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We investigate the complexity of model checking (finite) interval-valued discrete time
Markov chains, that is, discrete time Markov chains where each transition is associated
with an interval in which the actual transition probability must lie. Two semantics are
considered, the uncertain Markov chain (UMC) semantics and the interval Markov decision
process (IMDP) semantics. We show that, for reachability, these two semantics coincide
and the problem is P-complete. This entails that PCTL model checking problem under the
IMDP semantics is also P-complete. We also show that model checking PCTL under the
UMC semantics is Square-Root-Sum hard, meaning that one can reduce the Square-Root-

Sum problem to it.
© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Discrete time Markov chains (DTMCs) are a well-estab-
lished stochastic model which has numerous applications
in a wide range of areas such as physics, chemistry, biol-
ogy, engineering, etc. A DTMC usually consists of a set of
states and a fixed transition probability between each pair
of states. However, in practice it is often not realistic to
assume that transition probabilities are exact. In particu-
lar, these probabilities are usually estimated by statistical
experiments, which can only give bounds instead of fixed
values. Interval-valued discrete time Markov chains (IDTMCs)
have been introduced [15,18] to faithfully capture this type
of uncertainty. IDTMCs are DTMCs where each transition
probability is assumed to be within a range (interval). Two
different semantics for IDTMCs are discussed in [24], i.e.,
the uncertain Markov chain (UMC) semantics and the in-
terval Markov decision process (IMDP) semantics. The for-
mer [18] is an interpretation of an IDTMC as a family of
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(possibly uncountably many) DTMCs, each of which is a
DTMC whose transition probabilities lie within the speci-
fied interval. As for the latter, the uncertainty is resolved
similarly to Markov decision processes (MDPs), namely, each
time a state is visited, a transition distribution which
respects the interval constraints is selected, and then a
probabilistic step according to the chosen distribution is
taken. Thus, IMDPs allow the modelling of nondeterminis-
tic choices from a set of (possibly) uncountably many such
choices. An IMDP can be seen as a generalisation of MDPs
(which normally assume only finitely many choices).

We investigate the problem of model checking proba-
bilistic computation tree logic (PCTL, [14]) specifications for
IDTMCs. In [24,7] various complexity results have been
obtained; in particular, it is shown that the PCTL model
checking problem is Np- and coNp-hard, and in Pspace un-
der the UMC semantics, while it is P-hard and in coNp

under the IMDP semantics. An obvious question is how to
fill these complexity gaps.

1.1. Contributions

In this paper, we either improve the upper bound
obtained in [24,7], obtaining matching upper and low
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complexity bounds, or provide “evidence” that certain
problems are intractable. In particular, we obtain the fol-
lowing results:

• We show that the two semantics for IDTMCs coin-
cide for reachability problems; further we show that the
problem is P-complete.

• We show that the PCTL model checking problem is
P-complete under the IMDP semantics, while it is
Square-Root-Sum hard under the UMC semantics.

The first result tightens the complexity bounds achieved
in [24,7]. It can also be used for [11,17], where only heuris-
tic approaches are proposed which cannot guarantee poly-
nomial running time. We discuss briefly the techniques
introduced here. Following [24,7], the reachability problem
for IDTMCs can be reduced to solving the same prob-
lem for MDPs with exponentially many nondeterministic
choices, which in turn can be reduced to solving a lin-
ear programming (LP) problem with exponentially many
constraints. We then apply the ellipsoid method to solve
the obtained LP. The crux of this approach is to find a
polynomial-time separation oracle which will be made
clear in Section 3. Based on this, the ellipsoid method
yields a polynomial-time algorithm. Together with an easy
reduction from the reachability problem for MDPs showing
P-hardness, we obtain P-completeness. A direct application
of this result implies that model checking PCTL under the
IMDP semantics is also P-complete.

