
A Compositional Specification Theory

for Component Behaviours

Taolue Chen1, Chris Chilton1, Bengt Jonsson2, and Marta Kwiatkowska1

1 Department of Computer Science, University of Oxford, UK
2 Department of Information Technology, Uppsala University, Sweden

Abstract. We propose a compositional specification theory for reason-
ing about components that interact by synchronisation of input and out-
put (I/O) actions, in which the specification of a component constrains
the temporal ordering of interactions with the environment. Such a the-
ory is motivated by the need to support composability of components, in
addition to modelling environmental assumptions, and reasoning about
run-time behaviour. Models can be specified operationally by means of
I/O labelled transition systems augmented by an inconsistency predi-
cate on states, or in a purely declarative manner by means of traces.
We introduce a refinement preorder that supports safe-substitutivity of
components. Our specification theory includes the operations of parallel
composition for composing components at run-time, logical conjunction
for independent development, and quotient for incremental development.
We prove congruence properties of the operations and show correspon-
dence between the operational and declarative frameworks.

Keywords: specification theory, compositionality, components, I/O au-
tomata, interface automata, logic LTS, refinement, conjunction, quotient.

1 Introduction

An important paradigm for developing complex reactive systems is component-
based design, where systems are composed from components, which themselves
can be realised by smaller components. Component-based design can be supported
by a specification theory, which allows the mixing of specifications and implemen-
tations, admits refinement, and provides composition operators. A specification
theory suitable for components should be equipped with a refinement preorder
which is substitutive, to facilitate component reuse. As a minimum, the composi-
tion operators should include structural parallel composition, for inferring compo-
nent interactions at run-time; conjunction, to facilitate independent development
constrained by several specifications; and quotienting, which supports incremen-
tal development in the following sense: given a specification of the full system,
together with components implementing part of that system, quotienting allows
one to find the coarsest specification of the remaining portion of the system to be
implemented. Further useful operators include: disjunction, which finds a com-
mon specification that a collection of components implement; and hiding, which
supports abstraction of components.

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 148–168, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Compositional Specification Theory for Component Behaviours 149

In this paper, we consider systems of components that interact by synchroni-
sation of input and output actions, in which outputs are non-blocking. A speci-
fication should describe properties on the ordering of a component’s interactions
with its environment; it should also describe the assumptions on the environ-
ment under which these properties are guaranteed, thereby supporting assume-
guarantee reasoning. A number of proposals for such specification theories have
been put forward. As detailed in the survey of related work below, we find that
they suffer from limitations or unnecessary complications.

The main contribution of our paper is a comprehensive, compositional speci-
fication theory for components that generalises existing frameworks by support-
ing all the above-mentioned operators, while retaining conceptual simplicity and
strong algebraic properties of the operations. The framework permits the mixing
of abstract component specifications and I/O labelled transition systems (called
Logic IOLTSs), without restricting to determinism as in [1]. Our refinement is
based on traces, hence admitting a simpler formulation than similar notions
based on e.g. alternating simulation [2] or modalities [3,4], so is more amenable
to language-theoretic constructs. From this formulation, we demonstrate that
the induced mutual refinement is a congruence for the operators.

In contrast to existing I/O automata [5] and interface automata [2], we are
able to express: (1) assumptions on the input provided by the environment; (2)
underspecification, meaning that it is uncertain what the allowable interactions
are; and (3) various (run-time) errors, including communication mismatch, bad
behaviour, or divergence (an infinite amount of internal computation without
any visible interaction). We show that all these features can be expressed us-
ing only the single concept of inconsistency, which we have adapted from the
Logic LTSs of Lüttgen and Vogler [6,7], where input and output actions are not
distinguished. Inconsistency is a property of states or interaction traces, which
represents the possibility of some abnormal condition. Once an inconsistency has
occurred, there is no escaping from it. Following the lead of CSP [8], we thus
allow for chaotic behaviour to ensue once an inconsistency has arisen.

Related Work. Our specification theory, in particular Logic IOLTSs, is in-
spired by the Logic LTS framework due to Lüttgen and Vogler [6], a composi-
tional theory that admits as specifications LTSs without I/O distinctions. Their
inconsistency predicate is induced from inequality of ready-sets, rather than com-
munication mismatches as in our case. Refinement is based on ready-simulation;
alphabetised parallel and conjunction are considered, but not quotient.

The operational component model in our framework has been greatly influ-
enced by I/O automata [5] and interface automata [2]: both are based on I/O
LTSs, with the proviso that I/O automata must be input-enabled, meaning that
each state of the automaton is willing to accept any input. We differ from I/O
automata by not imposing input-enabledness and from interface automata by
working with an explicit representation of inconsistencies. Another difference
is refinement, which for interface automata is defined in terms of alternating

150 T. Chen et al.

simulation, rather than traces; the original definition in [2] is simplified in [9], but
works only for input-deterministic interface automata. It should be noted that,
unlike [2,9], we use an associative variant of parallel composition, which combines
an input and output into an output (as in [10]). Furthermore, we provide a defi-
nition of conjunction corresponding to shared refinement of interface automata,
which substantially generalises that of [11] for synchronous components. More-
over, our quotienting operator on Logic IOLTSs generalises that in [12] defined
only for deterministic components.

There are a number of process-algebraic frameworks that deal with asyn-
chronous I/O interaction. We mention a characterisation of I/O automata by
De Nicola and Segala [13], which is actually a generalisation (and also applica-
ble to interface automata), since the inconsistent process Ω allows to distinguish
between good and bad inputs. Similarly to our approach, refinement in [13] is
given by trace containment, but does not extend to inconsistent trace contain-
ment. This is because we allow a Logic IOLTS to become inconsistent after
emitting an output, whereas a process can only become inconsistent through re-
ceiving a bad input. Finally, we remark that [13] supports a number of operators
of a specification theory, but does not deal with conjunction or quotient.

Our work is also related to the ioco theory in model based testing [14]. The
ioco relation is similar to our refinement, but lacks compositionality of operators,
so is not well-suited to a specification theory for components.

There have been several CSP-based frameworks that deal with asynchronous
communication; of these, the receptive process theory (RPT) [15] utilises a model
of concurrency similar to ours in that outputs are non-blocking. RPT also con-
siders quotient (referred to as factorisation), but for the restricted class of delay-
insensitive networks [16] that differ from our setting.

