
Uncertainty in the Semantic Web

Thomas Lukasiewicz

Department of Computer Science, University of Oxford, UK
thomas.lukasiewicz@cs.ox.ac.uk

Outline

Uncertainty in the Web

Semantic Web

Probabilistic DLs
Probabilistic Logics
P-SHIF(D) and P-SHOIN (D)

Probabilistic Fuzzy DL-Programs
Soft Shopping Agent
Fuzzy DLs
Fuzzy DL-Programs
Adding Probabilistic Uncertainty

Probabilistic Datalog+/–
Datalog+/–
Markov Logic Networks
Probabilistic Datalog+/–

Outline

Uncertainty in the Web

Semantic Web

Probabilistic DLs
Probabilistic Logics
P-SHIF(D) and P-SHOIN (D)

Probabilistic Fuzzy DL-Programs
Soft Shopping Agent
Fuzzy DLs
Fuzzy DL-Programs
Adding Probabilistic Uncertainty

Probabilistic Datalog+/–
Datalog+/–
Markov Logic Networks
Probabilistic Datalog+/–

Web Search

Ranking of Web pages to be returned for a Web search query;
e.g., via PageRank technique (based on statistical methods):

Computational Advertising

Find the best ad to present to a user in a given context, such as
querying a search engine ("sponsored search"), reading a web
page ("content match"), watching a movie, etc.

Recommender Systems

Present information items (movies, music, books, news,
images, web pages, etc.) that may interest a user, e.g.,

Other Examples

I Web spam detection

I Information extraction

I Semantic annotation

I Trust and reputation

I User preference modeling

I Belief fusion and opinion pooling

I Machine translation

I Speech recognition

I Natural language processing

I Computer vision

I ...

Outline

Uncertainty in the Web

Semantic Web

Probabilistic DLs
Probabilistic Logics
P-SHIF(D) and P-SHOIN (D)

Probabilistic Fuzzy DL-Programs
Soft Shopping Agent
Fuzzy DLs
Fuzzy DL-Programs
Adding Probabilistic Uncertainty

Probabilistic Datalog+/–
Datalog+/–
Markov Logic Networks
Probabilistic Datalog+/–

Semantic Web: Key Ideas

I Evolution of the current Web in which the meaning of
information and services on the Web is defined...

I ...making it possible to understand and satisfy the requests
of people and machines to use the Web content.

I Vision of the Web as a universal medium for data,
information, and knowledge exchange.

I Extension of the current Web by standards and
technologies that help machines to understand the
information on the Web to support richer discovery,
data integration, navigation, and automation of tasks.

I Use ontologies for a precise definition of shared terms in
Web resources, use KR technology for automated reas-
oning from Web resources, and apply cooperative agent
technology for processing the information of the Web.

I Consists of several hierarchical layers, including
I the Ontology layer: OWL Web Ontology Language:

OWL Lite ≈ SHIF(D), OWL DL ≈ SHOIN (D), OWL Full;
recent tractable fragments: OWL EL, OWL QL, OWL RL;

I the Rules layer: Rule Interchange Format (RIF);
I the Logic and Proof layers, which should offer other

sophisticated representation and reasoning capabilities.

Semantic Web Stack

Challenges (from Wikipedia)

Uncertainty (and Vagueness) in the Semantic Web

I Uncertainty: statements are true or false. But, due to lack
of knowledge we can only estimate to which probability /
possibility / necessity degree they are true or false, e.g.,
“John wins in the lottery with the probability 0.01”.

I Vagueness: statements involve concepts for which there is
no exact definition, such as tall, small, close, far, cheap,
and expensive; statements are true to some degree, e.g.,
“Hotel Verdi is close to the train station to degree 0.83”.

I Uncertainty and vagueness are important in the SW; many
existing proposals for extensions of SW languages (RDF,
OWL, DLs, rules) by uncertainty and vagueness.

In the following, some own such proposals: probabilistic DLs,
probabilistic fuzzy dl-programs, and probabilistic Datalog+/–.

