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Web Search

Ranking of Web pages to be returned for a Web search query;
e.g., via PageRank technique (based on statistical methods):




Computational Advertising

Find the best ad to present to a user in a given context, such as
querying a search engine ("sponsored search"), reading a web

page ("content match"), watching a movie, etc.
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Recommender Systems

Present information items (movies, music, books, news,
images, web pages, etc.) that may interest a user, e.g.,
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Other Examples

» Web spam detection

» Information extraction

» Semantic annotation

» Trust and reputation

» User preference modeling

» Belief fusion and opinion pooling
» Machine translation

» Speech recognition

» Natural language processing

» Computer vision
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Semantic Web: Key Ideas

» Evolution of the current Web in which the meaning of
information and services on the Web is defined...

» ...making it possible to understand and satisfy the requests
of people and machines to use the Web content.

» Vision of the Web as a universal medium for data,
information, and knowledge exchange.

» Extension of the current Web by standards and
technologies that help machines to understand the
information on the Web to support richer discovery,
data integration, navigation, and automation of tasks.



» Use ontologies for a precise definition of shared terms in
Web resources, use KR technology for automated reas-
oning from Web resources, and apply cooperative agent
technology for processing the information of the Web.

» Consists of several hierarchical layers, including

» the Ontology layer: OWL Web Ontology Language:
OWL Lite ~ SHZF (D), OWL DL =~ SHOIN (D), OWL Full,
recent tractable fragments: OWL EL, OWL QL, OWL RL;

» the Rules layer: Rule Interchange Format (RIF);

» the Logic and Proof layers, which should offer other
sophisticated representation and reasoning capabilities.



Semantic Web Stack

I User interface and applications I
I Proof
I Unifying Logic I |
Ontologies: I Rules: I -
Querying: OWL RIF/SWRL %
SPARQL - g
I Taxonomies: RDFS I a
o
=
I Data interchange:RDF I Z
| Syntax:XML |



Challenges (from Wikipedia)

Challenges eat;

Some of the challenges for the Semantic Web include vastness, vagueness, uncertainty, inconsistency, and deceit. Automated reasoning
systems will have to deal with all of these issues in order to deliver on the promise of the Semantic Web.

» Vastness: The World Wide Web contains many billions of pages #. The SNOMED CT medical terminology ontology alone contains
370,000 class names, and existing technology has not yet been able to eliminate all semantically duplicated terms. Any automated
reasoning system will have to deal with truly huge inputs.

Vagueness: These are imprecise concepts like "young" or "tall". This arises from the vagueness of user queries, of concepts represented
by content providers, of matching query terms to provider terms and of trying to combine different knowledge bases with overlapping but
subtly different concepts. Fuzzy logic is the most common technique for dealing with vagueness.

Uncertainty: These are precise concepts with uncertain values. For example, a patient might present a set of symptoms that correspond to

a number of different distinct diagnoses each with a different ility. P il reasoning techni are generally employed to
address uncertainty.

+ Inconsistency: These are logical contradictions that will inevitably arise during the P of large ies, and when
from separate sources are combined. Deductive reasoning fails phi when faced with ir i , because "anything follows

from a contradiction”. Defeasible reasoning and paraconsistent reasoning are two techniques that can be employed to deal with
inconsistency.

+ Deceit: This is when the producer of the is il i i ing the of the ion. Cr
are currently utilized to alleviate this threat.

This list of challenges is illustrative rather than exhaustive, and it focuses on the challenges to the "unifying logic" and "proof" layers of the
Semantic Web. The World Wide Web Consortium (W3C) Incubator Group for Uncertainty Reasoning for the World Wide Web (URW3-XG)
final report @ lumps these problems together under the single heading of "uncertainty”. Many of the techniques mentioned here will require
extensions to the Web Ontology Language (OWL) for example to annotate conditional probabilities. This is an area of active research.'3]



Uncertainty (and Vagueness) in the Semantic Web

» Uncertainty: statements are true or false. But, due to lack
of knowledge we can only estimate to which probability /
possibility / necessity degree they are true or false, e.g.,
“John wins in the lottery with the probability 0.01”.

» Vagueness: statements involve concepts for which there is
no exact definition, such as tall, small, close, far, cheap,
and expensive; statements are true to some degree, e.g.,
“Hotel Verdi is close to the train station to degree 0.83”.

» Uncertainty and vagueness are important in the SW; many
existing proposals for extensions of SW languages (RDF,
OWL, DLs, rules) by uncertainty and vagueness.

