
MFPS 2021

Monads for measurable queries in probabilistic databases

Swaraj Dash1

Department of Computer Science
University of Oxford

Oxford, United Kingdom

Sam Staton2

Department of Computer Science
University of Oxford

Oxford, United Kingdom

Abstract

We consider a bag (multiset) monad on the category of standard Borel spaces, and show that it gives a free measurable commutative
monoid. Firstly, we show that a recent measurability result for probabilistic database queries (Grohe and Lindner, ICDT 2020)
follows quickly from the fact that queries can be expressed in monad-based terms. We also extend this measurability result to a
fuller query language. Secondly, we discuss a distributive law between probability and bag monads, and we illustrate that this is
useful for generating probabilistic databases.

Keywords: Monads, probabilistic programming, probabilistic databases.

1 Introduction

Probabilistic databases cater for uncertainty in data. There may be uncertainty about whether rows should
be in a database, or uncertainty about what values certain attributes should have.

For example, consider a database of movies. We might have a table that assigns the gross amount to
each movie, which may be quite uncertain for older movies. We might have a table that records which actors
appeared in which movies, and there may be uncertainty about whether a particular actor appeared in a given
movie. The uncertainty might come from incorrect text processing, for example if the information was scraped
off internet forums, or just noise in measurement, e.g. if the gross amount is difficult to calculate precisely. This
is a simple example, but probabilistic databases have applications in other areas of information extraction as
well as in scientific data management, medical records, and in data cleaning. See the textbook [26] for further
examples.

In this paper, we argue that the semantics of probabilistic databases lies in combining a probability
monad, P , with a bag monad B (aka multiset). This builds on the long-established tradition of using monads
to structure computational effects in functional programming [29,3].

A good semantic analysis is important in view of the recent work of Grohe and Lindner [11,12] which builds
on [16,5]. This new line of work breaks with the traditional approach of having a fixed finite support for the
probabilistic database, and argues that the support should be infinite, possibly uncountable. For example,
it may be that the gross takings from a movie are approximated as a real number taken from a normal
distribution, and it may be that the number of actors appearing in a movie is unknown and unbounded. This
leads to semantic complications and introduces issues of measurability.

1 Email: swaraj.dash@cs.ox.ac.uk
2 Email: sam.staton@cs.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:swaraj.dash@cs.ox.ac.uk
mailto:sam.staton@cs.ox.ac.uk

Dash and Staton

1.1 Two monads

We argue that probabilistic databases are best understood as inhabitants of a set, or space,

P (B(X))

where

• X is a space of all records (aka rows, tuples) that are allowed according to the schema. For example, in the
movie database above, we put X = MovieFact where

MovieFact =
(

cast : (Actor ×Movie)] gross : (Movie× R)
)

since we can either record that an actor appeared in a movie, or that a movie had a certain gross. (Here we
are using a standard notation for tagged disjoint unions.)

• B is a monad of bags (aka multisets). So B(X) is the space of bags over X, and these are the deterministic
databases for the given schema.

• P is a probability monad. So P (B(X)) is the space of probability distributions (or measures) over the space
of deterministic databases, and these are the probabilistic databases for the given schema.

In the traditional case, studied in [26], the probability distributions have finite support. In the general setting
proposed by [12], the support of a distribution is uncountable. This is formalized using measure theory, by
placing a σ-algebra on X, by deriving a σ-algebra on B(X) and P (B(X)). We can regard this as moving from
the category of sets to a category of measurable spaces. As we will show (Theorem 3.8), the bag monad B
extends to a monad on the category of measurable spaces. We can then regard P as the Giry monad on the
category of measurable spaces [8].

We clarify a subtle point. The support of the distributions in P (B(X)) might be infinite, and this means
that the set of records that have a chance of appearing in the database can be infinite. But this is a different
issue from the sizes of the bags under consideration, which will always be finite. For example, there are infinite
possibilities as to what the gross from a movie is, but the number of movies will always be finite. The number
of actors in a movie is unbounded, but there is never an infinite cast list for a particular movie.

1.2 Measurable queries

In the deterministic setting, a query (aka view) translates a database from one schema to another. For example,
we might ask,

“Which actors appeared in films that grossed at least $200m?” (1)

This is a function q : B(MovieFact)→ B(Actor). For probabilistic databases, the usual approach is to consider
queries on deterministic databases, and then lift them to probabilistic databases. Semantically, this can
regarded as the functorial action of the monad P , which gives a translation between probabilistic databases:

P (q) : P (B(MovieFact))→ P (B(Actor))

Notice that if there is uncertainty about whether an actor appeared in a movie, or about what the gross of the
movie was, then this will lead to uncertainty about whether that actor should appear in this view.

This functorial action P (q) amounts to pushing forward the probability measure. But this is only legitimate
if the query q is measurable. In Theorem 4.1, we show that all queries are measurable provided they are definable
in the standard BALG query language for bags [13].

Our proof of measurability is straightforward, because most of the BALG query operations are directly
definable from the monad structure of B (Theorem 3.8). The remaining operations are easily definable from
an fold construction (Theorem 3.5), which is connected to the fact that B(X) is the free commutative monoid
on X.

Measurability of a fragment of BALG is perhaps the main technical result of [12]. That work was ground-
breaking, but here we have two additional contributions:

(i) we show that the full language BALG is measurable, which allows us to also treat aggregation queries
within the same framework, and

(ii) we demonstrate that the proof of measurability is almost immediate from the categorical properties of the
monad B.

