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Abstract. We investigate the problem of verifying linear-time properties against
inhomogeneous continuous-time Markov chains (ICTMCs). A fundamental ques-
tion we address is how to compute reachability probabilities. We consider two
variants: time-bounded and unbounded reachability. It turns out that both can be
characterized as the least solution of a system of integral equations. We show that
for the time-bounded case, the obtained integral equations can be transformed
into a system of ordinary differential equations; for the time-unbounded case, we
identify two sufficient conditions, namely the eventually periodic assumption and
the eventually uniform assumption, under which the problem can be reduced to
solving a time-bounded reachability problem for the ICTMCs and a reachability
problem for a DTMC. These results provide the basis for a model checking algo-
rithm for LTL. Under the eventually stable assumption, we show how to compute
the probability of a set of ICTMC paths which satisfy a given LTL formula. By
an automata-based approach, we reduce this problem to the previous established
results for reachability problems.

1 Introduction

Continuous-time Markov chains (CTMCs) are one of the most important models in
performance and dependability analysis. They are exploited in a broad range of ap-
plications, and constitute the underlying semantical model of a plethora of modeling
formalisms for real-time probabilistic systems such as Markovian queueing networks,
stochastic Petri nets, stochastic variants of process algebras, and, more recently, calculi
for system biology. These Markov chains are typically homogeneous, i.e., the rates that
determine the speed of changing state as well as the probabilistic nature of mode transi-
tions are constant. However, in some situations constant rates do not adequately model
real behaviors. This applies, e.g., to failure rates of hardware components [10] (that usu-
ally depend on the component’s age), battery depletion [7] (where the power extraction
rate non-linearly depends on the remaining amount of energy), and random phenomena
that are subject to environmental influences. In these circumstances, Markov models
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with inhomogeneous rates, i.e., rates that are time-varying functions, are much more
appropriate [17].

Temporal logics and accompanying model-checking algorithms have been developed
for discrete-time Markov chains (DTMCs for short), against linear-time properties [8,9]
and branching-time properties [11]; for CTMCs against branching-time properties [2,3]
and linear real-time properties [6]. And some of them have resulted in a number of suc-
cessful model checkers such as PRISM [12] and MRMC [14]. However, the verification
of time-inhomogeneous CTMCs (ICTMCs) has – to the best of our knowledge – not yet
been investigated in depth, with the notable exception [15], which considered model
checking a simple stochastic variant of Hennessy-Milner Logic (without fixed points)
for piecewise-constant ICTMCs. The main aim of the current paper is to fill this gap by
considering model checking ICTMCs w.r.t. linear-time properties.

One of the most fundamental linear-time properties are reachability problems. Here
we address two variants: time-bounded and unbounded reachability. The former asks,
given a set of goal states and a time bound, what is the probability of paths of a given
ICTMC that reach the goal states within the time bound. Time-unbounded reachability
is similar except that the time bound is infinity. To solve both of them, we first provide a
characterization in terms of the least solution of a system of integral equations. This can
be regarded as a generalization of similar results for CTMCs [2,3] to ICTMCs. Further-
more, we show that for the time-bounded case, the obtained integral equations can be
transformed into a system of (homogeneous) ordinary differential equations, which of-
ten enjoys an efficient numerical solution; for the time-unbounded case, generally this is
not possible and one has to solve the system of integral equations directly, which is not
so efficient and numerically unstable. To remedy this deficiency, we identify two suffi-
cient conditions, i.e., the eventually periodicity and eventually uniformity, under which
the problem can be reduced to the time-bounded reachability problem for ICTMCs and
a (time-unbounded) reachability problem for DTMCs and thus can be solved efficiently.
These classes subsume some interesting and important subclasses of ICTMCs, such as,
the piecewise-constant case studied in [15] and ICTMCs with rates function represent-
ing Weibull failure rates. The latter distributions are important to model hazards and
failures, and are popular in, e.g., reliability engineering. We then turn to model check-
ing ICTMCs against LTL. Strictly speaking, we focus on computing the probability of
the set of paths of a given ICTMC which satisfy the LTL formula. One of the main dif-
ficulties here compared to CTMCs is that in ICTMC, rates between states are functions
over time instead of constants, and thus the topological structure of ICTMCs, when con-
sidered as a digraph, is not stable. To circumvent this problem, we identify a condition,
i.e., the eventually stable assumption which intuitively means that after a (finite) time,
the topological structure of the ICTMC does not change any more. Under this assump-
tion, we can adapt the standard automata-based approach. A crucial ingredient is that
we can construct a corresponding separated Büchi automaton from an LTL formula1,
based on which, one can build the product of the given ICTMC and the separated Büchi
automaton while obtaining a well-defined stochastic process. We then reduce the LTL
model checking problem to the previous established results for reachability problems.

1 Note that one can also use deterministic automata, but that would incur an extra (unnecessary)
exponential blowup.
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2 Preliminaries

Given a set S, let Distr(S) denote the set of probability distributions over S.

Definition 1 (ICTMC). A (labeled) inhomogeneous continuous-time Markov chain
(ICTMC) is a tuple C = (S, AP, L, α,R(t)), where S is a finite set of states; AP is
a finite set of atomic propositions; L : S → 2AP is a labeling function; α ∈ Distr(S)
is an initial distribution; R(t) : S × S × R�0 → R�0 is a rate matrix.

Let diagonal matrix E(t) = diag [Es(t)] ∈ R
n×n
�0 , where n = |S| and Es(t) : S ×

R�0 → R�0 be defined as Es(t) =
∑

s′∈S Rs,s′(t) for all s ∈ S, i.e., Es(t) is the exit
rate of state s at time t. We require that all rates and exit rates, as functions of time t,
are integrable. If all rates (and thus exit rates) are constant, we obtain a CTMC. A state
s is absorbing if Rs,s′(t) = 0, for s′ �= s.

