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a b s t r a c t

In this paper, we consider the behavioral pseudometrics for probabilistic systems, which
are a quantitative analogue of probabilistic bisimilarity in the sense that the distance
zero captures the probabilistic bisimilarity. The model we are interested in is probabilistic
automata, which are based on state transition systems and make a clear distinction
between probabilistic and nondeterministic choices. The pseudometrics are defined as the
greatest fixpoint of a monotonic functional on the complete lattice of state metrics. A
distinguished characteristic of this pseudometric lies in that it does not discount the future,
which addresses some algorithmic challenges to compute the distance of two states in the
model. We solve this problem by providing an approximation algorithm: up to any desired
degree of accuracy ε, the distance can be approximated to within ε in time exponential
in the size of the model and logarithmic in 1

ε
. One of the key ingredients of our algorithm

is to express a pseudometric being a post-fixpoint as the elementary sentence over real
closed fields, which allows us to exploit Tarski’s decision procedure, together with the
binary search to approximate the behavioral distance.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Probability, like nondeterminism, is an abstraction mechanism used to hide inessential or unknown details. Statistical
mechanics, originated by Boltzmann, Gibbs, Maxwell et al., is a celebrated successful example of using the probabilistic
abstraction. The probability abstraction can be exploited, among others, tomodel a certain chance of error or other stochastic
behavior occurring in various real world applications, thus has been extensively applied inmany areas, in particular, natural
computation, fuzzy systems and knowledge discovery. This motivates the investigation of probabilistic systems, where
system dynamics encodes the probability of making a transition between states rather than just the existence of such
transitions. To support the specification and analysis of probabilistic systems, numerous models have been proposed in
the literature and are study subjects of a rapidly growing research community, for which we refer the readers to [2] for a
comprehensive exposition.
In [12] van Glabbeek et al. classified probabilistic models into reactive, generative and stratified. Albeit the diversity of

these models, Segala [17] argued convincingly that none of them captures real nondeterminism, an essential notion for
modeling, say, scheduling freedom, implementation freedom, the external environment and incomplete information. To
remedy this, he then introduced a new family of models, namely the simple probabilistic automata and probabilistic automata
(SPA and PA in short, respectively), where both probability and nondeterminism are taken into account. In a nutshell, (S)PA
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constitutes a very expressive framework for the specification and analysis of probabilistic systems. They are based on state
transition systems and make a clear distinction between probabilistic and nondeterministic choices. Technically speaking,
SPAs relate a state and an actionwith a distribution over target stateswhile PAs relate a statewith a distribution over actions
and target states. In contrast, probabilisticmodelswithout nondeterminism are sometimes referred to as purely probabilistic,
for example, the discrete-time Markov chains (DTMCs) and a more ‘‘traditional’’ probabilistic automaton due to Rabin [16].
We refer the reader to [18] for a leisure exposition and comparison.
In this paper, we concentrate on SPAs. Admittedly, SPA is a special case of PA. However, problems arise when defining

the parallel composition operators for PAs, which prevents us from potential modular (compositional) analysis. Since
compositionality is an extremely desired property, we prefer SPA. Moreover, we mention that these two models are
equivalent in some sense and there is no real obstacle to extend our result from SPA to PA. For more discussions, we refer
the readers to the relevant part of [2].
In system theory, usually one models the systems and analyzes their properties. For any model, one of the fundamental

research questions is the notions of equivalence and congruence: when can two systems be deemed the same and when
can they be inter-substituted for each other? In the classical investigations in concurrency theory, bisimulation, introduced
by Park and Milner [14], is a ubiquitous notion of equivalence which has become one of the primary tools in the analysis
of systems: when two systems are bisimilar, known properties are readily transferred from one system to the other. In
probabilistic systems, the standard notion of bisimulation has to be adapted, usually by treating the probability as labels.
This line of research, to the best of our knowledge, dates back to Larsen and Skou’s work on pure probabilistic systems [13]
and now is very fruitful, see, among others, [13,17,15].
However, it is now widely recognized that traditional equivalence is not a robust concept in the presence of quantitative

