
Theoretical Computer Science 412 (2011) 3035–3044

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On the axiomatizability of priority II
Luca Aceto a, Taolue Chen b, Anna Ingolfsdottir a, Bas Luttik c,d,∗, Jaco van de Pol b
a ICE-TCS, School of Computer Science, Reykjavik University, Iceland
b Formal Methods and Tools, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The Netherlands
c Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands
d Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

a r t i c l e i n f o

Keywords:
Bisimilarity
Equational logic
Process algebra
Priority operator
Non-finitely based algebras

a b s t r a c t

This paper contributes to the study of the equational theory of the priority operator of
Baeten, Bergstra and Klop in the setting of the process algebra BCCSP. It is shown that, in
the presence of at least two actions, the collection of process equations over BCCSP with
the priority operator that are valid modulo bisimilarity, irrespective of the chosen priority
order over actions, is not finitely based. This holds true even if one restricts oneself to the
collection of valid process equations that do not contain occurrences of process variables.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Thewell-known priority operatorΘ was introduced by Baeten, Bergstra and Klop in the context of process algebra in [2].
(See, e.g., [7–9] and the references therein for later accounts of the notion of priority in the setting of process description
languages.) The priority operatorΘ gives certain actions priority over others based on an irreflexive partial ordering relation
> over the set of actions. Intuitively, b > a is interpreted as ‘‘action b has priority over action a’’. This means that, in the
context of the priority operator Θ , action a is preempted by action b. For example, if p is some process that can initially
perform both a and b, then Θ(p) will initially only be able to execute the action b.

In their classic paper [2], Baeten et al. provided a sound and ground-complete axiomatization for this operator modulo
bisimulation equivalence [14,15]. (An axiomatization is ground complete if it can be used to prove all the valid equations
relating terms without variables.) Their axiomatization uses predicates on actions (to express priorities between actions)
and one extra auxiliary operator. Bergstra showed in the earlier paper [3] that, in case of a finite alphabet of actions, there
exists a finite equational axiomatization for Θ , without action predicates and auxiliary operators. So, if the set of actions is
finite, neither equations with action predicates as conditions nor auxiliary operators, as used in [2], are actually necessary
to obtain a finite axiomatization of bisimulation equivalence over basic process description languages enriched with the
priority operator.

A study of the equational theory of the priority operator modulo bisimilarity in the presence of an infinite collection of
actions was carried out in [1] in the setting of the process algebra BCCSP, a process description language that contains only
basic process algebraic operators fromCCS [14] and CSP [11], but is sufficiently powerful to express all finite synchronization
trees. In that paper, Aceto, Chen, Fokkink and Ingolfsdottir showed that, in the presence of a non-trivial priority order,
there is no finite, purely equational axiomatization for BCCSP enriched with the priority operator. This result even applies
if one is allowed to add an arbitrary collection of auxiliary operators to the syntax, and indicates that the use of equations
with action predicates as conditions is essential for axiomatizing Θ if the set of actions is infinite. The aforementioned

∗ Corresponding author at: Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands. Tel.: +31 40
2475142.

E-mail address: s.p.luttik@tue.nl (B. Luttik).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.02.033

http://dx.doi.org/10.1016/j.tcs.2011.02.033
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:s.p.luttik@tue.nl
http://dx.doi.org/10.1016/j.tcs.2011.02.033

3036 L. Aceto et al. / Theoretical Computer Science 412 (2011) 3035–3044

reference also exhibits a specific priority order with respect to which bisimilarity affords no finite, sound and ground-
complete axiomatization in terms of equations with action predicates as conditions. This result indicates that, in general,
the use of auxiliary operators is necessary to axiomatize bisimilarity finitely, even using equations with action predicates as
conditions. In some sense, themain theorems offered in [1] may be seen as providing a technical justification for the choices
made by Baeten et al. in [2].

All of the aforementioned references investigate the equational theory of the priority operator with respect to a given
priority order >. This leaves open the natural question of whether the collection of equations that are valid modulo
bisimilarity over the language BCCSP enriched with the priority operator irrespective of the chosen priority order affords a
finite equational axiomatization. The aim of this study is to provide an answer to this question. We shall prove that the
collection of equations over our language that are valid modulo bisimilarity irrespective of the chosen priority order affords
no finite equational axiomatization in the presence of at least two distinct actions. (Note that the priority operator is only
of interest when the collection of actions satisfies this assumption.) Moreover, this negative result holds true even if we
restrict ourselves to the collection of valid equations that contain no occurrences of process variables.

Our negative result is perhaps surprising, because onemight expect that there are very fewnon-trivial identities involving
the priority operator that hold irrespective of the priority order. To see that this is not the case, however, consider the
following infinite family of valid equations (n ≥ 0)

an.(b + c) + an.b + an.c ≈ an.(b + c) + an.b + an.c + an.Θ (b + c),

where a, b and c are actions with at least b and c distinct, and an denotes a sequence of n occurrences of an a-prefixing
operator. We exploit this infinite family in the proof of our non-finite axiomatizability result by showing that no finite
collection of valid equations can prove all of the identities in the family. The crux of the proof of ourmain result is a statement
to the effect that, when n is ‘‘large enough’’, the property of having a ‘‘successor at depth n’’ whose set of initial actions
depends on the chosen priority order is preserved by equational derivations from a finite set of valid equations E. This
means that if E proves an equation p ≈ q and one of the two terms has this property, then so does the other one. Note
that the process term an.Θ (b + c) has a successor at depth n, namely Θ (b + c), whose set of initial actions depends on the
priority order, whereas an.(b + c) + an.b + an.c does not.

The proof of the validity of the equations in the above family uses a case analysis on the possible relation between the
actions b and c , with respect to a priority order, at arbitrary depth in the behavior of process terms. As the proof of our main
technical result, namely Theorem 22 to follow, shows, this case analysis cannot be implemented equationally by means of
a finite collection of valid equations.

The rest of the paper is organized as follows. Section 2 is devoted to preliminary definitions and results. We present the
proof of our main result in Section 3. We conclude the paper with a summary of its main results and some directions for
future research in Section 4.

2. Preliminaries

Syntax. Let A be a set of actions, and let V be a countably infinite set of variables. The set of process terms is generated by
the following grammar:

t ::= 0 | α.t | t + t | Θ (t) | x,

with α ranging over A and x ranging over V . We let t and u (possibly with subscripts or superscripts) range over process
terms. A process term is closed if it does not contain any variables. We shall typically denote closed process terms by p and
q (possibly with subscripts or superscripts). As usual in the literature on process algebras, we sometimes write α instead of
α.0.

