Stephen Clark
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Lexical Categories

e The category is the basic grammatical unit in ccc
lexical categories are the categories assigned to words

@ OXFORD UNIVERSITY Prelude cca CCG 12

e Atomic categories: S, N, NP, PP, ... (not many more)

e Complex categories are built recursively from atomic categories
and slashes, which indicate the directions of arguments

e Complex categories can encode subcategorisation information
e transitive verb: (S\NP)/NP

Stephen Clark
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Lexical Categories

e The category is the basic grammatical unit in ccc
lexical categories are the categories assigned to words
e Atomic categories: S, N, NP, PP, ... (not many more)
e Complex categories are built recursively from atomic categories
and slashes, which indicate the directions of arguments
e Complex categories can encode subcategorisation information
e transitive verb: (S\NP)/NP

o Complex categories can encode modification
e PP-nominal: (NP\NP)/NP

Stephen Clark
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A ccG Derivation

Google bought Microsoft
NP (S\NP)/NP NP

. INIV ,
@ OXFORD UNIVERSITY Prelude cca CCG 14
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A ccG Derivation

Google bought Microsoft
NP (S\NP)/NP NP
S\NP

>  forward application

Stephen Clark
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A ccG Derivation

Google bought Microsoft
NP  (S\NP)/NP NP
S\NP

>  forward application
< backward application

Stephen Clark
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Derivation for an Object Extraction

The  company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP _ (S\NP)/NP
NP S/(S\NP)

@ OXFORD UNIVERSITY Prelude cca CCG 17

> T type-raising

Stephen Clark
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Derivation for an Object Extraction

The  company which Microsoft bought
NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
_— >T
NP S/(S\NP)

S/NP

@ OXFORD UNIVERSITY Prelude cca CCG 18

>T type-raising
> B  forward composition

Stephen Clark
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Derivation for an Object Extraction

The  company which Microsoft bought
NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
_— >T
NP S/(S\NP)

S/NP

@ OXFORD UNIVERSITY Prelude cca CCG 19

NP\NP

>T type-raising
> B  forward composition

Stephen Clark
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Derivation for an Object Extraction

The  company which Microsoft bought
NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
_— >T
NP S/(S\NP)

S/NP
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NP\NP

NP

>T type-raising
> B  forward composition

Stephen Clark
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“Non-constituents” in cCcG
Google sells but  Microsoft buys shares
NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T
S/(S\NP) S/(S\NP)

>T type-raising

Stephen Clark
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“Non-constituents” in CCG

Google sells Microsoft buys  shares
NP (S\NP)/NP conj NP  (S\NP)/NP NP
S/(S\NF) S/(S\NF)
S/NP S/NP

>T type-raising
> B  forward composition

Stephen Clark
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“Non-constituents” in cCcG
Google sells but  Microsoft buys shares
NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T
S/(S\NP) S/(S\NP)
>B
S/NP S/NP
>
S/NP

>T type-raising
> B  forward composition

Stephen Clark
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“Non-constituents” in cCcG
Google sells but  Microsoft buys shares
NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T
S/(S\NP) S/(S\NP)
>B
S/NP S/NP
>
S/NP
>
S

>T  type-raising
> B  forward composition

Stephen Clark
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Derived Structure

Google bought Microsoft
NP (S\NP)/NP NP
S\NP

subj(bought, Google)
obj(bought, Microsoft)

Stephen Clark
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A Non-Standard cca Derivation
Google bought Microsoft
NP (S\NP)/NP NP
>T
S/(S\NP)

>T type-raising

Stephen Clark
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A Non-Standard ccG Derivation
Google bought Microsoft
NP (S\NP)/NP NP
>T
S/(S\NP)
S/NP

>T type-raising
> B  forward composition

Stephen Clark
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A Non-Standard ccG Derivation
Google bought Microsoft
NP (S\NP)/NP NP
>T
S/(S\NP)
S/NP
>
S

>T type-raising
> B  forward composition

Stephen Clark
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“Spurious” Ambiguity
Google bought Microsoft
NP (S\NP)/NP NP
—>T
S/(S\NP)
S/NP
>
S

> T  type-raising
> B  forward composition

subj(bought, Google)
obj(bought, Microsoft)

Stephen Clark
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Spurious Ambiguity

e The existence of spurious ambiguity led many in the NLP
community to believe that you couldn't parse efficiently with cca