(i.e. numerical) information in the model, in particular, for probabilistic models (e.g. see [10]). To see this, first let us note
that the probabilities appearing inmodels cannot be viewed as exact numbers, instead they should be read as numbers with
some error estimate. Hence reasoning principles based on the exact value of numbers are of dubious practical value and thus
it is unfortunately problematic if the notion of equivalence of probabilistic systems is sensitive to the exact probabilities of
transitions, since a slight change in the transition probabilities will result in that two equivalent states which are deemed no
longer equivalent. This instability is due to the quantitative nature of probabilistic systems. In summary, in a situationwhere
the system behavior has a quantitative aspect it should come up with a more robust (or ‘‘fuzzy’’) approach to equivalence.
To find a more flexible way to distinguish system states, researchers in this area have borrowed from pure mathematics

the notion ofmetric.1 Ametric is often defined as a function that associates some distance with a pair of elements. Here, it is
exploited to provide a measure of the difference between two states that are not exactly bisimilar. A couple of papers have
addressed this problem and to make our presentation smooth, we defer the discussion of related works to Section 5.
Having a nice pseudometric definition for systems at hand, the next natural question is: how to compute it? This

raises some algorithmic challenges. It turns out that this problem is relevant to the technical definitions of pseudometrics.
Desharnasi et al. [10] introduced a family of behavioral pseudometric for probabilistic transition systems. Each pseudometric
is parameterized by a discount factor γ , a real number in (0, 1]. The smaller the discount factor, the more (behavioral
differences in) the future is discounted. If the discount factor is 1, then the future is not discounted at all. In this case, the
differences in behavior, whether in the near of far future, contribute alike to the distance. For systems that (in principle) run
forever, e.g. the reactive systems, wemay be interested in all these differences and, hence, in the pseudometric that does not
discount the future [4]. In [10], Desharnais et al. have presented an algorithm to approximate the behavioral distances in the
discounted setting. Van Breugel andWorrell also proposed an approximation algorithm in the same setting. However, there
is a fundamental difference between pseudometric that discounts the future and the one that does not. For example, from
the topology-theoretic point of view: all pseudometrics that discount the future give rise to the same topology, whereas the
pseudometric that does not discount the future gives rise to a different topology [10]. As a consequence, although there are
a couple of (approximation) algorithms to compute the behavioral distance when γ < 1, none of them can be adapted (at
least not in an obvious way) to handle the case that γ = 1.

Our contributions. Themain contribution of this paper is two-fold: first, we instantiate the (abstract) pseudometric definition
given in [8] for a general quantitative model in the setting of simple probabilistic automata and provide a concrete account;
second, we present an approximation algorithm to compute the behavioral distance. Since the pseudometric we consider
here does not discount the future, some novel approach other than the ones presented in [10] or [5] has to be exploited.
Our main technique is the characterization of distance as semi-algebraic quantities. Namely, we show how to express a
pseudometric being a post-fixpoint in first-order theory of real closed fields which is quadratic in the size of the system and
has a constant number of quantifier alternations. It is known that the (first-order) theory of real closed fields is decidable
in time exponential in the size of the formula and doubly exponential in the quantifier alternation depth [1]. This, together
with binary search on the range of values gives rise to an exponential algorithm to approximate the value to any given ε. Our
techniques are very natural and provide an algorithm and thus a complexity upper bound on the problem of approximating
the distance between two states in a very general model of probabilistic systems.

1 In this paper, as in [8], the termmetric is used to denote both metric and pseudometric. It turns out that in the probabilistic system, pseudometric is a
more natural notion.
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Structure of the paper. This paper is set up as follows. In Section 2, we present some background knowledge, including the
probabilistic automata with traditional bisimulation definition and brief introduction on real closed fields. In Section 3, we
provide the pseudometric definition and discuss its properties. In Section 4, an approximation algorithm is proposed and
we show its correctness. We conclude our work in Section 5 where some related works, as well as the future works are also
discussed in brief. An extended abstract of the current paper has appeared as [7].