Semantics. An ICTMC induces a stochastic process. The probability to take a transition
from s to s′ at time t within Δt time units is given by:

Prob
{
s→s′, t, Δt

}
=

∫ Δt

0

Rs,s′(t + τ )e−
∫ τ
0 Es(t+υ)dυdτ =

∫ t+Δt

t

Rs,s′(τ )e−
∫ τ
t Es(v)dvdτ.

Definition 2 (Timed paths). Let C be an ICTMC. An infinite path starting at time x
is a sequence ρx = s0

t0−−→ s1
t1−−→ s2 · · · such that for each i ∈ N, si ∈ S, ti ∈ R>0

and Rsi,si+1(t) > 0 where t = x +
∑i

j=0 tj . A finite path is a prefix of an infinite path
ending in a state.

We will sometimes omit the subscript of ρx if the starting time x is irrelevant. Let
PathsC and PathsC(s, x) denote the set of (finite and infinite) paths in C and those
starting from state s at time x, respectively. The superscript C is omitted whenever
convenient. Let ρ[n] := sn be the n-th state of ρ (if it exists) and ρ〈n〉 := tn the time
spent in state sn. Let ρx@t be the state occupied in ρ at time t ∈ R�0, i.e. ρx@t :=
ρx[n] where n is the smallest index such that x +

∑n
i=0 ρx〈i〉 > t. We assume w.l.o.g.

that the time to stay in any state is strictly greater than 0.
Let I denote the set of all nonempty intervals I ⊆ R�0 and let I ⊕ t (resp. I 	 t)

denote {x + t | x ∈ I} (resp. {x − t | x ∈ I ∧ x � t}). The definition of a
Borel space over paths through ICTMCs follows [3]. An ICTMC C with initial state
s0 and initial time x yields a probability measure PrCs0,x on paths as follows: Let
Cx(s0, I0, . . ., Ik−1, sk) denote the cylinder set consisting of all paths ρ ∈ Paths(s0, x)
such that ρ[i] = si (i � k) and ρ〈i〉 ∈ Ii (i < k). F(Paths(s0, x)) is the smallest σ-
algebra on Paths(s0, x) which contains all cylinder sets Cx(s0, I0, . . ., Ik−1, sk) for
all state sequences (s0, . . ., sk) ∈ Sk+1 and I0, . . ., Ik−1 ∈ I. The probability measure
PrCs0,x on F(Paths(s0, x)) is the unique measure recursively defined by:

PrCs0,x

(
Cx(s0, I0, . . ., Ik−1, sk)

)

=
∫

I0⊕x

Rs0,s1(τ0)·e−
∫

τ0
x

Es0 (v)dv · PrCs1,τ0

(
Cτ0(s1, I1, . . ., Ik−1, sk)

)
dτ0
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Example 1. An example ICTMC is illustrated in Fig. 2(a) (page 113), where AP =
{a, b, c} and the rate functions are ri(t) (1 � i � 6). In particular, the exit rate function
of s1 is r2(t) + r3(t). The initial distribution is α(s0) = 1 and α(s) = 0 for s �= s0. A
possible rate function can be the ones depicted in Fig. 1 (page 110).

Linear temporal logic. The set of linear temporal logic (LTL) formulae over a set of
atomic propositions AP is defined as follows:

Definition 3 (LTL syntax). Given a set of atomic propositions AP which is ranged
over by a,b,. . ., the syntax of LTL formulae is defined by:

ϕ ::= tt | a | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ.

The semantics of LTL for ICTMC C is defined in a standard way by a satisfaction
relation, denoted |=, which is the least relation |=⊆ PathsC × R�0 × LTL (here we
use LTL to denote the set of LTL formulae) satisfying:

(ρ, t) |= tt (ρ, t) |= ϕ1 ∧ ϕ2 iff (ρ, t) |= ϕ1 and (ρ, t) |= ϕ2

(ρ, t) |= a iff a ∈ L(ρ@t) (ρ, t) |= ¬ϕ iff (ρ, t) �|= ϕ
(ρ, t) |= X ϕ iff ∃Δt � 0. (ρ, t+Δt) |= ϕ and ρ[1] = ρ@(t+Δt)
(ρ, t) |= ϕ1 U ϕ2 iff ∃Δt � 0. (ρ, t+Δt) |= ϕ2 and ∀t′ < t+Δt. (ρ, t′) |= ϕ1

We use ats∈AP as an atomic proposition which holds solely at state s. For F ⊆ S,
we write atF for

∨
s∈F ats. Let Paths(s, x, ϕ) = {ρ ∈ Paths(s, x) | (ρ, x) |= ϕ}.

Note that a timed path ρ = s0
t0−−→ s1

t1−−→ · · · satisfies a formula ϕ iff the “dis-
crete part” of ρ, namely, s0s1s2 · · · (= ρ[0]ρ[1]ρ[2] · · · ) satisfies ϕ. It thus can be
easily shown that the set Paths(s, x, ϕ) is measurable. We denote the probability mea-
sure of Paths(s, x, ϕ) as Prob(s, x, ϕ) = Prs,x (Paths(s, x, ϕ)) and let ProbC(ϕ) =∑

α(s0)>0 α(s0)·Prob(s0, 0, ϕ) be the probability that ICTMC C satisfies ϕ.

3 Reachability Analysis

In this section, we tackle reachability problems for ICTMCs. We distinguish two vari-
ants: time-bounded reachability and time-unbounded reachability. To solve both of them,
we first give a characterization of Prob(s, x,♦IatF ), namely, the probability of the set
of paths which reach a set of goal states F ⊆ S within time interval I starting from state
s at time point x. This is done by resorting to a system of integral equations, which is a
generalization of a similar characterization for CTMCs [3].

