
An Obfuscation for Binary Trees
Stephen Drape∗

∗The University of Auckland, Auckland, New Zealand

Abstract— An obfuscation is a program transformation
which aims to make a program “harder to understand” so
that reverse engineering of that program becomes more dif-
ficult. This paper presents a fresh and promising approach
to obfuscation by considering the obfuscation of objects,
whose methods are modelled as functional programs. As an
example of our approach, we concentrate on an object of
binary trees.

We use the formal method approach to program cor-
rectness which enables us to establish a framework that
produces obfuscations of tree objects that exploit properties
of trees. Establishing the correctness of imperative obfusca-
tions can be a challenging task but our approach enables
this to be achieved easily for all our obfuscations.

Keywords: Obfuscation, Refinement, Binary Trees

I. INTRODUCTION AND RELATED WORK

An obfuscation is a behaviour-preserving program
transformation which aims to make a program “harder
to understand” so that reverse engineering of the program
is more difficult. Our contribution to the study of obfus-
cation is to consider obfuscation as data refinement [5]
and we propose a framework for objects which we view
(for the purpose of refinement) as data-types, calling
the methods operations. We consider abstract data-types
and define obfuscations for the whole data-type. As an
example of our approach, we present a simple data-type
for binary trees and give obfuscations for this data-type.

Two current approaches to obfuscation are discussed
in Collberg et al. [3] and Barak et al. [1]. Collberg
et al. define metrics which try to qualify “harder to
understand” and consider object-oriented obfuscations.
Barak et al. take a formal approach to obfuscation and
prove that their notion of obfuscation is impossible to
achieve. Their definition of obfuscation is too strong for
our purposes and so we consider a weaker notion. We
will be content with obfuscations that are difficult (but
not necessarily impossible) to undo. In this paper, we do
not explicitly give a definition pertinent to our approach
— a possible definition is given in [6]. This definition,
called an “assertion obfuscation”, requires that a list of
assertions is supplied when data-types are defined. The
definition is based on how much “harder” it is to prove
these assertions for obfuscated operations. Thus when
producing data-types obfuscations we could, for instance,
ensure that our obfuscations have more clauses in their
definitions or use more complicated data structures.

The current view of code obfuscation [3] concentrates
on concrete data structures such as variables and arrays
and considers obfuscations for object-oriented languages.
With that view, we can represent trees imperatively using
arrays — an example conversion is given in [4]. We could
then use standard array obfuscations [3] to obfuscate

Tree α ::= Null | Fk (Tree α) α (Tree α)
flatten :: Tree α → List α
mem :: α → Tree α → B

mkT :: List α → Tree α

Fig. 1. Data-Type for Binary Trees

our operations. Instead we consider abstract data-types
— a local state accessible by only declared operations.
Why do we go to the effort of using data-types rather
than using arrays directly? Apart from making proofs
of correctness easier, using data-types gives us an extra
level in which to add obfuscations. Going immediately
to arrays forces us to think in array terms and we
would have only array obfuscations at our disposal. In
particular, since we view a tree as an abstract data-type
then the usual tree transformations (such as swapping
two subtrees) are naturally available; they would be more
difficult to conceive using arrays. As a result we have two
opportunities for obfuscation; the first using our new data-
types approach and the second using standard imperative
methods.

We use the functional language Haskell [8] to provide
a framework for specifying data-types and obfuscations
(note that we are not aiming to obfuscate Haskell code
but to use Haskell as a modelling language). Since we
use Haskell for our new approach we have the benefits of
the elegance of the functional style and the abstraction of
side-effects.