2. Preliminaries

Before starting our exposition, let us first fix some general notations. Throughout the paper, we assume a fixed F of some
real closed ordered field. An ordered field F is real closed if no proper algebraic extension of F is ordered. Examples of real
closed fields include the real algebraic numbers, the computable numbers, the real numbers, superreal numbers, hyperreal
numbers, etc. For a countable set X , a probability distribution on X is a function δ : X 7→ [0, 1] ∩ F such that

∑
x∈X δ(x) = 1.

We denote the set of probability distributions on X by D(X). For a probability distribution δ ∈ D(X) we define ‖δ‖, the
support of δ, as ‖δ‖ = {x ∈ X | δ(x) > 0}. Note here we impose a restriction to each distribution η such that η(x) ∈ F.
Namely, for instance, if one sets F as the set of real algebraic numbers, then the probability can not be, say, π4 , which is
transcendental.

2.1. Simple probabilistic automata

Definition 1 (Simple Probabilistic Automata, [17]). A simple probabilistic automaton is a tuple P = (S, A,→)where
• S is a finite set of states;
• A is a finite set of actions; and
• →⊆ S × A×D(S) is the transition relation.

We shall write s
a
→ η as a more suggestive notion instead of (s, a, η) ∈→.

Note that it is possible that from state s, there are more than one transition labeled by a which lead to different
distributions (in terms of concurrency, SPAs feature internal nondeterminism). Henceforth for each state s and action a,
we write I(s, a) for {η ∈ D(S) | s

a
→ η}. The size of SPA is the sum of the number of its states and transitions.

Now, we provide a classical notion of equivalence between states, namely, the (strong) bisimulation. Assuming η is a
distribution on S and V ⊆ S, we write η(V ) for

∑
s∈V η(s). We first lift an equivalence relation on S to an equivalence

relation between distributions over S in the following way:

Definition 2. Let η, η′ ∈ D(S), we say that they are equivalent w.r.t. an equivalenceR on S, written η≡R η
′ if

∀U ∈ S/R. η(U) = η′(U).

Definition 3 (Probabilistic Bisimulation). An equivalence relation R ⊆ S × S is a (strong) probabilistic bisimulation if sRt
implies:
whenever s

a
→ η, there exists η′ such that t

a
→ η′ and η≡R η

′.
Two states s, t are probabilistic bisimilar, denoted by s↔ t , if there exists some bisimulationR s.t. sRt .

2.2. Theory of real closed fields

Our main technique is to represent the value as an elementary formula in the theory of real closed fields, and uses a
decisionprocedure for the theory of realswith addition andmultiplicationdating back to [19]. To facilitate theunderstanding
of the algorithm in the sequel, here we include a brief introduction on this aspect.
We denote by F the real closed field (F,+, ·, 0, 1,≤) with addition and multiplication. An atomic formula a is an

expression of the form p > 0 or p = 0 where p is a (possibly) multi-variate polynomial with coefficients in F. An elementary
formula is constructed from atomic formulae by the grammar:

φ ::= a | ¬φ | φ ∧ φ | φ ∨ φ | ∃x.φ | ∀x.φ,
where a is an atomic formula. The semantics of an elementary formula is given in a standard way. A variable x is free in the
formula φ if it is not in the scope of a quantifier ∃x or ∀x. An elementary sentence is a formula without free variables.
It is well-known that the elementary (i.e., first-order) theory of real closed fields in the language of ordered fields is

decidable, namely, we have:

Theorem 4 ([19]). The theory of real closed fields in the language of ordered fields is decidable.
Basically, Tarski’s theorem [19] tells us that the theory of real closed fields, including the predicate symbol <, admits

elimination of quantifiers, which in turn entails it is a complete and decidable theory. Furthermore the results of [1] show
that quantifier elimination in the theory of reals over addition andmultiplication can be achieved in time exponential in the
size of the formula and double exponential in the number of quantifier alternations.
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3. Behavioral metrics

In this section, we define pseudometric as the greatest fixpoint of a certain functional. Note that most of material of this
section is adapted from [8]. Let us fix a simple probabilistic automataP = (S, A,→) and consider pseudometrics on its set
of states S. We note that this metric suffices even if one wants to compute the distance between the states in two different
SPAs, sayP andP ′, sincewe can simply take the disjoint union of the state space S]S ′ and view them as a single automaton.