In this paper we denote the set of natural numbers by N.

Operational semantics. We proceed to define an A-labeled transition relation on closed process terms using structural
operational semantics [16]. The operational rule for Θ presupposes a priority order, i.e., a strict partial order > on A; α > β
is to be read as ‘‘α-transitions have priority over β-transitions’’. We say that an action α has maximal priority with respect
to > if there does not exist an action β such that β > α. The A-labeled transition relation →> with respect to the priority
order > will be defined as the unique supported model, in the sense of [6], of the rules below. As usual, we write p α

−−→> p′

if (p, α, p′) ∈ →> .

1
α.p α

−−→> p
2

p α
−−→> p′

p + q α
−−→> p′

3
q α

−−→> q′

p + q α
−−→> q′

4
p α

−−→> p′
∀β > α. p β

−−9>

Θ (p)
α

−−→> Θ (p′)

L. Aceto et al. / Theoretical Computer Science 412 (2011) 3035–3044 3037

It is well known that the transition relation →> is the one defined by structural induction over closed terms using the
above rules.

Let p and p′ be closed process terms. We denote by I>(p) the set of initial actions of p with respect to >, i.e., I>(p) =

{α | ∃p′. p α
−−→> p′

}. (Note that I>(p) is finite for each priority order > and closed term p.) We write p −−→> p′ if p α
−−→> p′

for some α ∈ A, and p −−→
k
> p′ (k ∈ N) if there exist p0, p1, . . . , pk such that p = p0 −−→> p1 −−→> · · · −−→> pk = p′. The

depth d>(p) of p with respect to > is the largest k ∈ N such that p −−→
k
> p′ for some closed process term p′. The following

generalization of I> will also be used as an auxiliary notion: we denote by Actsk>(p) the set of all actions that are enabled
at depth k (k ∈ N) with respect to >, and we denote by Acts∗>(p) the set of all actions that are enabled at some depth with
respect to >. That is,

Actsk>(p) =


{I>(p′) | p −−→

k
> p′

}, and Acts∗>(p) =


k∈N

Actsk>(p).

Note that the choice of priority order affects the operational semantics associatedwith closed process terms by restricting
the transition relation. For example, the closed process term Θ (a.0 + b.0) affords both a- and b-labeled transitions if > is
empty, but only an a-labeled transition if > = {(a, b)}. A major part of our technical reasoning later on will, however, be
based on the unrestricted transition relation −−→∅ induced by the empty priority order (which, intuitively, gives all actions
the same priority). For the sake of succinctness, it is therefore convenient to drop the subscript ∅ for −−→∅ and its derived
notions I∅, −−→k

∅
(k ∈ N) and d∅. That is, we simply write p α

−−→ p′ instead of p α
−−→∅ p′, I(p) instead of I∅(p), p −−→

k p′

instead of p −−→
k
∅
p′, d(p) instead of d∅(p), Actsk(p) instead of Actsk

∅
(p), and Acts∗(p) instead of Acts∗

∅
(p).

Furthermore, it will be convenient below to also make use of the A-labeled transition relation and its derived notions as
induced on the set of all process terms by the operational rules above. (The absence of rules for variables in the operational
semantics simply implies that variables do not give rise to any transitions.) In particular, the notion of depth d(t) of a term
associated with the unrestricted transition relation will play a crucial role in the proof of the main result in the paper. It
is easy to see that it satisfies the following equations: d(0) = 0; d(α.t) = d(t) + 1; d(t1 + t2) = max(d(t1), d(t2));
d(Θ (t)) = d(t); and d(x) = 0.

If σ is a substitution, i.e., a mapping from variables to process terms, and t is a process term, then by σ(t) we denote the
process term obtained by replacing all occurrences of variables x by σ(x). The term σ(t) is called a substitution instance of t. A
substitution is closed if it maps every variable to a closed term. Below, we shall establish a precise correspondence between
the operational behavior of a process term and that of a closed substitution instance. Let us first illustrate some subtleties
with an example.

Example 1. Let t = Θ (a.x+Θ (y)), and let σ be some closed substitution. Then t a
−−→Θ (x). Moreover, σ(t) a

−−→> σ(Θ (x)),
provided that I>(σ (Θ (y))) does not contain an action with a higher priority than a. For example, if σ(y) = b.0, and a and
b are incomparable with respect to >, then σ(t) a

−−→> σ(Θ (x))). On the other hand, σ(t) does not afford an a-labeled
transition with respect to > if b > a. Of course, transitions of σ(x) do not give rise to transitions of σ(t), because the
occurrence of x is guarded by the action prefix a.; we say that x is not enabled in t. On the other hand, the variable y is
enabled in t (there are no action prefixes on the path from the root of t to the occurrence of y). Therefore, (initial) transitions
of σ(y)may give rise to (initial) transitions of σ(t); e.g., if σ(y) b

−−→> p, then σ(t) b
−−→> Θ (Θ (p)), unless a > b or I>(σ (y))

contains an action with a higher priority than b.

As illustrated in the above example, it may happen that there is a transition t α
−−→ t ′, but not a transition σ(t) α

−−→> σ(t ′).
If α has maximal priority with respect to >, however, then we can be sure that t α

−−→> t ′ implies σ(t) α
−−→> σ(t ′).

Lemma 2. Let t and t ′ be process terms, let α be an action with maximal priority with respect to >. If t α
−−→> t ′, then

σ(t) α
−−→> σ(t ′) for all substitutions σ .

Proof. Note that if α has maximal priority with respect to >, then the premise ∀β > α. p β
−−9> of Rule 4 is vacuously true.

Therefore, the lemma can be established with a straightforward induction on a derivation of t α
−−→> t ′. �

If t is a process term, x is a variable, and σ is a closed substitution, then transitions of σ(x) may induce transitions of
σ(t) only if σ(x) is enabled. As can be seen from the example above, in order to determine the target of a transition from
σ(t) induced by a transition σ(x), we need to know how many Θ -operators are on a path from the root of t to an enabled
occurrence of x in t. In the following definition, we shall define relations ▹ℓ (ℓ ∈ N) between variables and process terms
such that x ▹ℓ t if x has an occurrence in t, and on the path from the root of t to this occurrence there are no applications of
an action prefix and there are ℓ applications of the Θ -operator.