Proposition 1. Let C = (S, AP, L, α,R(t)) be an ICTMC with s ∈ S, x ∈ R�0,
F ⊆ S and interval I ⊆ R�0 with T1 = inf I and T2 = sup I . The function S×R�0×
I → [0, 1], (s, x, I) �→ Prob(s, x,♦IatF ) is the least fixed point of the operator

Ω : (S × R�0 × I → [0, 1]) → (S × R�0 × I → [0, 1]) ,
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where Ω(f)(s, x, I) =
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ T2

0

∑

s′∈S

Rs,s′(x + τ )e−
∫ τ
0Es(x+v)dv · f(s′, x + τ, I � τ )dτ, if s /∈ F (1)

e−
∫ T1
0 Es(x+v)dv+

∫ T1

0

∑

s′∈S

Rs,s′(x+τ )e−
∫ τ
0 Es(x+v)dv·f(s′, x+τ, I � τ )dτ, if s ∈ F (2)

3.1 Time-Bounded Reachability

We now solve the time-bounded reachability problem, i.e., given ICTMC C, a set of
goal states F ⊆ S and a time bound T ∈ R�0, to compute Prob(s, x,♦�TatF ), the
probability of Paths(s, x,♦�TatF ) which is the set of paths that reach F within T time
units given the initial time x. To accomplish this, we first compute Prob(s, x,♦=TatF ),
where the slightly different property ♦=TatF , in contrast to ♦�TatF , requires that
states in F are reached at exactly time T . Note that ♦�T atF and ♦=T atF can also be
written as ♦[0,T ]atF and ♦[T,T ]atF , respectively, where I = [0, T ] or I = [T, T ] is a
time interval. By instantiating (1), (2) in Prop. 1, we obtain that Prob(s, x,♦=TatF ) =
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ T

0

∑

s′∈S

Rs,s′(x + τ )e−
∫ τ
0 Es(x+v)dv · Prob(s′, x + τ,♦=T−τatF )dτ, if s/∈F (3)

e−
∫ T
0 Es(x+v)dv+

∫ T

0

∑

s′∈S

Rs,s′(x+τ )e−
∫ τ
0 Es(x+v)dv·Prob(s′,x+τ ,♦=T−τatF )dτ, if s∈F (4)

Intuitively, (3) and (4) are justified as follows: If s /∈ F , the probability of reaching an
F -state from s after exactly T time units given the starting time x equals the probability
of reaching some direct successor s′ of s in τ time units, multiplied by the probability
of reaching an F -state from s′ in the remaining T − τ time units. If s ∈ F at time x,
then it can either stay in s (i.e., delay) for T time units (the first summand in (4)), or
regard s as a non-F state and take a transition (the second summand in (4)).

We now address the problem of solving (3) and (4), read as a system of integral equa-
tions. We define Π(x, T ) as the matrix with entries Πi,j(x, T ) denoting the probability
of the set of paths starting from state i at time x and reaching state j at time x + T . For
any ICTMC, the following equation holds:

Π(x, T ) =
∫ T

0

M(x, τ)Π(x + τ, T − τ)dτ

︸ ︷︷ ︸
Markovian jump

+D(x, T )
︸ ︷︷ ︸

delay

(5)

M(x, T ) is the probability density matrix where Mi,j(x, T ) = Ri,j(x + T ) ·
e−

∫
T
0 Ei(x+v)dv is the density to move from state i to j at exactly time T and D(x, T )

is the diagonal delay probability matrix with Di,i(x, T ) = e−
∫ T
0 Ei(x+v)dv.

We note that Π(x, T ) is actually the (equivalent) matrix form of (3) and (4). For
(4), it follows directly that each of its summands has a counterpart in (5). For (3), note
that D(x, T ) is a diagonal matrix where all the off-diagonal elements are 0 and that (3)
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does not allow a delay transition from a non-F state. This correspondence builds a half-
bridge between Prob(s, x,♦=T atF ) and Π(x, T ), whereas the following proposition
completes the other half bridge between Π(x, T ) and the transient probability vector
π(t) of ICTMCs:

Proposition 2. Given ICTMC C with initial distribution α and rate matrix R(t). We
have that Π(0, t) and π(t) satisfy the following two equations:

π(t) = α ·Π(0, t) , (6)

dπ(t)
dt

= π(t) · Q(t), π(0) = α , (7)

where Q(t) = R(t) − E(t) is the infinitesimal generator of C.

Intuitively, this proposition implies that solving the system of integral equations Π(x, t)
boils down to computing the transient probability vector π(t) with each element πs(t)
indicating the probability to be in state s at time t given the initial probability distri-
bution α = π(0). The transient probability is specified by a system of ODEs (7), the
celebrated Chapman-Kolmogorov equations.

Given ICTMC C, let C[F ] be the ICTMC obtained by making the states in F ab-
sorbing in C. We have the following theorem:

Theorem 1. For any ICTMC C, ProbC(s, x,♦�TatF ) = ProbC[F ](s, x,♦=TatF ).

To sum up, Proposition 1, 2 together with Theorem 1 suggest that computing time-
bounded reachability probabilities in an ICTMC can be done, by first making the F
states absorbing (and thus obtaining C[F ]) followed by solving a system of homoge-
neous ODEs (7) for C[F ]. By using standard numerical approaches, e.g., Euler method
or Runge-Kutta method and their variants [16], this system of ODEs (i.e. the transient
probability vector) can be solved.