Definition 5. A 1-bounded pseudometric space is a pair (X, dX ) consisting of a setX and a distance function dX : X×X → [0, 1]
s.t.
1. For all x ∈ X , dX (x, x) = 0;
2. For all x, y ∈ X , dX (x, y) = dX (y, x); and
3. For all x, y, z ∈ X , dX (x, z) ≤ dX (x, y)+ dX (y, z).

As a convention, we often write X instead of (X, dX ) and we denote the distance function of a metric space X by dX .

In this paper, we focus on the behavioral pseudometric which does not discount the future. We characterize the
pseudometric as the greatest fixpoint of a functional from a complete lattice to itself. This characterization can be viewed
as a quantitative analogue of the greatest fixpoint characterization of bisimilarity.

Definition 6. LetM be the class of 1-bounded pseudometric on state set S. The order v onM is defined by d1 v d2 if for all
s, t ∈ S, d1(s, t) ≥ d2(s, t).

Remark 1. Note that as in [3], we make the reverse direction ofv and≥ in the above definition on purpose. This is used to
make d the greatest fixpoint, in analogy with the characterization of bisimilarity, rather than the least fixpoint.

Lemma 7. The set of 1-bounded pseudometric over S endowed with the order v forms a complete lattice. Formally, (M,v) is a
complete lattice.

Proof. Standard. It suffices to note that meets (g.l.b.) are suprema and joins (l.u.b.) are infima. Namely for any X ⊆ M,
(
d
X)(s, t) = sup{d(s, t) | d ∈ X}. Dually, (

⊔
X)(s, t) = inf{d(s, t) | d ∈ X}. �

Our goal is to introduce a functional from the complete lattice (M,v) to itself of which the behavioral pseudometric dS
is the greatest fixpoint. For this purpose, first we have to lift each metric to be a metric on distributions, namely, we need to
endow a metric to the distributionD on sets of states, since in simple probabilistic automata, the transitions are generally
from state to distribution.
It turns out that the classical Hutchinson metric on probabilistic distributions suffices.

Definition 8 (Hutchinson Metric). Given a metric space (S, d), we lift it to be a metric over D(S). Assuming η, η′ ∈ D(S),
we define d̂(η, η′) as the solution of the following linear program:

maximize
∑
s∈S

(
η(s)− η′(s)

)
· xs

s.t. for any s ∈ S, 0 ≤ xs ≤ 1
for any s, t ∈ S, xs − xt ≤ d(s, t).

Remark 2. Asmentioned in Section 1, here, we follow the nondiscounted version of pseudometric definition. An alternative
one, i.e. the discounted version, which scales the above d̂(η, η′) by a factor γ ∈ (0, 1), can be found in [10].

The following lemma shows that this extension to distributions satisfies the triangle inequality and is consistent with
the ordering on pseudometrics. From the first conclusion, it is not difficult to show that d̂ is indeed a pseudometric onD(S).

Lemma 9. Let d, d1, d2 ∈M and d1 v d2. It holds that:

• For any η1, η2, η3 ∈ D(S), d̂(η1, η3) ≤ d̂(η1, η2)+ d̂(η2, η3);
• For any η, η′ ∈ D(S), d̂1(η, η′) ≥ d̂2(η, η′).

We are now in a position to define a monotonic transformation (i.e. functional) onM. First let us recall the definition of
Hausdorff distance.

Definition 10 (Hausdorff Distance). Given a 1-bounded pseudometric on Z , the Hausdorff distance between two subsets
X, Y ⊆ Z is given as follows:

Hd(X, Y ) = max
{
sup
x∈X
inf
y∈Y
d(x, y), sup

y∈Y
inf
x∈X
d(y, x)

}
where we set inf∅ = 1 and sup∅ = 0.
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As the next step, we define a functional∆ onM based on the Hausdorff distance. Recall that I(s, a) = {η | s
a
→ η}.