Definition 3. We define the relations ▹ℓ (ℓ ∈ N) between variables and process terms as the least relations satisfying, for
all variables x, for all natural numbers ℓ, and for all process terms t and u, the following clauses:

(i) x ▹0 x;
(ii) if x ▹ℓ t, then x ▹ℓ t + u and x ▹ℓ u + t; and
(iii) if x ▹ℓ t, then x ▹ℓ+1 Θ (t).

3038 L. Aceto et al. / Theoretical Computer Science 412 (2011) 3035–3044

If x ▹ℓ t for some ℓ ∈ N, then we say that x is enabled in t.

Using the relations ▹ℓ (ℓ ∈ N) we shall now establish a formal correspondence between the transitions of a process term
and those of its (closed) substitution instances. First, we prove in Lemma 4 that a transition of a substitution instance σ(x)
of a variable x enabled in t gives rise to a transition of σ(t), under a proviso to ensure that it is not preempted by some other
transition ofσ(t). Then,we prove in Lemma7 that a transition of a closed substitution instanceσ(t) of a process term t either
stems from a transition of t or from a transition of an occurrence of variable x that is enabled in t. For a succinct formulation
of the lemmas, it is convenient to have a notation for repeated application of Θ ; we define Θk(t) (k ∈ N) inductively as
follows: Θ0(t) = t, and Θk+1(t) = Θ (Θk(t)).

Lemma 4. Let t be a process term, let x be a variable, and let ℓ be a natural number such that x ▹ℓ t. Furthermore, let σ be a
substitution, and suppose thatα is an actionwithmaximal prioritywith respect to>. Thenσ(x) α

−−→> p impliesσ(t) α
−−→> Θℓ(p).

Proof. Weprove the implication of the lemma by induction on a derivation of x ▹ℓ t according to the clauses in Definition 3.
If x ▹ℓ t according to the first clause, then ℓ = 0 and t = x. So σ(x) α

−−→> p implies σ(t) α
−−→> Θℓ(p).

If the last clause applied in the derivation of x ▹ℓ t is the second clause, then there exist process terms t1 and t2 such that
t = t1 + t2, and either x ▹ℓ t1 or x ▹ℓ t2. In the first case, it holds by the induction hypothesis that σ(x) α

−−→> p implies
σ(t1)

α
−−→> Θℓ(p), and hence, by Rule 2, σ(t) α

−−→> Θℓ(p). In the second case the proof is analogous, using Rule 3 instead
of Rule 2.

If the last clause applied in the derivation of x ▹ℓ t is the third clause, then ℓ ≥ 1 and there exists t ′ such that t = Θ (t ′)
and x ▹ℓ−1 t ′. If σ(x) α

−−→> p, then, by the induction hypothesis, σ(t ′) α
−−→> Θℓ−1(p), so, since α has maximal priority with

respect to >, by Rule 4 we have that σ(t) = Θ (σ (t ′)) α
−−→> Θℓ(p). �

Corollary 5. Let t be a process term, let x be a variable, and let ℓ be a natural number such that x ▹ℓ t. Furthermore, let σ be a
substitution, and let k be a positive natural number. Then σ(x) −−→

k p implies σ(t) −−→
k Θℓ(p).

Proof. If σ(x) −−→
k p, then σ(x) −−→ p′

−−→
k−1 p for some p′. Recall that −−→ is based on a priority order that assigns

the same priority to every action, so by Lemma 4 σ(t) −−→ Θℓ(p′), and by Rule 4 and induction on k − 1 it follows that
Θℓ(p′) −−→

k−1 Θℓ(p). Hence, σ(t) −−→
k Θℓ(p). �

Remark 6. The proviso that k be positive is necessary for the validity of the above statement. Indeed, let t = x+a.0, and letσ
be the substitutionmapping all variables to 0. We have that x ▹0 t and σ(x)−−→00. On the other hand, σ(t)−−→00 = Θ0(0)
does not hold.

Lemma 7. Let t be a process term, letσ be a closed substitution, letα be an action, and let p be a closed process term. Ifσ(t) α
−−→>p,

then either there exists a process term t ′ such that t α
−−→> t ′ and σ(t ′) = p, or there exist a variable x, a closed process term p′,

and a natural number ℓ ∈ N such that x ▹ℓ t, σ(x) α
−−→> p′, and Θℓ(p′) = p.

Proof. The proof is by structural induction on t.

Case 1: If t = 0, then σ(t) = 0, which, according to the operational semantics, does not admit any transitions. So in this
case the lemma vacuously holds.

Case 2: Suppose that t = β.t ′ for some action β and some process term t ′. If σ(t) α
−−→> p, then it is clear from the

operational semantics that the only transition of σ(t) = β.σ (t ′) is σ(t) β
−−→> σ(t ′). It follows that α = β, so

t α
−−→> t ′, and p = σ(t ′).

Case 3: Suppose that t = t1 + t2. If σ(t) α
−−→> p, then by a straightforward reasoning on the basis of the operational

semantics, necessarily eitherσ(t1)
α

−−→>p orσ(t2)
α

−−→>p.We assumewithout loss of generality thatσ(t1)
α

−−→>p.
Then, according to the induction hypothesis, we only need to consider the following two subcases:
Case 3(a): There exists t ′1 such that t1

α
−−→> t ′1 and σ(t ′1) = p. From t1

α
−−→> t ′1 it follows by Rule 2 that t α

−−→> t ′1,
so the proof is complete for this subcase.

Case 3(b): There exist a variable x, a closed process term p′, and a natural number ℓ such that x ▹ℓ t1,σ(x)−−→> p′,
and Θℓ(p′) = p. From x ▹ℓ t1 it follows, according to Definition 3, that x ▹ℓ t, so the proof is complete for this
subcase.

Case 4: Suppose that t = Θ (u). If σ(t) α
−−→> p, then, since σ(t) = Θ (σ (u)), it follows that Θ (σ (u))

α
−−→> p, so with a

straightforward reasoning on the basis of the operational semantics we can conclude that there exists q such that
σ(u)

α
−−→> q and Θ (q) = p.