@ OXFORD UNIVERSITY Erelnas cca [elele} 30

e Statistical optimisations allow highly efficent parsing with cca

Stephen Clark
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CCG Predicate-Argument Dependencies

e Predicate-argument dependencies represented as 4-tuples

e e.g. company as the object of bought (IBM bought the company):

(bought, (S\NP;)/ NP3, 2, company)

Stephen Clark
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Parsing with cca

e Stage 1

o Assign lexical categories to words in the sentence
e Use a supertagger to assign the categories
— based on standard Maximum Entropy tagging techniques

Stephen Clark
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Parsing with cca

e Stage 1
o Assign lexical categories to words in the sentence
e Use a supertagger to assign the categories
— based on standard Maximum Entropy tagging techniques
e Stage 2
e Combine the categories using the combinatory rules
o Can use standard bottom-up CKY chart-parsing algorithm

Stephen Clark
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Parsing with cca
e Stage 1

o Assign lexical categories to words in the sentence
e Use a supertagger to assign the categories
— based on standard Maximum Entropy tagging techniques

e Stage 2

e Combine the categories using the combinatory rules

o Can use standard bottom-up CKY chart-parsing algorithm
e Stage 3

e Find the highest scoring derivation (decoding)

o Viterbi algorithm finds this efficently

Stephen Clark
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A ccG Treebank: CCGbank

o CCGbank developed by Hockenmaier and Steedman
(Hockenmaier, 2003)

e Phrase-structure trees in Penn Treebank (semi-)automatically
converted into CCG normal-form derivations

@ OXFORD UNIVERSITY CCGbank S-tagging Perceptron Model Evaluation 35

o A normal-form derivation only uses type-raising and composition
when necessary (Eisner, 1996)
— one way of dealing with spurious ambiguity

e But note phrase-structure trees not isomorphic to CCG analyses
(e.g. coordination)

Stephen Clark
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A Treebank of ccG Normal-Form Derivations

Evaluation 36
00000000000000000

S[del]

S[dcI\NP

T T

(SIdcI\NP)/(S[to]NP) S[to]\NP

T~

NP ((SIACI\NP)/(S[to]\NP))/NP NP (S[to\NP)(S[b\NP)  S[b)\NP

Marks persuades Brooks to merge

e Derivation has been inverted to give a binary tree

Stephen Clark
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Inducing a Grammar

S[dcl]

S[dcI\NP
(S[dcl]\NP)/(S[to]NP) S[to]\NP
NP ((S[dcI]\NP)/(S[to]\NP))/NP NP (S[to]\NP)/(S[b]\NP) S[b]\NP
\ \ \ \ \
Marks persuades Brooks to merge

® CCG is a lexicalised grammar, and so the grammar essentially is

the lexicon
— plus a small number of manually defined combinatory rules

e Lexicon can be read off the leaves of the trees

Stephen Clark
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Inducing a Grammar

e ~ 1200 lexical category types in CCGbank
(compared with 45 POS tags in Penn Treebank)

e Frequency cut-off of 10 gives ~ 400 types (when applied to
sections 2-21 of CCGbank)

e this set has very high coverage on unseen data (section 00)
e In addition to the grammar, CCGbank provides training data for
the statistical models

@ OXFORD UNIVERSITY CCGbank S-tagging Perceptron Model Evaluation 38

Stephen Clark
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Lexical Category Sequence for Newspaper Sentence

In an Oct. 19 review of The
(S/S)/NP NP[nb]/N N/N N/N N (NP\NP)/NP NP[nb]/N

Misanthrope at Chicago s Goodman Theatre —LRB—
N (NP\NP)/NP N  (NP[nb/N\NP N/N N (NP\NP)/S[dcl]
Revitalized Classics Take the Stage n Windy
N/N N (S[dcl]\NP)/NP N P[nb]/N N ((S\NP)\(S\NP))/NP N/N
City Leisure & Arts —RRB-—
N, (5\9)/(S\S) (5\9)/(S\S) S\S RRB
the role of Celimene played by
N P[nb]/N N (NP\NP)/NP N , Slpss]\NP ((S\NP)\(S\NP))/NP
Kim Cattrall , was mistakenly attributed to
N/N N , (S[dcl]\NP)/(S[pss]\NP) (S\NP)/(S\NP) (S[pss|\NP)/PP PP/NP