Definition 11 (Functional ∆). Let d be a 1-bounded pseudometric on S. The distance function ∆(d) : S × S → [0, 1] is
defined by:

∆(d)(s, t) = max
a∈A

{
Hd̂ (I(s, a), I(t, a))

}
.

It is not difficult to see that∆ is well-defined. To ensure the existence of the greatest fixpoint, it suffices to show that∆
is monotonic. The proof is pretty straightforward and thus omitted here.

Lemma 12. ∆ is monotonic onM.

According to the remarkable Knaster–Tarski theorem [20], the fixpoints of a monotonic functional on a complete lattice
form a complete lattice and hence, the functional∆ has a greatest and least fixpoint. In the following, we denote the greatest
fixpoint of∆ by gfp(∆).

Definition 13. We define dS as the greatest fixpoint of∆, formally:

dS
def
= gfp(∆).

To justify the soundness of the pseudometic definition, we have to establish the correspondence between the behavioral
pseudometrics and probabilistic bisimulation (c.f. Definition 3): the distance zero captures probabilistic bisimilarity, which is
stated by the following theorem formally. Since the proof is similar to the one in [8], we omit it here.

Theorem 14. Given a simple probabilistic automaton P = (S, A,→). For any two states s, t ∈ S, s ↔ t if and only if
dS(s, t) = 0.

4. Approximation algorithm

In this section, we present our approximation algorithm. First, we have to provide some technical definitions.

Definition 15. d is a post-fixpoint of∆ if d v ∆(d).

We give an explicit characterization of post-fixpoint.

Lemma 16. d is a post-fixpoint of ∆ if and only if for any action a ∈ A:

• If s
a
→ η, then there exists some η′ such that t

a
→ η′ and d̂(η, η′) ≤ d(s, t);

• If t
a
→ η′, then there exists some η such that s

a
→ η and d̂(η, η′) ≤ d(s, t);

Proof. By definition. �

Clearly, a fixpoint is also a post-fixpoint. Consequently, we have the following characterization. Note here t returns the
greatest lower bound (a.k.a. infimum, meet) of a set.

Lemma 17.

gfp(∆) =
⊔
{d ∈M | d v ∆(d)}.

Having done some technical preparations, now we devote ourselves to expressing the fact ‘‘d is pseudometric on state
space S according to Definition 13’’ in the first-order (elementary) theory of real closed fields F. For this purpose, we first
introduce some meta notations to make the predicates accessible.

4.1. Meta notations

• Given any finite set X = {x1, · · · , xn}, we denote:∧
x∈X

ϕ(x) = ϕ(x1) ∧ · · · ∧ ϕ(xn).

The same notation applies to disjunction
∨
.

• Assuming a finitemetric space (X, d), whenwewrite d, wemean implicitly a vector Eds,t where s, t range over X (note that
s and t are not necessarily different). This also applies to the case of probabilistic distribution which has a finite support.
Namely, given η with finite ‖η‖, we write η for Eηs where s ∈ ‖η‖.
• For any finite set X = {x1, · · · , xn}, we write ∀EX .ϕ for ∀x1 · · · ∀xn.ϕ. The same notation applies to existential
quantification ∃.
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4.2. Predicates

In order to make our technical developments streamline, we introduce a series of predicates, which lead to the encoding
of a pseudometric being a post-fixpoint as the elementary sentence over real closed fields.

• The fact that d is a 1-bounded pseudometric can be captured as follows:

pseudo(d) ≡∧
s,t∈S

0 ≤ ds,t ≤ 1 ∧
∧
s∈S

ds,s = 0 ∧∧
s,t∈S

ds,t = dt,s ∧
∧
s,t,u∈S

ds,u ≤ ds,t + dt,u.

• Given two probabilistic distribution η, η′ ∈ D(S), where S is finite, we define the predicate h̄d(y, d, η, η′) stating the
fact that y is the Hutchinson metric (c.f. Definition 8) of η and η′ w.r.t. the metric d on S, formally y = d̂(η, η′) in the
following way:
As an auxiliary predicate, we first propose the following predicate `p(y, d, η, η′)which encodes the constraints in the

linear programming. Note here let us set X = {xs | s ∈ S}.