By the induction hypothesis we only need to consider the following two subcases:
Case 4(a): There exists a process term u′ such that u α

−−→> u′ and σ(u′) = q.
Note that, since t = Θ (u) and σ(t) α

−−→> p, for all β > α it holds that σ(u)
β

−−9> . It follows that u β
−−9>

for all β > α. (Indeed, if u β
−−→> u′′, for some β > α and process term u′′, then either σ(u)

β
−−→> σ(u′′) or

σ(u)
β ′

−−→> r, for some β′ > α and closed process term r.) Hence, from u α
−−→> u′ and Rule 4, we may infer that

t = Θ (u)
α

−−→> Θ (u′). We define t ′ = Θ (u′) and note that t α
−−→> t ′ and σ(t ′) = σ(Θ (u′)) = Θ (σ (u′)) =

Θ (q) = p. The proof for this subcase is thereby complete.

L. Aceto et al. / Theoretical Computer Science 412 (2011) 3035–3044 3039

Case 4(b): There exist a variable x, a natural number ℓ, and a closed process term p′ such that x ▹ℓ u, σ(x) α
−−→> p′,

and Θℓ(p′) = q. From x ▹ℓ u it follows that x ▹ℓ+1 t, and from Θℓ(p′) = q it follows that Θℓ+1(p′) = Θ (q) =

p. The proof for this subcase is thereby complete.
Case 5: Suppose that t = x for some variable x. If σ(t) α

−−→> p, then it is immediate that x ▹0 t, σ(x) α
−−→> p, and

Θ0(p) = p. This completes the proof for this case. �

Lemma 8. Let t be a process term, let σ be a closed substitution, let n be a natural number, and let p be a closed process term. If
σ(t) −−→

n
> p, then either

(i) there exists a process term t ′ such that t −−→
n
> t ′ and σ(t ′) = p, or

(ii) there exist a process term t ′, a variable x, a closed process term p′, and natural numbers k < n and ℓ such that t −−→
k
> t ′,

x ▹ℓ t ′, σ(x) −−→
n−k
> p′, and Θℓ(p′) = p.

Proof. Suppose that σ(t) −−→
n
> p. We proceed by induction on n.

If n = 0, then clearly t −−→
n
> t, and from σ(t) −−→

n
> p it follows that σ(t) = p.

Suppose that n > 0. Then there exists a closed process term q such that σ(t) −−→> q −−→
n−1
> p. According to Lemma 7

we now need to consider two cases:

Case 1: There exists a process term t ′ such that t −−→> t ′ and σ(t ′) = q.
Then, by the induction hypothesis for q −−→

n−1
> p, there are two subcases: If there exist a process term t ′′ such

that t ′ −−→
n−1
> t ′′ and σ(t ′′) = p, then to complete the proof in this subcase it suffices to note that t −−→

n
> t ′′. If

there exist a process term t ′′, a variable x, a closed process term p′, and natural numbers k < n− 1 and ℓ such that
t ′ −−→

k
> t ′′, x ▹ℓ t ′′, σ(x) −−→

(n−1)−k
> p′, and Θℓ(p′) = p, then to complete the proof in this subcase it suffices to

note that t −−→
k+1
> t ′′ and k + 1 < n.

Case 2: There exists a variable x, a closed process term q′, and a natural number ℓ ∈ N such that x ▹ℓ t, σ(x) −−→> q′, and
Θℓ(q′) = q.

Then from Θℓ(q′) = q −−→
n−1
> p it can be established with induction on n − 1, reasoning on the basis of the

operational semantics, that there exists p′ such that q′
−−→

n−1
> p′ and Θℓ(p′) = p. We define t ′ = t and k = 0.

Then t −−→
k
> t ′, x ▹ℓ t ′, σ(x) −−→

n−k
> p′, and Θℓ(p′) = p, so the proof in this case is also complete. �

Bisimilarity. Recall that the operational semantics for closed process terms presupposes a specific priority order>. A binary
symmetric relation R on closed process terms is a bisimulation [14,15] with respect to > if it satisfies for all closed process
terms p and q such that p R q, and for all actions α, the following condition:

if p α
−−→> p′, then there exists q′ such that q α

−−→> q′ and p′ R q′.

Closed process terms p and q are bisimilar with respect to> (notation: p ↔> q) if there exists a bisimulationR with respect
to> such that p R q. We say that p and q are order-insensitive bisimilar (notation: p ↔

∗ q) if they are bisimilar with respect
to every priority order on A. In what follows, by bisimilarity we always mean order-insensitive bisimilarity.

The relations↔> and↔
∗ are congruences on the set of closed process terms, i.e., they are equivalences and compatible

with the syntactic constructions of our language of closed process terms. (Each of the relations↔> is a congruence because
the operational rules for the operators in our language are in the GSOS format [6], and↔

∗ is a congruence because it is the
intersection of a family of congruence relations.)

The following proposition recalls some basic facts pertaining to bisimilarity with respect to >.

Proposition 9. Let p and q be closed process terms such that p ↔> q, and let k be a natural number. Then:

(i) for every closed process term p′ such that p −−→
k
> p′ there exists a closed process term q′ such that q −−→

k
> q′ and p′ ↔> q′;

and
(ii) Actsk>(p) = Actsk>(q), so, in particular, I>(p) = I>(q).

Remark 10. Note that Proposition 9(i) fails for↔∗, which is not a bisimulation. As an example, consider the closed process
terms p = a.(b + c)+a.b+a.c and q = p+a.Θ (b + c). It is not hard to see that p ↔

∗ q (see also the proof of Proposition 12
to follow) and q a

−−→> Θ (b + c), for any priority order >. On the other hand, as our readers can easily check, there is no
closed process term p′ such that p a

−−→> p′ and p′ ↔
∗ Θ (b + c).

We shall drop the subscript ∅ from↔
∅. Note that↔ relates closed process terms p and q if they are bisimilar in the usual

sense after removing all occurrences of Θ from p and q.
Let p and q be closed process terms. We say that p is a (semantic) summand of q (notation: p ⊑∗ q) if there exists some

r such that p + r ↔
∗ q. The following proposition states some basic properties of ⊑∗ that will be implicitly used in the

technical developments to follow.

Proposition 11. The relation ⊑∗ is a preorder on closed process terms. Moreover, p′
+ p′′

⊑∗ p implies p′
⊑∗ p and p′′

⊑∗ p, for
all closed process terms p, p′ and p′′.

3040 L. Aceto et al. / Theoretical Computer Science 412 (2011) 3035–3044

Table 1
Some valid process equations.