A further class of component-based modelling formalisms is based on may/
must modalities. A specification theory for components has been devised in [17]
based on modalities [3,4], but the definition of quotient is more restrictive than
ours. Larsen et al. have made an effort in relating modal transition systems
with interface automata [1]. The approach of modal I/O automata is based on
a game-like definition of refinement, which we claim to be more complex than
ours, see, e.g., the discussion of parallel composition in [4]. The framework in [4]
can support reasoning about liveness properties which our framework does not
(although they both support reasoning of safety properties). However, our frame-
work can be easily extended by introducing quiescent states, and additionally
considering containment of quiescent traces to reason about liveness.

Outline. The paper begins by introducing declarative specifications in Section 2,
before considering operational specifications in Section 3. We focus on three com-
position operators: parallel, conjunction and quotient; omitting disjunction and
hiding for reasons of space. The paper ends with a statement of full-abstraction
results in Section 4. Proofs can be found in the accompanying technical report
[18].

A Compositional Specification Theory for Component Behaviours 151

2 A Declarative Theory of Components

In this section, we model components abstractly by means of declarative spec-
ifications. We introduce a substitutive refinement preorder together with three
compositional operators on declarative specifications.

A declarative specification comes equipped with an interface, together with
a set of behaviours over the interface. The interface is represented by a set of
input actions and a set of output actions, which are necessarily disjoint, while
the behaviour is characterised by traces.

Definition 1 (Declarative specification). A declarative specification P is
a tuple 〈AI

P ,AO
P , TP , FP〉 in which AI

P and AO
P are disjoint sets referred to as

inputs and outputs respectively (the union of which is denoted by AP), TP ⊆ A∗
P

is a non-empty set of permissible traces, and FP ⊆ A∗
P is a set of inconsistent

traces. The trace sets must satisfy the constraints:

1. FP ⊆ TP
2. If t ∈ TP and i ∈ AI

P , then ti ∈ TP
3. TP is prefix closed
4. If t ∈ FP and t′ ∈ A∗

P , then tt′ ∈ FP .

Outputs are under the control of the component, whereas inputs are issued by
the environment. This means that, after any successful interaction between the
component and the environment, the environment can issue any input i, even if
it will be refused by the component. Naturally, if i is refused by the component
after the trace t, we deem ti to be an inconsistent trace, since a communication
mismatch has occurred. Given this treatment of inputs, we say that our theory
is not input-enabled, even though TP is closed under input-extensions.

Example 1. A drinks machine dispenses either a tea or a coffee after a coin
has been inserted. The drinks machine has sufficient water to produce only
2 drinks, after which a further coin insertion renders the machine inopera-
ble. This behaviour can be encoded by the declarative specification DM =
〈{£}, {t, c}, T, F1 ∪ F2〉, where:

– T = {ε,£,£(c + t),£(c + t)£,£(c + t)£(c + t)} ∪ F1 ∪ F2

– F1 = £(c + t)£(c + t)£(£ + c + t)∗ insertion of third coin after two dispen-
sations

– F2 = (ε+£(c+t))££(£+c+t)∗ insertion of second coin before dispensation.

From hereon let P , Q and R be declarative specifications with signatures 〈AI
P ,

AO
P , TP , FP〉, 〈AI

Q,AO
Q, TQ, FQ〉 and 〈AI

R,AO
R, TR, FR〉 respectively.

2.1 Refinement

As refinement corresponds to safe substitutivity, for Q to be used in place of P
we require that Q must exist safely in any environment that P can exist in safely.

152 T. Chen et al.

Whether an environment is safe for a specification depends on the sequences of
message exchanges afforded by the component. If an environment can prevent a
component from performing an inconsistent trace, then the environment is said
to be safe.

We do not insist that a component Q must have the same interface as the
component P to be refined. Instead Q must be accepting of at least all of P ’s
inputs, while restricting to a subset of P ’s outputs. This can be formalised by
the covariant relationship AI

P ⊆ AI
Q on inputs and the contravariant constraint

AO
Q ⊆ AO

P on outputs.
In order to establish that refinement holds, we perform a weak form of alpha-

bet equalisation on the inputs of the component to be refined. We refer to this
operation as lifting. Informally, lifting extends the trace sets of P by explicitly
refusing any input in AI

Q \ AI
P , after which it allows for arbitrary behaviour.

Definition 2 (Lifting). Let P be a declarative specification, and let AI
Q be a set

of input actions. The lifting of trace sets TP and FP to AI
Q, written as TP ↑ AI

Q
and FP ↑ AI

Q respectively, is defined as:

– TP ↑ AI
Q = TP ∪ {tit′ : t ∈ TP , i ∈ AI

Q \ AI
P and t′ ∈ (AI

Q ∪ AP)∗}
– FP ↑ AI

Q = FP ∪ {tit′ : t ∈ TP , i ∈ AI
Q \ AI

P and t′ ∈ (AI
Q ∪ AP)∗}.

Recall that an environment is safe for a component if the environment can pre-
vent the component from performing an inconsistent trace. As outputs are under
the control of the component itself, a safe environment must refuse to issue an
input on any trace from which there is a sequence of output actions after the
input that allows the trace to become inconsistent.

Under such an arrangement, for each declarative specification P we can de-
fine the safe declarative specification E(P) containing all of P ’s permissible and
inconsistent traces, but also satisfying the additional property: if t ∈ TP and
there exists t′ ∈ (AO

P)∗ such that tt′ ∈ FP , then t ∈ FE(P). This has the effect of
forcing all inconsistent traces to become inconsistent on the environment’s issue
of a bad input. If the environment respects this safe specification, by not issuing
any input that results in an inconsistent trace, then the component can never
encounter an inconsistent trace. Note that if ε ∈ FE(P) then there is no environ-
ment that can prevent P from performing an inconsistent trace. However, for
uniformity we still refer to E(P) as the safe specification of P .

Definition 3 (Safe specification). Let P be a declarative specification. The
most general safe specification for P is a declarative specification E(P) =
〈AI

P ,AO
P , TE(P), FE(P)〉, where TE(P) = TP ∪ FE(P) and FE(P) = {tt′ ∈ A∗

P :
t ∈ TP and ∃t′′ ∈ (AO

P)∗ · tt′′ ∈ FP}.
We can now define our substitutive refinement preorder. From the safe speci-
fication associated with an arbitrary declarative specification, it is easy to see
whether a declarative specification can be substituted safely in place of another.
Note that FQ ⊆ FP ↑ AI

Q would be too strong to use for the last clause, as we
are only interested in trace containment up to the point where an environment
can issue a bad input.