2

Dash and Staton

We give the full details of BALG in Section 4. But for now we note that another way to see that the particular
query (1) is measurable is that it can be written in the monad comprehension syntax as

q(b) = {| a | cast(a,m)← b, gross(m′, r)← b,m = m′, r > 200 000 000 |}

This comprehension syntax works for any strong monad [29], indeed it is merely a convenient shorthand for

b >>= λx. b >>= λy.

{
return(a) if x = cast(a,m), y = gross(m, r) and r > 200 000 000

∅ otherwise

where >>= is the monad bind (Kleisli composition) and return is the monad unit. The predicates (>, =) are
well-known to be measurable on the domains where they are used here, and so the query must be measurable.

As an aside, we remark that much work in the database literature is on computing the results of queries
efficiently. In the probabilistic setting, this is even more of a problem. But in this paper (as in [12]) we are
focusing on the semantic aspects.

1.3 Generating probabilistic databases

Having established the measurability of the query language, in Section 5 we turn to investigate languages for
generating probabilistic databases. For this we turn to the composite of the monads, P ◦ B, which we have
already shown to be a monad in [6] (see also [15,18]). As we demonstrate, the language for the monad P ◦ B
appears to be ideal for generating probabilistic databases, at least as an intermediate language.

The paradigm for using infinite support probabilistic databases is still under debate, but typically one would
begin from a deterministic database, and then add some randomness. Very simple kinds of randomness include

• adding noise to certain attributes, such as the movie gross, or blood pressure in a medical database;

• adding or deleting records at random, if there was uncertainty in the accuracy of those records.

We demonstrate how this can be done easily in the monad P ◦B. We also investigate a more elaborate model
based on a GDatalog program, which translates very cleanly into the language of the P ◦B monad.

1.4 Connection with other work on programming semantics

Our work discusses probabilistic databases in the context of monads and functional programming, and so
we bring the general ideas of probabilistic databases to the language of functional probabilistic programming
languages. We have already prototyped our examples simply by implementing a bag monad in Haskell and
using a standard Haskell library for probabilistic inference. The idea of applying ideas from probabilistic
programming to databases already has some momentum on the practical side, through languages such as
BayesDB [25] and PClean [19]. Slightly further afield are probabilistic logic languages such as Blog [30] and
ProbLog [7].

Probabilistic programming is a general approach for statistics. Within statistics, inhabitants of P (B(X))
are well-known and important, and called ‘point processes’.

Further over to the semantic side, we note that the relevance of bags for probability has recently been em-
phasised by Jacobs [15]. Bags are a form of non-determinism, and the problem for combining non-determinism
and probability is notoriously subtle, although there has been plenty of recent progress [9,18,22,21,27,28]. The
particular combination we use here is trouble-free.

1.5 Summary

In this paper we show the following.

• The Bag monad extends to a strong monad on standard Borel spaces (Thm. 3.8).

• It is a free commutative monoid, and has a ‘fold’ construction (Thm. 3.7, Thm. 3.5).

• The BALG language for database queries always yields functions that are measurable (Thm. 4.1).

• The composite monad P ◦ B combines probability and bags and is useful for generating probabilistic
databases.

Acknowledgements.
We are grateful to Peter Lindner for discussions. It has also been helpful to discuss this work with Martin

Grohe, Bart Jacobs, Sean Moss, and Philip Saville. We acknowledge funding from Royal Society University
Research Fellowship, the ERC BLAST grant, and the Air Force Office of Scientific Research under award

3

Dash and Staton

number FA9550-21-1-0038. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the United States Air Force.

2 Mathematical preliminaries

2.1 Measure theory

Definition 2.1 The Borel sets form the least collection ΣR of subsets of R containing intervals (a, b) ⊆ R
which is closed under complementation and countable unions.

Definition 2.2 A σ-algebra on a set X is a nonempty family ΣX of subsets of X that is closed under com-
plements and countable unions. The pair (X,ΣX) is called a measurable space (we just write X when ΣX can
be inferred from context).

Given (X,ΣX), a measure is a function ν : ΣX → R∞+ such that for all countable collections of disjoint sets
Ai ∈ ΣX , ν (

⋃
iAi) =

∑
i ν(Ai). In particular, ν(∅) = 0. It is a probability measure if ν(X) = 1.

Definition 2.3 Let (X,ΣX) and (Y,ΣY) be measurable spaces. A measurable function f : X → Y is a
function such that f−1(U) ∈ ΣX when U ∈ ΣY .

Definition 2.4 A measurable space (X,ΣX) is a standard Borel space if it is either measurably isomorphic to
(R,ΣR) or it is countable and discrete.

(This is equivalent to the usual definition of standard Borel spaces, which involves Polish spaces.)
Standard Borel spaces include the measurable spaces of real numbers and the integers, as well as all finite

discrete spaces such as the booleans. So all the measurable spaces that arise in probabilistic databases are
standard Borel, and indeed the restriction to standard Borel spaces is also made in Grohe and Lindner (see [12,
Section 3.1]). Standard Borel spaces are closed under countable products and countable coproducts. Moreover,
the equality predicate X ×X → Bool is measurable when X is a standard Borel space.

2.2 Monads

Definition 2.5 A monad on a category is given by an object TX for each object X, a morphism X → TX
for each object X, and for objects X and Y and morphism f : X → TY a morphism f =<<: TX → TY is given,
satisfying identity and associativity laws.

A strong monad on a category with products is equipped with a morphism X × TY → T (X × Y) that
respects the structure (see e.g. [23]).

The construction =<< is sometimes called bind or Kleisli composition.