Outline

Uncertainty in the Web

Semantic Web

Probabilistic DLs
Probabilistic Logics
P-SHIF(D) and P-SHOIN (D)

Probabilistic Fuzzy DL-Programs
Soft Shopping Agent
Fuzzy DLs
Fuzzy DL-Programs
Adding Probabilistic Uncertainty

Probabilistic Datalog+/–
Datalog+/–
Markov Logic Networks
Probabilistic Datalog+/–

Probabilistic Ontologies

Generalization of classical ontologies by probabilistic knowledge.

Main types of encoded probabilistic knowledge:

I Terminological probabilistic knowledge about concepts and
roles:

“Birds fly with a probability of at least 0.95”.

I Assertional probabilistic knowledge about instances of concepts
and roles:

“Tweety is a bird with a probability of at least 0.9”.

Use of Probabilistic Ontologies

I In medicine, biology, defense, astronomy, ...

I In the Semantic Web:

I Quantifying the degrees of overlap between concepts, to
use them in Semantic Web applications: information
retrieval, personalization, recommender systems, ...

I Information retrieval, for an increased recall (e.g., Udrea
et al.: Probabilistic ontologies and relational databases.
In Proc. CoopIS/DOA/ODBASE-2005).

I Ontology matching (e.g., Mitra et al.: OMEN: A proba-
bilistic ontology mapping tool. In Proc. ISWC-2005).

I Probabilistic data integration, especially for handling
ambiguous and inconsistent pieces of information.

Description Logics: Key Ideas

Description logics model a domain of interest in terms of
concepts and roles, which represent classes of individuals and
binary relations between classes of individuals, respectively.

A description logic knowledge base encodes in particular
subset relationships between concepts, subset relationships
between roles, the membership of individuals to concepts, and
the membership of pairs of individuals to roles.

Here, description logic knowledge bases in SHIF(D)
and SHOIN (D) (which are the DLs behind OWL Lite
and OWL DL, respectively).

Example

Description logic knowledge base L for an online store:

(1) Textbook v Book; (2) PC t Laptop v Electronics; PC v ¬Laptop;
(3) Book t Electronics v Product; Bookv¬Electronics;
(4) Sale v Product;
(5) Product v >1 related; (6) >1 related t >1 related− v Product;
(7) related v related−; related− v related;
(8) Textbook(tb_ai); Textbook(tb_lp); (9) related(tb_ai, tb_lp);
(10) PC(pc_ibm); PC(pc_hp); (11) related(pc_ibm,pc_hp);
(12) provides(ibm,pc_ibm); provides(hp,pc_hp).

Probabilistic Logics: Key Ideas

I Integration of (propositional) logic- and probability-based
representation and reasoning formalisms.

I Reasoning from logical constraints and interval restrictions for
conditional probabilities (also called conditional constraints).

I Reasoning from convex sets of probability distributions.

I Model-theoretic notion of logical entailment.

Syntax of Probabilistic Knowledge Bases

I Finite nonempty set of basic events Φ = {p1, . . . ,pn}.
I Event φ: Boolean combination of basic events

I Logical constraint ψ⇐φ: events ψ and φ: “φ implies ψ”.

I Conditional constraint (ψ|φ)[l ,u]: events ψ and φ, and
l ,u ∈ [0,1]: “conditional probability of ψ given φ is in [l ,u]”.

I Probabilistic knowledge base KB = (L,P):

I finite set of logical constraints L,
I finite set of conditional constraints P.

Example

Probabilistic knowledge base KB = (L,P):

I L = {bird⇐eagle}:

“All eagles are birds”.

I P = {(have_legs |bird)[1,1], (fly |bird)[0.95,1]}:

“All birds have legs”.
“Birds fly with a probability of at least 0.95”.

Semantics of Probabilistic Knowledge Bases

I World I: truth assignment to all basic events in Φ.

I IΦ: all worlds for Φ.

I Probabilistic interpretation Pr: probability function on IΦ.

