Linguistically Motivated Large-Scale Language Processing

Stephen Clark (with James R. Curran and Mark Steedman) stephen.clark@comlab.ox.ac.uk

Oxford University Computing Laboratory

CLUK/CamLing, Cambridge 2007

(日) (종) (토) (토)

Prelude •000000

CCG 00000000000 2

Typical Output of a Statistical Parser

Parsing with the Penn Treebank (Marcus et al., 1993)

- Largest treebank available for English
- 40,000 sentences of mostly newspaper text ($\rm WSJ$) each manually annotated with a phrase-structure tree
- (head-lexicalised) Context-free grammar rules can be read off the treebank
- Probabilities of rules can be estimated from the treebank (using relative frequencies)
- Search algorithm (eg Viterbi + beam) can find most probable tree for a new sentence

Linguistically Motivated Statistical Parsing

- Key benefits from statistical corpus-based approach are robustness and efficiency
- Accuracy is improving (with more sophisticated Machine Learning, eg CRFs, Perceptron)
- Recent development is the combination of statistical methods and grammar formalisms such as LFG, HPSG, TAG, and $\rm CCG$

COMPUTING LABORATORY

Towards Richer Output (Bos, 2005)

From 1953 to 1955 , 9.8 billion Kent cigarettes with the filters were sold , the company said .

x1	x2 x3	
- (company(x1) A single(x1) 	<pre>say(x2) agent(x2,x1) theme(x2,x3) proposition(x3)</pre>)
	x4 x5 x6 x7 x8 x3: (card(x4)=billion ;(filter(x5) A with(x4,x5))) 9.8(x4) plural(x5) A with(x4,x5)) sel1(x6) plural(x6) cigarette(x4) 1953(x7) plural(x4) isingle(x7) plural(x4) 1955(x8) single(x8) to(x7,x8) from(x6,x7) event(x6)	

7

Statistical Parsing with $\ensuremath{\operatorname{CCG}}$

- CCG is a lexicalised grammar formalism
- CCG was designed to handle the long-range dependencies in, e.g., extraction and coordination
- Transparent interface between surface syntax and underlying semantic representation

8

Statistical Parsing with CCG

- CCG is a lexicalised grammar formalism
- CCG was designed to handle the long-range dependencies in, e.g., extraction and coordination
- Transparent interface between surface syntax and underlying semantic representation
- But surely we sacrifice efficiency and robustness?
 - robustness obtained from using statistical methods and a grammar extracted from a $_{\rm CCG}$ treebank
 - (surprising) efficiency obtained from exploiting lexicalised nature of the formalism (supertagging)

9

Outline

OXFORD UNIVERSITY

COMPUTING

LABORATORY

- Combinatory Categorial Grammar (CCG)
- Parsing with CCG
- Perceptron parsing model
- Parser evaluation on DepBank

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Combinatory Categorial Grammar (CCG)

- Categorial grammar is one of the oldest grammar formalisms (Ajdukiewicz, 1935; Bar-Hillel, 1953)
- Classical categorial grammar is context free
- CCG is *mildly context-sensitive* (Vijay-Shanker & Weir, 1994) – weakly equivalent to Tree Adjoining Grammar
- CCG can analyse crossing dependencies in Dutch (non context-free)

Lexical Categories

- The *category* is the basic grammatical unit in CCG *lexical categories* are the categories assigned to words
- Atomic categories: S, N, NP, PP, ... (not many more)
- Complex categories are built recursively from atomic categories and slashes, which indicate the directions of arguments

Lexical Categories

- The *category* is the basic grammatical unit in CCG *lexical categories* are the categories assigned to words
- Atomic categories: S, N, NP, PP, ... (not many more)
- Complex categories are built recursively from atomic categories and slashes, which indicate the directions of arguments
- Complex categories can encode subcategorisation information
 - transitive verb: $(S \setminus NP)/NP$