3.2 Time-Unbounded Reachability

We then turn to the time-unbounded reachability problem, i.e., there are no constraints
on the time to reach the F -states. Let Prob(s, x,♦ atF ) denote the reachability proba-
bility from state s at time x to reach F within time interval [0,∞). Using Proposition
1, we can characterize Prob(s, x,♦ atF ) as follows:

⎧
⎪⎨

⎪⎩

∫ ∞

0

∑

s′∈S

Rs,s′(x + τ )e−
∫ τ
0 Es(x+v)dv · Prob(s′, x + τ,♦atF )dτ, if s /∈ F (8)

1, if s ∈ F (9)

The case s ∈ F is derived from (2), where the probability to delay in an F -state for
zero units of time is 1 and the probability to leave (i.e. taking a Markovian jump) an
F -state in zero units of time is 0. When s /∈ F , Eq. (8) is similar to (3) except that
there is no bound on the time to leave a state s /∈ F . Note that in contrast to the time-
bounded case, in general it is not possible to reduce this system of integral equations to
a system of ODEs. Since solving a system of integral equations is generally time con-
suming and numerically instable, we propose to investigate some special cases (subsets
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Ts,s′

ns,s′ ·P

t0

Rs,s′(t)

Ts t0

Rs,s′(t)

Fig. 1. Eventually periodic assumption (left) and eventually stable assumption (right)

of ICTMCs), for which the reduction to ODEs is possible. Here we consider two such
classes, i.e. eventually periodic ICTMCs and eventually uniform ICTMCs. Their com-
mon feature is that rate functions of the given ICTMC exhibit regular behaviors after
some time T . This allows for computing time-unbounded reachability probabilities ef-
ficiently (e.g., via DTMCs). Hence the problem turns out to be reducible to computing
the time-bounded reachability probabilities with time bound T , which has been tack-
led in the previous section, and reachability probabilities for DTMCs. Both of them,
fortunately, enjoy efficient computational methods.

Eventually periodic assumption. We consider eventually periodic ICTMCs.

Definition 4 (Eventually periodic assumption (EPA)). An ICTMC C is eventually
periodic if there exists some time P ∈ R>0 such that for any two states s, s′ ∈ S, there
exists some Ts,s′ ∈ R�0 and ns,s′ ∈ N such that

Rs,s′(t) =

{
R(1)

s,s′(t) if t � Ts,s′

R(2)
s,s′(t) if t > Ts,s′

where R(2)
s,s′(t) = R(2)

s,s′(t + ns,s′ ·P ).

An example rate function under the EPA is illustrated in Fig. 1 (left). After time point
Ts,s′ , the function Rs,s′(t) becomes periodic with the period ns,s′ ·P , where P is the
“common factor” of all the periods of rate functions Rs,s′(t), for all s, s′ ∈ S. For any
ICTMC C satisfying EPA, let TEP = maxs,s′∈S Ts,s′ and PEP = (gcds,s′∈S ns,s′)·P .
Intuitively, TEP is the time since when all rate functions are periodic and PEP is the
period of all the periodic rate functions. For instance, suppose there are two rate func-
tions with R(2)

s1,s2(t) = 2 + cos(1
2 t) and R(2)

s2,s3(t) = 3 − sin(1
3 t), and let Ts1,s2 =

10, Ts2,s3 = 15. Then TEP=max{10, 15}=15, P=π, ns1,s2=4 and ns2,s3=6, and
PEP=gcd{4, 6}·π=12π.

Time-unbounded reachability probabilities for an ICTMC under the EPA can be
computed according to Alg. 1 and justified by Theorem 2. Let us explain it in more
detail. Due to (9), once F states are reached, it is irrelevant how the paths continue.
This justifies the model transformation from C to C[F ]. The reachability problem can
be divided into two subproblems: (I) first to compute the probability to reach state
s′ ∈ S at exactly time TEC (the second Prob in (10), see below); and (II) then to com-
pute the time-unbounded reachability from s′ ∈ S to F (the third Prob in (10)). In
the following we will focus on (II): Recall that we denote Prob(s, TEP,♦=PEPats′)
to be the probability to reach from s to s′ after time PEP starting from time point
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TEP. Since after time TEP all rate functions are periodic with period PEP, it holds that
Prob(s, TEP,♦=PEPats′) = Prob(s, TEP+n·PEP,♦=PEPats′), for all n ∈ N. It then
suffices to compute Prob(s, TEP,♦=PEPats′) for any s, s′ ∈ S. Given the ICTMC
C with state space S, we build a DTMC DC = (S,P) with Ps,s′=ProbC(s, TEP,
♦=PEPats′). Intuitively, Ps,s′ is the one-step probability (one-step here means one pe-
riod) to move from s to s′, and the problem (II) is now reduced to computing the reacha-
bility probability from s to F -states in arbitrarily many steps (since the time-unbounded
case is considered), i.e., ProbDC[F ](s,♦ atF ). This can be done by standard methods,
e.g., value iteration or solving a system of linear equations, see, among others, [4]
(Ch. 10).

Theorem 2. Let C = (S, AP, L, α,R(t)) be an ICTMC satisfying EPA with time TEP

and PEP, s ∈ S and F ⊆ S. Then:

ProbCEP(s, 0,♦ atF )=
∑

s′∈S

ProbC[F ](s, 0,♦=TEPats′)·ProbDC[F ](s′,♦ atF ) (10)

Remark 1. Sometimes we need to compute ProbCEP(s, x,♦ atF ) for ICTMC C =
(S, AP, L, α,R(t)), namely, the starting time is x instead of 0. To accomplish this,
we define an ICTMC C′ = (S, AP, L, α,R′(t)) such that R′(t) = R(t + x) and it
follows that C′ still satisfies EPA (with T ′

EP = TEP − x if x � TEP and 0 otherwise;
P ′

EP = PEP) and ProbCEP(s, x,♦ atF ) = ProbC
′

EP(s, 0,♦ atF ).