2.2.1 Monad comprehension notation
For any strong monad we can use a comprehension notation. Given f1 : A → TX1, f2 : A×X1 → TX2,
f3 : A×X1×X2 → TX3, fn : A×X1×· · ·×Xn−1 → TXn, and given g : A×X1×X2× . . . Xn → Y , we write

a 7→ {| g(a, x1, . . . xn) | x1 ← f1(p), x2 ← f2(a, x1), . . . , xn ← fn(a, x1, . . . , xn−1) |}

for the composite morphism

A
f̄1−→ T (A×X1)

f̄2=<<−−−→ T (A×X1 ×X2)→ . . .
f̄n=<<−−−−→ T (A×X1 ×X2 × · · · ×Xn)

T (g)−−−→ T (Y)

where

f̄i = A×X1 × . . . Xi−1
(id,fi)−−−−→ A×X1 × . . . Xi−1 × TXi

str−−→ T (A×X1 × · · · ×Xi).

When T is the powerset monad on the category of sets, this is exactly set comprehension. But it makes sense
for any monad, and is often used with the list monad [29].

2.3 The Giry monad

The Giry monad [8] is a first key monad on measurable spaces. It also restricts to standard Borel spaces.
If X is a measurable space, then P (X) is the set of probability measures on X equipped with the σ-algebra
generated by AUr = {p ∈ P (X) | p(U) ≤ r}. The unit is given by the Dirac measures (η(x)(U) = 1 if x ∈ U ,
otherwise 0. The bind is given by Lebesgue integration: if f : X → P (Y) then (f =<< p)(U) =

∫
f(x)(U) p(dx).

The strength s : X × PY → P (X × Y) is given by s(x, p)(U) = p({y | (x, y) ∈ U}).

4

Dash and Staton

3 The bag monoid and monad on measurable spaces

Let X be a set. A bag, aka multiset, is a finite unordered list of elements of X, or more formally an equivalence
class of lists under permutation. Equivalently, a bag is a function b : X → N such that {x | b(x) 6= 0} is finite,
or more formally it is an integer valued measure.

In this section we will focus on bags in the category of standard Borel spaces. We will show that the bags
form a free commutative monoid, and support a ‘fold’ operation. We will also show that the bag construction
forms a strong monad.

We begin by defining the measurable space of bags on some measurable space.

Definition 3.1 Let X be a measurable space. Let BX be the set of bags on the set underlying X. Equip
BX with the least σ-algebra ΣBX containing the generating sets AUk = {b ∈ BX | b contains exactly
k elements in U}.

ΣBX = σ({AUk | U ∈ ΣX , k ∈ N})
Then (BX,ΣBX) is the measurable space of bags of X.

3.1 Measurable structural recursion on bags

All the computations we were interested in relied on a form of structural recursion over bags, which we now
introduce. This is reminscent of the fold construction from functional programming. For example, given a list
of integers, it is possible to compute the sum of its elements by extracting elements starting at the head and
calculating a running sum until we reach the tail. In this way the function sum can be defined as fold(plus, 0)
where plus : N× N → N plays the role of the accumulating function and 0 is the initial argument provided to
plus along with the head of the list. If the list being considered is empty, the result of the fold is simply the
initial argument provided, which in this case is 0. The same approach works for bags too, provided that our
accumulating function will need to be such that the order in which it receives its arguments does not matter.
This leads us to the definition of commutative functions. In the rest of this Section we define what it means
to measurably fold a bag.

Definition 3.2 A function f : X × Y → Y is symmetric if

∀x1, x2 ∈ X, y ∈ Y. f(x1, f(x2, y)) = f(x2, f(x1, y)).

Some observations about the space of bags BX are helpful in what follows. First we note that for any
measurable space X we can decompose the set BX of bags of X into a disjoint union of the set of bags BnX
of size n for all n ∈ N. We can equip each BnX with the sub-σ-algebra. Then,

BX =
⊎
n∈N

BnX.

Second we record the following lemma.

Lemma 3.3 Let X be a non-empty standard Borel space. The quotient function Xn → BnX, which takes a
tuple (x1, . . . , xn) to the bag {| x1 . . . xn |}, is measurable, and has a measurable section BnX → Xn.

Proof. The idea is that we can regard BnX as a space of sorted lists in Xn, as is common in practice in
databases. Any standard Borel space is either isomorphic to the reals or countable and discrete. All of these
spaces have a measurable total order (<) ⊆ X × X. There may or may not be a canonical choice for a
particular X, but it doesn’t matter for the sake of this proof.

We can then use this within the language of measurable functions to write a measurable sorting function
i : Xn → Xn that takes a list and returns the sorted version of it. (For example, if n = 2, let i(x, y) = (x, y) if
x < y and otherwise (y, x).)

As a set-theoretic function, this sorting function i : Xn → Xn factors through the quotient map,

i = Xn q−→ BnX
s−→ Xn.

It remains to show that these two functions are measurable. That q is measurable is well-known, and in fact
the σ-algebra on BnX can be characterized as ΣBnX = {U | q−1(U) ∈ ΣXn} [20,24]. Finally, to see that s is
measurable, suppose U ∈ ΣXn , then we must show that s−1(U) ∈ ΣBnX , i.e. that q−1(s−1(U)) ∈ ΣXn . Since
qs = i, and i is measurable, we are done. 2

5

Dash and Staton

Definition 3.4 Let f : X ×Y → Y be a measurable commutative function. Then define foldf : Y ×BX → Y
to be the function which applies the accumulating function f with initial value y ∈ Y to each element of
b ∈ BX one-by-one. Note that the order of selection of elements does not matter as f is commutative. We
first define foldnf for bags of size n. When n = 0, fold0

f (y,∅) = y. For non-zero n,

foldnf : Y ×BnX → Y

foldnf (y, {| x1, . . . , xn |}) = f(x1, . . . , f(xn, y) . . .).