Lexical Categories

- The *category* is the basic grammatical unit in CCG *lexical categories* are the categories assigned to words
- Atomic categories: S, N, NP, PP, ... (not many more)
- Complex categories are built recursively from atomic categories and slashes, which indicate the directions of arguments
- Complex categories can encode subcategorisation information
 - transitive verb: $(S \setminus NP)/NP$
- Complex categories can encode modification
 - PP-nominal: $(NP \setminus NP)/NP$

 $\frac{Google}{NP} \quad \frac{bought}{(S \setminus NP)/NP} \quad \frac{Microsoft}{NP}$

> forward application

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Stephen Clark

- > forward application
- < backward application

COMPUTING

LABORATORY

000000000000000

Derivation for an Object Extraction

type-raising > T

COMPUTING

LABORATORY

CCG 000000000000000000

Derivation for an Object Extraction

T type-raisingB forward composition

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

COMPUTING

LABORATORY

Derivation for an Object Extraction

type-raising > T> **B** forward composition

COMPUTING

LABORATORY

Derivation for an Object Extraction

- > Ttype-raising
- > **B** forward composition

COMPUTING

"Non-constituents" in CCG

> **T** type-raising

Stephen Clark

COMPUTING

"Non-constituents" in CCG

T type-raisingB forward composition

COMPUTING

CCG 00000000000000000000000

"Non-constituents" in CCG

T type-raisingB forward composition

COMPUTING

CCG 00000000000000000 24

"Non-constituents" in CCG

- > **T** type-raising
- > **B** forward composition

subj(bought, Google)
obj(bought, Microsoft)

Stephen Clark

COMPUTING LABORATORY

A Non-Standard CCG Derivation

> T type-raising

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● のへの

Stephen Clark

COMPUTING

A Non-Standard CCG Derivation

- > **T** type-raising
- > **B** forward composition

COMPUTING

A Non-Standard CCG Derivation

- > **T** type-raising
- > **B** forward composition

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ ● ●

- > **T** type-raising
- > **B** forward composition

subj(bought, Google)
obj(bought, Microsoft)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Stephen Clark

CCG

Spurious Ambiguity

OXFORD UNIVERSITY

COMPUTING

LABORATORY

- The existence of spurious ambiguity led many in the NLP community to believe that you couldn't parse efficiently with CCG
- Statistical optimisations allow highly efficent parsing with CCG

COMPUTING

LABORATORY

CCG Predicate-Argument Dependencies

- Predicate-argument dependencies represented as 4-tuples
- e.g. company as the object of bought (IBM bought the company):

 $\langle bought, (S \setminus NP_1) / NP_2, 2, company \rangle$

CCG

Parsing with CCG

Stage 1

OXFORD UNIVERSITY

COMPUTING

LABORATORY

- Assign lexical categories to words in the sentence
- Use a *supertagger* to assign the categories
 - based on standard Maximum Entropy tagging techniques

Parsing with CCG

• Stage 1

- Assign lexical categories to words in the sentence
- Use a *supertagger* to assign the categories
 - based on standard Maximum Entropy tagging techniques
- Stage 2
 - Combine the categories using the combinatory rules
 - Can use standard bottom-up ${\rm \scriptscriptstyle CKY}$ chart-parsing algorithm

Parsing with CCG

• Stage 1

- Assign lexical categories to words in the sentence
- Use a *supertagger* to assign the categories
 - based on standard Maximum Entropy tagging techniques
- Stage 2
 - Combine the categories using the combinatory rules
 - Can use standard bottom-up CKY chart-parsing algorithm
- Stage 3
 - Find the highest scoring derivation (decoding)
 - Viterbi algorithm finds this efficently

A CCG Treebank: CCGbank

- CCGbank developed by Hockenmaier and Steedman (Hockenmaier, 2003)
- Phrase-structure trees in Penn Treebank (semi-)automatically converted into CCG *normal-form* derivations
- A normal-form derivation only uses type-raising and composition when necessary (Eisner, 1996)
 – one way of dealing with spurious ambiguity
- But note phrase-structure trees not isomorphic to CCG analyses (e.g. coordination)