A Compositional Specification Theory for Component Behaviours 153

Definition 4 (Refinement). For declarative specifications P and Q, Q is said
to be a refinement of P, written Q 	dec P, iff:

1. AI
P ⊆ AI

Q
2. AO

Q ⊆ AO
P

3. TE(Q) ⊆ TE(P) ↑ AI
Q

4. FE(Q) ⊆ FE(P) ↑ AI
Q.

As refinement is based on an extension of language inclusion, its complexity is in
P, assuming regularity of the trace sets. Note that lifting maintains regularity.

Equivalence of declarative specifications in our framework is defined in terms
of mutual refinement.

Definition 5 (Equivalence). Let P and Q be declarative specifications. Then
P and Q are said to be equivalent, written P ≡dec Q, iff P 	dec Q and Q 	dec P.

Lemma 1 (Preorder). Refinement is both reflexive and transitive.

2.2 Parallel Composition

The parallel composition operator on declarative specifications yields a declara-
tive specification representing the combined effect of its operands running asyn-
chronously. We do not consider synchronous parallel composition, as this does
not make sense when dealing with non-blocking output actions. To preserve the
effect that a single output from a component can be received by multiple compo-
nents in the environment, we must define the parallel composition to repeatedly
broadcast an output: this means that an input a? and output a! combine to
form an output a! (as in certain variants of I/O automata), rather than a hidden
action τ as is the case in Milner’s CCS.

Not all declarative specifications can be composed with one another; we re-
strict to those that are said to be composable. P and Q are composable for
parallel composition only if AO

P ∩ AO
Q = ∅. This restriction is meaningful if we

consider inputs on an interface as buttons and outputs as lights. Given two dis-
tinct components, it is not possible for them to share a common light, whereas
it is possible to push their buttons at the same time. In practice, issues of com-
posability can be avoided by employing renaming, if this is considered to be
appropriate.

Definition 6 (Parallel composition). Let P and Q be declarative specifica-
tions such that AO

P and AO
Q are disjoint. Then P || Q is the declarative specifi-

cation 〈AI
P||Q,AO

P||Q, TP||Q, FP||Q〉, where:

– AI
P||Q = (AI

P ∪ AI
Q) \ (AO

P ∪ AO
Q)

– AO
P||Q = AO

P ∪ AO
Q

– TP||Q = {t ∈ A∗
P||Q : t � AP ∈ TP and t � AQ ∈ TQ} ∪ FP||Q

– FP||Q = {tt′ ∈ A∗
P||Q : t � AP ∈ FP and t � AQ ∈ TQ, or t � AP ∈ TP and

t � AQ ∈ FQ}.

154 T. Chen et al.

Informally, a trace is permissible in P || Q if its projection onto AP is a trace
of P and its projection onto AQ is a trace of Q. A trace is inconsistent if it
has a prefix whose projection onto the alphabet of one of the components is
inconsistent and the projection onto the alphabet of the other component is a
permissible trace of that component.

We demonstrate the following result, a corollary of which is that mutual re-
finement is a congruence for parallel, subject to composability.

Theorem 1 (Compositionality of parallel). Let P, Q and R be declarative
specifications such that P and R are composable for parallel composition, and
AI

Q ∩ AO
R ⊆ AI

P ∩ AO
R. If Q 	dec P, then Q || R 	dec P || R.

2.3 Conjunction

The conjunction operator on declarative specifications can be thought of as find-
ing a common implementation for a number of properties, each of which are rep-
resented by declarative specifications. Naturally, any implementation of these
properties should be a refinement of each of the properties to be implemented.
The conjunction (or shared refinement) of two declarative specifications P and
Q is the coarsest declarative specification that refines both P and Q. Thus con-
junction is the meet operator on the refinement preorder.

As for parallel composition, conjunction can only be performed on composable
components. P and Q are composable for conjunction only if the sets AI

P ∪AI
Q

and AO
P ∪ AO

Q are disjoint.

Definition 7 (Conjunction). Let P and Q be declarative specifications such
that AI

P∪AI
Q and AO

P∪AO
Q are disjoint. Then P∧Q is the declarative specification

〈AI
P∧Q,AO

P∧Q, TP∧Q, FP∧Q〉, where:

– AI
P∧Q = AI

P ∪ AI
Q

– AO
P∧Q = AO

P ∩ AO
Q

– TP∧Q = TP ↑ AI
Q ∩ TQ ↑ AI

P
– FP∧Q = FP ↑ AI

Q ∩ FQ ↑ AI
P .

Conjunction has strong connections with the logical ‘and’ operator in Boolean
algebra, as shown below. Mutual refinement is a congruence for conjunction,
subject to composability.

Theorem 2 (Properties of conjunction).

– Conjunction is the greatest lower bound operator for 	dec

– R 	dec P and R 	dec Q iff R 	dec P ∧Q
– P ∧Q ≡dec Q iff Q 	dec P.

Theorem 3 (Compositionality of conjunction). Let P, Q and R be declar-
ative specifications such that P is composable with R for conjunction. If Q 	dec

P, then Q∧R 	dec P ∧R.

A Compositional Specification Theory for Component Behaviours 155

2.4 Quotient

The final operation that we consider on the specification theory is that of quo-
tienting, which has strong connections to synthesis. Given a specification for a
system R, together with a component P implementing part of R, the quotient
yields the coarsest specification for the remaining part of R to be implemented.
Thus, the parallel composition of the quotient with P should be a refinement of
the system-wide specification R. Therefore, quotient can be thought of as the
adjoint of parallel composition.

As P is a sub-component of R, we make the reasonable assumption that
AP ⊆ AR. Moreover, a necessary condition for the existence of the quotient
is that AO

P ⊆ AO
R, otherwise refinement will fail on the alphabet containment

checks.

Definition 8 (Quotient). Let P and R be declarative specifications such that
AO

P ⊆ AO
R and AP ⊆ AR. The quotient of P from R is the specification R/P

with signature 〈AI
R/P ,AO

R/P , TR/P , FR/P〉, where:

– AI
R/P = AO

P ∪ AI
R

– AO
R/P = AO

R \ AO
P

– TR/P = {t ∈ A∗
R : ∀t′ a prefix of t · L(t′) and ∀t′′ ∈ AI

R/P
∗ · L(tt′′)}

– FR/P = {t ∈ A∗
R : (t � AP ∈ TP =⇒ t ∈ FE(R)) and ∀t′ a prefix of t·L(t′)}

– L(t) = (t � AP ∈ FP =⇒ t ∈ FE(R)) and (t � AP ∈ TP =⇒ t ∈ TR).