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x
PR1 Θ (0) ≈ 0
PR2 Θ (Θ (x) + y) ≈ Θ (x + y)
PR3 Θ (α.x) ≈ α.Θ (x)
PR4 Θ (x) + Θ (y) ≈ Θ (x) + Θ (y) + Θ (x + y)
PR5 Θ (α.x + α.y + z) ≈ Θ (α.x + z) + Θ (α.y + z)

Equational basis. A process equation is a formula t ≈ u, with t and u process terms; it is said to be valid if σ(t) ↔
∗ σ(u) for

every closed substitution σ . If t and u are process terms such that the process equation t ≈ u is valid, then we shall also
write t ↔

∗ u. Table 1 lists somewell-known valid process equations. The depth of a process equation t ≈ u is themaximum
of the depths of the process terms t and u with respect to the empty priority order.

Let E be a set of process equations, and let t ≈ u be a process equation; we write E ⊢ t ≈ u if the process equation t ≈ u
is derivable from E by means of the rules of equational logic. In this paper we address the question whether the collection
of all valid process equations is finitely based, i.e., if there exists a finite set E of valid process equations such that

E ⊢ t ≈ u if, and only if, t ↔
∗ u.

A collection E of valid process equations that have the above property is often referred to as a complete axiomatization of↔∗.

3. Order-insensitive bisimilarity is not finitely based

Our order of business in this section is to prove that the collection of all valid process equations over our language is not
finitely based. Moreover, we shall show that the above-mentioned negative result holds true even if we restrict ourselves to
the collection of valid process equations that donot contain occurrences of process variables—that is, those process equations
that relate closed process terms. In order to establish our main result, we shall first isolate an infinite family of valid process
equations relating closed process terms. Next we shall show that no finite collection of valid process equations is powerful
enough to prove all the process equations in our family.

Before presenting our infinite family of valid process equations that cannot all be derivable from some finite set of valid
process equations, we first introduce some auxiliary notations and definitions. Let α be an action and let t be a process term;
we define αn.t inductively by α0.t = t and αn+1.t = α.(αn.t) for all n ∈ N. Now, fix concrete elements a, b and c of A, and
suppose that b ≠ c. (It is not necessary to require that a is distinct from b or c.) We define, for n ∈ N, the process term Pn by

Pn = an.(b + c) + an.b + an.c.

Proposition 12. For every n ∈ N, the process equation Pn + an.Θ (b + c) ≈ Pn is valid.

Proof. It suffices to show that an.Θ (b + c) ⊑∗ Pn, for each n. To this end, let > be a priority order, and let n be a natural
number. Observe that

• if b > c then an.Θ (b + c) ↔> an.b,
• if c > b then an.Θ (b + c) ↔> an.c, and
• if b and c are incomparable with respect to > then an.Θ (b + c) ↔> an.(b + c).

Hence an.Θ (b + c)+ Pn ↔> Pn for each priority order > and natural number n. It follows that an.Θ (b + c) ⊑∗ Pn, for each
n. �

We shall now proceed to prove that there cannot exist a finite set of valid process equations from which the process
equations in the family

{Pn + an.Θ (b + c) ≈ Pn | n ∈ N}

of valid process equations are all derivable. Our readers might have noticed that the proof of the validity of the equations in
the above family uses a case analysis on the possible relation between the actions b and c , with respect to a priority order, at
an arbitrary depth in the behavior of process terms. As the proof of our main technical result, namely Theorem 22 to follow,
shows, this case analysis cannot be implemented equationally by means of a finite collection of valid equations.

To formalize the above-mentioned case analysis, we now introduce the notion of Θ -dependent closed process term,
which will play a crucial role in subsequent developments.

Definition 13. A closed process term p is Θ -dependent if there exist priority orders >1 and >2 such that I>1(p) ≠ I>2(p).

L. Aceto et al. / Theoretical Computer Science 412 (2011) 3035–3044 3041

Intuitively, a closed process term is Θ -dependent if its set of initial actions depends on the chosen priority order. For
example, Θ (b + c) is Θ -dependent, whereas Θ (b) and Θ (c) are not.

Lemma 14. If p ↔
∗ q and p is Θ -dependent, then so is q.

Proof. If p is Θ -dependent, then there exist priority orders >1 and >2 such that I>1(p) ≠ I>2(p). Since p ↔
∗ q, it follows

that I>(p) = I>(q) for all priority orders >. So I>1(q) ≠ I>2(q), and hence q is Θ -dependent. �

Let p and p′ be closed process terms, and let n be a natural number. If p −−→
n p′, then we call p′ an n-successor of p. (Note

that the notion of n-successor is based on the empty priority order, which, intuitively, assigns to every action the same
priority.)

Note that the three n-successors of Pn are Θ -independent, whereas Pn + an.Θ (b + c) has a Θ -dependent n-successor
Θ (b+c). Hence, to prove that there does not exist a finite set of valid process equations fromwhich all the process equations

Pn + an.Θ (b + c) ≈ Pn (n ∈ N)

are derivable, it suffices to show that the property of having a Θ -dependent n-successor is preserved by equational
derivations from a finite set of valid equations E when n is ‘‘large enough’’. To this end, we presuppose a finite set of valid
process equations E, of depth less than n, and establish that the following property holds for all closed process terms p and
q such that E ⊢ p ≈ q and p, q ⊑∗ Pn:

if p has a Θ -dependent n-successor, then q has a Θ -dependent n-successor too. (Ď)

The remainder of this section and of the paper will be devoted to a proof of this property, in case A contains at least two
distinct actions.

An important property of the terms Pn is that, intuitively, the only moments of choice in their induced behaviors occur
after 0 and after n steps. We formalize this property and establish that it is invariant under↔∗.

Definition 15. Let p be a closed process term. We say that p is determinate if |I(p)| ≤ 1, and for all closed terms p1 and p2
such that p −−→ p1 and p −−→ p2 it holds that p1 ↔

∗ p2. We say that p is determinate at depth k if all closed process terms p′

such that p −−→
k p′ are determinate.

Remark 16. In [12], Huynh and Tian call a process locally unary if all of its successors can initially perform at most one
action.

Note that Pn is determinate at depth k for all 1 ≤ k < n. We shall establish that every semantic summand of Pn is also
determinate at all depths 1 ≤ k < n.

Lemma 17. Let p be a closed process term and let p ⊑∗ Pn for some n ∈ N. Then p is determinate at depth k for all 1 ≤ k < n.

Proof. First we prove that Actsk(p) ⊆ {a} for all 0 ≤ k < n. From p ⊑∗ Pn it follows that there exists a closed process
term r such that p + r ↔

∗ Pn, and hence p + r ↔ Pn. By Proposition 9, Actsk(p + r) = Actsk(Pn) = {a}, and since
Actsk(p) ⊆ Actsk(p + r), it follows that Actsk(p) ⊆ {a}.