36

A Treebank of CCG Normal-Form Derivations

Derivation has been inverted to give a binary tree

Stephen Clark

OXFORD UNIVERSITY CCGbank 0000

S-tagging

-

Inducing a Grammar

COMPUTING

LABORATORY

- CCG is a lexicalised grammar, and so the grammar essentially is the lexicon
 - plus a small number of manually defined combinatory rules
- Lexicon can be read off the leaves of the trees

Inducing a Grammar

LABORATORY

- ≈ 1200 lexical category types in CCGbank (compared with 45 POS tags in Penn Treebank)
- Frequency cut-off of 10 gives \approx 400 types (when applied to sections 2-21 of CCGbank)
 - this set has very high coverage on unseen data (section 00)
- In addition to the grammar, CCGbank provides training data for the statistical models

39

Lexical Category Sequence for Newspaper Sentence

000

Misanthrope	at	Chicago	's	Goodman	Theatre	-LRB-
<u>N</u>	$(\overline{NP \setminus NP})$	$\overline{NP} = \frac{1}{N}$	$(\overline{NP[nb]/N})$	\overline{NP} $\overline{N/N}$	$\frac{1}{N}$	$(NP \setminus NP)/S[dcl]$
Revitalized C	Classics	Take	the S	Stage	in	Windy
N/N	<u>N</u> (S	$[dcl] \setminus NP)/NP$	$\overline{P} N\overline{P[nb]/N}$	\overline{N} (($\overline{S \setminus NP}$)	$(S \setminus NP)$	$)/NP$ $\overline{N/N}$
$City$, Lei \overline{N} , $(\overline{S \setminus S})$	\overline{S} is under the set of \overline{S} is \overline{S} i	$\frac{\& Ar}{\langle S \rangle / (S \backslash S)} S \backslash$ Celim	$\frac{ts}{S} = \frac{-RRB}{-RRB}$, ene, play	ed	by	
NP[nb]/N N	$(NP \setminus NP)$	P)/NP N	, $S[pss]$	\overline{NP} (($\overline{S \setminus NP}$)	$(S \setminus NP)$	/NP
$\frac{Kim}{N/N} \frac{Cattrall}{N}$	$, (\overline{S[dcl]})$	was NP)/(S[pss])	$\frac{misto}{\langle NP \rangle} (\overline{S \backslash NP})$	$\frac{1}{\sqrt{(S \setminus NP)}}$ $(\overline{S[p]})$	ttributed ss]\NP)/I	$\overline{PP} \overline{PP/NP}$
Christina Ha	iag .					
N/N 1	V .					
						★ E ► < E ► E

٢	OXFORD UNIVERSITY COMPUTING LABORATORY	CCGbank 0000	S-tagging ○●○	Perceptron Model	Evaluation 00000000000	40 000000

$_{\rm CCG}$ Supertagging

He		goe	s	on	the	road	with	his	piano
\overline{NP}	$(\overline{S}[$	$dcl] \setminus N$	P)/PP	$\overline{PP/NP}$	$\overline{NP/N}$	\overline{N}	$(\overline{(S \setminus NP)} \setminus (S \setminus NP))/NP$	$\overline{NP/N}$	N
A		bitter	conflict	wi	th	global	implications		
$\overline{NP/}$	N	$\overline{N/N}$	N	$(\overline{NP \setminus N})$	P)/NP	$\overline{N/N}$	N		

- Baseline tagging accuracy is $\approx 72\%$

A Maximum Entropy Supertagger

- Maximum Entropy tagging method can be applied to CCG supertagging
- Features are the words and POS tags in a 5-word window, plus the two previously assigned categories
- Per-word tagging accuracy is \approx 92%
- Multi-tagger can assign categories with a per-word accuracy of 97.7% at only 1.4 categories per word

$$\mathsf{Score}(d|S) = \sum_i \lambda_i f_i(d) = \overline{\lambda} \cdot \phi(d)$$

- Features are counts over d
 - root category of d (plus lexical head)
 - $\langle \text{lexical category, lexical item} \rangle$ pairs
 - rule feature: $S \rightarrow NP \ S \setminus NP$ (plus lexical head)
 - predicate argument dependency: subj(bought, IBM) (plus distance)
 - "Backing-off" features with words replaced by POS tags
- Use Perceptron training to set the weights