As for PCTL model checking under the UMC seman-
tics, we reduce the Square-Root-Sum problem to it, by
slightly adapting a construction in [5]. The Square-Root-

Sum problem is known to be in Pspace, but its contain-
ment even in Np has been a long-standing open prob-
lem since 1976. (This problem arises often and has been
studied extensively, especially in computational geome-
try where the square root sum represents the sum of
Euclidean distances between given pairs of points with
integer/rational coordinates; as an example, determining
whether the length of a TSP tour of a set of points on
the plane is bounded by a given threshold can be eas-
ily encoded as the Square-Root-Sum problem.) In [1] it is
shown that this problem can be decided in the 4-th level
of the Counting Hierarchy (an analogue of the polynomial-
time hierarchy for counting classes), hence it is unlikely to
be Pspace-hard, but it remains open whether the problem
can be decided in P or even in Np. Our result suggests that
the Pspace upper bound in [24,7] cannot be substantially
improved without a breakthrough concerning this long-
standing open problem. Interesting examples of this type
of argument in formal verification can also be found in,
among others, [10].

1.2. Related work

IDTMCs are probably the simplest stochastic model ad-
dressing uncertainties. More general models indeed ex-
ist, for example, constraint Markov chains [6], bounded-
parameter MDPs [12], and uncertain MDPs [19,26]. Most
of these models are from AI where discounted total reward
objectives are prevailing. In this case, assuming the dis-
counting factor is given as a constant (which is a usual
and reasonable assumption), polynomial-time algorithms
to compute the optimal value do exist, given that uncer-
tainty is modelled appropriately (e.g. as an interval con-
sidered here; cf. [12,26]). In contrast, specification logics
like PCTL, whose core component is the reachability prop-
erty, are the main object of the research in verification. We
also mention [9], where the complexity of thorough refine-
ment and deciding the existence of a common implemen-
tation for an unbounded number of IDTMCs, etc., is stud-
ied. These problems stem from compositional modelling
methodologies, which are not the main focus of our work.
Furthermore, [11,17] use IDTMCs as abstractions for proba-
bilistic systems (DTMCs, CTMCs). Model checking PCTL un-
der the IMDP semantics is essentially adopted there, but
no polynomial-time algorithms are given. As mentioned,
our results can be applied directly in these settings.

1.3. Structure

This paper is organised as follows. Section 2 provides
the necessary background. Section 3 presents the result on
reachability problems, and Section 4 presents the results
for PCTL. The paper is concluded in Section 5.

2. Preliminaries

Given any finite set S , we write �(S) for the set of
probabilistic distributions over S , i.e., functions μ : S →
[0,1] with

∑
s∈S μ(s) = 1. Throughout the whole paper,

we assume a finite set of atomic propositions AP.

2.1. Interval DTMCs

Definition 1 (DTMC). A discrete time Markov chain (DTMC) is
a tuple D = (S, s0,P, L), where

• S is a finite set of states with s0 ∈ S as the initial state;
• P : S × S → [0,1] is a transition probability matrix, s.t.

∀s ∈ S ,
∑

s′∈S P(s, s′) = 1; and
• L : S → 2AP is a labelling function which maps states

to sets of atomic propositions.

A path in D is a sequence π = s0s1 · · · such that si ∈ S
and P(si, si+1) > 0 for any i � 0. We write Paths(s) for the
set of paths starting at the state s. We can also define a
probability distribution Pr over Paths(s0) in a standard way
(cf. [2, Chapter 10]).

Definition 2 (MDP). A Markov decision process (MDP) is a
tuple M= (S, s0, δ, L), where

• S , s0, and L are defined as before; and
• δ : S → 2�(S) is a transition function, s.t. ∀s ∈ S , δ(s) is

finite.

Without loss of generality, we assume that δ(s) �= ∅ for
any s ∈ S . In M, at each state s a probability distribution
μ (over S) is chosen nondeterministically from the set δ(s).
A successor state s′ is then chosen according to μ with
probability μ(s′).
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A path π in M is a sequence of the form s0
μ1→ s1

μ2→ ·· ·
where si ∈ S , μi+1 ∈ δ(si) and μi+1(si+1) > 0 for each
i � 0. A finite path is a prefix of an infinite path ending
in a state. Let Paths� be the set of finite paths. A scheduler
σ : Paths� → �(S) maps a finite path (history) to a distri-
bution over S . In particular, a simple scheduler σ chooses a
distribution only based on the current state and σ(s) ∈ δ(s)
for each state s. A (memoryless) randomised scheduler σ
prescribes, for each state s, a distribution ν over δ(s),
which induces a distribution over S as

∑
μ∈δ(s) ν(μ) ·μ(s′)

for each s′ ∈ S . Note that we may obtain a DTMC by resolv-
ing all the nondeterminism in an MDP using a scheduler σ
in a standard way (see, e.g., [2,22]). In the sequel, we write
Mσ for such a DTMC given an MDP M and a scheduler σ .