Algorithm 1. Time-unbounded reachability for ICTMCs satisfying EPA
Require: ICTMC C = (S, AP, L, α,R(t)), EPA time TEP, period PEP

Ensure: ProbC
EP(s, 0,♦ atF )

1: For any two states s, s′ ∈ S in C[F ], compute the time-bounded reachability probability with
time bound TEP, starting from time point x, i.e. ProbC[F ](s, 0,♦=TEPats′);

2: For any two states s, s′ ∈ S in C[F ], compute the time-bounded reachability probability with
time bound PEP, starting from time point TEP, i.e. ProbC[F ](s, TEP,♦=PEPats′);

3: Construct a discrete-time Markov chain (DTMC for short) DC[F ] = (S,P) with Ps,s′ =

ProbC[F ](s, TEP,♦=PEPats′). We denote the reachability probability from s to F in DC by
ProbDC[F ](s,♦ atF );

4: Return
∑

s′∈S ProbC[F ](s, 0,♦=TEPats′) · ProbDC[F ](s′,♦ atF ).

Eventually uniform assumption. The previous section has discussed rate functions en-
joying a periodic behavior. A different class of rate functions are those which increase
or decrease uniformly, e.g., an ICTMC in which all rates are a multiplicative of the
Weibull failure rate which is characterized by the function f(t) = γ

α

(
t
α

)γ−1
, where

γ and α are the shape and scale parameters of the Weibull distribution, respectively.
These distributions can e.g., characterize normal distributions, and are frequently used
in reliability analysis. This suggests to investigate eventually uniform ICTMCs.

Definition 5 (Eventually uniform assumption (EUA)). An ICTMC C is eventually
uniform if there exists some time TEU ∈ R>0 and an integrable function f(t) : R>0 →
R>0 such that limt→∞

∫ t

TEU
f(τ)dτ → ∞ and for any two states s, s′ ∈ S and t �

TEU, Rs,s′(t) = f(t) · Rc
s,s′ , where Rc

s,s′ is a constant.
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In terms of the infinitesimal generator Q(t) of the ICTMC C, EUA intuitively entails
that there exists some function f(t) and constant infinitesimal generator Qc = Rc−Ec

(Rc and Ec are the constant rate matrix and exit rate matrix, respectively) such that
Q(t) = f(t)·Qc for all t � TEU. We also define the constant transition probability

matrix Pc such that Pc
s,s′ =

Rc
s,s′
Ec

s
.

By restricting to the EUA, one can reduce the time-unbounded reachability prob-
lem for an ICTMC C to computing the time-bounded reachability probability with
time bound TEU and the reachability probability in a DTMC DC

EU[F ] with transition
probability matrix Pc[F ], where Pc[F ]s,s′ = Pc

s,s′ for s /∈ F ; Pc[F ]s,s = 1 and
Pc[F ]s,s′ = 0, for s ∈ F and s′ �= s. This is shown by the following theorem.

Theorem 3. Let C = (S, AP, L, α,R(t)) be an ICTMC with s ∈ S. Given a set F of
goal states and the eventually uniform assumption with the associated time TEU and
DTMC DC

EU, it holds that

ProbC(s, 0,♦ atF ) =
∑

s′∈S

ProbC[F ](s, 0,♦=TEUats′) · ProbDC
EU[F ](s′,♦ atF ). (11)

Remark 2. We note that the two assumptions, EUA and EPA are incomparable. There
are rate functions (e.g. polynomials) which can not be represented as periodic functions
but satisfy EUA; on the other hand, in case of EPA one can, for instance, assign the
same sort of rate functions (e.g. sin) with different periods, and thus obtain an ICTMC
which invalidates EUA.

4 LTL Model Checking

In this section, we tackle the problem of model checking properties specified by LTL
formulae for ICTMCs. Model checking CTMCs against LTL is not very difficult, since
one can easily extract the embedded DTMC of the given CTMC, and thus reduce the
problem to the corresponding model checking problem of DTMCs, which is well-
studied, see, e.g. [8]. However, this approach does not work for ICTMCs, since the rates
of the ICTMC vary with time. Below we shall employ an automata-based approach. For
this purpose, some basic definitions are in order.

Definition 6 (Generalized Büchi automata). A generalized Büchi automaton (GBA)
is a tuple A = (Σ, Q, Δ, Q0,F), where Σ is a finite alphabet; Q is a finite set of states;
Δ ⊆ Q×Σ ×Q is a transition relation; Q0 ⊆ Q is a set of initial states, and F ⊆ 2Q

is a set of acceptance sets.

We sometimes write q σ−−→ q′ if (q, σ, q′) ⊆ Δ for simplicity. An infinite word w ∈
Σω is accepted by A, if there exists an infinite run θ ∈ Qω such that θ[0] ∈ Q0,
(θ[i], w[i], θ[i + 1]) ⊆ Δ for i � 0 and for each F ∈ F , there exist infinitely many
indices j ∈ N such that θ[j] ∈ F . Note that w[i] (resp. θ[i]) denotes the i-th letter (resp.
state) on w (resp. θ). The accepted language of A, denoted L(A), is the set of all words
accepted by A. Given a GBA A and state q, we denote by A[q] the automaton A with q
as the unique initial state. Note that L(A) =

⋃
q∈Q0

L(A[q]). A GBA A is separated,
if for any two states q, q′, L(A[q′]) ∩ L(A[q′′]) = ∅.



LTL Model Checking of Time-Inhomogeneous Markov Chains 113

It follows from [9] that the correspondence between LTL formulae and separated
GBA can be established:

Theorem 4. For any LTL formula ϕ over AP, there exists a separated GBA Aϕ =
(Σ, Q, Δ, Q0,F), where Σ = 2AP and |Q| � 2O(|ϕ|), such that L(Aϕ) is the set of
computations satisfying the formula ϕ.