In the following, some own such proposals: probabilistic DLs,
probabilistic fuzzy dl-programs, and probabilistic Datalog+/—.
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Probabilistic Ontologies

Generalization of classical ontologies by probabilistic knowledge.

Main types of encoded probabilistic knowledge:

» Terminological probabilistic knowledge about concepts and
roles:
“Birds fly with a probability of at least 0.95.

» Assertional probabilistic knowledge about instances of concepts
and roles:

“Tweety is a bird with a probability of at least 0.9”.



Use of Probabilistic Ontologies

» In medicine, biology, defense, astronomy, ...
» In the Semantic Web:

» Quantifying the degrees of overlap between concepts, to
use them in Semantic Web applications: information
retrieval, personalization, recommender systems, ...

» Information retrieval, for an increased recall (e.g., Udrea
et al.: Probabilistic ontologies and relational databases.
In Proc. CooplS/DOA/ODBASE-2005).

» Ontology matching (e.g., Mitra et al.: OMEN: A proba-
bilistic ontology mapping tool. In Proc. ISWC-2005).

» Probabilistic data integration, especially for handling
ambiguous and inconsistent pieces of information.



Description Logics: Key Ideas

Description logics model a domain of interest in terms of
concepts and roles, which represent classes of individuals and
binary relations between classes of individuals, respectively.

A description logic knowledge base encodes in particular
subset relationships between concepts, subset relationships
between roles, the membership of individuals to concepts, and
the membership of pairs of individuals to roles.

Here, description logic knowledge bases in SHZ F (D)
and SHOZN (D) (which are the DLs behind OWL Lite
and OWL DL, respectively).



Example

Description logic knowledge base L for an online store:

(1) Textbook C Book; (2) PC LI Laptop C Electronics; PC C —Laptop;
(3) Book LI Electronics C Product; BookC —Electronics;

(4) Sale C Product,

(5) Product © > 1 related; (6) >1relatedl > 1 related™ T Product;
(7) related C related ™ ; related™ C related,

(8) Textbook(tb_ai); Textbook(tb_Ip); (9) related(tb_ai, tb_Ip);

(10) PC(pc_ibm); PC(pc_hp); (11) related(pc_ibm, pc_hp);

(12) provides(ibm, pc_ibm); provides(hp, pc_hp).



Probabilistic Logics: Key ldeas

» Integration of (propositional) logic- and probability-based
representation and reasoning formalisms.

» Reasoning from logical constraints and interval restrictions for
conditional probabilities (also called conditional constraints).

» Reasoning from convex sets of probability distributions.

» Model-theoretic notion of logical entailment.



Syntax of Probabilistic Knowledge Bases

v

Finite nonempty set of basic events ® ={py,...,pn}.

v

Event ¢: Boolean combination of basic events

v

Logical constraint ¢ < ¢: events ¢ and ¢: “¢ implies )”.

v

Conditional constraint (v|¢)[/, u]: events ¢ and ¢, and
I,u€ [0, 1]: “conditional probability of ¢ given ¢ is in [/, u]”.

Probabilistic knowledge base KB= (L, P):

v

» finite set of logical constraints L,
» finite set of conditional constraints P.



Example

Probabilistic knowledge base KB = (L, P):
» L = {bird < eagle}:
“All eagles are birds”.
» P = {(have_legs|bird)[1,1],(fly | bird)[0.95,1]}:

“All birds have legs”.
“Birds fly with a probability of at least 0.95.



Semantics of Probabilistic Knowledge Bases

v

World /: truth assignment to all basic events in .

v

Ts: all worlds for ¢.

v

Probabilistic interpretation Pr: probability function on Zg,.
Pr(¢): sum of all Pr(/) such that | € Zy and /= ¢.

Pr(1|¢): if Pr(¢) >0, then Pr(¢|¢) = Pr(v A ¢) / Pr(¢).
Truth under Pr:
» Pri= ¢ <o iff Pr(ypA¢)= Pr(¢)
(iff Pr(y<=¢)=1).
> Pr = (]0)[], u] iff Pr(y A @) e[l u]- Pr(¢)
(iff either Pr(¢) =0 or Pr(y|¢) €[/, u]).

v

v

v



Example

» Set of basic propositions ¢ = {bird, fly}.

vV vV v Y

T¢ contains exactly the worlds i, b, /5, and I, over ¢:

] [ Ay [ —fly]
bird /1 /2
—-bird I3 /4
Some probabilistic interpretations:
| Py | fy [ —fly ] | Pro [ fy | ~fly]
bird || 19/40 | 1/40 bird 0 | 173
—bird || 10/40 | 10/40 —bird || 1/3 | 1/3

Pri(fly A bird) =19/40 and Pry(bird) =20/40.
Prao(fly A bird) =0 and Pra(bird)=1/3.