From this, we obtain fold as the unique function coming out of the coproduct of each of the foldnf ’s above,
giving us

foldf : Y ×BX → Y.

Theorem 3.5 foldf is measurable for commutative measurable f : X × Y → Y .

Proof. We use Lemma 3.3. First we define fold on lists:

ofoldnf : Y ×Xn → Y

ofoldnf (y, (x1, . . . , xn)) = f(x1, . . . , f(xn, y) . . .).

This is clearly measurable, because it is just built from composition of measurable functions and product
operations. Next we note that for any section BnX → Xn of the quotient map,

foldnf = Y ×BnX
Y×s−−−→ Y ×Xn ofoldnf−−−→ Y

The commutativity of f means that the choice of section s does not matter. This again is a composition of
measurable functions and so foldnf is measurable. The full function foldf : Y × BX → Y is a copairing of
measurable functions, and so it is measurable too. 2

3.2 The space of bags as the free commutative monoid

In order to define a monoidal structure on the space of bags we first consider the function add : X ×BX → BX
which adds a single element to a bag, incrementing its multiplicity by one. It is clear that add is commutative.

Proposition 3.6 add : X ×BX → BX is measurable.

Proof. Consider a measurable set AUk ∈ ΣBX . This is the set of bags with exactly k elements belonging to

U . Then add−1(AUk) is the set of pairs (x, b) such that add(x, b) ∈ AUk . In other words, each bag in AUk is
decomposed into a set of pairs consisting of an element from the bag and the remaining bag. We consider the
cases when k = 0 and when k > 0. In both these cases the inverse image map is in ΣX×BX .

• k = 0: Here we consider the set of bags such that no element belongs to U . Then it is guaranteed that any
element removed from the bag will be in U and the remaining bag still in AU0 , resulting in the inverse map
being U ×AU0 , which is in ΣX×BX .

• k > 0: Here each bag in the set has a non-zero number of elements in U and as a result we have two further
cases depending on whether or not the element extracted from the bag is in U . If it is not in U , the pair
consisting of the element and the remaining bag belongs to U ×AUk . If it belongs to U , the pair is an element
of U ×AUk−1. And so the inverse image of AUk under add is the union of these two sets. Each of these sets is
an element of ΣX×BX ; consequently so too is their union.

2

With add as an accumulating function we can define the disjoint union of two bags as a measurable function
by considering the fold of add where one bag provides all the new elements to be added to the other bag, which
acts as the base case.

] : BX ×BX → BX

] (b1, b2) = foldadd(b1, b2)

Theorem 3.7 For any measurable space X, (BX,],∅) is a free commutative monoid.

6

Dash and Staton

Proof. First note that (BX,],∅) is a commutative monoid. Given any commutative monoid (Y,+Y , eY) and
a map f : X → Y we can define g = foldmonAcc : Y ×BX → Y where monAcc is the composite

monAcc = X × Y f×Y−−−→ Y × Y +Y−−→ Y.

From this we obtain the unique commutative monoid homomorphism f∗(b) = g(eY , b) : BX → Y . 2

As an aside, we remark that a fold-like operation is sometimes regarded as immediate from the free (commu-
tative) monoid property. For example, in a cartesian closed category with list objects X∗, the space Y → Y is
a monoid (under composition), and hence any map X → (Y → Y) induces a canonical monoid homomorphism
X∗ → (Y → Y), which is a curried form of fold. However, the category of measurable spaces is not cartesian
closed [1,14], and so we have recorded the existence of fold as a separate fact to the free commutative monoid
property.

3.3 The bag monad

We now use this universal property to describe the structure of the bag monad on standard Borel spaces.

• The unit η : X → B(X) is given by the singleton bag: η(x) = {| x |}. This is measurable because η−1(AUk)

is U if k = 0, U if k = 1, and ∅ otherwise.

• The bind is given as follows. Informally, for f : X → B(Y), let f =<<: B(X)→ B(Y),

f =<< {| x1 . . . xn |} =

n⊎
i=1

f(xi)

Formally, we apply fold to the composite measurable function

X ×B(Y)
f×B(Y)−−−−−→ B(Y)×B(Y)

]−→ B(Y)

to get a measurable function B(X)×B(Y)→ B(Y), and then pass in the empty set as the initial argument.
Equivalently, the monad multiplication can be given by applying fold to the function

] : B(X)×B(X)→ B(X)

to get a measurable function µ : B(B(X))→ B(X), by passing in ∅ as the initial argument.

• The strength X ×B(Y)→ B(X × Y) is given by applying fold to the function

(add, π2) : B(X × Y)×X × Y → B(X × Y)×X

to get a measurable function B(X × Y)×X ×B(Y)→ B(X × Y)×X, and passing in the empty set as the
initial argument and projecting the first result.

As an aside we note that in the statistics literature, it is quite common to regard B(X) as a space of integer
valued measures on X. With this perspective, regarding B as a monad of measures, the strong monad structure
on B is entirely analogous to the monad structure of the Giry monad P .

Theorem 3.8 (B, η, µ) is a strong monad on the category of standard Borel spaces.

4 Measurable query operations on bags

In the standard theory of database modelling, relations are assumed to be sets, disallowing the existence
of duplicates. Most database software, however, relax this restriction, often to save the cost of duplicate
elimination. BALG (“bag algebra”), an algebra for manipulating bags, was first introduced in [13]. In that
paper BALG was presented as an extension of the nested relation algebra (RALG), with a focus on the study
of its expressive power and relative complexity to RALG. The authors showed that BALG as a query language
was more expressive than RALG.