Definition 3 (IDTMC). An interval-valued discrete time Markov
chain (IDTMC) is a tuple I = (S, s0,Pl,Pu, L), where

• S , s0 and L are defined as before;
• Pl,Pu : S × S → [0,1] are two transition probability

matrices, where Pl(s, s′) (resp. Pu(s, s′)) gives the lower
(resp. upper) bound of the transition probability from
state s to s′ .

For complexity consideration, we assume that each en-
try of Pl and Pu is a rational number. We define the size of
I , denoted by �(I), as the size of the representation of I .
Here we represent rational numbers (probabilities) as quo-
tients of integers written in binary. Namely, the size of a
rational number is the sum of the bit lengths of its numer-
ator and denominator and the size of a matrix is the sum
of the sizes of its entries. We say that a vector is rational
if all of its coordinates are rational numbers.

2.2. Semantics

We consider two semantic interpretations of IDTMCs
[24], i.e., uncertain Markov chains (UMC) and interval Markov
decision processes (IMDP).

2.2.1. UMC semantics
An IDTMC I = (S, s0,Pl,Pu, L) represents an infinite

set of DTMCs, denoted by [I], where for each DTMC
(S, s0,P, L) ∈ [I] the following holds:

Pl(s, s′)� P
(
s, s′) � Pu(

s, s′)

for all pairs of states s, s′ ∈ S . Intuitively, under this se-
mantics we assume that the external environment non-
deterministically selects a DTMC from the set [I] at the
beginning and then all the transitions take place according
to the chosen DTMC. Note that, here, the external environ-
ment makes only one nondeterministic choice.

2.2.2. IMDP semantics
An IDTMC I = (S, s0,Pl,Pu, L) defines 	I
 = (S, s0,

δ, L) such that

δ(s) = {
μ∈�(S)

∣∣ ∀s′∈S,Pl(s, s′)�μ
(
s′)�Pu(

s, s′)}.
In this case, the external environment makes nondeter-
ministic choices at each state by picking a distribution for
that state. Technically speaking, 	I
 is not an MDP as μ(s)
might contain infinitely many elements. This justifies the
name IMDP. However, all the properties of MDPs carry over
here, and in the sequel we do not distinguish between
MDPs and IMDPs unless stated explicitly.

2.3. PCTL

PCTL [14] is a probabilistic extension of CTL in which
state formulas are interpreted over states of a DTMC and
path formulas are interpreted over paths in a DTMC. The
syntax of PCTL is as follows:

Φ ::= tt | a | ¬Φ | Φ ∧ Φ | P�p(φ)

where p ∈ [0,1] is a probability, �∈ {<,�,>,�,=, �=}
and φ is a path formula defined according to the following
grammar:

φ ::= XΦ | Φ U Φ.

The path formula XΦ asserts that the state on the next
position on the path satisfies Φ; while Φ U Ψ asserts that
Ψ is satisfied and that all preceding states satisfy Φ . We
denote by ♦Φ = tt U Φ the reachability property, where
states satisfying Φ will eventually be reached.

2.3.1. PCTL semantics for DTMC
Let D = (S, s0,P, L) be a DTMC. The semantics of PCTL

is defined by a satisfaction relation, denoted |�, which
is characterised as the least relation over the states in S
(paths in D, respectively) and the state formulas (path for-
mulas) satisfying:

s |� P�p(φ) iff Pr
{
π ∈ Paths(s)

∣∣ π |� φ
} � p,

while the semantics for the other operators are as in CTL.
The semantics of PCTL path formulas is defined as:

π |� Φ U Ψ iff ∃i � 0.
(
π [i]|�Ψ ∧ ∀0� j<i.π [ j]|�Φ

)
,

π |� XΦ iff π [1] |� Φ,

where π [i] denotes the (i + 1)-th state of π . We then lift
the semantics from DTMC to IDTMC.