`p(y, d, η, η′) ≡
∃EX .(y =

∑
s∈S

(η(s)− η′(s)) · xs)

∧

∧
s∈S

0 ≤ xs ≤ 1 ∧
∧
s,t∈S

xs − xt ≤ d(s, t).

We remark that since S is finite, this formula is a first-order sentence.
It follows the definition of h̄d(y, d, η, η′):

h̄d(y, d, η, η′) ≡
`p(y, d, η, η′) ∧ ∀z.

(
`p(z, d, η, η′) H⇒ y ≥ z

)
.

• We proceed to define the predicate regarding the Hausdorff distance (c.f. Definition 10). Given a pseudometric d on S,
two states s, t ∈ S, an action a ∈ A and a distribution η such that s

a
→ η, we define, under the condition that I(t, a) 6= ∅,

that:
inf(y, d, a, s, t, η) ≡∨
η′∈I(t,a)

h̄d(y, d, η, η′) ∧ ∀z.

( ∨
η′∈I(t,a)

h̄d(z, d, η, η′) H⇒ y ≤ z

)
.

It follows that we define, under the condition that I(s, a) 6= ∅, that:

sup inf(y, d, a, s, t) ≡∨
η∈I(s,a)

inf(y, d, a, s, t, η) ∧ ∀z.

( ∨
η∈I(s,a)

inf(z, d, a, s, t, η) H⇒ y ≥ z

)
.

• The fact that y is the distance w.r.t. a 1-bounded pseudometric on distributions, under the constraint that I(s, a) 6= ∅
and I(t, a) 6= ∅, can be captured as follows:

haus(y, d, a, s, t) ≡
sup inf(y, d, a, s, t) ∧ sup inf(y, d, a, t, s)
∧ ∀z. (sup inf(z, d, a, s, t) ∧ sup inf(z, d, a, t, s) H⇒ y ≥ z) .

• In view of Lemma 16, to define d is a post-fixpoint w.r.t. states s and t , we have to distinguish three cases:
1. For any a ∈ A, I(s, a) 6= ∅ ⇔ I(t, a) 6= ∅ and there exists some a, I(s, a) 6= ∅.

postfixpoint1(d, s, t) ≡
∀a ∈ A. I(s, a) = ∅ ⇔ I(t, a) = ∅
∧ ∃y.

∨
{a∈A|I(s,a)6=∅}

haus(y, a, d, s, t)

∧ ∀z.
∨

{a∈A|I(s,a)6=∅}

haus(z, a, d, s, t)

H⇒ y ≥ z.
2. For any a ∈ A, I(s, a) 6= ∅ ⇔ I(t, a) 6= ∅ and for all a ∈ A, I(s, a) = ∅.

postfixpoint2(d, s, t) ≡
∀a ∈ A. I(s, a) = ∅ ∧ I(t, a) = ∅ ∧ ds,t = 0.



T. Chen et al. / Computers and Mathematics with Applications 57 (2009) 991–999 997

3. There exists some a such that I(s, a) = ∅ 6⇔ I(t, a) 6= ∅.
postfixpoint3(d, s, t) ≡
∃a ∈ A. ¬ (I(s, a) = ∅ ⇔ I(t, a) = ∅) ∧ ds,t = 1.

We note the above three cases (1) (2) (3) are clearly mutual exclusive. To combine them together, we obtain:

postfixpoint(d, s, t) ≡
postfixpoint1(d, s, t) ∨ postfixpoint2(d, s, t) ∨ postfixpoint3(d, s, t).

Here we note that the predicate concerning I(s, a) and I(t, a) can be instantiated to true or falsewhen the concrete SPA
is considered.
• It follows that

postfixpoint(d) ≡
∧
s,t∈S

postfixpoint(d, s, t).

According to Lemma 16, it is not difficult to see that the following theorem holds:

Theorem 18. Assume any simple probabilistic automaton P = (S, A,P ), postfixpoint(d) holds iff d is a post-fixpoint of ∆
given in Definition 11.