In this Section we will consider the entire BALG query language and show that it extends to measurable
functions on bags.

7

Dash and Staton

For now we briefly review the query language BALG; we discuss these queries and their semantics in
more detail later in this Section. The singleton operation returns a singleton bag consisting of the input.
Restructuring rows of tables is possible using the mapf query, which applies the function f to every row in
the table. The queries product, dunion, difference, union, and intersect compute the product, disjoint
union, difference, union, and intersection of the input tables respectively. The project query projects out
user-specified columns. flatten transforms a bag of bags to a bag consisting of the disjoint unions of all
the internal bags. Duplicate elimination, or deduplication, is possible using the dedup query. Finally, we can
compute the bag of sub-bags of any bag using powerbag, and the bag of subsets of any bag using powerset.

Given the expressiveness of the BALG query language it comes as no surprise that many operations can
be defined in terms of each other. For example, the powerset of a bag is simply the deduplicated version of
the powerbag. It is also known that the union and intersection of bags can be defined using the disjoint union
and difference operators. To this end we will only consider the following minimal subset of BALG queries, in
terms of which all other queries can be defined: {singleton, flatten, map, product, project, select,
dunion, difference, powerbag, dedup}.

Previous work: In their work, Grohe and Lindner [11] considered BALG1 1 , a subset of BALG restricted
to bags of nesting level 1. That is, the queries of BALG1 are defined on bags of type BX where X cannot
have another type BY in its definition. The minimal set of queries for BALG1 is the same set we consider here
minus flatten and powerbag since they operate on bags of bags. In their work Grohe and Lindner showed
that BALG1 queries extend to measurable functions on bags. We generalise their results and show, using our
monadic and monoidal structure on bags, that all of BALG extends to measurable functions on bags, and give
a clearer picture of how it comes together. Furthermore, we discuss the actions of grouping and aggregation
as measurable queries in BALG.

4.1 Measurability of BALG queries

We provide a semantics to BALG queries by mapping each query to a measurable function on bags. The
measurability of the semantics of the singleton, flatten, map, product, project, and select queries
is guaranteed by defining their semantics as monad comprehensions. The measurability of the semantics of
the remaining queries, dunion, difference, powerbag, and dedup, is obtained by defining their semantics
using our fold construction introduced in Section 3. Note that commutativity holds for all the measurable
accumulating functions in the fold-based definitions to follow. The condition of commutativity is easy to check.

Bagging and flattening
The semantics for the singleton and flatten queries are given by the unit ηB and multiplication µB

maps for the bag monad B. The measurability of these maps is proved in Theorem 3.8.

JsingletonK : X → BX JflattenK : B2X → BX

JsingletonK(x) = ηBX(x) = {| x |} JflattenK(b) = µBX(b)

Restructuring
The mapf query comes parametrized with a measurable function f : X → Y and its semantics is simply

the functorial action of B on f , which yields yet another measurable map. This can equivalently be written
using monad comprehension notation.

Jmapf K : BX → BY Jmapf K(b) = B(f)(b)

This can be neatly written using monad comprehension notation: Jmapf K(b) = {| f(x) | x← b |}.

Product and projection
Monad comprehensions make it straightforward to define the product of two bags where the arity of the

resultant schema is the sum of the arities of the input schemas.

JproductK : B(X1 × · · · ×Xm)×B(Y1 × · · · × Yn)→ B(X1 × · · · ×Xm × Y1 × · · · × Yn)

JproductK(b1, b2) = {| (x1, . . . , xm, y1, . . . , yn) | (x1, . . . , xm)← b1, (y1, . . . , yn)← b2 |}

1 It is called BALG1, with superscript 1.

8

Dash and Staton

A similar treatment can be given to the projecti1,...,ik query which projects out the i1, . . . , ik indices of the
input schema.

Jprojecti1,...,ikK : B(X1 × · · · ×Xn)→ B(Xi1 × · · · ×Xik)

Jprojecti1,...,ikK(b) = {| (xi1 , . . . , xik) | (x1, . . . , xn)← b |}

Selection
selectψ is parametrized by a measurable Boolean predicate ψ : X → Bool and filters out the rows in

the input table satisfying ψ. We can lift ψ to the measurable function ψ̂ : X → B1, where 1 = {?} is the

singleton space with a unique element. ψ̂ evaluates to {| ? |} (resp. ∅) when ψ evaluates to True (resp. False).
This construction enables us to define the semantics of selectψ as a monad comprehension where rows not

satisfying ψ do not get included due to ψ̂ evaluating to the empty bag. (Define filterψ to be this map.)

JselectψK : BX → BX JselectψK(b) = filterψ(b) = {| x | x← b, ?← ψ̂(x) |}

In monad comprehension syntax, for a monad with a given zero element (e.g. ∅ ∈ BX), a shorthand notation
{| x | x← b, ψ(x) |} is often used.

Disjoint union
dunion simply computes the disjoint union of its arguments. In Section 3.2 we defined the measurable

disjoint union] : BX ×BX → BX as foldadd.

JdunionK : BX ×BX → BX JdunionK(b1, b2) = b1] b2 = foldadd(b1, b2)

Bag difference
Bag difference is the first operation we consider that is not quite immediate from the monad and monoid

structure. The idea is that, for instance, JdifferenceK({| 1, 1, 2 |}, {| 1, 2, 3 |}) = {| 1 |}. Defining bag difference
as a fold requires a little care. To this end, we first define the measurable function remove which takes an
element and a bag as input and returns either the same bag if that element did not belong to the bag, or a
modified bag with one fewer instance of the given element. remove is defined as a fold over the accumulating
function remAcc, which maintains a triple as an accumulator:

• the value xrem ∈ X to be removed,

• a Boolean value indicating whether or not xrem has already been removed (in order to prevent us from
removing xrem more than once),

• and the resulting bag (which is initially empty) to which elements are added.

