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Abstract— We propose a novel stochastic extension of timed
automata, i.e. Markovian Timed Automata. We study the prob-
lem of optimizing time-bounded reachability probabilities in
this model, i.e., the maximum likelihood to hit a set of goal lo-
cations within a given deadline. We propose Bellman equations
to characterize the probability, and provide two approaches
to solve the Bellman equations, namely, a discretization and a
reduction to Hamilton-Jacobi-Bellman equations.

I. INTRODUCTION

This paper introduces Markovian Timed Automata

(MTA), a novel extension of timed automata [1] with expo-

nentially distributed location residence times. To give some

motivation, let’s look at the following example: A robot

moves on a 3×3-grid (Fig. 1), starting from A and trying to

A

B

Fig. 1. Robot example

reach B in T2 units of time. At each

cell, it can move up (u), down (d), left

(l) and right (r) (when applicable).

Cells are associated with rates, which

intuitively represent the speed of the

robot. As soon as it moves to a cell,

the robot decides a direction to move

to the next cell, and then waits in the

current cell for a certain amount of time, which is governed

by an exponential distribution with a given rate λ, i.e., the

probability of leaving the cell within time t is 1 − e−λt.1

The robot is allowed to stay in consecutive dark cells for at

most T1 units of time, while there is no time constraint for

the bright cells. At each cell, the robot has a probability 0.1
to break down, apart from moving to the neighboring one.

Since there are different ways to reach B, each of which

is associated with some probability, one natural question is:

What’s the maximum probability to reach B from A within

T2 units of time? This problem can be readily formulated as

a controller synthesis problem for MTA depicted in Fig. 2,

where each location in {ℓ0, . . . , ℓ8} corresponds to a cell

and x, y are clocks to specify the time constraints. (N.B.

the failure location and all the transitions leading to it are

omitted for the clearer illustration. For the same reason the

representation of the MTA here is a bit different from the

one in Fig. 3.)
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Fig. 2. MTA for the robot example

In general, controller synthesis problems for MTA are to

determine the sequence of actions that maximize the proba-

bility2 to reach certain goal locations in MTA within a given

deadline (time-bounded reachability). To solve this issue,

we first apply the standard region construction [1] to MTA.

Then we characterize maximum (time-bounded) reachability

probabilities by a variant of the Bellman equation [3]. This

provides the basis for two approaches to compute such proba-

bilities. The first approach uses discretization, and shows that

max-reachability probabilities can be reduced to maximum

reachability probabilities in a finite state Markov decision

process (MDP), for which various efficient algorithms, such

as value iteration [3], exist. We show that the accuracy of our

result is (1−e−λh)·(1−e−λT ), where h is the discretization

step, T is the deadline, and λ is the maximal rate of all

exponential distributions in the MTA. The second approach

is based on partial differential equations (PDEs), in particular

Hamilton-Jacobi-Bellman equations [13].

We point out that MTA are rather expressive: Zero-clock

MTA correspond to a subclass of CTMDPs [2][6], whereas

probabilistic timed automata (PTAs) [14] are obtained by

basically ignoring the exit rates in any location in the MTA.

In earlier work [9], [10], [4], we have used deterministic

MTA as specification formalism for linear real-time proper-

ties over stochastic processes. Some more related works are

in order: In [5] the authors consider stochastic timed games,

which contain two types of locations: probabilistic ones

and locations belonging to one of the players. The authors

have addressed the reachability problem for this model:

It was shown that the quantitative reachability problem is

2The minimal one can be treated in a completely dual fashion. We omitted
it for the sake of simplicity.
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undecidable in general (for 2 1
2 -player games), while the

qualitative question “= 0” or “= 1” can be solved in PTIME

for 1 1
2 -player games with a single clock. MTA are essentially

1 1
2 -player stochastic timed games. However, our focus is

on quantitative analysis rather than on qualitative analysis

or decidability issues. In [7], a game extension of SMDP

was considered and the winning objective was specified by

a deterministic timed automaton. Again, only the qualitative

question were addressed.

As a by-product of our work we obtain two procedures to

compute maximum time-bounded reachability probabilities

in locally uniform CTMDPs. This problem has also been

treated in [2][6][17], where [2][6] mainly addressed time-

abstract schedulers which are not necessarily optimal, while

here time-dependent schedulers are considered, as well as

[17]. Comparing to [17], we discretize both the time and

the state space. Moreover a system of PDEs is derived in

order to characterize the maximum reachability probability.