I Pr(φ): sum of all Pr(I) such that I ∈ IΦ and I |=φ.

I Pr(ψ|φ): if Pr(φ)>0, then Pr(ψ|φ) = Pr(ψ ∧ φ) / Pr(φ).
I Truth under Pr:

I Pr |= ψ⇐φ iff Pr(ψ ∧φ) = Pr(φ)
(iff Pr(ψ⇐φ) = 1).

I Pr |= (ψ|φ)[l ,u] iff Pr(ψ ∧ φ)∈ [l ,u] · Pr(φ)
(iff either Pr(φ) = 0 or Pr(ψ|φ)∈ [l ,u]).

Example

I Set of basic propositions Φ = {bird, fly}.
I IΦ contains exactly the worlds I1, I2, I3, and I4 over Φ:

fly ¬fly
bird I1 I2
¬bird I3 I4

I Some probabilistic interpretations:
Pr1 fly ¬fly
bird 19/40 1/40
¬bird 10/40 10/40

Pr2 fly ¬fly
bird 0 1/3
¬bird 1/3 1/3

I Pr1(fly ∧ bird) = 19/40 and Pr1(bird) = 20/40 .
I Pr2(fly ∧ bird) = 0 and Pr2(bird) = 1/3 .
I ¬fly⇐bird is false in Pr1, but true in Pr2 .
I (fly |bird)[.95,1] is true in Pr1, but false in Pr2 .

Satisfiability and Logical Entailment

I Pr is a model of KB = (L,P) iff Pr |= F for all F ∈L ∪ P.

I KB is satisfiable iff a model of KB exists.

I KB ||= (ψ|φ)[l ,u]: (ψ|φ)[l ,u] is a logical consequence of KB
iff every model of KB is also a model of (ψ|φ)[l ,u].

I KB |=tight (ψ|φ)[l ,u]: (ψ|φ)[l ,u] is a tight logical
consequence of KB iff l (resp., u) is the infimum
(resp., supremum) of Pr(ψ|φ) subject to
all models Pr of KB with Pr(φ)>0.

Example

I Probabilistic knowledge base:

KB = ({bird⇐eagle} ,
{(have_legs |bird)[1,1], (fly |bird)[0.95,1]}) .

I KB is satisfiable, since

Pr with Pr(bird ∧ eagle ∧ have_legs ∧ fly) = 1 is a model.

I Some conclusions under logical entailment:

KB ||= (have_legs |bird)[0.3,1], KB ||= (fly |bird)[0.6,1].

I Tight conclusions under logical entailment:

KB |=tight (have_legs |bird)[1,1], KB |=tight (fly |bird)[0.95,1],

KB |=tight (have_legs |eagle)[1,1], KB |=tight (fly |eagle)[0,1].

Towards Stronger Notions of Entailment

Problem: Inferential weakness of logical entailment.

Solutions:
I Probability selection techniques: Perform inference from a

representative distribution of the encoded convex set of
distributions rather than the whole set, e.g.,

I distribution of maximum entropy,
I distribution in the center of mass.

I Probabilistic default reasoning: Perform constraining rather
than conditioning and apply techniques from default
reasoning to resolve local inconsistencies.

I Probabilistic independencies: Further constrain the convex
set of distributions by probabilistic independencies.
(⇒ adds nonlinear equations to linear constraints)

Logical vs. Lexicographic Entailment

Probabilistic knowledge base:
KB = ({bird⇐eagle} ,

{(have_legs |bird)[1,1], (fly |bird)[0.95,1]}) .

Tight conclusions under logical entailment:
KB |=tight (have_legs |bird)[1,1], KB |=tight (fly |bird)[0.95,1],

KB |=tight (have_legs |eagle)[1,1], KB |=tight (fly |eagle)[0,1].