Each of the three cases has been defined by combining tupling and add, both of which are measurable functions.
From this it follows that remAcc is measurable.

remAcc : X × ((X × Bool)×BX)→ (X × Bool)×BX

remAcc(x, ((xrem, c), b)) =


((xrem,True), add(x, b)) if c = True
((xrem,True), b) if x = xrem
((xrem,False), add(x, b)) otherwise

To get the final bag after removal we project out the second element of the pair returned by remAcc.

remove : X ×BX → BX remove(xrem, b) = π2 (foldremAcc(((xrem,False),∅), b))

Using remove we define the bag difference of b1 and b2 by letting b1 be the initial input and from it remove-
ing each element in b2 one-by-one. The measurability of bag difference follows from the commutativity and
measurability of remove.

JdifferenceK : BX ×BX → BX JdifferenceK(b1, b2) = foldremove(b1, b2)

9

Dash and Staton

Powerbag
For example, the powerbag of the bag {| 1, 1 |} is {| ∅, {| 1 |}, {| 1 |}, {| 1, 1 |} |}. The powerbag of a bag

is defined by folding over the accumulating function powerAcc where for every new element x added to the
accumulating bag of bags b0 we first add x to every bag in b0 and then take the disjoint union with the initial
b0. We define addx to be the x-section of add (that is, addx(b) = add(x, b)). Sections of measurable functions
are measurable.

powerAcc : X ×B2X → B2X JpowerbagK : BX → B2X

powerAcc(x, b0) = b0]B(addx)(b0) JpowerbagK(b) = foldpowerAcc({| ∅ |}, b)

Deduplication
In order to deduplicate a bag we recurse over its elements and add them to an accumulating bag one-by-

one. We avoid multiplicities greater than one in the final bag by first filtering out the value we want to add
from the accumulating bag before adding it, which is reflected in the definition of dedupAcc.

dedupAcc : X ×BX → BX JdedupK : BX → BX

dedupAcc(x, b) = add(x, filter 6=x(b)) JdedupK(b) = folddedupAcc(∅, b)

The function 6=x : X → Bool is measurable since 6=x−1({True}) = X \ {x} and 6=x−1({False}) = {x}, both of
which are measurable sets (due to X being standard Borel).

Theorem 4.1 BALG queries yield measurable functions on bags.

4.2 Grouping and aggregation

Consider, for example, the table cast : Actor ×Movie from the database MovieFact introduced at the start of
this paper. A natural query that one may want to compute is, “How many movies has each actor appeared
in?” In order to calculate the answer to this we first need to be able to group actors with the bag of all the
movies they appeared in. To this resultant table we can map a size function to the second column to get the
numbers we need. Here we introduce a group query to BALG and show that it is a measurable operation on
bags.

Definition 4.2 The groupp1,p2 query acts on tables of schema X1 × · · · × Xk and is parametrized by two
projection functions p1 : X1 × · · · ×Xk → Xi1 × · · · ×Xim and p2 : X1 × · · · ×Xk → Xj1 × · · · ×Xjn . The
result of this query is a table with schema (Xi1 × . . . Xim)×B(Xj1 × · · · ×Xjn) where the elements of the first
column are paired with the bag of elements they were related to in the input table. In other words, we group
the rows of the table by the elements in the p1-projection of the table.

The measurable bag-semantics for groupp1,p2 is given by

Jgroupp1,p2K : B(X1 × · · · ×Xk)→ B((Xi1 × . . . Xim)×B(Xj1 × · · · ×Xjn))

Jgroupp1,p2K(b) = {| (i, B(p2)(filterλx.p1(x)≡i(b))) | i← JdedupK(B(p1)(b)) |}
= {| (i, {| p2(x) | x← b, p1(x) = i |}) | i← JdedupK({| p1(x) | x← b |}) |}

In the monad comprehension we first project out the columns of interest using p1 and deduplicate the
resultant bag. From this bag we extract out the rows indices by which we index the rows of the input bag.
For each index i we return the pair consisting of i along with the p2-projection of the input where the p1-
projection of the rows is equal to i. We can conclude that this query is measurable by defining it as a monad
comprehension composed of other measurable functions.

Recall the actor grouping example suggested earlier. Given an input bag from B(Actor ×Movie) we can
apply groupπ1,π2 to create a table of rows relating actors to the bag of movies they appeared in. To this
table we can apply mapλ(x,y).(x,size(y)) to arrive at the final result. The function size : B Movie → N can be
measurably defined as a fold, for example.

A second option for defining an group/aggregation query comes from an extension to monad comprehensions
in Haskell where the syntax has been extended with the keywords group by [17]. This extension works for any
strong monad, but the user needs to provide a grouping function which, in our case, needs to map a bag on X

10

Dash and Staton

to a bag of bags on X where each sub-bag contains the same element. This can be written in BALG as

group’(b) = mapλi.selectλx.x≡i(b)(dedup(b))

Jgroup’(b)K = {| {| x | x← b, x = i |} | i← dedup(b) |}

So Jgroup’K : BX → B2X. The entire actor query can now be concisely written in the notation of [17] as

{| (the a, size m) | (a,m)← actorMovieTable, group by a |}.