The alphabet of the quotient contains all of the actions from AR and AP so that
R/P can fully control P and emulate the behaviour of R. Yet still, simple exam-
ples reveal that there may not exist a component Q over an interface consisting
of inputs AI

R/P and outputs AO
R/P such that P || Q 	dec R. Unfortunately,

the existence of the quotient cannot be ascertained by a syntactic check on the
alphabets of P and R.

In Definition 8 we referred to R/P as a specification, but not a declarative
specification. As the following theorem shows, if TR/P is non-empty (a condition
of being a declarative specification), then the quotient exists.

Theorem 4 (Existence of quotient). Let P and R be declarative specifi-
cations such that AO

P ⊆ AO
R and AP ⊆ AR. Then there exists a declarative

specification Q with input actions AI
R/P and output actions AO

R/P such that
P || Q 	dec R iff TR/P �= ∅.
The next two theorems show that R/P satisfies the required properties of quo-
tient when TR/P is non-empty, and that quotient is well-behaved with respect
to refinement.

Theorem 5 (Properties of quotient). Let P and R be declarative specifica-
tions such that AO

P ⊆ AO
R and AP ⊆ AR. If TR/P �= ∅, then P || (R/P) 	dec R

and for any declarative specification Q over inputs AI
R/P and outputs AO

R/P such
that P || Q 	dec R it holds that Q 	dec R/P.

156 T. Chen et al.

Theorem 6 (Compositionality of quotient). Let P, Q and R be declarative
specifications such that Q 	dec P.

– If Q/R and P/R are defined, then Q/R 	dec P/R.
– If R/Q and R/P are defined, and (AI

Q∩AO
R)\AP = ∅, then R/Q �dec R/P.

3 An Operational Theory of Components

In this section we take an operational view of components, by specifying their al-
lowable interactions in terms of Logic IOLTSs, an I/O version of labelled transition
systems augmented by an inconsistency predicate on states. We remain faithful to
the trace-based substitutive preorder, and cast refinement at the operational level
in terms of declarative refinement. For any operational model, we can derive an
equivalent declarative specification, meaning that the observable safe interactions
between the models and an arbitrary environment are indistinguishable.

To support a compositional theory of components, we define the operations
of parallel composition, conjunction and quotient directly on our operational
models. We further show that compositionality results for the operators on the
declarative framework carry over to the operational framework as well.

An explicit definition of implementation is not provided for our models, al-
though there are a number of candidates. One such suggestion for the char-
acterisation of implementations would be the set of specifications in which no
inconsistent states are reachable. We leave this for the user to decide.

We can now define the operational models formally. For a set A, write Aτ as
shorthand for A∪ {τ}, where it is assumed that τ �∈ A.

Definition 9 (IOLTS). An I/O labelled transition system (IOLTS) P is a
tuple 〈SP,AI

P,AO
P ,−→P〉, where SP is a (possibly infinite) collection of processes

(states), AI
P and AO

P are disjoint sets referred to as the inputs and outputs (the
union of which we denote by AP), and −→P⊆ SP × Aτ

P × SP is the transition
relation.

Note that since we do not insist on our components being fully input-enabled
(unlike I/O automata [5]), meaning that at any stage a component can refuse
to accept an input issued by the environment or another component, we must
extend IOLTSs to reason about potential communication mismatches that occur
during interactions. We accomplish this by augmenting IOLTSs with an incon-
sistency predicate for tracking mismatches. The resulting model, called a Logic
IOLTS, takes its inspiration from the Logic LTSs of Lüttgen and Vogler [6,7],
although we have a different interpretation of inconsistency.

Definition 10 (Logic IOLTS). A Logic IOLTS P is a tuple 〈SP,AI
P,AO

P ,−→P,
FP〉 in which 〈SP,AI

P,AO
P ,−→P〉 is an IOLTS, and FP ⊆ SP is an inconsistency

predicate on states satisfying the property: if p ∈ SP can diverge (meaning there
is an infinite sequence of τ-transitions emanating from p), then p ∈ FP.

A Compositional Specification Theory for Component Behaviours 157

The inconsistency predicate annotates states that correspond to run-time errors
such as communication mismatches, underspecification, or divergent behaviour.
Regardless of why a state is inconsistent, we assume that on encountering an
inconsistency, unspecified behaviour can ensue. Consequently, inconsistent states
are resemblant of the process CHAOS from CSP [8].

Figure 1 shows a number of Logic IOLTSs represented pictorially. We adopt
the convention of enclosing the transition system within a box corresponding
to the interface of the component. Labelled arrows pointing at the interface
correspond to inputs, whereas arrows emanating from the interface correspond to
outputs. As a matter of clarity, we only represent the states that are reachable by
a sequence of transitions from the process we are interested in. States annotated
with an F are deemed to be inconsistent.

We introduce nomenclature for handling stability and hidden τ -transitions.
A relation ε=⇒P⊆ SP × SP is defined by p

ε=⇒P p′ iff p(τ−→P)∗p′. Generalising
ε=⇒P for visible actions a ∈ A, we obtain p

a=⇒P p′ iff there exist pa and p′a
such that p

ε=⇒P pa
a−→P p′a

ε=⇒P p′, and p
�a=⇒P p′ iff there exists pa such that

p
a−→P pa

ε=⇒P p′. The extension to words w = a1 . . . an is defined in the natural
way by p

w=⇒P p′ iff p
a1=⇒P . . .

an=⇒P p′.
Furthermore, for a compositional operator ⊕, and sets A and B, we write

A ⊕ B for the set {a ⊕ b : a ∈ A and b ∈ B}. This allows us to use a process-
algebraic notation for states.

From hereon, let P = 〈SP,AI
P,AO

P ,−→P, FP〉, Q = 〈SQ,AI
Q,AO

Q ,−→Q, FQ〉
and R = 〈SR,AI

R,AO
R ,−→R, FR〉 be three Logic IOLTSs, and let pP, qQ and rR

be processes in the Logic IOLTSs P, Q and R respectively.

3.1 Refinement

In keeping with the declarative framework, we wish refinement to correspond to
safe-substitutivity. Hence, we cast refinement at the operational level in terms
of refinement at the declarative level. To do this, we define a mapping �·�∗
from operational models to declarative models (Definition 13) that preserves the
environments that the models can interact harmoniously with.

An essential feature of operational refinement is that the mapping from op-
erational to declarative models preserves the safe traces of the component. For
a declarative specification P , a trace t is said to be immediately-safe iff t is
permissible, but not inconsistent (i.e., t lies within TP \ FP). If t is contained
within TP \ FE(P), we say that t is safe. The calculation of the safe traces for
a Logic IOLTS is slightly more involved, because it is necessary to deal with
non-determinism and τ -transitions.