The error bound that we obtain improves the error bound

given in [17] yielding a substantial reduction in the required

number of iterations.

Due to space restriction, all proofs and some further

explanation are omitted here. We refer the reader to the

technical report [11] for the full details.

II. MARKOVIAN TIMED AUTOMATA

Given a set H , let Pr : F(H) → [0, 1] be a probability

measure on the measurable space (H,F(H)), where F(H)
is a σ-algebra over H . Let Distr(H) denote the set of

probability measures on this measurable space.

A. Markov Decision Processes

Definition 1: [MDP] A (continuous-state) Markov deci-

sion process is a tuple D = (Act, S, s0,P) where

• Act is a denumerable set of actions;

• S is a set of states;

• s0 ∈ S is the initial state;

• P : S×Act×F(S) → [0, 1] is the transition probability

function, where P(s, α, ·) is a probability measure over

F(S) for any s ∈ S and α ∈ Act, such that P(·, ·, A)
is measurable for any A ∈ F(S).

The measure P(s, α,A) is the one-step transition probability

from state s ∈ S to the set of states A ∈ F(S) by taking

action α ∈ Act. Notice that in general one can extend the

MDP model to uncountably many actions (see [18]). In this

paper we will consider only MDPs which have finitely many

actions, i.e., finitely-branching MDPs.

B. Markovian Timed Automata

Let X={x1, ..., xn} be a set of nonnegative variables in

R, called clocks. A clock-valuation is a function η:X→R>0

assigning to each variable x a value η(x). Let V(X ) de-

note the set of all clock-valuations over X . A clock con-

straint on X , denoted by g, is a conjunction of expressions

of the form x ⊲⊳ c for clock x ∈ X , comparison operator

⊲⊳∈ {<,6, >,>} and c ∈ N. Let B(X ) denote the set

of clock constraints over X . A clock valuation η satisfies

constraint x ⊲⊳ c, denoted η |= x ⊲⊳ c, if and only if

η(x) ⊲⊳ c; it satisfies a conjunction of such expressions if

and only if η satisfies all of them. Let ~0 denote the valuation

that assigns 0 to all clocks. For a subset X ⊆ X , the reset

of X , denoted η[X := 0], is the valuation η′ such that

∀x ∈ X. η′(x) := 0 and ∀x /∈ X. η′(x) := η(x). For

δ ∈ R>0 and X -valuation η, η+δ is the X -valuation η′′

such that ∀x ∈ X . η′′(x) := η(x)+δ, which implies that all

clocks proceed at the same speed.

Definition 2: [MTA] A Markovian timed automaton is a

tuple M = (Act, X , Loc, ℓ0, E, ), where

• Act is a finite set of actions;

• X is a finite set of clocks;

• Loc is a finite set of locations;

• ℓ0 ∈ Loc is the initial location;

• E : Loc → R>0 is the exit rate function and

•  ⊆ Loc×Act×B(X )×Distr(2X × Loc) is the edge

relation.

For simplicity we abbreviate (ℓ, α, g, ζ) ∈  by ℓ
α,g
 ζ,

where ζ is a probability distribution over 2X × Loc. Here

we don’t include location invariants, as in [1], and we don’t

require edge relation to be total, e.g., there might be some

clock constraints g for which  is not defined.

Example 1: An example MTA is shown in Fig. 3, where

there are 6 locations with ℓ0 the initial location. In ℓ0 (resp.

ℓ2), there is a decision to be made between actions α1 and α2

(resp. γ1 and γ2) when the clock valuation is η(x) ∈ [0, 1)
(resp. η(x) ∈ (1, 2)). ℓ3 is the goal location, which will

be used later. For edge ℓ0
α2,x>0
 ζ, ζ(∅, ℓ2) = 0.2 and

ζ(∅, ℓ5) = 0.8.