Tight conclusions under probabilistic lexicographic entailment:

KB ‖∼ lex
tight (have_legs |bird)[1,1], KB ‖∼ lex

tight (fly |bird)[0.95,1],

KB ‖∼ lex
tight (have_legs |eagle)[1,1], KB ‖∼ lex

tight (fly |eagle)[0.95,1].

Probabilistic knowledge base:
KB = ({bird⇐penguin}, {(have_legs |bird)[1,1],

(fly |bird)[1,1], (fly |penguin)[0,0.05]}) .

Tight conclusions under logical entailment:
KB |=tight (have_legs |bird)[1,1], KB |=tight (fly |bird)[1,1],

KB |=tight (have_legs |penguin)[1,0], KB |=tight (fly |penguin)[1,0] .

Tight conclusions under probabilistic lexicographic entailment:

KB ‖∼ lex
tight (have_legs |bird)[1,1], KB ‖∼ lex

tight (fly |bird)[1,1],

KB ‖∼ lex
tight (have_legs |penguin)[1,1], KB ‖∼ lex

tight (fly |penguin)[0,0.05].

Probabilistic knowledge base:
KB = ({bird⇐penguin}, {(have_legs |bird)[0.99,1],

(fly |bird)[0.95,1], (fly |penguin)[0,0.05]}).

Tight conclusions under logical entailment:
KB |=tight (have_legs |bird)[0.99,1], KB |=tight (fly |bird)[0.95,1],

KB |=tight (have_legs |penguin)[0,1], KB |=tight (fly |penguin)[0,0.05].

Tight conclusions under probabilistic lexicographic entailment:

KB ‖∼ lex
tight (have_legs |bird)[0.99,1], KB ‖∼ lex

tight (fly |bird)[0.95,1],

KB ‖∼ lex
tight (have_legs |penguin)[0.99,1], KB ‖∼ lex

tight (fly |penguin)[0,0.05].

P-SHIF(D) and P-SHOIN (D): Key Ideas

I probabilistic generalization of the description logics SHIF(D)
and SHOIN (D) behind OWL Lite and OWL DL, respectively

I terminological probabilistic knowledge about concepts and roles
I assertional probabilistic knowledge about instances of concepts

and roles
I terminological probabilistic inference based on lexicographic

entailment in probabilistic logic (stronger than logical entailment)
I assertional probabilistic inference based on lexicographic

entailment in probabilistic logic (for combining assertional
and terminological probabilistic knowledge)

I terminological and assertional probabilistic inference problems
reduced to sequences of linear optimization problems

References

• T. Lukasiewicz. Expressive probabilistic description logics.
Artificial Intelligence, 172(6/7):852–883, April 2008.

• T. Lukasiewicz and U. Straccia. Managing uncertainty and
vagueness in description logics for the Semantic Web. Journal
of Web Semantics: Science, Services and Agents on the World
Wide Web, 6(4):291–308, November 2008.

Outline

Uncertainty in the Web

Semantic Web

Probabilistic DLs
Probabilistic Logics
P-SHIF(D) and P-SHOIN (D)

Probabilistic Fuzzy DL-Programs
Soft Shopping Agent
Fuzzy DLs
Fuzzy DL-Programs
Adding Probabilistic Uncertainty

Probabilistic Datalog+/–
Datalog+/–
Markov Logic Networks
Probabilistic Datalog+/–

Example: Soft Shopping Agent

Suppose a person would like to buy “a sports car that costs at
most about 22 000 EUR and has a power of around 150 HP”.

In todays Web, the buyer has to manually

I search for car selling web sites, e.g., using Google;
I select the most promising sites;
I browse through them, query them to see the cars that

each site sells, and match the cars with the requirements;
I select the offers in each web site that match the

requirements; and
I eventually merge all the best offers from each site and

select the best ones.

A shopping agent may support us, automatizing the whole
process once it receives the request/query q from the buyer:

I The agent selects some sites/resources S that it considers
as relevant to q (represented by probabilistic rules).

I For the top-k selected sites, the agent has to reformulate q
using the terminology/ontology of the specific car selling
site (which is done using probabilistic rules).