—fly< bird is false in Pry, but true in Prs.

(fly| bird)[.95, 1] is true in Prq, but false in Prs.



Satisfiability and Logical Entailment

» Prisamodel of KB = (L, P)iff Pr = Fforall Fe LUP.
» KB is satisfiable iff a model of KB exists.

» KB|=(v|o)l, ul: (v|9)[l, u] is a logical consequence of KB
iff every model of KB is also a model of (¢|¢)[/, u].

> KB [=iignt (¢|9)[1. ul: (4[9)I/, u] is a tight logical
consequence of KB iff | (resp., u) is the infimum
(resp., supremum) of Pr(v|¢) subject to
all models Pr of KB with Pr(¢) > 0.



Example

v

Probabilistic knowledge base:

KB = ({bird < eagle} ,
{(have_legs | bird)[1,1], (fly | bird)[0.95,1]}).

v

KB is satisfiable, since

Pr with Pr(bird A eagle N have_legs A fly) = 1 is a model.

v

Some conclusions under logical entailment:
KB |= (have_legs | bird)[0.3,1], KB | (fly | bird)[0.6,1].

v

Tight conclusions under logical entailment:

KB |=iignt (have_legs | bird)[1,1], KB |=gn: (fly | bird)[0.95, 1],
KB |=iign: (have_legs|eagle)[1,1], KB [=ignt (fly | eagle)[0,1].



Towards Stronger Notions of Entailment

Problem: Inferential weakness of logical entailment.

Solutions:

» Probability selection techniques: Perform inference from a
representative distribution of the encoded convex set of
distributions rather than the whole set, e.g.,

» distribution of maximum entropy,
» distribution in the center of mass.

» Probabilistic default reasoning: Perform constraining rather
than conditioning and apply techniques from default
reasoning to resolve local inconsistencies.

» Probabilistic independencies: Further constrain the convex
set of distributions by probabilistic independencies.
(= adds nonlinear equations to linear constraints)



Logical vs. Lexicographic Entailment

Probabilistic knowledge base:
KB = ({bird < eagle} ,
{(have_legs| bird)[1,1], (fly | bird)[0.95,1]}).

Tight conclusions under logical entailment:
KB |=iignt (have_legs | bird) . KB Eiignt (fly | bird)[0.95,1],
KB |=iignt (have_legs | eagle) . KB |=iignt (fly | eagle)[0,1].

Tight conclusions under probabilistic lexicographic entailment:
KB |~ or, (have_legs | bird)[1.1], KB |~ e, (fly | bird)[0.95. 1],
KB |I~ jor; (have_legs| eagle)[1. 1], KB |~ o (fly | eagle)[0.95, 1].



Probabilistic knowledge base:
KB = ({bird < penguin}, {(have_legs| bird)[1,1],
(fly | bird)[1, 1], (fly | penguin)[0, 0.05]}) .

Tight conclusions under logical entailment:
KB |=iignt (have_legs | bird) , KB iignt (fly | bird) ,
KB |=iign: (have_legs|penguin)[1.0], KB |=ignt (fly | penguin)[1,0].

Tight conclusions under probabilistic lexicographic entailment:
KB |~ o (have_legs | bird)[1. 1], KB |k or, (fly | bird)[1. 1],
KB |fvt’,§’fﬁ (have_legs | penguin)[1,1], KB |}vt’,‘;’;,,(f/y| penguin)[0, 0.05].



Probabilistic knowledge base:
KB = ({bird < penguin}, {(have_legs| bird)[0.99, 1],
(fly | bird)[0.95, 1], (fly | penguin)[0,0.05]}).

Tight conclusions under logical entailment:
KB |=iignt (have_legs | bird) , KB iign: (fly | bird) ,
KB |=iignt (have_legs|penguin)(0,1], KB I=ignt (fly | penguin)(0,0.05].

Tight conclusions under probabilistic lexicographic entailment:
KB |~ or; (have_legs | bird) , KB |~ o (ly | bird!) 7
KB |fvt’,§’f,, (have_legs | penguin)[0.99, 1], KB \}vt',j,(ﬁ(ﬂﬂ penguin)[0, 0.05].