II. BINARY TREES

Fig. 1 describes our binary tree data-type and for
reasons of space we only consider three operations —
a more detailed binary tree data-type is discussed in [6].
Our binary trees are finite with each node containing a
well-defined value of type α (so we do not allow ⊥) and
for the rest of this paper we take α = Z. We now give
definitions (taken from [2]) for each of the operations
in our data-type. The flatten operation takes a tree and
returns a list of values:

flatten Null = []
flatten (Fk lt v rt) = (flatten lt) ++[v] ++(flatten rt)

We can check whether a particular value is contained
within a tree using the membership operation mem:

mem p Null = False
mem p (Fk lt v rt) = (v == p) ∨ mem p lt

∨ mem p rt

To define mkT we have many choices of how to make a
tree from a list. We adapt the definition in Bird [2, Page
183] to define a function which creates a binary tree of
minimum height from a list of elements:

mkT [] = Null
mkT xs = Fk (mkT ys) z (mkT zs)

where (ys, (z : zs)) = splitAt (div |xs| 2) xs

This definition of mkT not only builds minimal height
trees but also builds balanced trees. Note that we do not
require that the trees in our data-type are balanced.

III. OBFUSCATION AS DATA REFINEMENT

Suppose that we have a data-type D and we want
to obfuscate it to obtain the data-type O. To provide a
framework for obfuscating data-types (and establishing
the correctness of the obfuscations) we view obfuscation
as data refinement [5] and in particular we consider
obfuscation as functional refinement. So for obfuscation
we require an abstraction function af :: O → D and a
data-type invariant dti such that for elements x :: D and
y :: O

x� y ⇐⇒ (x = af(y)) ∧ dti(y) (1)

The arrow � is read as “. . . is data refined by . . . ” (or in
our case, “. . . is obfuscated by. . . ”) which expresses how
the data-types are related. In our situation, it turns out that
af is a surjective function so we can find an obfuscation
function of :: D → O that satisfies of(x) = y ⇒ x� y
and thus

af · of = id (2)

Suppose that we have an operation f :: D → D defined in
our data-type. Then to obfuscate f we want an operation
fO :: O → O which preserves the correctness of f . In
terms of data refinement, we say that fO is correct (with
respect to f) if it is satisfies:

(∀x :: D; y :: O) • x� y ⇒ f(x)� fO(y) (3)

If fO is a correct refinement (obfuscation) of f then we
write f � fO. From (1) and (3), we have the following
equation:

f · af = af · fO (4)

where · means functional composition. Thus we can prove
that a definition of fO is correct by using this equation.

IV. OBFUSCATING TREES

We would like an obfuscation for our binary tree data-
type that changes the structure of binary trees whilst
allowing us to recover both the information and the struc-
ture if we so wish, with minimum overhead. Tree trans-
formations such as rotations and reflections are suitable
obfuscations, but for this paper, we consider converting a
binary tree into a ternary tree. This conversion is chosen
since it gives us the flexibility to add extra information
as well as performing some tree transformations.

We convert a binary tree to a ternary tree by adding an
extra subtree at every node of the binary tree. If a binary

7

5

1 2

6

3 4

�
7

* 6

3

*

4

*

*

5

* 2

*

1

*

The symbol “*” stands for different arbitrary ternary trees.

Fig. 2. An example refinement

tree t2 is represented by a ternary tree t3, then by (1) we
need an abstraction function af and predicate dti such
that t2 = af(t3) ∧ dti(t3).

A. Particular Representation

For our representation, we would like to convert the
binary tree Fk xt v yt into the ternary tree Fk3 v lt ct rt
so that the ternary trees lt, ct and rt depend on v, xt and
yt. Since a ternary tree can carry more information than a
binary tree we can add “junk” to the ternary tree to aid the
obfuscation. We then construct our abstraction function so
that this junk is ignored — this gives us the opportunity to
create random junk. The type definition for ternary trees
is:

Tr3 α ::= Null3 | Fk3 α (Tr3 α) (Tr3 α) (Tr3 α)

We consider the following conversion:

Fk lt v rt�
{

Fk3 v lt3 rt3 junka if v is even
Fk3 v junkb rt3 lt3 otherwise

and the tree Null is converted to Null3. An example is
given in Fig. 2.