I The query q may contain many so-called vague/fuzzy
concepts such as “the prize is around 22 000 EUR or less”,
and thus a car may match q to a degree. So, a resource
returns a ranked list of cars, where the ranks depend on
the degrees to which the cars match q.

I Eventually, the agent integrates the ranked lists (using
probabilities) and shows the top-n items to the buyer.

Fuzzy DLs: Key Ideas

Description logics model a domain of interest in terms of
concepts and roles, which represent classes of individuals and
binary relations between classes of individuals, respectively.

A description logic knowledge base encodes in particular
subset relationships between concepts, subset relationships
between roles, the membership of individuals to concepts, and
the membership of pairs of individuals to roles.

In fuzzy description logics, these relationships and
memberships then have a degree of truth in [0,1].

Example

Cars t Trucks t Vans t SUVs v Vehicles
PassengerCars t LuxuryCars v Cars
CompactCars tMidSizeCars t SportyCars v PassengerCars

Cars v (∃hasReview .Integer) u (∃hasInvoice.Integer)
u (∃hasResellValue.Integer) u (∃hasMaxSpeed .Integer)
u (∃hasHorsePower .Integer) u . . .

MazdaMX5Miata : SportyCar u (∃hasInvoice.18883)
u (∃hasHorsePower .166) u . . .

MitsubishiEclipseSpyder : SportyCar u (∃hasInvoice.24029)
u (∃hasHorsePower .162) u . . .

We may now encode “costs at most about 22 000 EUR” and
“has a power of around 150 HP” in the buyer’s request
through the following concepts C and D, respectively:

C =∃hasInvoice.LeqAbout22000 and
D =∃hasHorsePower .Around150HP,

where LeqAbout22000 = L(22000,25000) and
Around150HP = Tri(125,150,175).

Fuzzy DL-Programs: Syntax

A normal fuzzy rule r is of the form (with atoms a,b1, . . . ,bm):

a←⊗0 b1 ∧⊗1 b2 ∧⊗2 · · · ∧⊗k−1 bk∧⊗k

not	k+1 bk+1 ∧⊗k+1 · · · ∧⊗m−1 not	m bm > v ,
(1)

A normal fuzzy program P is a finite set of normal fuzzy rules.
A dl-query Q(t) is of one of the following forms:

I a concept inclusion axiom F or its negation ¬F;

I C(t) or ¬C(t), with a concept C and a term t;

I R(t1, t2) or ¬R(t1, t2), with a role R and terms t1, t2.

A fuzzy dl-rule r is of form (1), where any b∈B(r) may be a dl-atom,
which is of form DL[S1op1p1, . . . ,Smopm pm; Q](t).

A fuzzy dl-program KB = (L,P) consists of a fuzzy description logic
knowledge base L and a finite set of fuzzy dl-rules P.

Example

The following fuzzy dl-rule encodes the buyer’s request
“a sports car that costs at most about 22 000 EUR and
that has a power of around 150 HP”.

query(x) ←⊗ DL[SportyCar](x)∧⊗
DL[hasInvoice](x , y1)∧⊗
DL[LeqAbout22000](y1)∧⊗
DL[hasHorsePower](x , y2)∧⊗
DL[Around150HP](y2) > 1 .

Here, ⊗ is the Gödel t-norm (that is, x ⊗ y = min(x , y)).

Fuzzy DL-Programs: Semantics

An interpretation I is a mapping I : HBP→ [0,1].

The truth value of a = DL[S1] p1, . . . ,Sm] pm; Q](c) under L,
denoted IL(a), is defined as the maximal truth value v ∈ [0,1]
such that L∪

⋃m
i=1 Ai(I) |= Q(c)> v, where

Ai(I) = {Si(e)> I(pi(e)) | I(pi(e))>0, pi(e)∈HBP} .