4.3. Algorithm

Let us fix a simple probabilistic automata P = (S, A,→), two states s, t ∈ S and ε as the desired accuracy. Recall that
our goal is to find an interval [`, u] ⊆ [0, 1] such that u − ` ≤ ε and dS(s, t) ∈ [`, u]. An algorithm that approximates the
distance within a tolerance of ε is obtained by a binary search, see Algorithm 1.

Algorithm 1 Approximating the distance
Require: A simple probabilistic automata P = (S, A,→), and a rational value ε as tolerance, two states s, t in S.
Ensure: An interval [`, u] such that u− l ≤ 2ε and d(s, t) ∈ [`, u]
1: l := 0, u := 1,m := 1

2 ;
2: for dlog( 1

ε
)e steps do

3: if ∃d.postfixpoint(d) ∧ pseudo(d) ∧ d(s, t) ≤ m then
4: u := m,m := l+u

2 ;
5: else
6: l := m,m := l+u

2 ;
7: end if
8: end for
9: return [`, u];

We now sketch the correctness of the algorithm.

Proof. The termination of the algorithm is obvious. And clearly d(s, t) ∈ [0, 1]. Note that after each loop, the size of interval
[`, u] will decrease into half. Therefore, after dlog( 1

ε
)e times of the loop, u − ` ≤ ε. Therefore, to see the correctness, it is

enough to notice the following two cases, according to the entry condition of the for loop.

• u−` ≥ ε and ∃d.postfixpoint(d)∧pseudo(d)∧ds,t ≤ m. Then there exists some pseudometric dwhich is a post-fixpoint
of∆ and d(s, t) ≤ m. According to Lemma 17, d v dS , namely, dS(s, t) ≤ d(s, t) ≤ m. Hence dS(s, t) ∈ [`,m].
• u − ` ≥ ε and ¬∃d.postfixpoint(d) ∧ pseudo(d) ∧ ds,t ≤ m. Then for any 1-bounded pseudometric d which is a post-
fixpoint of∆, we have d(s, t) > m. Clearly, dS is a post-fixpoint of∆. It follows that dS(s, t) > m. Hence dS(s, t) ∈ [m, u].

The correctness of the algorithm follows. �

4.4. Complexity

It is easy to see that the length of the formula ∃d.postfixpoint(d) ∧ pseudo(d) is quadratic in the size of a given SPA.
In addition, the number of quantifier alternations is a constant in this formula. As we mentioned before, the results of [1]
shows that quantifier elimination in the theory of real closed fields over addition andmultiplication can be achieved in time
exponential in the size of the formula and double exponential in the number of quantifier alternations. Thus we obtain the
Exptime upper complexity bound. Formally, we can obtain:

Corollary 19. Given a simple probabilistic automaton P = (S, A,→) and two states s, t ∈ S, the pseudometric distance can be
approximated up to any ε > 0 in time exponential in the size of P and logarithmic in 1

ε
.
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Fig. 1. The simple probabilistic automaton.

4.5. Example

We present a simple example to illustrate our algorithm. The SPA is depicted in Fig. 1, where s1 has a c transition leading
to a distribution µ1 over t1, t2 with µ1(t1) = µ1(t2) = 0.5 and s2 has two transitions both labeled with c which lead to
µ2 and µ3 respectively, where µ2(t1) = 0.2 and µ2(t2) = 0.8 and µ3(t3) = 0.4 and µ3(t4) = 0.6. For t1, t2, t3, t4, each
has a transition labeled either by a or b resulting in a Dirac distribution. Assume the tolerance ε = 0.1, and we intend to
compute the distance of s1 and s2. Note the main part of the algorithm is the for loop (for a binary search) and the decision
of ∃d.postfixpoint(d) ∧ pseudo(d) ∧ d(s, t) ≤ m. Clearly, the for loop will run dlog( 10.1 )e = 4 times.