2.3.2. PCTL semantics for UMC
Given an IDTMC I and a PCTL state formula Φ , we

write I |� Φ iff there exists some D ∈ [I] such that
D |� Φ .

2.3.3. PCTL semantics for IMDP
The interpretation of state formulas and path formulas

of PCTL for IMDPs is the same as for DTMCs except for the
state formulas of the form P�p(φ). We define

s |� P�p(φ) iff Prσ
{
π ∈ Paths(s)

∣∣ π |� φ
} � p,

for some scheduler σ . Note that here Prσ denotes the
probability distribution over paths of the Markov chain
	I
σ .
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Remark 1. Here we follow the traditional approach as in
[4,24,7] instead of [5] where MDPs are regarded as a one-
player game with PCTL formulas as the winning objective.
This “branching-time" view of PCTL would imply undecid-
ability immediately.

3. Reachability

In this section, we focus on the reachability problem.
Assume an IDTMC I = (S, s0,Pl,Pu, L) and a set of goal
states T ⊆ S . By reachability probability to T we refer to the
probability of paths which hit T . Under the UMC seman-
tics, we are interested in computing supD∈[I] Pr(D,♦T )

(resp. infD∈[I] Pr(D,♦T )), i.e., the maximum (resp. min-
imum) reachability probability among all DTMCs of [I].
Under the IMDP semantics, we are interested in computing
supσ Pr(	I
σ ,♦T ) (resp. infσ Pr(	I
σ ,♦T )), i.e., the max-
imum (resp. minimum) reachability probability among all
schedulers for 	I
.

We first show that, for reachability, the two semantics
coincide in the following sense (note that the sup case can
be shown similarly):

Proposition 1. Given any IDTMC I = (S, s0,Pl, Pu, L) and T ⊆
S, we have that

inf
σ

Pr
(	I
σ ,♦T

) = inf
D∈[I] Pr(D,♦T ).

Proof. For any D ∈ [I], we construct a (simple) scheduler
σ such that σ(s) is the transition probability distribution
of D at s. Clearly, we have that 	I
σ is identical to D. We
hence obtain that

inf
σ

Pr
(	I
σ ,♦T

)
� inf

D∈[I] Pr(D,♦T ).

On the other hand, suppose that σ is the scheduler which
achieves the minimum reachability probability in 	I
. It is
well-known that one can assume that σ is a simple sched-
uler [22,4]. Hence, we can construct a DTMC D = 	I
σ and
clearly D ∈ [I]. It follows that

inf
σ

Pr
(	I
σ ,♦T

)
� inf

D∈[I] Pr(D,♦T ).

The conclusion then follows. �
Remark 2. The UMC and IMDP semantics are different
when full PCTL is considered, cf. [24].

Owing to Proposition 1, we only need to focus on the
IMDP semantics, which turns out to be technically easier
to tackle. Note that it also follows that, under the UMC
semantics, the supremum (resp. infimum) can actually be
achieved. (This is evidently true for IMDP semantics, fol-
lowing standard results for MDPs.)

3.1. Complexity

In the rest of this section, let us fix an IMDP (S, s0, δ, L)

as the semantics of an IDTMC I = (S, s0,Pl,Pu, L), and we
shall focus on the minimum probability of reaching T ⊆ S ,
as the maximum one can be dealt with dually. A standard
approach is to reduce to linear programming (LP) which
proceeds as follows.

For any state s ∈ S , let ∇s be a polytope in R
|S|
�0 defined

by the following constraints:
∑

s′∈S

μs′ = 1 and Pl(s, s′) �μs′ � Pu(
s, s′). (1)

We write V(∇s) for the (finite) set of vertices of ∇s .

Lemma 1. Each vertex of ∇s is rational of size polynomial in
�(I).

Proof. It suffices to observe that:

• Each vertex of ∇s is an intersection of hyperplanes
given by the (in)equalities in (1); and

• The coefficients of each (in)equality are rationals
bounded by �(I) in size.