We note that the notion of separated is crucial for the remainder of this paper. A closely
related notion, referred to as unambiguous, has been widely studied in automata and
language theory, dating back to [1]. See also, among others, [5][13] for relevant litera-
ture. To the best of our knowledge, the notion of “separated” was firstly exploited in [9]
for model checking DTMCs against LTL.

Definition 7 (Product). Given an ICTMC C = (S, AP, L, α,R(t)) and a separated
GBA A = (Σ, Q, Δ, Q0,F), the product C ⊗ A is defined as

C ⊗ A = (Loc, AP, L̃, α̃, R̃(t)),

where Loc = S × Q; L̃(〈s, q〉) = L(s); α̃(〈s0, q0〉) = α(s0) if α(s0) > 0 and

q0 ∈ Q0, and undefined elsewhere; and R̃〈s,q〉,〈s′,q′〉(t) = Rs,s′(t) if q
L(s)−−−→ q′.

For the sake of clarity, we call the states of a product as locations.

Example 2. Given ICTMC C (Fig. 2(a)) and separated GBA A (Fig. 2(b)), the product
C ⊗ A is shown in Fig. 2(c).

s0 s1 s2 s3

s4

r1(t) r2(t) r5(t)

r3(t)
r4(t)

r6(t)

{a} {b} {c} {a}

{b}

(a) ICTMC C

q0 q2 q4 q5

q1 q3

a a c

a

b

a
b

c
c

(b) Separated GBA A

�0 = 〈s0, q0〉 �1 = 〈s1, q1〉 �2 = 〈s2, q5〉

�5 = 〈s4, q3〉

�4 = 〈s3, q0〉

�3 = 〈s4, q1〉

�6 = 〈s1, q2〉

�7 = 〈s2, q3〉�8 = 〈s4, q5〉

r1(t) r2(t) r5(t)

�9 = 〈s4, q2〉

r6(t)

r3(t)
r2(t) r4(t)

r4(t)

r6(t)

r3(t)r1(t)

(c) Product C ⊗ A

Fig. 2. Example product construction of ICTMC C and separated GBA A
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Remark 3. Note that in general the product itself is not an ICTMC. The reason is two-
fold: (1) If |Q0| > 1, then α̃ is not a distribution; (2) The sum of the rates of outgoing
transitions from a location might exceed the exit rate of the location. For instance, in
Example 2, the exit rate of 0, as defined, is Ẽ�0(t) = Es0(t) = r1(t); while the sum
of the rates of its outgoing transitions is 2r1(t). However, due to the fact that A is
separated, as we will see later, it would not be a problem, cf. Proposition 3.

The generalized Büchi acceptance condition, roughly speaking, requires to visit some
states infinitely often. As in the tradition of model checking Markovian models, we need
to identify bottom strongly connected components (BSCCs) of the product (when read
as a graph). A strongly connected component (SCC for short) of the product denotes a
strongly connected set of locations such that no proper superset is strongly connected. A
BSCC is an SCC from which no location outside is reachable. Unfortunately, generally
in ICTMCs, there is no way to define a BSCC over the product since the rate of each
transition is a function of time instead of a constant and thus a BSCC at time t might
not be a BSCC at time t′. In other words, the topological structure (edge relation) of the
product might change at any moment of time, which is one of the main difficulties of
model checking ICTMCs.

To circumvent this problem, we make an (arguably mild) assumption, that is, we
assume that ICTMCs are eventually stable, in the following sense.

Definition 8 (Eventually stable assumption (ESA)). An ICTMC C is eventually sta-
ble if for each state s ∈ S, there exists some time Ts such that for any t � Ts and
s′ ∈ S, either Rs,s′(t) > 0 or Rs,s′(t) = 0.

W.l.o.g., we assume Ts is the smallest time point that the above assumption holds for
state s. Let TES = maxs∈S Ts be the smallest time point that an ICTMC is stable.
Intuitively, an ICTMC is stable if its topological structure does not change any more.
More specifically, transitions can alter their rates, but not from positive to zero or vice
versa, i.e., no transitions will “disappear” or “newly created”. An example rate function
is illustrated in Fig. 1 (right), where after TES the rates keep strictly positive (note the
particular value is irrelevant here). It turns out that ESA is essential for identifying
stable BSCCs (also model checking LTL). A stable product as well as stable BSCC are
defined in the same way, relative to the time point TES. In the sequel, when we refer to
BSCCs, we implicitly refer to the stable BSCCs in the stable product. In accordance
with this, we will sometimes write s �→ s′ for ICTMC C if Rs,s′(t) > 0 with t � TES;
and similarly for  �→ ′ in the product.

Definition 9 (aBSCC). Given the product C ⊗ A of an ICTMC C = (S, AP, L,
α,R(t)) satisfying ESA and a GBA A = (Σ, Q, Δ, Q0,F), we define

I. a SCC is a set of locations B ⊆ S × Q such that (i) B is strongly connected
meaning that for any two locations , ′ ∈ B,  �→∗ ′ where �→∗ denotes the
reflexive and transitive closure of �→, and (ii) no proper superset of B is strongly
connected;

II. a SCC B is accepting if ∀F ∈ F , there exists some 〈s, q〉 ∈ B such that q ∈ F ;
III. a SCC B is an accepting bottom SCC (B ∈ aBSCC for short) if (i) B is ac-

cepting; (ii) for each location  ∈ B, there does not exist any location ′ such that
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 �→ ′ and ′ is in any other accepting SCC; (iii) for each location  = 〈s, q〉 ∈ B,
for any s′ with s �→ s′, 〈s′, q′〉 ∈ B for some q′.