(1) m = 0.5. Then if condition ∃d.postfixpoint(d) ∧ pseudo(d) ∧ d(s, t) ≤ 0.5 returns true. To see this, we note that the
following metric dwith typically d(s1, s2) = 0.1, d(t1, t3) = 0, d(t2, t4) = 0, d(t1, t2) = 1, d(t2, t3) = 1 (the distance of
other pairs of states are 1) suffices as the witness of this first-order formula. It follows that l = 0, u = 0.5 andm = 0.25
when loop body is entered in the next time;

(2) m = 0.25. As before, ∃d.postfixpoint(d) ∧ pseudo(d) ∧ d(s, t) ≤ 0.25 returns true. Hence, l = 0, u = 0.25 and
m = 0.125;

(3) m = 0.125. This time ∃d.postfixpoint(d) ∧ pseudo(d) ∧ d(s, t) ≤ 0.125 returns false. Hence, l = 0.125, u = 0.25 and
m = 0.0625;

(4) m = 0.0625. This time ∃d.postfixpoint(d) ∧ pseudo(d) ∧ d(s, t) ≤ 0.0625 returns false. We can conclude the distance
of s1, s2 falls into the scope [0.0625, 0.125].

In conclusion, the distance is approximated within the tolerance 0.1. If more precise approximation is expected, one can
narrow ε.

5. Conclusion

In this paper, we have considered the behavioral pseudometrics for simple probabilistic automata, which are very
expressive models including both the nondeterministic and probabilistic choices. The pseudometric is a quantitative
analogue of probabilistic bisimilarity and is characterized as the greatest fixpoint of amonotonic functional on the complete
lattice of state metrics. We focused on the case that pseudometrics do not discount the future. We have provided an
approximation algorithm, which can compute the distance of any two states up to any desired degree of precision ε in time
exponential in the size of the model and logarithmic in 1

ε
. A key point of our algorithm is to express a pseudometric being

a post-fixpoint as the elementary sentence over real closed fields, which allows us to exploit Tarski’s decision procedure,
together with binary search to approximate the behavioral pseudometric.

5.1. Related work

Giacalone et al. [11] were the first to suggest a metric between probabilistic transition systems to formalize the notion
of distance between processes. Subsequently, [10] studied a logical pseudometric for labeled Markov chains, which is a
reactive model of probabilistic systems. The metric has the property that two processes have distance 0 if and only if they
are probabilistic bisimilar. A similar pseudometric was defined by van Breugel andWorrell [6] via the terminal coalgebra of
a functor based on ametric on the space of Borel probability measures. In [9] Desharnais et al. dealt with labeled concurrent
Markov chains (thismodel can be captured by ourmodel). They showed that the greatest fixpoint of amonotonous functional
on pseudometrics corresponds to theweak probabilistic bisimilarity of [15]. [8] considered amore general framework, called
action-labeled quantitative transition systems (AQTS). They define a pseudometric which is an adaption of the one in [9]. The
definition of pseudometric studied in this paper does not deviate very far from this line of research in the sense that it
can be viewed as an instantiation the (abstract) pseudometric definition given in [8] in the setting of simple probabilistic
automata. We claim that our algorithm can be extended to AQTS without any difficulty. However, to work on SPA can avoid
unnecessary technical details which could obscure the essential points of our algorithm.
For the algorithmic aspect, as we have mentioned, [5] and [10] both provided algorithms when the metric does discount

the future. However, they can not be applied for themetric defined in the current paper. Furthermore, it is worthmentioning
that after the conference version of current paper [7] was finished, we are notified that [4] independently proposed an
algorithm when the future is not discounted. The authors use basically the same technique to deal with this problem and
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thus obtain a very similar algorithm.However, they only considered the fully probabilisticmodel (i.e. DTMC)while themodel
considered in this paper (i.e. the simple probabilistic automata) is much more general since it takes the nondeterminism
into account.

5.2. Future work

Many open questions remain. First we do not know whether the distance can be computed exactly (note our algorithm
is an approximation algorithm). Moreover, it is interesting to establish the lower bound of the complexity (here we only
give an Exptime upper bound). Furthermore, it is interesting to see whether we can extend the algorithm to more general
(not restricted to probabilistic) systems, say metric transition systems studied in [3] where the underlying state space is not
necessarily finite and other closely related models, say fuzzy automata.
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