Definition 11 (Immediately-safe states). The set of immediately-safe states
that a process pP can be in after following the trace t is given by hpP

(t), where
hpP

: A∗
P −→ 2SP is defined as:

– hpP
(ε) =

{
∅ if pP

ε=⇒P p′ with p′ ∈ FP

{p′ ∈ SP : p
ε=⇒P p′} otherwise

158 T. Chen et al.

– hpP
(to) =

{
∅ if ∃p′ ∈ hpP

(t) such that p′ �o=⇒P p′′ with p′′ ∈ FP

{p′′ ∈ SP : ∃p′ ∈ hpP
(t) · p′ �o=⇒P p′′} otherwise

when o ∈ AO
P

– hpP
(ti) =

{
∅ if ∃p′ ∈ hpP

(t) such that p′ �i=⇒P p′′ with p′′ ∈ FP, or p′ � i−→P

{p′′ ∈ SP : ∃p′ ∈ hpP
(t) · p′ �i=⇒P p′′} otherwise

when i ∈ AI
P.

Definition 12 (Safe traces). A trace t of pP is immediately-safe iff hpP
(t) �= ∅

and is safe iff hpE(P)(t) �= ∅, where E propagates inconsistencies backwards over
output and τ transitions. The set of immediately-safe traces of pP is denoted
IST (pP), while the set of safe traces is denoted ST (pP).

An immediately-safe trace t of a process p characterises a permissible exchange
between p and an arbitrary environment, such that t will never encounter an
inconsistent state under any resolution of p’s non-determinism. Relating this
intuition to Definitions 11 and 12, suppose p and the environment can safely
communicate on the trace t. If from some state that p is in after following t
it can perform an output o, and every o it can output will never make the
system inconsistent, then the environment must be willing to accept that output.
Conversely, the environment can only safely issue an input i after t if i can be
accepted from every state the process is in after following t, without making the
system inconsistent. We must impose these restrictions to account for the fact
that the process cannot be expected to know how to resolve its non-determinism
prior to its communication with the environment.

Definition 13 (Model mapping). The model mapping function �·�∗ from
Logic IOLTSs to declarative specifications is defined by �pP�

∗ = 〈AI
P,AO

P , T�pP�∗ ,
F�pP�∗〉, where:

– T�pP�∗ = {t : pP
t=⇒P} ∪ F ∪ FI

– F�pP�∗ = F ∪ FI

– F = {tt′ : pP
t=⇒P p′, p′ ∈ FP and t′ ∈ A∗

P}
– FI = {tit′ : pP

t=⇒P p′, i ∈ AI
P, p′ � i−→P and t′ ∈ A∗

P}.
Theorem 7 (Model mapping preserves safe traces). For an arbitrary
process pP, IST (pP) = T�pP�∗ \ F�pP�∗ and ST (pP) = T�pP�∗ \ FE(�pP�∗).

Having defined a mapping from operational to declarative models, we can now
define operational refinement in the obvious way.

Definition 14 (Operational refinement). Process qQ is said to be a refine-
ment of process pP, written qQ 	op pP, iff �qQ�

∗ 	dec �pP�
∗.

Lemma 2 (Operational preorder). Refinement is reflexive and transitive.

Under the assumption of finiteness, we note that refinement checking is PSpace-
complete. This is similar to traces refinement in CSP, where the worst-case is
rarely observed in practice.

A Compositional Specification Theory for Component Behaviours 159

P p1

p2 p3

a
b

a b

�op

Q q1

q2

q3

a

c

a c

R r1

r2 r3

r4 r5

a
a

b c

a b c

�op

S s1

s2 s3F

s4F

a
a

c

a b c

Fig. 1. Refinement of Logic IOLTSs

Definition 15 (Operational equivalence). Processes pP and qQ are said to
be equivalent, written pP ≡op qQ, iff qQ 	op pP and pP 	op qQ.

Looking at the refinements in Figure 1, from q1 the environment can safely issue
a, after which it must be willing to accept c. Clearly a can be safely accepted by
p1, and as p2 does not issue a c output the environment will be perfectly happy.
Moreover, as the environment is not permitted to issue a b in q1 there is no harm
in p1 being able to handle this behaviour. Hence p1 	op q1. Now, r1 	op s1 as
r1 is willing to accept the input a from the environment, which is not the case
in s1. This is because we cannot trust s1 to resolve its non-determinism on a in
an optimistic way by always moving to s2.

Example 2. To formally check p1 	op q1, it is necessary to resort to the definition
of refinement on declarative specifications (Definition 4). It can easily be checked
that all of the conditions of that definition hold by considering the sets below,
obtained by computing the model mapping of the processes p1 and q1.

– F�p1�∗ = FE(�p1�∗) = (a + b)(a + b)+

– F�q1�∗ = FE(�q1�∗) = (a + ac)a(a + c)∗

– T�p1�∗ = (a + b)∗

– T�q1�∗ = {ε, a, ac} ∪ (a + ac)a(a + c)∗

– X ↑ AI
P = X ∪ (ε + a + ac + (aa + aca)(a + c)∗)b(a + b + c)∗ for X ∈

{F�q1�∗ , T�q1�∗}.

3.2 Error-Completion

In order to simplify the definitions of the operators in our specification theory
for the operational framework, we introduce the error-completion of a Logic
IOLTS. This is a transformation that leaves the mapping from a Logic IOLTS
to a declarative specification unchanged.

160 T. Chen et al.

The error-completion of a Logic IOLTS provides an explicit operational rep-
resentation for the inconsistent traces that would arise in mapping the Logic
IOLTS to its corresponding declarative specification. Consequently, an error-
completed Logic IOLTS is closed under input extensions. It is this property that
simplifies the definitions of the operators in our framework. We do not say that
an error-completed Logic IOLTS is input-enabled, however, as we can distinguish
good inputs from bad inputs.

Definition 16 (Error-completion). Let P be a Logic IOLTS, and assume
fP �∈ SP. The error-completion of P is a Logic IOLTS P⊥ = 〈SP⊥ ,AI

P,AO
P ,−→P⊥ ,

FP⊥〉, where:

– SP⊥ = SP ∪ {fP}
– −→P⊥= −→P ∪ {(f, a, f) : f ∈ FP⊥ and a ∈ AP} ∪ {(s, a, fP) : a ∈ AI

P and
�s′ · s a−→P s′}

– FP⊥ = FP ∪ {fP}.

As remarked, the error-completion of a Logic IOLTS preserves the mapping from
Logic IOLTSs to declarative specifications, as the next lemma shows. Note that
the corresponding declarative specifications are equal, rather than declaratively
equivalent.