The conclusion follows from [23, Theorem 10.1]. �
We consider the following LP problem:

maximise
∑

s∈S\T

xs

subject to xs �
∑

s′∈S\T

μs′ xs′ +
∑

s′∈T

μs′ ,

if μ ∈ V(∇s) and s /∈ T

xs = 1, if s ∈ T . (2)

We remark that, in principle one should write ∇s in-
stead of V(∇s) in (2) and standard results yield that xs0 is
the minimum reachability probability [22,4]. However, ∇s
is infinite and therefore the set of constraints would be in-
finite as well. For each fixed (xs)s∈S , standard result from
LP yields that the linear function

∑
s′∈S\T μs′ xs′ +∑

s′∈T μs′
achieves its minimum on ∇s at some vertex (see, e.g., [23]).
Hence we can replace ∇s by V(∇s), obtaining an LP with
the same feasible region, in its current form.

Remark 3. In [24], the notion of basic feasible solutions is
introduced, which is essentially V(∇s).

One obstacle is that the LP given in (2) still has expo-
nentially many constraints, as, for each s, V(∇s) in gen-
eral is of exponential size. Hence, it is not clear how a
polynomial-time upper bound can be achieved immedi-
ately, as opposed to the normal MDP case. (The issue is
also mentioned in [24,7].) To overcome this difficulty, we
now leverage the celebrated ellipsoid method. A remarkable
observation is that it is not necessary to have an explicit
list of all constraints (in terms of (in)equalities) ready at
hand; instead it suffices to be able to test if a given vec-
tor (in particular, the centre of the ellipsoid) is a solution
of the constraint system, and, if not, to find one violated
constraint. Historically this was observed independently by
Karp and Papadimitriou [16], Padberg and Rao [20], and
Grötschel, Lováze, and Schrijver [13]; we refer the reader
to [23, Chapter 14] for details.
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Hence, to conclude that the LP (2) admits a polynomial-
time algorithm in �(I), one only needs to show that
there exists a polynomial-time separation oracle, i.e., a
polynomial-time algorithm to solve the following separa-
tion problem, which in our setting reads as follows.

Given �y ∈ R
|S|
�0 rational of size polynomial in �(I), de-

cide whether �y satisfies the constraints of (2) or not, and,
if negative, identify in polynomial time a separating hyper-
plane, i.e., �α ∈ R

|S| such that �α · �y < �α · �x for any �x which
satisfies the constraints of (2). Here, �α should be read as a
row vector while �x and �y are column vectors, and · is the
standard scalar product.

Proposition 2. The separation oracle exits.

Proof. Let �y ∈ R
|S|
�0 be rational of size polynomial in �(I).

For each state s, we consider the following LP with vari-
ables {μs′ }s′∈S

minimise
∑

s′∈S\T

μs′ · ys′ +
∑

s′∈T

μs′

subject to
∑

s′∈S

μs′ = 1

Pl(s, s′)�μs′ � Pu(
s, s′). (3)

We write zs for the optimal value corresponding to s. We
have that �y satisfies the constraints in (2) iff ys � zs for
each s ∈ S . To see this, suppose that �y satisfies the con-
straints in (2), then for each state s, if s ∈ T , we clearly
have zs = 1 and thus ys � zs; if s /∈ T , then by standard
result of LP, there must exist some μ ∈ V(∇s) such that∑

s′∈S\T μs′ ys′ + ∑
s′∈T μs′ , achieves its minimum. It fol-

lows from the definition of zs that ys = zs . On the other
hand, suppose that ys � zs for each state s, clearly for each
μ ∈ V(∇s), ys �

∑
s′∈S\T μs′ ys′ + ∑

s′∈T μs′ , which implies
that �y satisfies the constraints in (2).