I is a model of a ground fuzzy dl-rule r of the form (1) under L,
denoted I |=L r , iff

IL(a) > v ⊗0 IL(b1)⊗1 IL(b2)⊗2 · · · ⊗k−1 IL(bk) ⊗k

	k+1 IL(bk+1)⊗k+1 · · · ⊗m−1 	mIL(bm),

I is a model of a fuzzy dl-program KB = (L,P), denoted I |= KB,
iff I |=L r for all r ∈ground(P).

Stratified Fuzzy DL-Programs

Stratified fuzzy dl-programs are composed of hierarchic layers of
positive fuzzy dl-programs linked via default negation:

A stratification of KB = (L,P) with respect to DLP is a mapping
λ : HBP ∪DLP→{0,1, . . . , k} such that

I λ(H(r))>λ(a) (resp., λ(H(r))>λ(a)) for each r ∈ ground(P)
and a ∈ B+(r) (resp., a ∈ B−(r)), and

I λ(a)>λ(a′) for each input atom a′ of each a ∈ DLP ,

where k >0 is the length of λ. A fuzzy dl-program KB = (L,P) is
stratified iff it has a stratification λ of some length k >0.

Theorem: Every stratified fuzzy dl-program KB is satisfiable and has
a canonical minimal model via a finite number of iterative least
models (which does not depend on the stratification of KB).

Adding Probabilistic Uncertainty: Example

The buyer’s request, but in a “different” terminology:

query(x) ←⊗ SportsCar(x) ∧⊗ hasPrize(x , y1) ∧⊗ hasPower(x , y2) ∧⊗
DL[LeqAbout22000](y1) ∧⊗ DL[Around150HP](y2) > 1

Ontology alignment mapping rules:

SportsCar(x) ←⊗ DL[SportyCar](x) ∧⊗ scpos > 1
hasPrize(x) ←⊗ DL[hasInvoice](x) ∧⊗ hipos > 1

hasPower(x) ←⊗ DL[hasHorsePower](x) ∧⊗ hhppos > 1 ,

Probability distribution µ:

µ(scpos) = 0.91 µ(scneg) = 0.09
µ(hipos) = 0.78 µ(hineg) = 0.22
µ(hhppos) = 0.83 µ(hhpneg) = 0.17 .

The following are some tight consequences:

KB ‖∼ tight (E[q(MazdaMX5Miata)])[0.21,0.21]

KB ‖∼ tight (E[q(MitsubishiEclipseSpyder)])[0.19,0.19] .

Informally, the expected degree to which MazdaMX5Miata
matches the query q is 0.21, while the expected degree to
which MitsubishiEclipseSpyder matches the query q is 0.19,

Thus, the shopping agent ranks the retrieved items as follows:

rank item degree
1. MazdaMX5Miata 0.21
2. MitsubishiEclipseSpyder 0.19

Summary

I Description logic programs that allow for dealing with
probabilistic uncertainty and fuzzy vagueness.

I Semantically, probabilistic uncertainty can be used for data
integration and ontology mapping, and fuzzy vagueness
can be used for expressing vague concepts.

I Query processing based on fixpoint iterations.

References

• T. Lukasiewicz and U. Straccia. Description logic programs
under probabilistic uncertainty and fuzzy vagueness.
International Journal of Approximate Reasoning,
50(6):837–853, June 2009.

• T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H.
Tompits. Combining answer set programming with description
logics for the Semantic Web. Artificial Intelligence,
172(12/13):1495–1539, August 2008.
(AIJ Prominent Paper Award 2013.)

Outline

Uncertainty in the Web

Semantic Web

Probabilistic DLs
Probabilistic Logics
P-SHIF(D) and P-SHOIN (D)

Probabilistic Fuzzy DL-Programs
Soft Shopping Agent
Fuzzy DLs
Fuzzy DL-Programs
Adding Probabilistic Uncertainty

Probabilistic Datalog+/–
Datalog+/–
Markov Logic Networks
Probabilistic Datalog+/–

Probabilistic Datalog+/–: Key Ideas

I Probabilistic Datalog+/– ontologies combine “classical”
Datalog+/– with Markov logic networks (MLNs).