ℓ1 ℓ0 ℓ2

ℓ3

r1 r0

r2

r3

∅, 1 α1, x<1

∅, 0.5β, x < 1

α2, x > 0 ∅, 0.2
γ2, 1 < x < 2

∅, 0.2

γ1, 1 < x < 2{x}, 0.5

ℓ4

∅, 0.5
{x}, 0.5

∅, 0.8

ℓ5

∅, 0.8

r4

r5

Fig. 3. An example MTA

a) Semantics: Intuitively, an MTA behaves as follows.

Consider location ℓ1 in Fig. 3. As soon as location ℓ1 is

entered with clock valuation η, action β is chosen and

a waiting time τ in ℓ1 is sampled from the probability

distribution E(ℓ1)e
−E(ℓ1)τ . If η + τ |= x < 1, there will

be a jump to location ℓ0 with probability 0.5 or to location

ℓ4 with probability 0.5, otherwise no jump occurs and MTA

remains in location ℓ1. When for instance the next location ℓ0
is entered with clock valuation η′ (= η+ τ in this example),

action α1 or α2 is chosen and the waiting time τ ′ in ℓ0
is sampled from the probability distribution E(ℓ0)e

−E(ℓ0)τ
′

.

Suppose α2 is picked and η′ + τ ′ |= x > 0 (the guard of

action α2), the MTA jumps to the next location according

to the probability distribution associated with α2. The MTA

follows the same behavior continuously.

The semantics of an MTA with clock set X is given as

a continuous-state MDP, where states are of the form (ℓ, η)
where ℓ ∈ Loc and η ∈ V(X ) is a clock valuation.
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Definition 3: [Semantics] Let M = (Act,X , Loc, ℓ0, E,
 ) be an MTA. The MDP associated with M is D(M) =
(Act, S, s0,P) where S = Loc × V(X ); s0=(ℓ0,~0); and

• for each edge ℓ
α,g
 ζ in M with ζ(X, ℓ′) = p > 0,

P((ℓ, η), α, A) :=

∫ ∞

0

E(ℓ)e−E(ℓ)τ · 1g(η + τ) · p dτ, (1)

where A = {(ℓ′, η′) | ∃τ ∈ R>0. η
′ = (η + τ)[X := 0] and

η + τ |= g} and 1g(·) is the characteristic function, i.e.,

1g(η + τ) = 1 if η + τ |= g; 0, otherwise.

We emphasize that MTA is a Markovian model with deci-

sions (so it is nondeterministic) instead of a pure stochastic

model like deterministic MTA (DMTA) studied in [9]. To

state it alternatively, any DMTA coincides with an MTA

with Act={α}. Moreover, for DMTA, the edge relation is

defined as  ⊆ Loc×B(X ) × 2X×Distr(Loc), while the

MTA model allows for each set of transitions to reset their

clocks differently. This has also been used in probabilistic

timed automata (PTA, [14]). In this sense, our model can be

considered as a continuous-time extension of PTA, due to the

presence of exponential distributions. Any MTA where the

exit rate of any location is zero is a PTA. Locally uniform

continuous-time MDPs (CTMDPs) [16] (the exit rate of

each location does not depend on actions) with finite state

space are zero-clock MTAs (i.e., X = ∅). We note that as

in MDPs, it is assumed that action labels from any location

in MTA are pairwise different.

Finite paths in MTA M are of the form ℓ0
α0,t0−−−−→

ℓ1
α1,t1−−−−→ · · ·

αn−1,tn−1−−−−−−−−→ ℓn, where for each edge ℓi
αi,gi
 ζi

of M with ζi(Xi, ℓi+1) > 0 (ℓi ∈ Loc, αi ∈ Act, ti ∈ R>0,

Xi ⊆ X and 0 6 i < n), we have that ηi is a valid

clock valuation on entering location ℓi satisfying η0 = ~0,

(ηi+ti) |= gi, and ηi+1 = (ηi+ti)[Xi := 0]. Let Paths(M)
(resp. Pathsℓ,η(M)) denote the set of finite paths (resp.

starting in location ℓ with initial clock valuation η) in M.