This modified comprehension syntax of [17] works by implicitly changing the types of a and m from Actor and
Movie in the right half of the comprehension to a ∈ B Actor and m ∈ B Movie on the left half. This allows
us to apply the measurable aggregation function size : BX → N to m. The aggregation function used on a
is the : B Actor → Actor, which is some measurable function such that the(b) = x when b is a bag that only
contains copies of x. (For example, we could sort b and return the first element.)

5 Generating probabilistic databases

The main focus of this paper has been measurable query languages (Theorem 4.1). We now turn to the question
of where probabilistic databases come from in the first place, particularly in the setting where they have infinite
support. A good language for generating infinite probabilistic databases remains a topic of active research,
but we now illustrate that the monads for probability P and bags B could be the basis of a good intermediate
language.

5.1 A distributive law

We recall the distributive law distr between the monads P and B that we provided in an earlier paper [6] (see
also [15,18,31]):

distr : B(P (X))→ P (B(X))

Using our fold technology (Thm. 3.5) we can define the distributive law as distr = folddistrAcc, where

distrAcc : P (X)× P (B(X))→ P (B(X))

distrAcc = P (X)× P (B(X))
double strength−−−−−−−−−−→ P (X ×B(X))

add−−→ P (B(X))

As usual, this distributive law determines a monad structure on P ◦B [2].

5.2 Randomizing attributes

For a first example of a probabilistic database, suppose we are given a deterministic database of (movie,gross)
pairs. We may then decide that the gross figure is inaccurate and should be subject to a noise from a normal
distribution, yielding a probabilistic database. This can be done categorically by the following map:

B(Movie× R)
B(Movie×normal)−−−−−−−−−−−→ B(Movie× P (R))

strength−−−−−→ B(P (Movie× R))
distr−−−→ P (B(Movie× R))

Since PB is a monad, we can use comprehension notation for it, and equivalently write the above generation
method addNoise : B(Movie× R)→ P (B(Movie× R)) as

addNoise(b) = {| (m, r′) | (m, r)← b, r′ ← normal(r, 100000) |}

Here we are implictly casting b ∈ B(X) to b ∈ P (B(X)) and normal(r, 100000) ∈ P (R) to P (B(R)), implicitly
using the units ηPB : B(X)→ P (B(X)) and PηB : P (X)→ P (B(X)).

Another use-case for random attributes, studied in [12], is to deal with null attributes by drawing them
randomly from a vague prior distribution. This would also be easy to express using the PB monad.

5.3 Adding random records

We can also add and remove random records straightforwardly. We note a few helpful facts.

• The disjoint union operation] : B(X) × B(X) → B(X) lifts to] : P (B(X)) × P (B(X)) → P (B(X))
by composing with the strength of P . In this way the composite monad PB has a commutative monoid
structure.

11

Dash and Staton

• Since B(1) ∼= N, we can regard the Poisson distribution as a map in R→ P (B(1)), parameterized by rate.

Now supposing we also have reasonably uniform distributions r -actor : P (Actor) and r -movie : P (Movie), we
can delete some credits and generate random additional actors for movies, modelling the fact that some actors
are unlisted:

addRemove(b) = {| (a,m) | (a,m)← b, 1← bernoulli(0.9) |}
]{| (a,m) | n← poisson(3), a← r -actor ,m← r -movie |}

The first line deletes random rows with probability 0.1, and the second line adds in some extra actors (on
average, 3 extra actors). Of course, a more sophisticated model could take into account other prior information
such as relationships and ages between actors.

5.4 Towards GDatalog

The GDatalog language has recently been proposed as a generative language for probabilistic databases [4,10].
The language combines datalog-style features with continuous probability distributions.

In general, GDatalog is recursive. We have not treated recursion in this paper, so we focus on the non-
recursive fragment. This can easily be translated into the PB monad. For example, consider the following
GDatalog program taken from [10]. The idea is to simulate possibly faulty burglar alarms which either go off
because of a burglary or because of an earthquake.

earthquake(c, bernoulli(0.1))← crimechance(c, r)

burglary(x, bernoulli(r))← address(x, c), crimechance(c, r)

trigger(x, bernoulli(0.6))← address(x, c), earthquake(c, 1)

trigger(x, bernoulli(0.9))← burglary(x, 1)

alarm(x)← trigger(x, 1)

We will regard this as transforming a deterministic database into a probabilistic one, B(X)→ P (B(X)) where

X = (earthquake : City × 2)] (crimechance : City × [0, 1])] (address : House× City)

] (burglary : House× 2)] (trigger : House× 2)] (alarm : House)

The GDatalog program can be translated almost verbatim as a sequence of definitions of a probabilistic database
in PB(X) using monad comprehensions, starting from b ∈ B(X), as follows.

b1 = b]{| earthquake(c, z) | crimechance(c, r)← b, z ← bernoulli(0.1) |}
b2 = b1]{| burglary(x, z) | crimechance(c, r)← b1, address(x, c′)← b1, c = c′, z ← bernoulli(r) |}
b3 = b2]{| trigger(x, z) | address(x, c)← b2, earthquake(c′, 1)← b2, c = c′, z ← bernoulli(0.6) |}
b4 = b3]{| trigger(x, z) | burglary(x, 1)← b3, z ← bernoulli(0.9) |}
b5 = b4]{| alarm(x) | trigger(x, 1)← b4 |}

One of the main results of [10] is that GDatalog programs yield proper probabilistic databases, that is, that all
the constructions are measurable. For examples such as this, in the non-recursive fragment, this measurability
is immediate from the fact that we are programming in the PB monad, where everything is measurable.