Lemma 3 (Error-completion respects mappings). For any process pP,
�pP�∗ = �pP⊥�∗.

Besides simplifying the definition of the compositional operators in our specifi-
cation theory, error-completion of a Logic IOLTS also simplifies the definition of
the model mapping function.

Lemma 4 (Simplified model mapping). Let p be a process in Logic IOLTS
P⊥. Then �p�

∗ = 〈AI
P,AO

P , T�p�∗ , F�p�∗〉, where:

– T�p�∗ = {t : p
t=⇒P⊥}

– F�p�∗ = {tt′ : p
t=⇒P⊥ p′ t′=⇒P⊥ and p′ ∈ FP⊥}.

3.3 Parallel Composition

As for declarative specifications, the parallel composition of Logic IOLTSs yields
a Logic IOLTS representing the combined effect of its operands running asyn-
chronously. We insist that any given output should be under the control of one
component only. Therefore Logic IOLTSs P and Q are composable for parallel
composition only if AO

P ∩ AO
Q = ∅.

Definition 17 (Parallel composition). Let P and Q be Logic IOLTSs com-
posable for parallel composition. Then the parallel composition of P and Q is a
Logic IOLTS P || Q = 〈S,AI ,AO,−→, F 〉, where:

A Compositional Specification Theory for Component Behaviours 161

P p

p1

p2 p3

p4 p5

p6

p7

a

b

b

c
d

c

e

a b c d e

‖

Q

q

q1

q2

b

c

b c e

=

P‖Q
r

r1

r2 r3

r4 r5

r6F

a

b

b

c
d

c

a b c d e

Fig. 2. Example of parallel composition on Logic IOLTSs

– S = SP⊥ || SQ⊥
– AI = (AI

P ∪ AI
Q) \ (AO

P ∪ AO
Q)

– AO = AO
P ∪AO

Q
– −→ is the smallest relation satisfying the following rules:

P1. If p
a−→P⊥ p′ with a ∈ Aτ

P \ AQ, then p || q
a−→ p′ || q

P2. If q
a−→Q⊥ q′ with a ∈ Aτ

Q \ AP, then p || q
a−→ p || q′

P3. If p
a−→P⊥ p′ and q

a−→Q⊥ q′ with a ∈ AP ∩AQ, then p || q
a−→ p′ || q′.

– F = (SP⊥ || FQ⊥) ∪ (FP⊥ || SQ⊥).

Conditions P1 to P3 ensure that the parallel composition of Logic IOLTSs inter-
leave on independent actions and synchronise on common actions. For P3, given
the parallel composability constraint, synchronisation can take place between an
output and an input, or two inputs. Figure 2 shows how the parallel composition
operator works in practice, although we omit non-enabled input transitions to
inconsistent states. In particular, the example demonstrates how inconsistencies
can be introduced through non-input enabledness, as in state r6 corresponding
to p6 || q2.

Reassuringly, parallel composition of Logic IOLTSs yields a Logic IOLTS. The
following theorem shows the relationship between parallel composition on Logic
IOLTSs and parallel composition on declarative specifications.

Theorem 8 (Parallel correspondences). Let P and Q be Logic IOLTSs
composable for parallel composition. For processes pP and qQ, it holds that
�pP || qQ�

∗ = �pP�
∗ || �qQ�

∗.

3.4 Conjunction

In keeping with conjunction of declarative specifications, Logic IOLTSs P and
Q are composable for conjunction only if the sets AI

P ∪ AI
Q and AO

P ∪ AO
Q are

disjoint.

162 T. Chen et al.

P p1

p2 p3

p4

p5

p6 p7

a
b

c

d

b

a

a b c d

∧

Q q1

q2F

q3

q4F

b

c, e

b

b c e

=

P ∧ Q
r1 p1 ∧ q1

r2 p3 ∧ q2

r3p4 ∧ q3 r4 fP ∧ q3

r5p5 ∧ fQ
r6 fP ∧ q4F

r7p6 ∧ fQ

b

c
e

d

b

b

b c d e

Fig. 3. Example of conjunction on Logic IOLTSs

Definition 18 (Conjunction). Let P and Q be Logic IOLTSs composable for
conjunction. Then the conjunction of P and Q is a Logic IOLTS P∧Q = 〈S,AI

P∪
AI

Q,AO
P ∩ AO

Q ,−→, F 〉, where:

– S = SP⊥ ∧ SQ⊥
– −→ is the smallest relation satisfying the following rules:

C1. If a ∈ AO
P ∩ AO

Q , p
a−→P⊥ p′ and q

a−→Q⊥ q′, then p ∧ q
a−→ p′ ∧ q′

C2. If a ∈ AI
P ∩ AI

Q, p
a−→P⊥ p′ and q

a−→Q⊥ q′, then p ∧ q
a−→ p′ ∧ q′

C3. If a ∈ AI
P \ AI

Q and p
a−→P⊥ p′, then p ∧ q

a−→ p′ ∧ fQ

C4. If a ∈ AI
Q \ AI

P and q
a−→Q⊥ q′, then p ∧ q

a−→ fP ∧ q′

C5. If p
τ−→P⊥ p′, then p ∧ q

τ−→ p′ ∧ q

C6. If q
τ−→Q⊥ q′, then p ∧ q

τ−→ p ∧ q′

– F = FP⊥ ∧ FQ⊥ .

The idea behind the definition of conjunction for p ∧ q is that p and q must
synchronise on common actions, interleave on τ -transitions, and on encountering
independent input actions behave like the respective component to which the
action belongs. On encountering a state p ∧ q in which one of p ∈ FP or q ∈ FQ

holds, let it be p, we know that whatever the behaviour of p ∧ q it will always
be a refinement of p. So the most general refinement of p ∧ q will actually be
q. This is supported by the fact that inconsistent states in the error-completed
Logic IOLTS admit arbitrary behaviour.

Figure 3 shows the conjunction of processes p1 and q1 in the Logic IOLTSs P
and Q (although for clarity we omit inputs leading to inconsistent states). In state
r1 corresponding to p1 ∧ q1, the b-output transitions of p1 and q1 synchronise.
Independent output actions such as the a-transition in p1 are not permitted
to proceed, because it would not be the case that r1 could be used safely in
place of q1 if this transition were to be permitted. State r2 can evolve into r3

by synchronising the c-inputs of p3 and q2, while it can also evolve into r4 by

A Compositional Specification Theory for Component Behaviours 163

proceeding on the independent input e of q2. From this point, r4 behaves like q3,
because e is an input-violation of p3. Similar reasoning applies to r3’s evolution
into r5 by receiving the d-input.