Given a set of locations G ⊆ Loc, we write RPathsℓ,η(G) ⊆
Pathsℓ,η(M) as the set of paths reaching G from location

ℓ and clock-valuation η.

b) Schedulers: The decision of which action to choose

in an MTA is resolved by schedulers.3 A scheduler must

have enough “knowledge” to make such a decision which

might be the current location and clock valuation (memo-

ryless/positional schedulers), or the path from the initial to

the current location (history dependent schedulers). We use

I(ℓ)∈Act to denote the set of actions enabled in location ℓ.
Definition 4: [Schedulers] Let M = (Act,X , Loc, ℓ0, E,

 ) be an MTA. A scheduler for M is a measurable function

θ : Paths(M) → Act such that for n ∈ N,

θ(ℓ0
α0,t0−−−−→ ℓ1

α1,t1−−−−→ · · ·
αn−1,tn−1−−−−−−−−→ ℓn) ∈ I(ℓn). (2)

In the above definition we assume that the scheduler makes

the decision as soon as a location is entered. These are called

early schedulers [16]. In contrast, a late scheduler will decide

which action to take upon leaving a location, i.e., besides the

3In control engineering, one tends to use another terminology, i.e., con-

trollers, while in CS community, schedulers, adversaries, policies, strategies,
etc are more common. We do not distinguish them in the current paper.

history it will consider also the waiting time. In this paper

we will mainly consider early schedulers, although the theory

can be adapted to late schedulers easily (see Remark 1).

Given any initial location ℓ0, the initial clock valuation η,

and scheduler θ, one obtains a probability measure Prℓ0,η,θ
over a set of paths in a standard way (see [11]).

c) Maximum reachability: We are mainly interested in

computing the maximum probability to reach a set of goal

locations G ⊆ Loc from the initial location ℓ0.

Definition 5: Let M = (Act,X , Loc, ℓ0, E, ) be an

MTA and Sched the set of all schedulers. The maximum

probability to reach a set of goal locations G ⊆ Loc from

a location ℓ and clock valuation η is the function pM,G
max :

Loc × V(X ) → [0, 1] defined as

pM,G
max (ℓ, η) = sup

θ∈Sched

Prℓ,η,θ(RPathsℓ,η(G)).

In words, the maximum probability is the maximal one

among all the schedulers.

The next theorem says that for MTA and maximum

reachability probabilities, it suffices to consider positional

schedulers instead of history dependent schedulers defined in

Def. 4, i.e., the decision depends only on the current location

and clock valuation.

Theorem 1: [Reachability in MTA] Let M = (Act,X ,
Loc, ℓ0, E, ) be an MTA and G ⊆ Loc a set of goal
locations. The maximum reachability probability pM,G

max is the
least fixpoint of the integral operator F :

(
Loc × V(X ) →

[0, 1]
)

→
(
Loc × V(X ) → [0, 1]

)
, where for the given

function Pr : Loc × V(X ) → [0, 1], location ℓ ∈ Loc
and clock valuation η, F(Pr)(ℓ, η) = 1 if ℓ ∈ G, and
F(Pr)(ℓ, η) = 0 if RPathsℓ,η(G) = ∅. For all other ℓ /∈ G
we have F(Pr)(ℓ, η) =

max
α∈I(ℓ)

{∫
∞

0

E(ℓ)e−E(ℓ)τ
·

∑

ℓ
�

α,g

p,X
// ℓ′

1g(η+ τ) ·p ·Pr(ℓ′, η′) dτ

}
, (3)

where transition ℓ
�

α,g

p,X
// ℓ′ is defined by transition ℓ

α,g
 ζ,

ζ(X, ℓ′) = p and η′ = (η + τ)[X := 0].

Remark 1: One can transform Thm. 1 to deal with the

class of late schedulers. This is obtained by moving the

“max” term inside the integral of (3), i.e. F(Pr)(ℓ, η) =

∫ ∞

0

E(ℓ)e−E(ℓ)τ · max
α∈I(ℓ)

{
∑

ℓ �

α,g

p,X
// ℓ′

1g(η+ τ) · p ·Pr(ℓ′, η′)

}
dτ.