COMPUTING

LABORATORY

S-tagging

Perceptron Model 43

イロト 不得 トイヨト イヨト 三日

Training Data from CCGbank

 $\langle \text{persuades}, ((S[dcl] \setminus NP_1)/(S[to] \setminus NP)_2)/NP_3, 1, \text{Marks} \rangle$ $\langle \text{persuades}, ((S[dcl] \setminus NP_1)/(S[to] \setminus NP)_2)/NP_3, 3, Brooks \rangle$ $\langle \text{persuades}, ((S[dcl] \setminus NP_1)/(S[to] \setminus NP)_2)/NP_3, 2, \text{merge} \rangle$ $\langle merge, S[b] \setminus NP_1, 1, Brooks \rangle$

$$\mathsf{Score}(d|S) = \sum_i \lambda_i f_i(d) = \overline{\lambda} \cdot \phi(d)$$

Inputs: training examples (x_i, y_i) Initialisation: set $\overline{\lambda} = 0$

Algorithm:

for
$$t = 1..T$$
, $i = 1..N$
calculate $z_i = \arg \max_{y \in \mathsf{GEN}(x_i)} \Phi(x_i, y) \cdot \overline{\lambda}$
if $z_i \neq y_i$
 $\overline{\lambda} = \overline{\lambda} + \Phi(x_i, y_i) - \Phi(x_i, z_i)$
Outputs: $\overline{\lambda}$

,		
1	V	

S-tagging

Perceptron Model

Evaluation 45

Perceptron Training

	s				W
5	S\NP S/S				
4	S/S S/NP	S\NP S\S (S\NP)\NP			
3	S	S\NP S/NP	NP VP\VP		
2	S/NP S/S	S\NP (S\NP)/PP	PP NP\NP	NP\NP VP\VP	
1	NP N S/(S\NP) (S/S)/NP	(S\NP)/NP S\NP (S\NP)/PP	NP N PP/PP	(NP\NP)/NP (VP\VP)/NP PP	NP N
SENT1:	w1	w2	w3	w4	w5

W0 = <0,0,0,...,0,0,...,0,...0,0,0,0,...,0>

Stephen Clark

900

S-tagging

Perceptron Model

Evaluation 46

Perceptron Training

DECODE:

		L.				
5	S SWP S/S				WO	= <0,0,0,,
4	S/S S/NP	S\NP S\S (S\NP)\NP			f19, f15,	f25, f75, f150 f21, f56, f120
3	s	S\NP S/NP	NP VP\VP			
2	S/NP S/S	S\NP (S\NP)/PP	PP NP\NP	NP\NP VP\VP		
1	NP N S/(S\NP) (S/S)/NP	(S\NP)/NP S\NP (S\NP)/PP	NP N PP/PP	(NP\NP)/NP (VP\VP)/NP PP	NP N	
SENT1:	w1	w2	w3	w4	w5	

N0 = <0,0,0,...,0,0,...,0,...0,0,0,0,...,0>

f1, f20, f55, f100, f210, f345 f19, f25, f75, f150, f211, f346, f450, f500, f525 f15, f21, f56, f120, f212, f348, f419

Stephen Clark

۲

Perceptron Training (Online)

UPDATE WEIGHTS:

S S\NP 5 S/S S\NP S/S S\S 4 S/NP (S\NP)\NP S\NP NP s 3 S/NP VP\VP S/NP PP NP\NP S\NP 2 S/S (S\NP)/PP NP\NP VP\VP NP (S\NP)/NP NP (NP\NP)/NP Ν NP 1 S\NP Ν (VP\VP)/NP S/(S\NP) N (S\NP)/PP PP/PP PP (S/S)/NP SENT1: w2 w3 w5 w1 w4

 $W1 = <0, 1, 0, \dots, -1, 0, \dots, -1, \dots 0, 1, 0, -1, \dots, 0>$

f1, f20, f55, f100, f210, f345 f19, f25, f75, f150, f211, f346, f450, f500, f525 f15, f21, f56, f120, f212, f348, f419