For data refinement, we need to state an abstraction
function that converts a ternary tree into a binary one —
for our refinement, we call this function to2:

to2 Null3 = Null
to2 (Fk3 v lt ct rt)∣∣∣∣ even v = Fk (to2 lt) v (to2 ct)

otherwise = Fk (to2 rt) v (to2 ct)

This means that for our representation

t2 � t3 ⇐⇒ t2 = to2 (t3)

with the data-type invariant True. We do not have a
left inverse for this function as any binary tree can
be represented by more than one ternary tree (to2 is
surjective but not injective). Using (2), we can construct
a right inverse, to3 (i.e. it satisfies to2 · to3 = id).

To convert a binary tree into a ternary tree, we have
many choices of how to create the junk to be inserted
into the tree at the appropriate places. Thus we can
construct many functions that are right inverses to to2.
The complexities of the binary tree operations defined
earlier depends on the number of nodes or on the height.
Thus if we want our ternary tree operations to have similar
complexities then we should make sure that the height of a
ternary tree is similar to the binary tree which it represents

and that we do not introduce too many extra elements. As
an example, we define

to3 Null = Null3
to3 (Fk lt v rt)∣∣∣∣ even v = Fk3 v (to3 lt) (to3 rt) (to3’ lt)

otherwise = Fk3 v (to3’ rt) (to3 rt) (to3 lt)

where

to3’ Null = Null3
to3’ (Fk lt v rt)

= Fk3 (3 × v + 2) (to3 lt) (to3’ lt) (to3’ rt)

This function keeps the height of the tree the same. The
mapping λv.(3v+2) was chosen so that the odd and even
numbers follow the same distribution and so that the junk
values are not too large (and therefore do not “stand out”
from the “real” values).

B. Ternary Operations

Now, we need to define operations for our ternary tree
representation — flatten3 is straightforward:

flatten3 Null3 = []
flatten3 (Fk3 v lt ct rt)∣∣∣∣ even v = (flatten3 lt) ++[v] ++(flatten3 ct)

otherwise = (flatten3 rt) ++[v] ++(flatten3 ct)

For mem3, we can define the following:

mem3 p Null3 = False
mem3 p (Fk3 v lt ct rt) =

(v == p) ∨ (mem3 p ct) ∨
(if even v then (mem3 p lt) else (mem3 p rt))

We can see that these operations have extra conditionals
and, as these tests are not expensive, the obfuscated
operations have the same complexity as the unobfuscated
ones. To prove these obfuscations are correct we need to
show that flatten3 = flatten·to2 and mem3 = mem·to2.
The details of these proofs are omitted.

C. Making Ternary Trees

When we introduced binary trees we defined an oper-
ation mkT to convert a list into a binary tree. We can
also define a corresponding operation mkT3 that converts
a list into a ternary tree and so satisfies the relationship:
mkT = to2 ·mkT3. However as with the definition of an
obfuscation function, we have many choices of mkT3 that
satisfy the above equation. For example, we can define
mkT3 so that mkT3 = to3 · mkT using the definition of
to3 from Section IV-A. We can use this equation to derive
the following definition of mkT3:

mkT3 [] = Null3
mkT3 xs∣∣∣∣ even z = Fk3 z (mkT3 ys)(mkT3 zs)(mkT’3 ys)

otherwise = Fk3 z (mkT’3 zs)(mkT3 zs)(mkT3 ys)
where (ys, (z : zs)) = splitAt (div |xs| 2) xs

and

mkT’3 [] = Null3
mkT’3 rs =

Fk3 (3 ∗ q + 2) (mkT3 ps) (mkT’3 ps) (mkT’3 qs)
where (ps, (q : qs)) = splitAt (div |rs| 2) rs

(the details of this derivation are omitted). Note that if
too much “junk” is created then this will have an adverse
effect on the efficiency of the obfuscated operations.