C. Region construction for MTA

A main step in computing maximum reachability proba-

bility or the least fixpoint of the operator defined in Thm. 1

is to apply the region construction [1] in a similar way as for

standard TA. Formally, a region is an equivalence class under
∼=, an equivalence relation on clock valuations, which can be

characterized by a specific form of a clock constraint. Let cxi

be the largest constant with which xi ∈ X is compared in

some guard in the MTA. Clock evaluations η, η′ ∈ V(X )
are clock-equivalent, denoted η ∼= η′, if and only if either
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1) for any x ∈ X it holds: η(x) > cx and η′(x) > cx, or

2) for any xi, xj ∈ X with η(xi), η
′(xi) 6 cxi

and η(xj),
η′(xj) 6 cxj

it holds: η(xj) 6 η′(xj) iff ⌊η(xi)⌋ =
⌊η′(xi)⌋ and {η(xi)}6{η

′(xi)}, where ⌊d⌋ ({d}) is

the integral (fractional) part of d ∈ R.

This clock equivalence is coarser than the traditional

definition [1] by merging the “non-delayable” regions (those

with point constraints like “x = 0”) into the “delayable”

regions (those only with interval constraints like “0 < y <
1”). For instance, for X = {x1, x2}, the non-delayable

regions (x1 = 0, x2 = 0), (0 < x1 < 1, x2 = 0) and

(x1 = 0, 0 < x2 < 1) are merged with the delayable region

(0 < x1 < 1, 0 < x2 < 1) yielding (0 6 x1 < 1, 0 6 x2 <
1). The reason for this slight change will become clear later.

We define the boundary of a region Θ as ∂Θ = Θ\Θ̊, where

Θ is the closure and Θ̊ is the interior of Θ, respectively. For

instance, a region Θ = (x1 6 1, x2 > 0) has its closure

Θ = (x1 6 1, x2 > 0), its interior Θ̊ = (x1 < 1, x2 > 0)
and its boundary ∂Θ = (x1 = 1, x2 = 2). Here Θ is viewed

as a set of elements from V(X ).
Let Re(X ) be the set of regions over the set X of clocks.

For Θ,Θ′ ∈ Re(X ), Θ′ is the successor region of Θ if for

all η |= Θ there exists δ ∈ R>0 such that η+δ |= Θ′ and

∀δ′ < δ. η+δ′ |= Θ∨Θ′. The region Θ satisfies the guard g,

denoted Θ |= g, iff ∀η |= Θ. η |= g. The reset operation on

region Θ is defined as Θ[X := 0] :=
{
η[X := 0] | η |= Θ

}
.

Notation: Given a tuple v = (v1, · · · , vn) with n com-

ponents, by v⇂k we denote the k-th component of v. In

particular, for a node v = (ℓ,Θ), v⇂1 returns location ℓ,
while v⇂2 returns the associated region Θ.

Definition 6: [Region graph of MTA] The region graph

of MTA M = (Act,X , Loc, ℓ0, E, ) with the set of goal

locations G ⊆ Loc is G(M) = (Act, V, v0,Λ, →֒), where

• V = Loc×Re(X ) is a finite set of vertices with initial

vertex v0 = (ℓ0,Θ0), where Θ0 is the initial region such

that ~0 ∈ Θ0;

• Λ : V → R>0 is the exit rate function where:

Λ(v) =

{
E(v⇂1) if v

α,p,X
→֒ v′ for some v′ ∈ V

0 otherwise.

• →֒ ⊆ V ×
((

Act × [0, 1]× 2X
)
∪ {δ}

)
× V is the

transition (edge) relation, such that:

◮ v
δ
→֒ v′ if v⇂1 = v′⇂1, and v′⇂2 is the successor

region of v⇂2;

◮ v
α,p,X
→֒ v′ if v⇂1

�

α,g

p,X
// v′⇂1 with v⇂2 |= g, and

v⇂2[X := 0] = v′⇂2.

We also define G =
{
v ∈ V | v⇂1 ∈ G

}
to be the set of

goal vertices in G(M).
Any vertex in the region graph is a pair consisting of a

location and a region. For a vertex v ∈ V and clock valuation

η ∈ V(X ) we define the boundary function ♭(v, η) = inf{δ |
η + δ ∈ ∂v⇂2}, which is the minimum time (if it exists) to

“hit” the boundary of the region corresponding to vertex v

starting from a clock valuation η. Edges of the form v
δ
→֒ v′

are called delay edges (jump), whereas those of the form

v
α,p,X
→֒ v′ are called Markovian edges (jump). Note that

Markovian edges emanating from a vertex corresponding to

a non-delayable region do not contribute to the reachability

probability. The waiting time in such vertex is always zero.