Stephen Clark

500

S-tagging

Perceptron Model

48

Perceptron Training

 $W1 = <\!\!0,\!1,\!0,\!\ldots,\!\!-1,\!0,\!\ldots,\!\!-1,\!\ldots\!0,\!1,\!0,\!\!-1,\!\ldots,\!0\!\!>$

200

S-tagging

Perceptron Model

Evaluation 49

Perceptron Training

W1 = <0,1,0,...,-1,0,...,-1,...0,1,0,-1,...,0>

f11, f21, f57, f90, f145, f250 f21, f25, f76, f151, f222, f348, f444, f507, f575 f17, f45, f155, f167, f678

Stephen Clark

S-tagging

Perceptron Model

Perceptron Training

 $\mathsf{W2} = <\!\!0,\!\!2,\!\!\text{--}\!1,\!\dots,\!\!\text{--}\!1,\!\dots,\!\!0,\!1,\!0,\!\!\text{--}\!2,\!\dots,\!\!\text{--}\!1\!\!>$

f11, f21, f57, f90, f145, f250 f21, f25, f76, f151, f222, f348, f444, f507, f575 f17, f45, f155, f167, f678

Stephen Clark

OXFORD UNIVERSITY COMPUTING LABORATORY

S-tagging

Perceptron Model

Evaluation 51

Averaged Perceptron Training

CCGbank

$$Score(d|S) = \sum_{i} \lambda_i f_i(d) = \overline{\lambda} \cdot \phi(d)$$

Inputs: training examples (x_i, y_i) **Initialisation**: set $\overline{\lambda} = 0$

Algorithm:

for
$$t = 1..T$$
, $i = 1..N$
calculate $z_i = \arg \max_{y \in \mathsf{GEN}(x_i)} \Phi(x_i, y) \cdot \overline{\lambda}$
if $z_i \neq y_i$
 $\overline{\lambda} = \overline{\lambda} + \Phi(x_i, y_i) - \Phi(x_i, z_i)$
Dutputs: $\overline{\lambda}$

$$\gamma_s = \sum_{t=1\dots T, i=1\dots N} \lambda_s^{t,i} / NT$$

LABORATORY Why is Perceptron Training Hard in Practice?

CCGbank

$$Score(d|S) = \sum_{i} \lambda_i f_i(d) = \overline{\lambda} \cdot \phi(d)$$

S-tagging

Perceptron Model

Evaluation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inputs: training examples (x_i, y_i) **Initialisation**: set $\overline{\lambda} = 0$

Algorithm:

OXFORD UNIVERSITY

COMPUTING

for
$$t = 1..T$$
, $i = 1..N$
calculate $z_i = \arg \max_{y \in \text{GEN}(x_i)} \Phi(x_i, y) \cdot \overline{\lambda}$
if $z_i \neq y_i$
 $\overline{\lambda} = \overline{\lambda} + \Phi(x_i, y_i) - \Phi(x_i, z_i)$
Outputs: $\overline{\lambda}$

• Requires an efficient decoder

COMPUTING

LABORATORY

Efficient Decoding with CCG

- Supertagging leaves decoder with (relatively) little left to do
- Each packed chart needs at most 20 MB RAM
- Most probable derivation can be found very quickly with Viterbi

54

Training in Practice

OXFORD UNIVERSITY

COMPUTING LABORATORY

model	RAM	iterations	time (mins)
perceptron	20 MB	10	312
log-linear (CRF)	19 gb	475	91

Stephen Clark

Perceptron Training - Theory

- If the training data is "linearly separable", the Perceptron training algorithm will find the weights which separate the data (in a finite number of iterations)
- If the data is "close" to being separable, the Perceptron will make a small number of mistakes
- A small number of mistakes on the training data does imply good performance on unseen data (Collins, 2002)

S-tagging

Perceptron Model

Parser Output

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Parser Output

lexical₋item	category	slot	head_of_arg
which	$(NP \setminus NP_1)/(S[dcl]_2/NP)$	2	had
which	$(NP \setminus NP_1)/(S[dcl]_2/NP)$	1	confidence
which	$(NP \setminus NP_1)/(S[dcl]_2/NP)$	1	respect
had	$(S[dcl] \setminus NP_1)/NP_2)$	2	confidence
had	$(S[dcl] \setminus NP_1)/NP_2)$	2	respect