V. CONCLUSIONS

In this paper we have discussed a new, promising ap-
proach to obfuscation by considering abstract data-types
and refinement. In particular, a refinement suitable for
creating tree obfuscations was developed. The examples
given have been made simple in order to demonstrate
the techniques involved. We can create more complicated
abstraction functions by using a function which partitions
our value type α into n different partitions. In Section I
we discussed the definition of an assertion obfuscation.
We have seen that our obfuscated tree operations use
a more complicated data structure and the definitions
contain extra tests — thus proving properties about these
obfuscations should be harder and so will be “more
obfuscated” according to the definition of [6].

We have demonstrated how to obfuscate binary trees by
representing them as ternary trees. This representation has
allowed us to add bogus elements and so hide the “real”
information. We must ensure that we do not adversely
affect the efficiency of our operations by adding too much
junk which would increase the size of the trees. However,
these extra values give us further scope for obfuscation.
For example, if we had an operation that inserted an
element in a binary tree then, as an obfuscation, we could
try to delete this element from the junk part of a ternary
tree. We can actually specify a set of operations that
represent the same function and we could choose one
operation randomly. In fact, our approach gives plenty
of opportunities for randomization. On each execution,
we can have a different abstraction function (by choosing
a suitable partition function), different junk values in
a ternary tree representation and a different definition
for each operation. Each of these choices can be made
randomly and so we can create different program traces.
This is a very important benefit of our approach as
this randomness provides additional confusion for an
adversary and helps to keep the unobfuscated operations
secret.

For our tree obfuscation, we have a trade-off between
how much junk we place in a ternary tree and the
complexity of the obfuscated operations. Putting in too
much junk makes building the ternary trees expensive
and operating on the junk can have a severe impact on the
efficiency. However, we should ensure that our operations
act on the junk in some way (so that it is not obvious that
the junk is not significant). Thus we should aim to keep
the height and size of the ternary tree roughly the same
as that of the binary tree it represents.

In [6] an imperative program that deletes an element
from a binary tree is given and it is shown how this
program can be obfuscated using the techniques described
in this paper. One area for future work is to explore how
we can use these techniques to automatically obfuscate
imperative programs. Using imperative programs gives us

different opportunities for obfuscation. For instance, trees
can be implemented using pointers and we can exploit
the difficulty in performing pointer analysis to construct
obfuscations. For example, we could change binary trees
into ternary trees and in the junk we could add in bogus
pointers that point back up the tree. Obfuscations can
often be used to help disguise watermarks. A software
watermark is a “secret” (such as a piece of code or a data
structure) embedded in a program which can be used to
prove software ownership. A watermark called a PPCT
(Planted Plane Cubic Tree) is described in Palsberg et
al. [7] — this particular watermark is a special kind of
binary tree. The obfuscation described in this paper could
be used in conjunction with the PPCT watermark to make
the watermark more obscure. In fact, the “junk” part of a
ternary tree could itself be used as a watermark.

REFERENCES

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. P. Vadhan, and K. Yang. On the (im)possibility of obfuscat-
ing programs. In Proceedings of the 21st Annual International
Cryptology Conference on Advances in Cryptology, pages 1–18.
Springer-Verlag, 2001.

[2] R. Bird. Introduction to Functional Programming in Haskell.
Prentice Hall, 1998.

[3] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical Report 148, Department of
Computer Science, University of Auckland, July 1997.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (Second Edition). The MIT Press, 2001.

[5] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-
Oriented Proof Methods and their Comparison. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press,
1998.

[6] S. Drape. Obfuscation of Abstract Data-Types. DPhil thesis, Oxford
University Computing Laboratory, 2004.

[7] J. Palsberg, S. Krishnaswamy, K. Minseok, D. Ma, Q. Shao, and
Y. Zhang. Experience with software watermarking. In Proceedings
of the 16th Annual Computer Security Applications Conference,
ACSAC ’00, pages 308–316. IEEE, 2000.

[8] S. Peyton Jones. The Haskell 98 language and libraries: the revised
report. Journal of Functional Programming, 13(1), January 2003.