Christina Haag
N/N N

Stephen Clark
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CCG Supertagging

He goes on the  road with his  piano

NP (S[dc]\NP)/PP PP/NP NP/N N ((S\NP)\(S\NP))/NP NP/N N

A bitter conflict with global implications
NP/N N/N N (NP\NP)/NP N/N N

e Baseline tagging accuracy is = 72%

Stephen Clark
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A Maximum Entropy Supertagger

e Maximum Entropy tagging method can be applied to cca
supertagging

@ OXFORD UNIVERSITY CCGbank S-tagging Perceptron Model Evaluation 41

e Features are the words and POS tags in a 5-word window,
plus the two previously assigned categories

e Per-word tagging accuracy is ~ 92%

e Multi-tagger can assign categories with a per-word accuracy of
97.7% at only 1.4 categories per word

Stephen Clark
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Linear Parsing Model

Score(d|S) = Y-, Aifi(d) = X - ¢(d)

e Features are counts over d

root category of d (plus lexical head)

(lexical category, lexical item) pairs

rule feature: S — NP S\NP (plus lexical head)
predicate argument dependency: subj(bought, IBM)
(plus distance)

“Backing-off” features with words replaced by POS tags

@ OXFORD UNIVERSITY CCGbank S-tagging Perceptron Model Evaluation 42

e Use Perceptron training to set the weights

Stephen Clark
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Training Data from CCGbank

S[dcl]

S[dcI\NP
(S[dcI]\NP)/(S[to]NP) S[to]\NP
NP ((S[dcI]\NP)/(S[to]\NP))/NP NP (S[to]\NP)/(S[b]\NP) S[b]\NP
| | | |
Marks persuades Brooks to merge

(persuades, ((S[dcl]\NP;)/(S[to]\NP)z2)/NPs, 1, Marks)

(persuades, ((S[dcl]\NP;)/(S[to]\NP)2)/NPs, 3, Brooks)

(persuades, ((S[dcl]\NP;)/(S[to]\NP)2)/ NP3, 2, merge)
(merge, S[b]\NP;, 1, Brooks)

Stephen Clark



l(ﬁ\%l\(l)i’g\llg\l({;/ [e]e]e]e} 000 00@00000000000 0000000000000 0000

Perceptron Training

Score(d|S) = fol =X-¢(d)

@ OXFORD UNIVERSITY CCGbank S-tagging Perceptron Model Evaluation 44

Inputs: training examples (x;, y;)
Initialisation: set A =0
Algorithm:
fort=1.T,i=1.N
calculate z; = arg max,cGEN(z;) P(2i, y) - A
if 2 7é Yi
A=A+ Oz, y1) — D(wi, 2i)
Outputs: \

Stephen Clark
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CCGbank
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S-tagging
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SENT1:

Stephen Clark

Wo = <0,0,0,...,0,0.,..,,0,...0,0,0,0,...,0>

S
S\NP
SIS
s/s S\NP
S/NP S\
(S\NP)\NP
s S\NP NP
S/NP VP\VP
S/NP S\NP PP NP\NP
S/S (S\NP)/PP NP\NP VP\VP
NP
N (S\NP)/INP NP (NPANP)/NP NP
SISWP) S\NP N (VP\VP)/NP N
PP
(sigynp | (SWPVPP | PP/PP
wi w2 w3 w4 w5
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CCGbank
0000

Perceptron Training

S-tagging
000

Perceptron Model Evaluation 46
0000@000000000 00000000000000000

DECODE:
s Wo =<0,0,0....,0,0,...,0,...0,0,0,0,...,0>
5 S\WP
SIS
f1, 120, 155, 1100, 1210, 1345
19, 125, 75, 1150, 211, {346, 1450, 1500, 525
S\WP
. s/s S
SINP | (S\WPINP
s SWP NP
3 SINP VP\VP
SINP S\WP PP NP\NP
2 s/s (SWP)/PP | NPWP VP\VP
NP
N (S\P)/NP NP (NPNP)/NP NP
1 SHSWP) SWP N (VP\VP)INP N
PP
(S/SyNp | (SWPYPP | PPIPP
SENT1: wi w2 w3 wa w5