As for parallel composition, there is a correspondence between conjunction at
the operational and declarative levels.

Theorem 9 (Conjunction correspondences). Let P and Q be Logic IOLTSs
composable for conjunction. For processes pP and qQ, it holds that �pP ∧ qQ�∗ =
�pP�

∗ ∧ �qQ�
∗.

3.5 Quotient

Non-determinism and τ -transitions arising in Logic IOLTSs make the definition
of quotient more involved than the other operators we have considered on op-
erational models. To ensure that the quotient is the coarsest specification, it is
necessary to track the non-determinism of the system-wide specification and its
partial implementation. This is because the non-determinism can affect the safe
traces of a Logic IOLTS.

As for declarative specifications, we only compute the quotient of process pP

from rR when AO
P ⊆ AO

R and AP ⊆ AR. The quotient is the coarsest specification
q over an interface consisting of inputs AO

P ∪AI
R and outputs AO

R \AO
P such that

pP || q 	op rR. If such a q exists, we denote it by rR/pP.
Before defining the quotient-construction, we introduce some functions and

predicates that simplify the presentation.

Definition 19. For Logic IOLTS P, set of states S ⊆ SP⊥ and action a ∈ AP,
define:

– succε
P(S) = {s′ : s

ε=⇒P⊥ s′ with s ∈ S}
– succa

P(S) = {s′ : s
�a=⇒P⊥ s′ with s ∈ S}.

Definition 20 (Quotient Logic IOLTS). Let P and R be Logic IOLTSs such
that AO

P ⊆ AO
R and AP ⊆ AR. The quotient of P from R is the Logic IOLTS

R/P = 〈SR/P,AI
R/P,AO

R/P,−→, FR/P〉, where:

– SR/P = {R/P : R ⊆ SR⊥ and P ⊆ SP⊥}
– AI

R/P = AO
P ∪ AI

R

– AO
R/P = AO

R \ AO
P

– −→ is the smallest relation satisfying the following rules:
Q1. R′/P ′ a−→ succa

R(R′)/succa
P(P ′) providing:

(a) a ∈ AI
P ∩ AI

R implies succa
R(R′) ∩ FE(R) = ∅

(b) a ∈ AO
P ∩ AO

R implies succa
R(R′) ∩ FE(R) = ∅ and succa

P(P ′) �= ∅
(c) a ∈ AI

P ∩ AO
R implies succa

P(P ′) ∩ FP = ∅ and succa
R(R′) �= ∅

Q2. R′/P ′ a−→ succa
R(R′)/P ′ providing:

(a) a ∈ AI
R \ AP implies succa

R(R′) ∩ FE(R) = ∅
(b) a ∈ AO

R \ AP implies succa
R(R′) �= ∅.

164 T. Chen et al.

P p1

p2 p3

p4

b

b

a

a b

R r1

r2

r3

b

a

a b

R/P

q1 {r1}/{p1}F

q2 {r2}/{p2, p3}F

b

a b

Fig. 4. Example showing non-existence of quotient on Logic IOLTSs

– R′/P ′ ∈ FR/P iff at least one of the following rules holds:
F1. R′ = ∅ or P ′ = ∅
F2. FE(R⊥) ∩ R′ �= ∅ or FP⊥ ∩ P ′ �= ∅
F3. R′/P ′ a−→ R′′/P ′′ with a ∈ AI

R/P and R′′/P ′′ ∈ FR/P.

Definition 21 (Quotient). Let P and R be Logic IOLTSs such that AO
P ⊆ AO

R

and AP ⊆ AR. The quotient of process pP from process rR, written rR/pP, is
the process succε

R(rR)/succε
P(pP) in the Logic IOLTS R//P obtained from R/P by

removing all transitions immediately leading to a state in FR/P, and removing
all states R/P such that R/P ∈ FR/P and R �∈ FE(R). If succε

R(rR)/succε
P(pP) is

not contained in R//P, then the quotient is not defined.

As for declarative specifications, the quotient of pP from rR may not exist. The
following theorem shows that definedness of the quotient according to the pre-
vious definition coincides precisely with the existence of such a quotient.

Theorem 10 (Existence of quotient). Let P and R be Logic IOLTSs such
that AO

P ⊆ AO
R and AP ⊆ AR. Then rR/pP is defined (i.e. rR ∈ FE(R) or rR/pP �∈

FR/P) iff there exists a process q in a Logic IOLTS with inputs AI
R/P and outputs

AO
R/P such that pP || q 	op rR.

Consequently, the constraint rR �∈ FE(R) and rR/pP ∈ FR/P gives a precise char-
acterisation of whether the quotient exists or not. When the quotient does exist,
it behaves in exactly the same way as for declarative specifications.

Theorem 11 (Quotient correspondences). Let P and R be Logic IOLTSs
such that AO

P ⊆ AO
R and AP ⊆ AR. If rR/pP �∈ FR/P or rR ∈ FE(R), then

�rR/pP�
∗ = �rR�

∗
/�pP�

∗.

Figure 4 provides an example in which processes p1 and r1 have no quotient.
This tallies with Theorem 10, as we have {r1}/{p1} ∈ FR/P when r1 �∈ FE(R). On
the other hand, quotients exist for the processes p1 and r1 of Figures 5 and 6.
This is also supported by Theorem 10, as {r1}/{p1} �∈ FR/P for the processes in
both figures.

A Compositional Specification Theory for Component Behaviours 165

P p1

p2 p3

p4

a
a

b

a b

R r1

r2

r3

a

b

a b

R/P

q1 {r1}/{p1}

q2

{r2}/{p2, p3}

a

a b

R//P

q1 r1/p1

q2

{r2}/{p2, p3}

a

a b

Fig. 5. Example of quotient on Logic IOLTSs with no inconsistencies

P p1

p2 p3

p4

a
a

b

a b

R r1

r2

r3

a

b

a b

R/P

q1 {r1}/{p1}

F q2

{r2}/{p2, p3}

a

a b

R//P

q1 r1/p1

F q2

{r2}/{p2, p3}

a b

Fig. 6. Example of quotient on Logic IOLTSs with inconsistencies

For Figure 6, the quotient is the single consistent state {r1}/{p1}. This is
because in going from R/P to R//P we remove the transition labelled by the
output a between the processes {r1}/{p1} and {r2}/{p2, p3}, as the latter state
is inconsistent. Maintaining this transition would yield an invalid quotient as
p1 || (r1/p1) would be inconsistent when r1 is consistent. It is safe to discard
this transition only because it is an output. Recalling the definition of 	op, for
safe-substitutivity it is perfectly safe to suppress outputs on the left that would
have occurred on the right.