I The basic idea is that formulas (TGDs, EGDs, and NCs)
are annotated with a set of probabilistic events.

I Event annotations mean that the formula in question only
applies when the associated event holds.

I The probability distribution associated with the events is
described in the MLN.

I Key computational problems: answering ranking queries,
conjunctive queries, and threshold queries.

I Application in data extraction from the Web, where
Datalog+/– is used as data extraction language (DIADEM).

Example

Consider the problem of entity extraction over the following text
snippet:

Datalog+/−: Encoding Ontologies in Datalog

Plain Datalog allows for encoding some ontological axioms:

I concept inclusion axioms:

person(X)← employee(X) iff employee v person;

I role inclusion axioms:

manages(X ,Y)← reportsTo(Y ,X) iff
reportsTo−1 v manages;

I concept and role membership axioms:

person(John)← iff person(John);

manages(Bill, John)← iff manages(Bill, John).

I transitivity axioms:

manages(X ,Y)← manages(X ,Z),manages(Z ,Y) iff
(Trans manages)

However, it cannot express other important ontological axioms:

I concept inclusion axioms involving existential restrictions
on roles in the head:

Scientist v ∃isAuthorOf ;

I concept inclusion axioms stating concept disjointness:

JournalPaper v ¬ConferencePaper ;

I functionality axioms:

(funct hasFirstAuthor).

Question: Can Datalog be extended in such a way that
it can be used as ontology language?

Answer: Yes, by introducing:

I tuple-generating dependencies (TGDs):

∀X∀Y∃Z Ψ(X,Z)← Φ(X, Y),
where Φ(X, Y) and Ψ(X, Z) are conjunctions of atoms;

Example: ∃P directs(M,P)← manager(M);

I negative constraints:

∀X ⊥ ← Φ(X),
where Φ(X) is a conjunction of atoms;

Example: ⊥ ← c(X), c′(X);

I equality-generating dependencies (EGDs):

∀X Xi = Xj ← Φ(X),
where Xi ,Xj ∈ X, and Φ(X) is a conjunction of atoms

Example: Y = Z ← r1(X ,Y), r2(Y ,Z).

The Chase

Given:

I D: database over dom(D).

I Σ: set of TGDs and/or EGDs

Question: How do we perform query answering?

Answer: Via the chase: If D 6|= Σ, then

I either D ∪Σ is unsatisfiable due to a “hard” EGD violation, or

I the rules in Σ can be enforced via the chase by

I adding facts in order to satisfy TGDs, where null values are
introduced for ∃-variables

I equating nulls with other nulls or with dom(D) elements in
order to satisfy EGDs.

The Chase is a Universal Model

D

For each other model M, there is a homomorphism Chase(D,Σ) M

M2M1

h2(C)h1(C)

h2

h1

C=Chase(D,Σ)

(D ∪ Σ) Q Chase(D,Σ) Q|= |=

Q
h0

For each other model M of D and Σ,
there is a homomorphism from chase(D,Σ) to M.

⇒ conjunctive queries to D ∪ Σ can be evaluated on
chase(D,Σ):

D ∪ Σ |= Q iff chase(D,Σ) |= Q

Facts about the Chase

I Depends on the order of rule applications:

Example: D = {p(a)} and Σ = {p(x)→∃y q(y); p(x)→q(x)}:

Solution 1 = {p(a),q(u),q(a)}
Solution 2 = {p(a),q(a)}

⇒ Assume a canonical ordering.

I Can be infinite:

Example: D = {p(a,b)} and Σ = {p(x , y)→ ∃z p(y , z)}:

Solution = {p(a,b), p(b,u1), p(u1,u2), p(u2,u3), . . .}

⇒ Query answering for D and TGDs alone is undecidable.
⇒ Restrictions on TGDs and their interplay with EGDs.

Guarded and Linear Datalog+/−

A TGD σ is guarded iff it contains an atom in its body that
contains all universally quantified variables of σ.