Now, to prove that p is determinate at depth k for all 1 ≤ k < n, suppose that 1 ≤ k < n is the least natural number
such that p is not determinate at depth k; we derive a contradiction. That p is not determinate at depth k means that there
exist closed process terms p′, p1 and p2, and a priority order > such that p −−→

k p′, p′
−−→ p1, p′

−−→ p2, and p1 ↮> p2.
Since |Actsi(p)| = 1 for all 0 ≤ i < k, from p −−→

k p′ it follows that p −−→
k
> p′. Hence, since p + r ↔> Pn, by Proposition 9

there exists P ′
n such that Pn −−→

k
> P ′

n and p′ ↔> P ′
n. From 1 ≤ k < n and the definition of Pn it is clear that there is a unique

closed process term P ′′
n such that P ′

n −−→ P ′′
n . It follows that p1 ↔> P ′′

n ↔> p2, so p1 ↔> p2, contradicting an immediate
consequence of the assumption that p′ is not determinate. We conclude that p′ is determinate. �

The following lemma roughly states that↔∗ does behave like a bisimulation over determinate processes. (Compare with
Remark 10.)

Lemma 18. Let p and q be closed process terms such that p ↔
∗ q, and letmbe a natural number such that p and q are determinate

at all depths < m. If there exists p′ such that p −−→
m p′, then there exists q′ such that q −−→

m q′ and p′ ↔
∗ q′.

Proof. The proof is by induction onm.
Suppose m = 0. If p′ is a closed process term such that p −−→

m p′, then p′
= p. So we can take q′

= q to obtain that
q −−→

m q′ and p′
= p ↔

∗ q = q′.
Suppose m > 0. If p′ is a closed process term such that p −−→

m p′, then there exists a closed process term p1 such that
p −−→ p1 −−→

m−1 p′. Since p ↔
∗ q, in particular p ↔ q, so there exists q1 such that q −−→ q1 and p1 ↔ q1.

It remains to argue that p1 ↔
∗ q1, for then, since p1 and p2 are determinate at all depths less than m − 1, there exists,

by the induction hypothesis, a closed process term q′ such that q1 −−→
m−1 q′ and p′ ↔

∗ q′. So let us suppose that p1 ↮
∗ q1

and derive a contradiction. If p1 ↮
∗ q1, then there exists > such that p1 ↮> q1. On the other hand, since p ↔

∗ q, there
exists q′

1 such that q −−→> q′

1 and p1 ↔> q′

1. Clearly, q −−→ q′

1, and hence, since q is determinate, q1 ↔
∗ q′

1. We find that
p1 ↔> q′

1
↔> q1, which contradicts our assumption that > is such that p1 ↮> q1. We conclude that p1 ↔

∗ q1. �

3042 L. Aceto et al. / Theoretical Computer Science 412 (2011) 3035–3044

3.1. Proof of the main result

We are now ready to prove that, if E is a finite set of valid process equations of depth less than n, then property (Ď) holds.
Our proof of this claim is based on establishing that the property in question is preserved by the inference rules of equational
logic.

An important part of our proof consists in establishing some properties of valid process equations t ≈ u. In particular, the
following lemma plays a crucial role in showing that property (Ď) holds for closed instantiations of valid process equations
whose depth is less than n.

Lemma 19. Assume that A contains at least two actions, and let a be an action in A. Let t and u be process terms such that
Acts∗(t) ⊆ {a}, let x be a variable, and suppose that t ↔

∗ u. If there exists t ′ such that t −−→
k t ′ and, for some ℓ ∈ N, x ▹ℓ t ′,

then there exists u′ such that u −−→
k u′ and, for some m ∈ N, x ▹m u′. Moreover, ℓ = 0 if, and only if, m = 0.

Proof. Suppose that t ↔
∗ u, and let t ′ be a process term such that t −−→

k t ′ and, for some ℓ ∈ N, x ▹ℓ t ′. Let n be larger
than the depths of t and u, and let b be an action in A that is distinct from a. We let > = {(a, b)}, and define the closed
substitution ϱ as follows:

ϱ(y) =


an.(a.0 + b.0) if y = x; and
0 otherwise.

Suppose that t −−→
k t ′. Then, since Acts∗(t) ⊆ {a}, there exist t0, . . . , tk such that

t = t0
a

−−→ · · ·
a

−−→ tk = t ′.

Hence, since a has maximal priority with respect to >, by Lemma 2 and induction on k it follows that

ϱ(t) = ϱ(t0)
a

−−→> · · ·
a

−−→> ϱ(tk) = ϱ(t ′),

so ϱ(t) −−→
k
> ϱ(t ′). Since x ▹ℓ t ′ and a has maximal priority with respect to >, by Lemma 4 and the definition of ϱ we have

that ϱ(t ′) −−→
n
> Θℓ(a.0 + b.0). So ϱ(t) −−→

k+n
> Θℓ(a.0 + b.0).

Now, since t ↔
∗ u, and hence in particular ϱ(t) ↔> ϱ(u), it follows that there exists a closed process term p such that

ϱ(u) −−→
k+n
> p and Θℓ(a.0 + b.0) ↔> p. Since n is larger than the depth of u, by Lemma 8 there exist a process term u′, a

variable y, a closed process term p′, and natural numbers h < n and m such that u −−→
h
> u′, y ▹m u′, ϱ(y) −−→

n+k−h
> p′

and Θm(p′) = p. From h < n it follows that n + k − h > 0, and therefore, since ϱ(y) −−→
n+k−h
> p′, it is clear from

the definition of ϱ and Θℓ(a.0 + b.0) ↔> Θm(p′′) = p that y = x, h = k, and p′
= a.0 + b.0. Moreover, from

Θℓ(a.0 + b.0) ↔> p = Θm(p′) = Θm(a.0 + b.0) and the definition of >, it follows that ℓ = 0 if, and only if,m = 0. �

Remark 20. The first part of the lemma can also be established if A is a singleton set, using a different substitution in its
proof, but then second part of the lemma does not hold. In fact, if A is a singleton set, then the equation Θ (x) ≈ x is valid.

The following lemma establishes that closed substitution instances of valid process equations with a depth less than n
preserve the property (Ď).