Stephen Clark
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Perceptron Training (Online)

UPDATE WEIGHTS:

S W1 =<0,1,0,...,-1,0,...,-1,...0,1,0,-1,...,0>
S\NP
5
S/S
1, 20, 155, 100, f210, {345
119, £25, 175, 1150, f211, 1346, 450, f500, {52
SINP 9, 125, {75, f150. 346, 1450, 1500, {525
S/S
4 S/NP S\s
(SWP)\NP
s S\NP NP
3 S/NP VP\VP
S/NP S\NP PP NP\NP
2 S/S (S\NP)/PP NP\NP VP\VP
NP
N (S\NP)/NP NP (NPNP)NP NP
1 SISWP) SWP N (VP\VP)/NP N
PP
S/SyNp | (SWPIPP | PPIPP
SENT1: w1 w2 w3 w4 w5

Stephen Clark
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CCGbank
0000

Perceptron Training

S-tagging
000

Perceptron Model Evaluation 48
0000000000000 00000000000000000

s/s
SINP
4
S
s SWP
3 PP/NP
SINP SWP PFF,’/ZP
2 /s (SWPYPP | | oip
NP (S\WP)INP NP (NPWP)/NP
1 N WP N (VPP)NP
SISWP) | (SWPYPP | PP/IPP ZE
SENT2: wi w2 w3 w4

Stephen Clark

W1 =<0,1,0,...,-1,0,...,-1,...0,1,0,-1,...,0>



@ OXFORD UNIVERSITY CCGbank S-tagging Perceptron Model Evaluation 49

l(ﬁ\%l\(l)?{lg\llg\l({;/ [e]e]e]e} 000 0000000e000000 0000000000000 0000

Perceptron Training

W1 =<0,1,0,...,-1,0,...,-1,...0,1,0,-1,...,0>

DECODE:
co f11, f21, 157, 190, 145, 1250
os 21, 125, 176, 1151, 222, 1348, 1444, 1507, 1575
4 SINP
s
SWP
3 s PP/NP
PP
SINP SWP
2 PP/NP
/s (SWPYPP | | oip
NP (SWP)/INP NP (NPANP)/NP
. N WP N (VPP)NP
SISWP) | (SWPYPP | PP/PP ;E
SENT2: wi w2 w3 w4

Stephen Clark



@ OXFORD UNIVERSITY CCGbank S-tagging Perceptron Model Evaluation 50

l(ﬁ\%l\(l)?{lg\llg\l({;/ [e]e]e]e} 000 00000000e00000 0000000000000 0000

Perceptron Training

W2 =<0,2,-1,...,-1,1,...,-1,..0,1,0,-2,... - 1>

UPDATE WEIGHTS:
11, 121, 157, 190, f145, 1250

o 121, 125, 176, 1151, 222, 1348, 1444, 1507, 1575
4 SINP
s
SWP
8 s PP/NP
PP
SINP SWP
2 PP/NP
sis (SWPYPP | | onp
NP (S\WP)/NP NP (NP\NP)/NP
; N SWP N (VP\P)NP
S/SWP) | (SWP)PP |  PP/PP ;g
SENT2: wi w2 w3 w4

Stephen Clark
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Averaged Perceptron Training

Score(d|S) = Z)\ fi(d) = X - ¢(d)

Inputs: training examples (:pl,yl)
Initialisation: set A\ = 0
Algorithm:
fort=1.T,i=1.N
calculate 2; = arg max,cGEN(;) P(7i, v) DY
if 2 # yi
A=A+ &(zy,y:) — (x4, )
Outputs: \

Vs = Z )‘i7i/NT

t=1..T,i=1..N

Stephen Clark
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Why is Perceptron Training Hard in Practice?