Example:

I r(X ,Y), s(Y ,X ,Z)→∃W s(Z ,X , W) is guarded,
where s(Y ,X ,Z) is the guard, and r(X ,Y) is a side atom;

I r(X ,Y), r(Y ,Z)→ r(X ,Z) is not guarded.

A TGD is linear iff it contains only a singleton body atom.

Example:

I manager(M)→∃P directs(M,P) is linear;

I r(X ,Y), s(Y ,X ,Z)→∃W s(Z ,X , W) is not linear.

Markov Logic Networks

I We use Markov logic networks (MLNs) to represent
uncertainty in Datalog+/–.

I MLNs combine classical Markov networks (a.k.a. Markov
random fields) with first-order logic (FOL).

I We assume a set of random variables X = {X1, . . . ,Xn},
where each Xi can take values in Dom(Xi).

I A value for X is a mapping x : X →
⋃n

i=1 Dom(Xi) such that
x(Xi) ∈ Dom(Xi).

I MLN: set of pairs (F ,w), where F is a FO formula, and
w is a real number.

I The probability distribution represented by the MLN is:

P(X = x) = 1
Z · exp(

∑
j wj · nj(x)),

where nj is the number of ground instances of formula Fj
made true by x , wj is the weight of formula Fj , and
Z =

∑
x∈X exp(

∑
j wj · nj(x)) (normalization constant).

I Exact inference is #P-complete, but MCMC methods
obtain good approximations in practice.

I A particularly costly step is the computation of Z ,
but this is a one-time calculation.

Example

Consider the following MLN:

φ1 : ann(S1, I1,num) ∧ ann(S2, I2,X) ∧ overlap(I1, I2) : 3
φ2 : ann(S1, I1, shop) ∧ ann(S2, I2,mag) ∧ overlap(I1, I2) : 1
φ3 : ann(S1, I1,dl) ∧ ann(S2, I2,pers) ∧ overlap(I1, I2) : 0.25

Graph representation (for a specific set of constants):

Computing probabilities w.r.t. this MLN:

. . . (64 possible settings for the binary random variables)

Probabilistic Datalog+/– Ontologies

I A probabilistic Datalog+/– ontology consists of a classical
Datalog+/– ontology O along with an MLN M.

Notation: KB = (O,M)

I Formulas in O are annotated with a set of pairs 〈Xi = xi〉,
with xi ∈ {true, false} (we also use 0 and 1, respectively).

Variables that do not appear in the annotation are
unconstrained.

Possible world: a set of pairs 〈Xi = xi〉 where each Xi ∈ X
has a corresponding pair.

I Basic intuition: given a possible world, a subset of the
formulas in O is induced.

Example Revisited

The following formulas were adapted from the previous
examples to give rise to a probabilistic Datalog+/– ontology:

Formulas with an empty annotation always hold.

Ranking Queries

Conjunctive MLNs

Conjunctive MLNs: Properties

Summary

References

• T. Lukasiewicz, M. V. Martinez, G. Orsi, and G. I. Simari.
Heuristic ranking in tightly coupled probabilistic description
logics. In Proceedings of the 28th Conference on Uncertainty in
Artificial Intelligence (UAI 2012), pp. 554–563, 2012.

• G. Gottlob, T. Lukasiewicz, M. V. Martinez, and G. I. Simari.
Query answering under probabilistic uncertainty in Datalog+/–
ontologies. Annals of Mathematics and Artificial Intelligence,
69(1):37–72, Sept. 2013.

	Uncertainty in the Web
	Semantic Web
	Probabilistic DLs
	Probabilistic Logics
	P-SHIF(D) and P-SHOIN(D)

	Probabilistic Fuzzy DL-Programs
	Soft Shopping Agent
	Fuzzy DLs
	Fuzzy DL-Programs
	Adding Probabilistic Uncertainty

	Probabilistic Datalog+/–
	Datalog+/–
	Markov Logic Networks
	Probabilistic Datalog+/–