As an example, we note, suppose that r4(t), r5(t), r6(t) > 0 when t � TES, that an
accepting BSCC in the stable product in Fig. 2(c) is formed by 2, 3, 4. Note that
{7} is not an (accepting) SCC, so III(ii) is not violated. {8} is not an SCC either,
since we would require that 8 �→∗ 8 which fails to be.

Recall that given an LTL formula, one can obtain a corresponding separated au-
tomaton, which renders us very nice properties for the product defined in Definition 7.
A couple of lemmas, dedicated to illustrate these properties are in order. The following
two essentially exploit the fact that for each accepted word of a separated GBA, there
is a unique accepting path.

Lemma 1. Given the product C ⊗ A where A is separated. For any aBSCC B of the
stable product C ⊗ A, it cannot be the case that 〈s, q〉 �→ 〈s′, q′〉 and 〈s, q〉 �→ 〈s′, q′′〉
for any 〈s, q〉, 〈s′, q′〉, 〈s′, q′′〉 in B with q′ �= q′′.

We say that two locations 〈s, q〉 and 〈s′, q′〉 in the product C ⊗ A are connected, if

q
L(s)−−−→ q′2. We say that from location 〈s, q〉 there is a path leading to a BSCC B, if

there is a sequence 〈s0, q0〉, 〈s1, q1〉, . . . , 〈sn, qn〉 such that 〈s, q〉 = 〈s0, q0〉, 〈si, qi〉
and 〈si+1, qi+1〉 are connected for 0 � i < n and 〈sn, qn〉 ∈ B.

Lemma 2. Given the product C⊗A of an ICTMC C and a separated GBA A, it cannot
be the case that there are two locations 〈s, q〉 and 〈s, q′〉 with q �= q′ such that both of
them have a path reaching an aBSCC.

As said, given ICTMC C and separated GBA A, the product C ⊗ A itself is not an
ICTMC (see Example 2). However, thanks to the fact that A is separated, we can trans-
form C ⊗ A into an ICTMC. Lemma 1 and 2 entail that in the product C ⊗ A, we can
safely remove the locations which do not lead to an accepting BSCC, and thus obtain
an ICTMC model, denoted C⊗A. Let us illustrate this by continuing Example 2. First
note that the dashed locations are the trap locations from which the accepted location 2

cannot be reached. Those locations can safely be removed since the paths passing them
will never be accepted. It is not a coincidence that at most one of the outgoing transi-
tions from those “nondeterministic” locations (i.e., 0, 1, 3, 4) can reach the accepted
locations. This is guaranteed by the separated property of the automaton (Lemma 2).
By deleting all the dashed locations, we obtain C⊗A.

The following proposition claims that C⊗A can be viewed as an ICTMC in the
sense that it defines a stochastic process exactly as an ICTMC. The crucial point is that
in C⊗A, for each location  and time t, the sum of the rates of the emanating transitions
from  does not exceed the exit rate of . (Note that the sum could be strictly less than
the exit rate as for 1 in Fig. 2(c), thus it is “substochastic”.) With a little abusing of
terms, we call this model an ICTMC.

Proposition 3. C⊗A is an ICTMC. Moreover, for each accepting cylinder set, C and
C⊗A give rise to the same probability.

2 Note that we do not require that s �→ s′. So “connected” is purely a graph-theoretic notion
where the time is irrelevant.
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Let C⊗A	 be obtained from C⊗A by making each location in the aBSCCs absorb-
ing, and define F 	 as the set of locations in any aBSCC. Given an ICTMC C with
eventually stable assumption (with TES) and an LTL formula ϕ, the probability of the
set of paths of C satisfying ϕ, denoted ProbC

ES(ϕ), can be computed by Alg. 2.

Theorem 5. For an ICTMC C with TES and an LTL formula ϕ,

ProbC
ES(ϕ) =

∑

α̃(�0)>0

∑

�∈Loc

α̃(�0) · ProbC⊗A(�0, 0,♦=TESat�) · ProbC⊗A�

(�, TES,♦ atF �).

Algorithm 2. Model checking ICTMC against LTL
Require: ICTMC C, LTL formula ϕ, ESA time TES;
Ensure: ProbC

ES(ϕ)
1: Transform ϕ to a separated generalized Büchi automaton A;
2: Build the product C ⊗ A = (Loc, AP, L̃, α̃, R̃(t));
3: Find all accepting BSCCs in the (stable) product C ⊗A;
4: Remove all the trap locations yielding C⊗A;
5: Compute the time-bounded reachability in C⊗A from initial location �0 to each � ∈ Loc,

ProbC⊗A(�0, 0,♦=TES at�);
6: Make each location in the aBSCCs absorbing, thus obtaining C⊗A� and F �;
7: Compute the time-unbounded reachability probability in C⊗A� from each � ∈ Loc to F �,

i.e., ProbC⊗A�
(�, TES,♦ atF � );

8: ProbC
ES(ϕ)=

∑
α̃(�0)>0

∑
�∈Loc α̃(�0)·ProbC⊗A(�0, 0,♦=TESat�)·ProbC⊗A�

(�, TES,♦ atF � ).

Note that ProbC⊗A(0, 0, ♦=TESat�) and ProbC⊗A�

(, 0,♦at�F � ) can be computed
by the approaches in Section 3.1 and 3.2, respectively. Computing the former relies on
solving a system of ODEs, whereas computing the latter, as stated in Section 3.2, one
has to solve a system of integral equations in general.

Remark 4 (EPA, EUA and ESA). EPA and ESA are incomparable, i.e., there are
ICTMCs that are eventually periodic but not stable (see e.g., the ICTMC with one
rate function in Fig. 1 (left)), and vice versa (see, e.g., that in Fig. 1 (right)). When both
assumptions are applied, we obtain ICTMCs that are “eventually positive periodic”,
i.e., eventually periodic and all rate function values in the periods are either strictly pos-
itive or being zero. For this subset of ICTMCs, one can resort to solving a system of
ODEs and linear equations, as presented in Theorem 2 as well as Alg. 1.