Score(d|S) = Z)\ fi(d) = X - ¢(d)

Inputs: training examples (x;, y;)
Initialisation: set A =0
Algorithm:
fort=1..T,1=1.N
calculate z; = arg max,cGEN(,;) P(7i,Y) - A
if 2 7é Yi
A=A+ Oz, y1) — D(wi, 2i)
Outputs: \

e Requires an efficient decoder

Stephen Clark
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Efficient Decoding with CCG

e Supertagging leaves decoder with (relatively) little left to do

@ OXFORD UNIVERSITY CCGbank S-tagging Perceptron Model Evaluation 53

e Each packed chart needs at most 20 MB RAM
e Most probable derivation can be found very quickly with Viterbi

Stephen Clark
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model RAM iterations time (mins)
perceptron 20 MB 10 312
log-linear (CRF) | 19 GB 475 91

Stephen Clark
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Perceptron Training - Theory

o If the training data is “linearly separable”, the Perceptron training
algorithm will find the weights which separate the data (in a finite
number of iterations)

o If the data is “close” to being separable, the Perceptron will make
a small number of mistakes

e A small number of mistakes on the training data does imply good
performance on unseen data (Collins, 2002)

Stephen Clark
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Parser Output

7N

respect and confidence which most Americans previously had

N N N

Stephen Clark
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Parser Output

lexical_item | category slot | head_of_arg

which (NP\NP;)/(S[dcl]./NP) | 2 had

which (NP\NP;)/(S[dcl]./NP) | 1 confidence

which (NP\NP;)/(S[dcl]./NP) | 1 respect

had (S[dcl)\NP;)/NP,) 2 confidence

had (S[dc/]\NP;)/NP) 2 respect

e Evaluation is in terms of precision and recall of these dependencies

e Note that lexical category has to be correct for dependency to be
correct

o Note that both extracted objects have to be recalled in this
example to get 100%

Stephen Clark
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Accuracy on Test Data (Section 23 of CCGbank)

model LP LR F car
log-linear (CRF) | 87.72 86.32 87.01 94.11
perceptron 87.80 86.46 87.13 94.17
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Parser Times for Section 23 (2,407 sentences)
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Parser time (mins)
Collins 45
Charniak | 28
Sagae 11
CCG 1.2

e High speed comes from the supertagger

(and highly engineered C++)

Stephen Clark
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Formalism Independent Evaluation

e Accuracy figures on CCGbank are inflated and not comparable
with non-CCG parser scores

e Need a formalism-independent resource whose output the CCG
parser can produce

e Important problem for current parsing research

e DepBank is an ideal candidate

Stephen Clark
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DepBank

700 sentences of Section 23 manually annotated with
Grammatical Relations (GRs) by Briscoe and Carroll

So just need to translate CCG dependencies into DepBank GRs

Sounds easy?

e Mapping into DepBank is the best method we currently have for
comparing parsers across formalisms

Stephen Clark
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Grammatical Relations

Stephen Clark

conj
aux
det
ncmod
xmod
cmod
pmod
ncsubj
xsubj
csubj
dobj
obj2
iobj
pcomp
xcomp
ccomp
ta

coordinator

auxiliary

determiner

non-clausal modifier

unsaturated predicative modifier
saturated clausal modifier

PP modifier with a PP complement
non-clausal subject

unsaturated predicative subject
saturated clausal subject

direct object

second object

indirect object

PP which is a PP complement
unsaturated VP complement
saturated clausal complement
textual adjunct delimited by punctuation
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Example ccc Dependencies and GRs

But Mr. Barnum called that a worst-case scenario.

Mr._2 N/N_1 1 Barnum_3

called_4 ((S[dcl]\NP_1)/NP_2)/NP_3 3 that_5
worst-case_7 N/N_1 1 scenario_8

a_6 NP[nb]/N_1 1 scenario_8

called_4 ((S[dcl]\NP_1)/NP_2)/NP_3 2 scenario_8
called_4 ((S[dcl]\NP_1)/NP_2)/NP_3 1 Barnum_3
But_1 S[X]/S[X]_1 1 called_4

(ncmod _ Barnum_3 Mr._2)

(obj2 called_4 that_5)

(ncmod _ scenario_8 worst-case_7)
(det scenario_8 a_6)

(dobj called_4 scenario_8)
(ncsubj called_4 Barnum_3 _)
(conj called_4 But_1)

Stephen Clark
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Mapping cCG Dependencies to GRs