Now suppose that �y does not satisfy the constraints in
(2) for which we need to define the separating hyperplane.
In this case, there must exist (at least) a state ŝ ∈ S such
that yŝ > zŝ . Let μ be a vertex that realises �z at state ŝ.
By Lemma 1, μ is rational of size polynomial in �(I). We
define �α as: α(t) = μ(ŝ) − 1 if t = ŝ; and μ(t) otherwise.
As �y does not satisfy the LP (2), we have that

y(ŝ) >
∑

s′∈S\T

μ
(
s′) · y

(
s′) +

∑

s′∈T

μs′ . (4)

For any �x satisfying the LP (2), we have that

x(ŝ) �
∑

s′∈S\T

μ
(
s′) · x

(
s′) +

∑

s′∈T

μs′ . (5)

It follows that

∑

s∈S

α(s)y(s) = (
μ(ŝ) − 1

)
y(ŝ) +

∑

s �=ŝ

μ(s)y(s)

=
∑

s∈S

μ(s)y(s) − y(ŝ)

< 0 by (4)
�
∑

s∈S

μ(s)x(s) − x(ŝ) by (5)

= (
μ(ŝ) − 1

)
x(ŝ) +

∑

s �=ŝ

μ(s)x(s)

=
∑

s∈S

α(s)x(s).

This completes the proof. �
Proposition 2 immediately entails the following.

Proposition 3. Given an IDTMC I , the reachability problem can
be solved in polynomial time.

We note that this algorithm is not only of theoreti-
cal interest; it also has practical impact since, based on
the construction of separating oracles, one can use, for in-
stance, a very efficient randomised algorithm [3], or the
algorithm based on interior methods [25] (or its numerous
improvements/variants).

It is well-known that computing the maximum (or
minimum) reachability probabilities for MDPs is P-hard
[21]. As solving reachability for IDTMCs essentially involves
MDPs with infinitely (or at least exponentially) many ac-
tions, it is not hard to imagine that this is also P-hard. We
show the following.

Proposition 4. Given an IDTMC I , the reachability problem is
P-hard.

Proof. Given any MDP M = (S, s0, δ, L), we construct an
IDTMC I as follows: the state space of I consists of
{s, (s,μ) | s ∈ S and μ ∈ δ(s)}. For any μ ∈ δ(s) in M, we
have that Pl(s, (s,μ)) = 0 and Pu(s, (s,μ)) = 1, and for
each s′ we have Pl((s,μ), s′) = Pu((s,μ), s′) = μ(s, s′). For
any other pairs of states, the upper bound (hence the lower
bound) of the transition probabilities are 0. Moreover, M
and I have the same goal states T ⊆ S . We show that the
minimum (resp. maximum) reachability probability to T
in M equals the minimum (resp. maximum) reachability
probability to T in I .

Suppose that σ is the scheduler which achieves the
minimum reachability probability in M. Evidently we can
assume that σ is simple, i.e., for each state s, σ as-
signs a unique μ. We then construct σ ′ for 	I
 such
that σ ′(s) = (s, σ (s)) and σ ′((s,μ)) = μ. Clearly, Mσ and
	I
σ ′ yield the same reachability probability to T . Hence
infσ Pr(Mσ ,♦T ) � infσ Pr(	I
σ ,♦T ).

On the other hand, suppose that σ is the sched-
uler which achieves the minimum reachability probabil-
ity in 	I
. W.l.o.g. we can assume that σ is history-
independent. Clearly, for a state of the form (s,μ),
σ((s,μ)) = μ as, according to the definition of I , μ
is the only option there. For state s, σ(s) gives rise
to a randomised scheduler σ ′ for M, namely, for μ ∈
δ(s), σ ′(s)(μ) = σ(s)((s,μ)). Clearly, Mσ ′ and 	I
σ

yield the same reachability probability T . However, it
is well-known that the minimum reachability probabil-
ity of M is achieved by simple schedulers [22], hence
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Fig. 1. IDTMC for the proof, adapted from [5].
infσ Pr(	I
σ ,♦T ) � infσ Pr(Mσ ,♦T ). It follows that
infσ Pr(Mσ ,♦T ) = infσ Pr(	I
σ ,♦T ), which completes
the proof. (The maximum case can be proved in exactly
the same way.) �

Combining Proposition 3 and Proposition 4, we obtain
the following result.

Theorem 1. The reachability problem for IDTMCs is P-complete.

4. PCTL

In this section, we consider PCTL model checking. As
mentioned before, UMC and IMDP semantics differ in this
case, and we treat them separately below.

4.1. UMC semantics

An instance of the Square-Root-Sum problem is a tu-
ple (x1, . . . , xn, y) of integers, and the question is to decide
whether

∑n
i=1

√
xi � y. By a minor adaption of the con-

struction in [5] for MDPs, we show the following.