Therefore, we can safely remove all the Markovian edges

emanating from vertices with non-delayable regions and

combine each such non-delayable region with its unique

delayable (direct) successor. In the sequel, by slight abuse of

notation, we refer to this simplified region graph as G(M).
Note that then v⇂2[X := 0] ⊆ v′⇂2 in the last item of Def. 6.

An example region graph is shown in Fig. 4.

Example 2: For the MTA M in Fig. 3, the reachable part

(forward reachable from the initial vertex and backward

reachable from the accepting vertices) of the region graph

G(M) is shown in Fig. 4.

ℓ1, 06x<1

ℓ0, 06x<1 ℓ0, 16x<2

ℓ2, 06x<1 ℓ2, 16x<2

ℓ3, 16x<2 ℓ3, x > 2

v2,r1

v0, r0

v1, r0

v3, r2

v4, r2

v5, r3 v6, r3

α1, 1,∅β, 0.5,∅

γ2, 0.2,∅

δ

δ

α2, 0.2,∅

δ

α2, 0.2,∅
γ1, 0.5, {x}

G0 G1 G2

Fig. 4. Reachable region graph G(M)

Now we define a system of integral equations on the

region graph G(M) which will help compute the maximum

reachability probability from Thm. 1.

Definition 7: Given the region graph G(M) = (Act,
V, v0,Λ, →֒) of the MTA M = (Act, Loc, X , ℓ0, E, ) and
the set of goal vertices G, for the function Probv(η) : V ×
V(X ) → [0, 1] let the operator F̃ : (V × V(X ) → [0, 1]) →
(V × V(X ) → [0, 1]) be defined as F̃(Probv(η)) = 1 if

v ∈ G; F̃(Probv(η)) = 0 if v /∈ G and G cannot be reached
from v; and for v /∈ G we have

F̃(Probv(η)) =Probv,δ(η) + max
α∈I(v⇂1)

Probv,α(η),

Probv,α(η) =

∫ ♭(v,η)

0

Λ(v)·e−Λ(v)τ
·

∑

v
α,p,X

→֒ v′

p·Probv′

(
(η+τ)[X:=0]

)
dτ,

Probv,δ(η) =e−Λ(v)♭(v,η)
· Probv′

(
η + ♭(v, η)

)
,

where Probv,α(η) denotes the probability to reach G by

taking a Markovian jump and Probv,δ(η) the probability to

reach G through vertex v′ by taking the delay jump v
δ
→֒ v′.

Theorem 2: Let M = (Act, Loc,X , ℓ0, E, ) be an MTA

with the set of goal locations G and Probv(η) be the least

fixpoint of the operator F̃ , then for v⇂1 = ℓ we have

Probv(η) = pM,G
max (ℓ, η).
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Based on this theorem, we will focus on the efficient

computation of maximum time-bounded reachability prob-

abilities in region graphs (instead of in MTAs) in the

following section.

III. TIME-BOUNDED REACHABILITY

In this section, we concentrate on maximizing time-

bounded reachability probabilities in a region graph G(M)
= (Act, V, v0,Λ, →֒), i.e., given a set G of goal vertices and

time bound T ∈ N, we are interested in maximizing the

probability to reach G within T time units. To this end, we

introduce a fresh clock t, denoting the global time which is

initialized to zero and never reset. To distinguish the role of

t, we write the state of G(M) as (v, η, t). As in this case

time bounds to reach G have to be considered, t 6 T should

be added to each vertex of G(M). Formally, by notation

abuse we overload ♭(v, η, t) to be min{♭(v, η), T − t}, i.e.

the minimum time to hit the boundary ∂v⇂2 at time t 6 T .