4 Full-Abstraction Results

In this section we present full-abstraction results that relate our declarative and
operational equivalences based on trace containment to a simple equivalence,
which ensures that an inconsistent process must have an inconsistent specifica-
tion. The result is shown by employing a testing scenario where processes are
placed in parallel with an arbitrary composable process in order to establish
their equivalence with regard to the observation of consistency.

166 T. Chen et al.

Definition 22 (Declarative inconsistency equivalence). Let P and Q be
declarative specifications. Declarative inconsistency equivalence, denoted by ≡F

dec,
is given by P ≡F

dec Q iff AI
P = AI

Q, AO
P = AO

Q and ε ∈ FP ⇐⇒ ε ∈ FQ.

Declarative equivalence can be established by placing each process in parallel
with arbitrary composable tester processes and observing whether the simple
inconsistency equivalence is maintained.

Theorem 12. Let P and Q be declarative specifications. Then:

P ≡dec Q iff ∀R · AO
R ∩ (AO

P ∪ AO
Q) = ∅ =⇒ E(P || R) ≡F

dec E(Q || R).

From this characterisation of ≡dec, we obtain a full-abstraction result with re-
spect to parallel composition and ≡F

dec. Our definition of full-abstraction is taken
from [19] (Definition 16), which means that ≡dec is the coarsest congruence with
respect to the operators of our specification theory and ≡F

dec.

Corollary 1 (Declarative full-abstraction). Declarative equivalence ≡dec is
fully-abstract with respect to parallel, conjunction, quotient and ≡F

dec.

We can now present analogous results for our operational models.

Definition 23 (Operational inconsistency equivalence). Let pP and qQ

be processes of Logic IOLTSs P and Q. Operational inconsistency equivalence,
denoted by ≡F

op, is given by pP ≡F
op qQ iff AI

P = AI
Q, AO

P = AO
Q and pP ∈ FP ⇐⇒

qQ ∈ FQ.

Theorem 13. Let pP and qQ be processes of Logic IOLTSs P and Q. Then:

pP ≡op qQ iff ∀rR · AO
R ∩ (AO

P ∪ AO
Q) = ∅ =⇒ E(pP || rR) ≡F

op E(qQ || rR),

where E applied to processes in Logic IOLTSs propagates the inconsistency pred-
icate backwards over all output and τ labelled transitions.

Corollary 2 (Operational full-abstraction). Operational equivalence ≡op is
fully-abstract with respect to parallel, conjunction, quotient and ≡F

op.

5 Conclusion and Future Work

We have developed a compositional specification theory for components that
may be modelled operationally, closely mirroring actual implementations, or in
an abstract manner by means of declarative specifications. Both frameworks ad-
mit a simple refinement relation, defined in terms of traces, which corresponds
to safe-substitutivity. We define asynchronous parallel composition, conjunction
and quotient, and prove that the induced equivalence is a congruence for these
operations. It is straightforward to extend our framework with disjunction and
hiding. The simplicity of our formalism facilitates reasoning about the temporal
ordering of interactions needed for assume-guarantee inference. Although not
considered in this paper, our framework supports reasoning about safety prop-
erties in the context of assume-guarantee. Liveness properties may also be con-
sidered, but this requires the introduction of quiescence or infinite behaviours,
the latter being achieved with the help of ω-automata techniques.

A Compositional Specification Theory for Component Behaviours 167

Acknowledgments. The authors are supported by EU FP7 project CON-
NECT and ERC Advanced Grant VERIWARE. We would also like to thank the
anonymous reviewers for their insightful comments.

References

1. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 64–79. Springer, Heidelberg (2007)

2. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes 26,
109–120 (2001)

3. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are
modalities good for Interface Theories? In: Proc. 9th International Conference on
Application of Concurrency to System Design, ACSD 2009, pp. 119–127. IEEE
Computer Society (2009)

4. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
Modal Interfaces: Unifying Interface Automata and Modal Specifications. In: Proc.
7th International Conference on Embedded Software, EMSOFT 2009, pp. 87–96.
ACM (2009)

5. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2, 219–246 (1989)

6. Lüttgen, G., Vogler, W.: Conjunction on processes: Full abstraction via ready-tree
semantics. Theor. Comput. Sci. 373, 19–40 (2007)

7. Lüttgen, G., Vogler, W.: Ready simulation for concurrency: It’s logical! Inf. Com-
put. 208, 845–867 (2010)

8. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31, 560–599 (1984)

9. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer,
J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems.
NATO Science Series II: Mathematics, Physics and Chemistry, vol. 195, pp. 83–104.
Springer, Heidelberg (2005)

10. de Alfaro, L.: Game Models for Open Systems. In: Dershowitz, N. (ed.) Verification
(Manna Festschrift). LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)

11. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with com-
ponent reuse. In: Proc. 8th ACM International Conference on Embedded Software,
EMSOFT 2008, pp. 79–88. ACM (2008)

12. Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Form. Asp.
Comput. 20, 205–224 (2008)

13. Nicola, R.D., Segala, R.: A process algebraic view of input/output automata.
Theor. Comput. Sci. 138, 391–423 (1995)

14. Tretmans, J.: Model-Based Testing and Some Steps towards Test-Based Modelling.
In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 297–326.
Springer, Heidelberg (2011)

15. Josephs, M.B.: Receptive process theory. Acta Inf. 29, 17–31 (1992)
16. Josephs, M.B., Kapoor, H.K.: Controllable delay-insensitive processes. Fundam.

Inf. 78, 101–130 (2007)

168 T. Chen et al.

17. Raclet, J.B.: Residual for component specifications. Electr. Notes Theor. Comput.
Sci. 215, 93–110 (2008)

18. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A Compositional Specifica-
tion Theory for Component Behaviours. Technical Report RR-12-01, Department
of Computer Science, University of Oxford (2012)

19. van Glabbeek, R.J.: Full abstraction in structural operational semantics (extended
abstract). In: Proceedings of the Third International Conference on Methodol-
ogy and Software Technology: Algebraic Methodology and Software Technology,
pp. 75–82. Springer, Heidelberg (1994)

	A Compositional Specification Theory for Component Behaviours
	Introduction
	A Declarative Theory of Components
	Refinement
	Parallel Composition
	Conjunction
	Quotient

	An Operational Theory of Components
	Refinement
	Error-Completion
	Parallel Composition
	Conjunction
	Quotient

	Full-Abstraction Results
	Conclusion and Future Work
	References