- Evaluation is in terms of precision and recall of these dependencies
- Note that lexical category has to be correct for dependency to be correct
- Note that both extracted objects have to be recalled in this example to get 100%

Accuracy on Test Data (Section 23 of CCGbank)

model	LP	LR	F	CAT
log-linear (CRF)	87.72	86.32	87.01	94.11
perceptron	87.80	86.46	87.13	94.17

Stephen Clark

Parser Times for Section 23 (2,407 sentences)

Parser	time (mins)
Collins	45
Charniak	28
Sagae	11
CCG	1.2

• High speed comes from the supertagger (and highly engineered C++)

Formalism Independent Evaluation

CCGbank

- Accuracy figures on CCGbank are inflated and not comparable with non-CCG parser scores
- Need a formalism-independent resource whose output the CCG parser can produce
- Important problem for current parsing research
- DepBank is an ideal candidate

- 700 sentences of Section 23 manually annotated with Grammatical Relations (GRs) by Briscoe and Carroll
- So just need to translate CCG dependencies into DepBank GRs
- Sounds easy?
- Mapping into DepBank is the best method we currently have for comparing parsers across formalisms

-2

Grammatical Relations

conj	coordinator
aux	auxiliary
det	determiner
ncmod	non-clausal modifier
xmod	unsaturated predicative modifier
cmod	saturated clausal modifier
pmod	PP modifier with a PP complement
ncsubj	non-clausal subject
xsubj	unsaturated predicative subject
csubj	saturated clausal subject
dobj	direct object
obj2	second object
iobj	indirect object
pcomp	PP which is a PP complement
xcomp	unsaturated VP complement
ccomp	saturated clausal complement
ta	textual adjunct delimited by punctuation
	キロマ キョット キョット

Stephen Clark

◆□> <□> < E> < E> < E > < 0 < 0</p>

Example CCG Dependencies and GRs

CCGbank

But Mr. Barnum called that a worst-case scenario.

```
Mr._2 N/N_1 1 Barnum_3
called_4 ((S[dcl]\NP_1)/NP_2)/NP_3 3 that_5
worst-case_7 N/N_1 1 scenario_8
a_6 NP[nb]/N_1 1 scenario_8
called_4 ((S[dcl]\NP_1)/NP_2)/NP_3 2 scenario_8
called_4 ((S[dcl]\NP_1)/NP_2)/NP_3 1 Barnum_3
But_1 S[X]/S[X]_1 1 called_4
```

```
(ncmod _ Barnum_3 Mr._2)
(obj2 called_4 that_5)
(ncmod _ scenario_8 worst-case_7)
(det scenario_8 a_6)
(dobj called_4 scenario_8)
(ncsubj called_4 Barnum_3 _)
(conj called_4 But_1)
```


Mapping CCG Dependencies to GRs

CCG lexical category	arg slot	GR
$(S[dcl] \setminus NP_1)/NP_2$	1	(ncsubj %l %f _)
$(S[dcl] \backslash NP_1) / NP_2$	2	(dobj %l %f)
$(S \setminus NP)/(S \setminus NP)_1$	1	(ncmod _ %f %l)
$(NP \setminus NP_1)/NP_2$	1	(ncmod _ %f %l)
$(NP \setminus NP_1)/NP_2$	2	(dobj %l %f)
$NP[nb]/N_1$	1	(det %f %l)
$(NP \setminus NP_1)/(S[pss] \setminus NP)_2$	1	(xmod _ %f %l)
$(NP \setminus NP_1)/(S[pss] \setminus NP)_2$	2	(xcomp _ %l %f)
$((S \setminus NP) \setminus (S \setminus NP)_1) / S[dcl]_2$	1	(cmod _ %f %l)
$((S \setminus NP) \setminus (S \setminus NP)_1) / S[dcl]_2$	2	(ccomp _ %l %f)
$((S[dcl] \backslash NP_1)/NP_2)/NP_3$	2	(obj2 %1 %f)
$(S[dcl] \setminus NP_1) / (S[b] \setminus NP)_2$	2	(aux %f %l)