For instance, let ∂v⇂2 be x = 1 ∧ y = 2, T = 100, and

suppose η(x) = 0.5, η(y) = 1.7. If t = 2.5, then ♭(v, η, t) =
min{1 − 0.5, 2 − 1.7, 100 − 2.5} = 0.3; if t = 99.9, then

♭(v, η, t) = min{1− 0.5, 2− 1.7, 100− 99.9} = 0.1;

The following Bellman (dynamic programming) equations

derived from Def. 7 play an essential role in solving the

time-bounded reachability problem. Let P (v, η, t) be the

maximum probability at time t for state (v, η) to reach G

within time bound T . P (v, η, t) = 1 if v ∈ G and t 6 T ;

0 if t > T or G is not reachable from v; and otherwise

P (v, η, t) =

max
α∈I(v)

{
∑

v
α,p,X
→֒ v′

∫ ♭(v,η,t)

0

Λ(v)e−Λ(v)τp︸ ︷︷ ︸
(⋆)

·P (v′, η′, t+τ) dτ

}

︸ ︷︷ ︸
(I)

+ e−Λ(v)♭(v,η,t)
︸ ︷︷ ︸

(⋆⋆)

P
(
v′′, η + ♭(v, η, t), t+ ♭(v, η, t)

)

︸ ︷︷ ︸
(II)

, (4)

where I(v) is the set of actions enabled in v, η′ = (η +

τ)[X := 0] and v
δ
→֒ v′′, where v′′ is the time successor of

v. Term (I) represents the maximum reachability probability

(among all enabled actions) by taking a Markovian jump

v
α,p,X
→֒ v′ and (II) represents the probability of taking the

boundary jump v
δ
→֒ v′′. Note that (⋆) is the density function

of taking v
α,p,X
→֒ v′ at time τ and (⋆⋆) is the probability not

to leave location v within ♭(v, η, t) time units.

We will now provide two ways to solve (4): one by

discretization (4) and the other based on the Hamilton-

Jacobi-Bellman equation [13].

A. Discretization

Our first approach is to discretize the continuous variables

in the Bellman equation. Using a discretization step h = 1
N

(N ∈ N>0), the aim is to obtain a finite-state MDP D(M)
from G(M). For this MDP, a similar Bellman equation

can be derived and solved efficiently e.g. by value iteration

[3]. Intuitively, h is the length of time in which a single

Markovian jump takes place from a given location. By h,

each Markovian jump in G(M) can be approximated by

a Markovian jump which only takes place at time points

{0, h, . . . , NT}. This gives rise to an MDP:

Definition 8: Given G(M) = (Act, V, v0,Λ, →֒) and dis-

cretization step h = 1
N

(N ∈ N>0), the MDP Dh(M) =
(Act ∪ {⊥}, S, s0,P) is defined as follows:

• S = {(v, η, t) | v ∈ V ∧ η ∈ v⇂2 ∧ t 6 T};

• s0 = (v0,~0, 0);
• ⊥ is a fresh action encoding the “delay” in G(M);

For each (v, η, t) ∈ S we distinguish three cases:

(i) If h < ♭(v, η, t) and v
α,p,X
→֒ v′ then

P
(
(v, η, t), α, (v′, η[X := 0], t)

)
=p · (1− e−Λ(v)h);

P
(
(v, η, t), α, (v, η + h, t+ h)

)
=e−Λ(v)h;

(ii) If h < ♭(v, η, t) and Act(v) = ∅ then

P
(
(v, η, t),⊥, (v, η + h, t+ h)

)
=e−Λ(v)h;

(iii) If h > ♭(v, η, t) and v
δ
→֒v′ then

P
(
(v, η, t),⊥, (v′, η+♭(v, η, t), t+♭(v, η, t))

)
=e−Λ(v)♭(v,η,t).

Each state in the MDP Dh(M) has an outgoing transition

of type (i), (ii) or (iii).

Example 3: Fig. 5 depicts the first half (till 2h) of the

reachable part of the MDP Dh(M) for the region graph

G(M) in Fig. 4 with the step size h = 1
2 and time bound

T = 2. This means that in the MDP, the goal state(s) should

be reached within 4 steps. Therefore, the second half (3h
and 4h) is not necessary anyway. We add (i), (ii) and (iii)

onto the edge labels to indicate which type of transition it

is.

(v0, 0, 0)

(v3, 0, 0) (v4, 2h, 2h)

(v5, 2h, 2h)

(i) γ2, 0.2·(1− e−r2h)

(i) α2, 0.2·(1−e−r0h)

(v2, 0, 0)

(i
)
α
1
,1
−
e−

r
0
h

(i
)
β
,
0
.5

·
(1
−
e
−
r
1
h
)

(v0, h, h)

(i) α2, e
−r0h

(i) α1, e
−r0h

(v1, 2h, 2h)
(iii) ⊥, e−r0h

(v3, h, h)
(ii) ⊥, e−r2h (iii) ⊥, e−r2h

(i) α2, 0.2·(1−e−r0h)

(v2, h, h)

(i
)
α
1
,1
−
e−

r
0
h

(i
)
β
,
0
.5

·
(1
−
e
−
r
1
h
)

α1

α2

(i) β, e−r1h

(i) α2, 0.2(1− e−r0h)

γ1

γ2

⊥

Fig. 5. MDP obtained from the region graph with discretization step h.