CCG lexical category arg slot | GR
(S[dcl]\NP;)/ NPy 1 (ncsubj %1 %f )
(S[dCl]\NP])/NPQ 2 (dobj %l %f)
(S\NP)/(S\NP); 1 (ncmod _ %f %1)
(NP\NP;)/NP; 1 | Cacmod _ %f %1)
(NP\NP;)/NPs 2 | (dobj %1 %f)
NP[nb]/N; 1 (det %f %1)
(NP\NP;1)/(S[pss]\NP)2 1 (xmod _ %f %1)
(NP\NP;)/(S[pss]\NP)2 2 (xcomp _ %1 %f)
((S\NP)\(S\NP);)/S[dcl]2 1 (cmod _ %f %1)
((S\NP)\(S\NP))/S[dcl]2 2 (ccomp - %1 %£)
((S[del]\NP;)/NPy3)/ NPy 2 | (obj2 %1 %)
(S[dcl]\NP;)/(S[b]\NP)2 2 (aux %f %1)

Stephen Clark
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Mapping is Many-to-Many
CCG lexical category slot GR constraint

(S[dcl]\NP;)/ NP, 2 (xcomp _ %1 %f) word=be
(dobj %1 %)
(S[dcl]\NP;)/PPs 2  (iobj %1 %f) cat=PP/NP
(xcomp _ %1 %f) cat=PP/(S[ng]\NP)

The parent is Imperial

The parent sold Imperial

The loss stems from several factors
The future depends on building ties

Stephen Clark
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Other Difficulties

o Different “heads":
The group said it would consider withholding royalty payments
Sen. Mitchell, who had proposed the streamlining

e More subjects in CCGbank
e Coordinations as arguments:

The president and chief executive officer said the loss stems from
several factors.
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e Argument/adjunct distinction (ncmod vs. iobj)

e Trivial differences such as tokenisation, shorter sentences in
DepBank(!)

Stephen Clark
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Oracle Experiment

o Take the gold-standard CCGbank dependencies from Section 23
and transform into GRs

e Provides some indication of the effectiveness of the mapping

e Comparing with DepBank gives the score a perfect CCGbank
parser would achieve
(so provides an upper bound for the CCG parser)

e Other researchers have not done this

Stephen Clark
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Oracle Experiment

o Take the gold-standard CCGbank dependencies from Section 23
and transform into GRs
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e Provides some indication of the effectiveness of the mapping

e Comparing with DepBank gives the score a perfect CCGbank
parser would achieve
(so provides an upper bound for the CCG parser)

e Other researchers have not done this
e F-score of 84.8%

Stephen Clark
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Comparison with RASP

CCG RASP

Domain-dependent (WsJ) Domain-independent
Automatically-extracted grammar | Manually created grammar
Lexicalised parsing model Unlexicalised model
Derived from the Penn Treebank | Trained on Susanne

RASP provides a strong baseline on DepBank

Stephen Clark



OXFO'RD IJNVI_VEE,"SITY CCGbank S-tagging Perceptron Model Evaluation 71
(GRERUEING, 0000 000 00000000000000 00000000000000800

Final Results*

P R F
RASP 77.66 7498 76.29
coG 8239 81.17 81.77
CCGbank | 86.86 82.75 84.76

*thanks to Rebecca Watson and Ted Briscoe for help with the evaluation
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Conclusion*

e Combination of Machine Learning methods and linguistically
motivated grammars is bearing fruit
— we now have robust, efficient and accurate parsers of real text
producing meaningful output

® CCG parser is accurate and efficient
— we have parsed the entire Gigaword corpus in less than 5 days
using only 18 machines

o Research questions:

e Porting to biomedical domain

e More sophisticated online learning algorithms
e More complex feature sets

e Semi-supervised learning

*Parser, including source code, is freely available
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Towards Richer Output (Bos, 2005)

From 1953 to 1955 , 9.8 billion Kent cigarettes with the filters were
sold , the company said .

| xt | | x2 x3 |
| [ |
(| company(x1) |A| say(x2) B}
| single(x1) | | agent(x2,x1) |
. | | theme(x2,x3) |
| proposition(x3) |
| |
| | x4 I | x5 I | x6 x7 x8 | |
| x3: | [ I [
| (I card(x4)=billion |;(| filter(x5) |A| with(x4,x5) 1)1
| | 9.8(x4) | | plural(x5) | | sell(x6) | |
| | kent(x4) | D | | patient(x6,x4) | |
| | cigarette(x4) | | 1953(x7) | |
| | plural(x4) | | single(x7) | |
| | | 1955(x8) [
| | single(x8) | |
| | to(x7,x8) | |
| | from(x6,x7) | |
| | event(x6) | |
| N, [
| event(x2) |
| |
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