Lemma 21. Let t and u be process terms such that t ↔
∗ u, and let σ be a closed substitution. Suppose that Acts∗(t) ⊆ {a} and

d(t), d(u) < n. If σ(t) has a Θ -dependent n-successor, then σ(u) also has a Θ -dependent n-successor.

Proof. Suppose that p is aΘ -dependent term such that σ(t)−−→np. Then, since d(t) < n, there exist, by Lemma 8, a process
term t ′, a variable x, a closed process term p′, and natural numbers k < n and ℓ such that t −−→

k t ′, x ▹ℓ t ′, σ(x) −−→
n−k p′,

and Θℓ(p′) = p. Observe that, as p is Θ -dependent, the set of actions cannot be a singleton. Therefore, since Acts∗(t) ⊆ {a},
by Lemma 19 there exist u′ and a natural numberm such that u −−→

k u′ and x ▹m u′, so by Corollary 5 σ(u′) −−→
n−k Θm(p′),

and hence σ(u) −−→
n Θm(p′). Moreover, according to Lemma 19, ℓ = 0 if, and only if, m = 0. Hence, since Θℓ(p′) is

Θ -dependent, it follows that Θm(p′) is Θ -dependent too. �

Theorem 22. Assume that A contains at least two actions. Let E be a set of valid process equations of depth less than n, and
let p and q be closed process terms such that p, q ⊑∗ Pn and E ⊢ p ≈ q. If p has a Θ -dependent n-successor, then q has a
Θ -dependent n-successor too.

Proof. Without loss of generality, wemay assume that E is symmetric in the sense that if the process equation t ≈ u is in E,
then so is the process equation u ≈ t. If E satisfies this assumption, then there is a derivation from E of the process equation
p ≈ q if, and only if, there is a derivation of p ≈ q from E without applications of the symmetry rule. This effectively means
that we can disregard the symmetry rule in our inductive proof below.

It is well-known that we may, furthermore, assume without loss of generality that all applications of the substitution
rule in derivations have a process equation from E as premise. This effectively means that we need not consider the axiom
rule – which states that all process equations in E are derivable –, and the substitution rule – which states that if a process
equation is derivable, then so are all its substitution instances – separately in our inductive proof below, but instead can
consider a new rule stating that all substitution instances of process equations in E are derivable.

L. Aceto et al. / Theoretical Computer Science 412 (2011) 3035–3044 3043

We now proceed by induction on a derivation of p ≈ q satisfying the above assumptions; we distinguish cases according
to the last rule applied in the considered derivation of p ≈ q. If the last rule is either reflexivity or transitivity, then the claim
is immediate or is a direct consequence of the induction hypothesis. Suppose that p ≈ q is a closed substitution instance of
a process equation t ≈ u in E. Then there exists a closed substitution σ such that p = σ(t) and q = σ(u). From p ⊑∗ Pn it
follows that Acts∗(t) ⊆ {a}, and since t ≈ u is in E, it holds that t ↔

∗ u and d(t), d(u) < n. Hence, by Lemma 21, if p has
a Θ -dependent n-successor, then q has a Θ -dependent n-successor too. It remains to consider the cases in which the rule
applied in the derivation is one of the three congruence rules.

Case 1: Suppose that the rule applied last in the considered derivation of p ≈ q is the congruence rule for +. Then there
exist closed process terms p1, p2, q1 and q2 such that p = p1 + p2 and q = q1 + q2, and p1 ≈ q1 and p2 ≈ q2 are
the premises of the last rule application in the derivation of p ≈ q. If p has a Θ -dependent n-successor, then, as
n > 0, it must be an n-successor of p1 or of p2. Assume, without loss of generality, that it is an n-successor of p1.
Then, since clearly p1, q1 ⊑∗ Pn, we may apply the induction hypothesis to conclude that q1 has a Θ -dependent
n-successor, and hence q has a Θ -dependent n-successor.

Case 2: Suppose that the rule applied last in the considered derivation of p ≈ q is the congruence rule for α. (α ∈ A).
Then there exist p′ and q′ such that p = α.p′, q = α.q′, and p′

≈ q′.
Note that, since p, q ⊑∗ Pn, by Lemma 17 p′ and q′ are determinate at all depths 0, . . . , n−2. Moreover, since p

has aΘ -dependent n-successor, there exists aΘ -dependent closed process term p′′ such that p′
−−→

n−1 p′′. Hence,
since p′ ↔

∗ q′, there exists by Lemma 18 a closed process term q′′ such that q′
−−→

n−1 q′′ and p′′ ↔
∗ q′′. Since p′′

is Θ -dependent, by Lemma 14 q′′ is Θ -dependent too.
Case 3: Suppose that the rule applied last in the considered derivation of p ≈ q is the congruence rule for Θ . Then there

exist p′ and q′ such that p = Θ (p′), q = Θ (q′), and p′
≈ q′.

If p has a Θ -dependent n-successor, then, since p = Θ (p′), p′ has an n-successor p′′, such that |I(p′′)| ≥ 2.
Hence, since p′ ↔

∗ q′, and consequently p′ ↔ q′, there exists a closed process term q′′ such that q′
−−→

n q′′ and
p′′ ↔ q′′. From p′′ ↔ q′′ and |I(p′′)| ≥ 2 it follows that |I(q′′)| ≥ 2. Clearly, q = Θ (q′) −−→

n Θ (q′′). Moreover,
|I(q′′)| ≥ 2 implies thatΘ (q′′) isΘ -dependent, for if> is a priority order that relates two elements of I(q′′), then
I(q′′) ≠ I>(q′′). �

Corollary 23. If A contains at least two actions, then there does not exist a finite set of valid process equations E such that all
valid process equations are derivable from E.

Proof. Suppose that E is a finite set of valid process equations. Then there exists n ∈ N such that all process equations in
E have a depth < n. Hence, by Theorem 22, for all p and q such that p, q ⊑∗ Pn it holds that if E ⊢ p ≈ q and p has a Θ -
dependent n-successor, then q has aΘ -dependent n-successor too. Since Pn+αn.Θ (b + c) has aΘ -dependent n-successor,
but Pn does not, it follows that the valid process equation Pn + αn.Θ (b + c) ≈ Pn is not derivable from E. �

4. Conclusions

In this study, we have shown that, rather surprisingly, the collection of equations that hold modulo bisimilarity over the
language BCCSP enriched with the priority operator irrespective of the chosen priority order is not finitely based. Moreover,
this holds true even if we restrict ourselves to the collection of valid ground equations—that is, those equations that do not
contain occurrences of variables. As the proof of our main result indicates, the collection of valid (ground) equations does
not even afford a complete axiomatization of bounded depth. These results provide further evidence of the weakness of
equational logic in axiomatizing the priority operator; see [1] for earlier negative results of this kind and further references.