Let Y (v, η, t) be the maximum reachability probability in
the MDP Dh(M). Then Y (v, η, t) =





e−Λ(v)♭(v,η,t)Y
(
v′′, η+♭(v, η, t), t+♭(v, η, t)

)
, if h > ♭(v, η, t)

max
α∈I(v)

{∑

v
α,p,X

→֒ v′

(1−e−Λ(v)h)p·Y (v′,η̃′,t)
}
+e−Λ(v)hY (v,η+h,t+h), o/w,

(5)

7079



where η̃′ = η[X := 0] and v
δ
→֒ v′′.

By the discretization step h, the regions of G(M) contain

finitely many points (one point is a state in the MDP). To

be more exact, each region has maximally h points for each

clock. Together with the fact that there are only finitely many

regions of interest in G(M), the number of states in the MDP

is finite.

Theorem 3: [Error bound] For any state (v, η), time bound

T , discretization step h = 1
N

and λ = maxv∈V {Λ(v)}
which is the maximum rate of all exponential distributions

appearing in the region graph:

sup
t∈[0,T ]

|P (v,η,t)− Y (v,η,t)| ≤ (1− e−λh)(1− e−λT ).

B. Hamilton-Jacobi-Bellman Equations

As in traditional control theory [3], the dynamic program-

ming principles lead to a first-order integro-differential equa-

tion, which is the Hamilton-Jacobi-Bellman (HJB) partial

differential equation (PDE).

Given the region graph G(M) = (Act, V, v0,Λ, →֒) let

f(v, η, t) := P (v, η, t) be the maximum time-bounded

reachability probability at time t in G(M). For every v ∈ V
and η ∈ V(X ) and t 6 T let f(v, η, t) be given as follows:

∂f(v,η,t)

∂t
+

|X |∑

i=1

∂f(v,η,t)

∂η(i)
=

max
α∈I(v)

{
Λ(v) ·

∑

v
α,X,p
→֒ v′

p (f(v,η,t)−f (v′,η[X := 0],t))

}
,

where η(i) is the i’th clock variable. The initial conditions of

the above PDE are f(v, η, T ) = 1G(v, η) for any v∈V and

η∈v⇂2. Moreover, for every η∈∂v⇂2 and transition v
δ
→֒v′,

the boundary conditions take the form f(v, η, t)=f(v′, η, t).
Several methods can be used to solve the above HJB

equation, e.g., the finite volume method [19] or the time and

state space discretization technique [8]. Note that for zero-

clock MTA, i.e., CTMDPs, we obtain a system of ODEs

instead of PDEs; for details see [11].

IV. CONCLUSION

We have defined an extension of timed automata with

exponentially distributed durations on locations. We con-

structed region graphs of such automata based on which the

time-bounded reachability problems were investigated. We

proposed Bellman equations to characterize the probability,

and presented two approaches to solve these equations,

namely, by discritization and a reduction to HJB PDEs.

Another interesting question is the time-unbounded reach-

ability problem, i.e., the deadline of reaching the goal

locations is absent. We refer the readers to [12], [11] for

the solution of this question. In a nutshell, we show that,

for single-clock MTA, they can be characterized as the

solution of a system of linear equations whose coefficients

are maximum reachability probabilities in CTMDPs, i.e.,

zero-clock MTA. Moreover, for general MTA, Bellman

equations, which are a variant of Eq. (4), are proposed to

characterize the probability. We remark that in this paper

only the locally uniform model (i.e., the exit rate of each

location solely depends on the location instead of actions)

was addressed, however the general case can be treated

without any difficulty.

Many future works remain to be done. For example, we

plan to extend the MTA model to rewards; also one can

consider more general variables than clocks, resulting in

Markovian hybrid automata.
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