Theorem 2. Model checking IDTMCs against PCTL under the
UMC semantics is Square-Root-Sum hard.

Proof. Let (x1, . . . , xn, y) be an instance of the Square-

Root-Sum problem. Define an IDTMC I as follows (a
schematic description is given in Fig. 1):

The state space consists of v, u, s, ci,di, ei, f i, gi,hi for
1 � i � n. For the transitions v → u, v → ci , ci → di ,
ci → ei , f i → gi , and f i → hi , the associated intervals are
[0,1], while for transitions ei → f i , di → f i , hi → s, gi → s,
s → v , and u → u, the associated intervals are [1,1]. More-
over, we assume that the label of each state (see Fig. 1) is
valid only in that state.

Let q = y + ∑n
i=1 xi . We now construct a formula

Ξ = P�1− b
q
(X u) ∧

∧

1�i�n

Φi ∧ Ψi ∧ Θi

where for each 1 � i � n, let

Φi = P= xi
q2

(
(v ∨ ci) U ei

)
,

Ψi = P>0
(
X

(
c(i) ∨P= xi

2
(ei ∨ f i) U hi

))

q

and

Θi = P>0
(
X

(
P>0

(
XP>0

(
XP= xi

q2
( f i ∨ hi ∨ s ∨ v) U ci

))))
.

For any DTMC D ∈ [I], we claim that v |� Ξ iff

P(v, ci) = P(ci, ei) = P( f i,hi) =
√

xi

q
(6)

for each 1 � i � n. To see this, note that v |� Φi iff P(v, ci) ·
P(ci, ei) = xi

q2 , v |� Ψi iff P(ci, ei) ·P( f i,hi) = xi
q2 , and v |� Θi

iff P( f i,hi) · P(v, ci) = xi
q2 . Thus (6) follows immediately.

It is easy to see that in D it must be the case that

P(v, u) = 1 − ∑n
i=1

√
xi

q . The conjunct P�1− y
q
(X u) in Ξ

stipulates that 1 − ∑n
i=1

√
xi

q � 1 − y
q , i.e.,

∑n
i=1

√
xi � y.

This completes the proof. �
4.2. IMDP semantics

Following the same argument as [24, Theorem 3], one
can reduce the model checking problem for PCTL under
the IMDP semantics to the same problem for MDPs. It is
routine to apply the labelling algorithm (in a bottom-up
fashion) as in [4] to solve this problem, and the core is to
compute the optimal (i.e., maximum or minimum) proba-
bility of path formulas under all schedulers. We note that
a slightly more complicated case is to check the opera-
tor P=p(φ). Chen et al. [8] show that P=p(φ) holds iff
p ∈ [infσ Prσ (φ), supσ Prσ (φ)], hence it can be reduced to
computing the optimal probability of path formula φ as
well. The path formula of the form XΦ can be tackled
trivially and the path formula Φ U Ψ can be reduced to
the reachability problem by making states not satisfying Φ

absorbing. We refer the readers to [4] or textbook [2, Chap-
ter 10] for details. It follows from Theorem 1 that model
checking IDTMCs against PCTL under the IMDP semantics
is also P-complete. This improves an upper bound of [7].

Theorem 3. Model checking IDTMCs against PCTL under the
IMDP semantics is P-complete.

Remark 4. In [7] a slightly more complicated logic called
ω-PCTL is considered. One can use the same construc-
tion given in [7, Section 4], together with Theorem 1, to
show that model checking problem for this logic is also P-
complete. We choose not to present this result simply for
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Table 1
Summary of the results.

Reachability (ω-)PCTL

UMC P-complete Square-Root-Sum-hard
IMDP P-complete P-complete

simplicity, as the techniques are the same as those demon-
strated above.

5. Conclusion

We have studied the complexity of model checking
IDTMCs under the UMC semantics and the IMDP seman-
tics. Table 1 summarises the main results.

We believe that techniques introduced in this paper can
be generalised (at least partially) to tackle more general
models like constraint Markov chains [6] or robust MDPs
[19], as far as reachability problems are concerned. This is
the subject of future work.
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