Since order-insensitive bisimilarity is clearly decidable on the closed process terms over BCCSP, the algebra of closed
process terms modulo order-insensitive bisimilarity is computable. Hence, by Theorem 1.1 in the seminal article [5]
by Bergstra and Tucker, adding a finite number of auxiliary operations suffices to facilitate a finite ground-complete
axiomatization. In their original paper introducing the priority operator [2], Baeten et al. offered a finite, equational, ground-
complete axiomatization of bisimilarity using a binary auxiliary operator, the so-called unless operator. It is an interesting
topic for further research to study whether the unless operator, or some other finite collection of auxiliary operators, can be
used to provide a finite (ground-)complete axiomatization of order-insensitive bisimilarity over BCCSP with priority.

We note that Baeten et al. in [2] consider a process theory with action constants and sequential composition instead
of action prefixes and a single constant 0. As Stefan Blom pointed out to us, in the presence of sequential composition the
content of the infinite family of equations considered in Section 3 can be expressed with a single equation

x · (b + c) + x · b + x · c + x · Θ (b + c) ≈ x · (b + c) + x · b + x · c.

Thus, the question arises whether order-insensitive bisimilarity is finitely axiomatizable in the setting of BPA [4] with the
priority operator. We believe that also this question can be answered negatively by slightly adapting the infinite family of
equations considered in Section 3. First, we define, for an arbitrary process term p, the process terms An(p) inductively by:
A0(p) = p, and Ai+1(p) = a · Ai(p) + a. Note that An(p) is an · p with an additional a-summand at every depth. Due to the

3044 L. Aceto et al. / Theoretical Computer Science 412 (2011) 3035–3044

extra a-summands, An(p) cannot be written as a sequential composition. We conjecture that there cannot exist a finite set
of valid BPAΘ process equations from which all equations in the family

{An(b + c) + An(b) + An(c) + An(Θ (b + c)) ≈ An(b + c) + An(b) + An(c) | n ∈ N}

can be derived, and that the proof is along the same lines as the proof of our main result in Section 3.
Another interesting question for further study is to find an infinite, but finitely described, basis of equations for order-

insensitive bisimilarity over BCCSP enriched with the priority operator. In particular, it is natural to wonder what infinite
families of equations should be added to the collection of axioms in Table 1 in order to obtain a (ground-)complete
axiomatization of order-insensitive bisimilarity.

A classic question in the field of equational logic is the study of the decidability properties of equational theories, and
the characterization of the computational complexity of decidable theories. (See, e.g., [13] for an encyclopedic survey in
the mathematical literature.) It is an interesting question to determine whether the equational theory of order-insensitive
bisimilarity is decidable over the language considered in this paper and, if so, to find out what its structural complexity is.

In this paper, we have focused on studying the equational theory of order-insensitive bisimilarity. To the best of our
knowledge, much less is known about the axiomatizability properties of other behavioral semantics in van Glabbeek’s
spectrum [10] over BCCSP enriched with the priority operator. This is yet another avenue for further research, which
requires a study of the congruence properties of the ‘‘order-insensitive versions’’ of the standard behavioral semantics in
the spectrum.

Acknowledgements

The work of Aceto and Ingolfsdottir has been partially supported by the projects ‘‘New Developments in Operational
Semantics’’ (nr. 080039021) and ‘‘Meta-theory of Algebraic Process Theories’’ (nr. 100014021) of the Icelandic Research
Fund.

References

[1] L. Aceto, T. Chen, W. Fokkink, A. Ingolfsdottir, On the axiomatisability of priority, Mathematical Structures in Computer Science 18 (1) (2008) 5–28.
[2] J.C.M. Baeten, J.A. Bergstra, J.W. Klop, Syntax and defining equations for an interrupt mechanism in process algebra, Fundamenta Informaticae IX (2)

(1986) 127–168.
[3] J.A. Bergstra, Put and get, primitives for synchronous unreliable message passing, Logic Group Preprint Series Nr. 3, CIF, State University of Utrecht,

1985.
[4] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Information and Control 60 (1–3) (1984) 109–137.
[5] J.A. Bergstra, J.V. Tucker, Equational specifications, complete term rewriting systems, and computable and semicomputable algebras, J. ACM 42 (6)

(1995) 1194–1230.
[6] B. Bloom, S. Istrail, A.R. Meyer, Bisimulation can’t be traced, J. ACM 42 (1) (1995) 232–268.
[7] J. Camilleri, G. Winskel, CCS with priority choice, Information and Computation 116 (1) (1995) 26–37.
[8] R. Cleaveland, M. Hennessy, Priorities in process algebras, Information and Computation 87 (1–2) (1990) 58–77.
[9] R. Cleaveland, G. Lüttgen, V. Natarajan, Priorities in process algebra, in: J. Bergstra, A. Ponse, S. Smolka (Eds.), Handbook of Process Algebra, Elsevier,

2001, pp. 711–765.
[10] R.J. van Glabbeek, The linear time-branching time spectrum. I. The semantics of concrete, sequential processes, in: Handbook of Process Algebra,

Elsevier, Amsterdam, 2001, pp. 3–99.
[11] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall International, Englewood Cliffs, 1985.
[12] D.T. Huynh, L. Tian, On deciding readiness and failure equivalences for processes, Information and Computation 117 (2) (1995) 193–205.
[13] O.G. Kharlampovich, M.V. Sapir, Algorithmic problems in varieties, Internat. J. Algebra Comput. 5 (4–5) (1995) 379–602.
[14] R. Milner, Communication and Concurrency, Prentice-Hall International, Englewood Cliffs, 1989.
[15] D. Park, Concurrency and automata on infinite sequences, in: P. Deussen (Ed.), 5th GI Conference, Karlsruhe, Germany, in: Lecture Notes in Computer

Science, vol. 104, Springer-Verlag, 1981, pp. 167–183.
[16] G.D. Plotkin, A structural approach to operational semantics, J. Logic Algebraic Program. 60–61 (2004) 17–139.

	On the axiomatizability of priority II
	Introduction
	Preliminaries
	Order-insensitive bisimilarity is not finitely based
	Proof of the main result

	Conclusions
	Acknowledgements
	References