Mapping is Many-to-Many

CCG lexical category	slot	GR	constraint
$(S[dcl] \setminus NP_1)/NP_2$	2	(xcomp _ %l %f)	word=be
		(dobj %l %f)	
$(S[dcl] \setminus NP_1)/PP_2$	2	(iobj %l %f)	cat = PP/NP
		(xcomp _ %l %f)	$cat=PP/(S[ng]\setminus NP)$

The parent *is Imperial*

The parent sold Imperial

The loss stems from several factors

The future depends on building ties

• Different "heads":

The group said it would consider withholding royalty payments Sen. Mitchell, who had proposed the streamlining

- More subjects in CCGbank
- Coordinations as arguments: The president and chief executive officer said the loss stems from several factors.
- Argument/adjunct distinction (ncmod vs. iobj)
- Trivial differences such as tokenisation, shorter sentences in DepBank(!)

- Take the *gold-standard* CCGbank dependencies from Section 23 and transform into GRs
- Provides some indication of the effectiveness of the mapping
- Comparing with DepBank gives the score a perfect CCGbank parser would achieve (so provides an upper bound for the CCG parser)
- Other researchers have not done this

- Take the *gold-standard* CCGbank dependencies from Section 23 and transform into GRs
- Provides some indication of the effectiveness of the mapping
- Comparing with DepBank gives the score a perfect CCGbank parser would achieve (so provides an upper bound for the CCG parser)
- Other researchers have not done this
- F-score of 84.8%

<ロト < 母 ト < 臣 ト < 臣 ト 三 の < で</p>

Comparison with $\ensuremath{\operatorname{RASP}}$

CCG	RASP
Domain-dependent (WSJ)	Domain-independent
Automatically-extracted grammar	Manually created grammar
Lexicalised parsing model	Unlexicalised model
Derived from the Penn Treebank	Trained on Susanne

 ${\rm RASP}$ provides a strong baseline on DepBank

S-tagging

Perceptron Model

Final Results*

	Р	R	F
RASP	77.66	74.98	76.29
CCG	82.39	81.17	81.77
CCGbank	86.86	82.75	84.76

*thanks to Rebecca Watson and Ted Briscoe for help with the evaluation

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - の久(?)

Stephen Clark

Conclusion*

• Combination of Machine Learning methods and linguistically motivated grammars is bearing fruit

– we now have robust, efficient and accurate parsers of real text producing meaningful output

- CCG parser is accurate and efficient
 - we have parsed the entire Gigaword corpus in less than 5 days using only 18 machines
- Research questions:
 - Porting to biomedical domain
 - More sophisticated online learning algorithms
 - More complex feature sets
 - Semi-supervised learning

*Parser, including source code, is freely available

◆□> <□> < E> < E> < E > < 0 < 0</p>

Towards Richer Output (Bos, 2005)

From 1953 to 1955 , 9.8 billion Kent cigarettes with the filters were sold , the company said .