EUA and ESA are incomparable as well. The counterexamples for both directions
can be easily constructed. When both assumptions are applied, as in the previous case,
the subset of ICTMCs (where f(t) is eventually strictly positive) can be dealt with by
solving a systems of ODEs and linear equations (Theorem 3).

The comparison of EPA and EUA can be found in Remark 2. We emphasize once
again that ESA is of most importance in LTL model checking, in order to find stable
BSCCs. However EPA or EUA are certain subsets of ICTMCs that we can efficiently
deal with (meaning by solving a system of ODEs and linear equations). We mention that
there are other approaches which can handle and solve the system of integral equations,
e.g., approximation by truncating the infinite range of the integral.



LTL Model Checking of Time-Inhomogeneous Markov Chains 117

Example 3. We continue Example 2 to show how to compute the set of paths of ICTMC
C accepted by A. Let the rate functions be defined as: ri(t) = i for t � 0 and 3 � i � 6;
and

r1(t) =

⎧
⎨

⎩

t x ∈ [0, 9.5)
0 x ∈ [9.5, 10)
2 + cos( 1

2
t) x ∈ [10,∞)

r2(t) =

{
4.1 x ∈ [0, 15)
7.6 − sin( 1

3
t) x ∈ [15,∞)

It is not difficult to see that this ICTMC satisfies both the ESA and EPA and TES = 10,
TEP = 15 and PEP = 12π.

To compute ProbC
ES(A), Alg. 2 is applied. Note that we omit the step of transforming

an LTL formula to a GBA and the notation ProbC
ES(A) is self-explanatory. We consider

the first Prob appearing in step 8, namely, to compute ProbC⊗A(0, 0,♦=10 at�) for all
 in C⊗A. This is actually to compute the transient probability vector in C⊗A at time
TES = 10, which can be done by solving a system of ODEs. We then consider the
second Prob appearing in step 8, namely, to compute ProbC⊗A�

(, 10,♦ at�2) (note
that F ∗ = {2}). Finally, we wrap them up as follows:

ProbC
ES(A)

∑

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ProbC⊗A(�0, 0,♦=10 at�0) · ProbC⊗A�

(�0, 10,♦ at�2)

ProbC⊗A(�0, 0,♦=10 at�1) · ProbC⊗A�

(�1, 10,♦ at�2)
ProbC⊗A(�0, 0,♦=10 at�2) · 1
ProbC⊗A(�0, 0,♦=10 at�3) · 1

ProbC⊗A(�0, 0,♦=10 at�4) · 1

(12)

The left column of (12) is the transient probability vector; we then show how to com-
pute the elements in the right column. For this purpose, generally we have to solve a
system of integral equations. Here we obtain the following one:

⎧
⎨

⎩

f�0(x) =
∫ ∞
0 r1(x + τ)e−

∫
τ
0 r1(x+v)dv·f�1(x + τ)dτ

f�1(x) =
∫ ∞
0

r2(x + τ)e−
∫ τ
0 r2(x+v)+r3(x+v)dv·f�2(x + τ)dτ

f�2(x) = 1

In this case, one obtains that f�2(x) = 1,

f�1(10) =

Z 15

10

4.1e−
R

τ
10(4.1+3)dvdτ+

Z ∞

15

(7.6−sin(
1

3
τ ))·e−

R 15
10 (4.1+3)dv−

R
τ
15(7.6−sin( 1

3 (x+v))+3)dvdτ .

and f�0(10) can be computed accordingly. It follows that ProbC⊗A�

(0, 10,♦at�2) =
f�0(10) and ProbC⊗A�

(1, 10,♦at�2) = f�1(10). Hence (12) can be obtained.
Alternatively, let us note that fortunately in this case, the EPA is satisfied. So one

can apply Alg. 1 to compute ProbC⊗A�

(, 10,♦at�2). Let us illustrate for the case that
 = 0. (The case that  = 1 is similar.) For the first Prob in Alg. 1, step 4, it is again
to compute the transient probability matrix ProbC⊗A�

(, 10,♦=15−10 at�′), for , ′ ∈
{i | 1 � i � 4} (note that 2 is already made absorbing in C⊗A	); and for the second
Prob, we need to construct the DTMC D with P�,�′ = ProbC⊗A�

(, 15,♦=12π at�′).
It follows that

Prob
C⊗A�

EP (�0, 10,♦ at�2)
∑

=

⎧
⎨

⎩

ProbC⊗A�

(�0, 10,♦=15−10 at�0) · ProbD(�0,♦ at�2)

ProbC⊗A�

(�0, 10,♦=15−10 at�1) · ProbD(�1,♦ at�2)

ProbC⊗A�

(�0, 10,♦=15−10 at�2) · 1
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The P matrix of the DTMC D is as follows (let Θ denote C⊗A	):

P =

⎛

⎝
ProbΘ(�0, 15,♦=12π at�0) ProbΘ(�0, 15,♦=12π at�1) ProbΘ(�0, 15,♦=12π at�2)

0 ProbΘ(�1, 15,♦=12π at�1) ProbΘ(�1, 15,♦=12π at�2)
0 0 1

⎞

⎠.

Hence ProbC⊗A�

EP (0, 10,♦at�2) can be easily computed.

5 Conclusion

We have studied the problem of verifying linear-time properties against ICTMCs. Two
variants of reachability problems, i.e. time-bounded and unbounded reachability, as well
as LTL properties were considered. Future work consists of identifying more classes
of ICTMCs for which efficient computational methods exist such that the approach
studied in this paper can be applied. Other specifications like (D)TA, M(I)TL, will also
be investigated.
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