6 Summary and outlook

We have shown that the bag monad on standard Borel spaces is strong (Thm. 3.8) and supports a fold operation
(Thm. 3.5) which is connected to its characterization as the free commutative monoid. We have used this to
show straightforwardly that all the bag query operations of BALG yield measurable queries (Thm. 4.1), and so
they are all safe to use in defining queries of probabilistic databases. This affirms the results in [11], generalizing
them to the full BALG language and clarifying the measurability arguments by factoring them through the
measurability of the bag monad. Finally, in Section 5 we have argued by illustrations that the combination of
the bag and probability monads gives a powerful intermediate language for processes that generate probabilistic
databases.

12

Dash and Staton

References

[1] R. J. Aumann. Borel structures for function spaces. Illinois Journal of Mathematics, 5:614–630, 1961.

[2] J. Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and Categorical Homology Theory, pages 119–140,
Berlin, Heidelberg, 1969. Springer Berlin Heidelberg.

[3] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syntax. SIGMOD Rec., 23(1):87–96, 1994.

[4] V. Bárány, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena. Declarative probabilistic programming with Datalog. ACM
Transactions on Database Systems (TODS), 42(4), 2017.

[5] I. I. Ceylan, A. Darwiche, and G. Van den Broeck. Open-world probabilistic databases. In Proc. KR 2016, 2016.

[6] S. Dash and S. Staton. A monad for probabilistic point processes. In Proc. ACT 2020, 2020.

[7] L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts. Machine Learning, 100(1):5–47, 2015.

[8] M. Giry. A categorical approach to probability theory. In Categorical aspects of topology and analysis (Ottawa, Ont., 1980),
volume 915 of Lecture Notes in Mathematics, pages 68–85. Springer, Berlin, 1982.

[9] A. Goy and D. Petrisan. Combining probabilistic and non-deterministic choice via weak distributive laws. In Proc. LICS
2020, 2020.

[10] M. Grohe, B. L. Kaminsiki, J.-P. Katoen, and P. Lindner. Generative datalog with continuous distributions. In Proc. PODS
2020, pages 347–360.

[11] M. Grohe and P. Lindner. Probabilistic databases with an infinite open-world assumption. In Proc. PODS 2019, pages 17–31,
2019.

[12] M. Grohe and P. Lindner. Infinite probabilistic databases. In Proc. ICDT 2020, 2020.

[13] S. Grumbach, L. Libkin, T. Milo, and L. Wong. Query languages for bags: expressive power and complexity. SIGACT News
(Database Theory Column), pages 30–37, June 1996.

[14] C. Heunen, O. Kammar, S. Staton, and H. Yang. A convenient category for higher-order probability theory. In Proc. LICS
2017. IEEE Press, 2017.

[15] B. Jacobs. From multisets over distributions to distributions over multisets. In Proc. LICS 2021, 2021.

[16] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas. MCDB: A Monte Carlo approach to managing uncertain
data. In Sigmod 2008, 2008.

[17] S. L. P. Jones and P. Wadler. Comprehensive comprehensions. In G. Keller, editor, Proceedings of the ACM SIGPLAN
Workshop on Haskell, Haskell 2007, Freiburg, Germany, September 30, 2007, pages 61–72. ACM, 2007.

[18] K. Keimel and G. Plotkin. Mixed powerdomains for probability and nondeterminism. arXiv:1612.01005.

[19] A. K. Lew, M. Agrawal, D. Sontag, and V. K. Mansinghka. PClean: Bayesian data cleaning at scale with domain-specific
probabilistic programming. In Proc. AISTATS 2021, 2021.

[20] O. Macchi. The coincidence approach to stochastic point processes. Advances in AppliedProbability, 7:83–122, 1975.

[21] J. W. Michael W. Mislove, Joël Ouaknine. Axioms for probability and nondeterminism. In Proc. EXPRESS 2003, 2003.

[22] M. Mio and V. Vignudelli. Monads and quantitative equational theories for nondeterminism and probabilities. In
Proc. CONCUR 2020, 2020.

[23] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, July 1991.

[24] J. E. Moyal. The general theory of stochastic population processes. Acta Mathematica, 108, 1962.

[25] F. Saad and V. Mansinghka. A probabilistic programming approach to probabilistic data analysis. In NeurIPS, 2016.

[26] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Morgan and Claypool, 2011.

[27] G. van Heerdt, J. Hsu, J. Ouaknine, and A. Silva. Convex language semantics for nondeterministic probabilistic automata.
In Proc. ICTAC 2018, 2018.

[28] D. Varacca and G. Winskel. Distributing probability over non-determinism. Mathematical structures in computer science,
16:87–113, 2006.

[29] P. Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2:461–493, 1992.

[30] Y. Wu, S. Srivastava, N. Hay, S. Du, and S. J. Russell. Discrete-continuous mixtures in probabilistic programming: Generalized
semantics and inference algorithms. In Proc. ICML 2018, pages 5339–5348, 2018.

[31] M. Zwart and D. Marsden. No-go theorems for distributive laws. In Proc. LICS 2019, 2019.

13

	Introduction
	Two monads
	Measurable queries
	Generating probabilistic databases
	Connection with other work on programming semantics
	Summary

	Mathematical preliminaries
	Measure theory
	Monads
	The Giry monad

	The bag monoid and monad on measurable spaces
	Measurable structural recursion on bags
	The space of bags as the free commutative monoid
	The bag monad

	Measurable query operations on bags
	Measurability of BALG queries
	Grouping and aggregation

	Generating probabilistic databases
	A distributive law
	Randomizing attributes
	Adding random records
	Towards GDatalog

	Summary and outlook
	References