x1 x2 x3 			-
	x1	x2 x3	
<pre>(company(x1) A say(x2) single(x1) agent(x2,x1) theme(x2,x3) proposition(x3) x5 x6 x7 x8 x3: (card(x4)=billion ;(filter(x5) A with(x4,x5))) 9.8(x4) plural(x5) sel1(x6) 8.1(x4) putral(x5) sel1(x6) kent(x4) putral(x5) sel1(x6) cigarette(x4) 1953(x7) plural(x4) single(x7) single(x8) to(x7,x8) from(x6,x7) event(x6) event(x6) </pre>			-1
<pre> single(x1) agent(x2,x1) theme(x2,x3) proposition(x3) x4 x5 x6 x7 x8 x3: ([card(x4)=billion ;(filter(x5) A with(x4,x5))) 9.8(x4) plural(x5) sell(x6) kent(x4) patient(x6,x4) cigarette(x4) patient(x6,x4) plural(x4) single(x7) plural(x4) single(x7) single(x8) to(x7,x8) to(x7,x8) event(x6) pural(x6,x7) </pre>	(company(x1) A	sav(x2)	1
theme(x2,x3) proposition(x3) x4 x5 x6 x7 x8 x3: (card(x4)=billion ;(filter(x5) A with(x4,x5)))) 9.8(x4) plural(x5) sell(x6) kent(x4) patient(x6,x4) cigarette(x4) patient(x6,x4) plural(x4) psign(x7) single(x7) 1955(x8) single(x8) from(x6,x7) event(x6) 	single(v1)	agent(x2 x1)	i
<pre> transformation (x3) x5 x6 x7 x8 x3: (card(x4)=billion ;(filter(x5) A with(x4,x5))) 9.8(x4) plural(x5) sell(x6) kent(x4) patient(x6,x4) cigarette(x4) 1955(x8) plural(x4) single(x7) plural(x4) single(x7) cigarette(x4) 1955(x8) cigarette(x4) 1955(x8) cigarette(x4) 1955(x8) cigarette(x4) 1955(x8) cigarette(x4) 1955(x8) cigarette(x4) 1955(x8) cigarette(x4) 1955(x8) </pre>	1 010610(01) 1	$\pm bomo(x2, x3)$	÷
proposition(x3) x4 x5 x6 x7 x8 x3: ([card(x4)=billion ;(filter(x5) A with(x4,x5)])) 9.8(x4) plural(x5) sell(x6) kent(x4) patient(x6,x4) cigarette(x4) single(x7) plural(x4) single(x7) plural(x4) single(x8) 1955(x8) 1955(x8) 1955(x8) 1955(x8) 1955(x8) 	··		- 1
x4 x5 x6 x7 x8 x3: ([card(x4)=billion ; ([filter(x5) A with(x4,x5))) 9.8(x4) plural(x5) ell(x6) kent(x4) plural(x5) ell(x6) kent(x4) 1953(x7) <td></td> <td>proposition(x3)</td> <td>-!</td>		proposition(x3)	-!
x4 x5 x6 x7 x8 x3: (1 card(x4)=billion ;((filter(x5) A with(x4,x5)))) 9.8(x4) plural(x5) sell(x6) 9.8(x4) plural(x5) sell(x6) kent(x4) plient(x6,x4) cigarette(x4) 1953(x7) plural(x4) single(x7) plural(x4) single(x8)			I
<pre>x3: ((card(x4)=billion ;(filter(x5) A with(x4,x5)))) 9.8(x4) plural(x5) sell(x6) kent(x4) patient(x6,x4) cigarette(x4) patient(x6,x4) plural(x4) single(x7) 1955(x8) 1955(x8) 1955(x8) 1955(x8) 1955(x8) 1975(x8) </pre>		x4 x5 x6 x7 x8	
<pre>(card(x4)=billion ;(filter(x5) A with(x4,x5))) 9.8(x4) plural(x5) sell(x6) kent(x4) patient(x6,x4) cigarette(x4) 1953(x7) plural(x4) single(x7) 1955(x8) 1955(x8) </pre>		x3:	
9.8(x4) plural(x5) sell(x6) kent(x4)		<pre>(card(x4)=billion ;(filter(x5) A with(x4,x5)))</pre>	1
<pre> kent(x4) patient(x6,x4) cigarette(x4) 1953(x7) plural(x4) 1955(x8) 195</pre>		9.8(x4) plural(x5) sell(x6)	1
cigarette(x4) 1953(x7) plural(x4) single(x7) 1955(x8) single(x8) to(x7,x8) from(x6,x7) event(x6) 		kent(x4) $ $ $ $ patient(x6.x4) $ $	Ì
		cigarette(x4) 1953(x7)	i
		$ n _{ural}(x4) single(x7) $	i
			÷
			- 1
to(x7,x8) from(x6,x7) event(x6) 		Single(x8)	. !
from(x6,x7) event(x6) 		to(x7,x8)	1
event(x6) 		from(x6,x7)	
		event(x6)	
			1
event(x2)		event(x2)	1
			i