P-SHZF(D) and P-SHOZIN (D): Key Ideas

» probabilistic generalization of the description logics SHZF (D)
and SHOZN (D) behind OWL Lite and OWL DL, respectively

» terminological probabilistic knowledge about concepts and roles

» assertional probabilistic knowledge about instances of concepts
and roles

» terminological probabilistic inference based on lexicographic
entailment in probabilistic logic (stronger than logical entailment)

» assertional probabilistic inference based on lexicographic
entailment in probabilistic logic (for combining assertional
and terminological probabilistic knowledge)

» terminological and assertional probabilistic inference problems
reduced to sequences of linear optimization problems
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Example: Soft Shopping Agent

Suppose a person would like to buy “a sports car that costs at
most about 22 000 EUR and has a power of around 150 HP”.

In todays Web, the buyer has to manually

» search for car selling web sites, e.g., using Google;
» select the most promising sites;

» browse through them, query them to see the cars that
each site sells, and match the cars with the requirements;

» select the offers in each web site that match the
requirements; and

» eventually merge all the best offers from each site and
select the best ones.
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A shopping agent may support us, automatizing the whole
process once it receives the request/query g from the buyer:

» The agent selects some sites/resources S that it considers
as relevantto g (represented by probabilistic rules).

» For the top-k selected sites, the agent has to reformulate g
using the terminology/ontology of the specific car selling
site (which is done using probabilistic rules).

» The query g may contain many so-called vague/fuzzy
concepts such as “the prize is around 22 000 EUR or less”,
and thus a car may match g to a degree. So, a resource
returns a ranked list of cars, where the ranks depend on
the degrees to which the cars match q.

» Eventually, the agent integrates the ranked lists (using
probabilities) and shows the top-n items to the buyer.



Fuzzy DLs: Key Ideas

Description logics model a domain of interest in terms of
concepts and roles, which represent classes of individuals and
binary relations between classes of individuals, respectively.

A description logic knowledge base encodes in particular
subset relationships between concepts, subset relationships
between roles, the membership of individuals to concepts, and
the membership of pairs of individuals to roles.

In fuzzy description logics, these relationships and
memberships then have a degree of truth in [0, 1].



Example

Cars U Trucks U Vans L1 SUVs C Vehicles
PassengerCars U LuxuryCars C Cars
CompactCars LI MidSizeCars LI SportyCars T PassengerCars

Cars C (3hasReview.Integer) N (3hasinvoice.Integer)
M (3hasResellValue.Integer) 1 (IhasMaxSpeed.Integer)
M (IhasHorsePower.Integer) N ...

MazdaMX5Miata: SportyCar 1 (3hasinvoice.18883)
M (3hasHorsePower.166) M . ..
MitsubishiEclipseSpyder : SportyCar M (3hasinvoice.24029)
M (3hasHorsePower.162) M . ..



We may now encode “costs at most about 22 000 EUR” and
“has a power of around 150 HP” in the buyer’s request
through the following concepts C and D, respectively:

C =3hasinvoice.LeqAbout22000 and
D = dhasHorsePower.Around150HP,

where LegAbout22000 = L(22000, 25000) and
Around150HP = Tri(125, 150, 175).




Fuzzy DL-Programs: Syntax

A normal fuzzy rule r is of the form (with atoms a, by, ..., bn):

a <@, by A, b> Ny = Nek_y bk/\®k
n0t9k+1 bk+1 /\®k+1 AT nOtGm bm > v,

A normal fuzzy program P is a finite set of normal fuzzy rules.
A dl-query Q(t) is of one of the following forms:
» a concept inclusion axiom F or its negation —F;
» C(t) or—C(t), with a concept C and a term t;
> R(t, k) or —R(t, k), with a role R and terms t, t,.
A fuzzy dl-rule r is of form (1), where any b € B(r) may be a dl-atom,
which is of form DL[S 0ppt, ..., SmOp,, Pm: Q|(1).

A fuzzy dl-program KB = (L, P) consists of a fuzzy description logic
knowledge base L and a finite set of fuzzy dl-rules P.



Example

The following fuzzy dl-rule encodes the buyer’s request
“a sports car that costs at most about 22 000 EUR and
that has a power of around 150 HP”.

query(x) < DL[SportyCar|(x) g
DL[haslInvoice](x, y1) s
DL[LeqAbout22000](y1) s
DL[hasHorsePower|(x, y2)Ag
DL[Around150HP](y2) > 1.

Here, ® is the Gddel t-norm (that is, x ® y = min(x, y)).



Fuzzy DL-Programs: Semantics

An interpretation | is a mapping |: HBp — [0, 1].

The truth value of a=DL[S1 W py,...,SmW pm; Q](c) under L,
denoted I (a), is defined as the maximal truth value v € [0, 1]
such that LU U, Ai(1) E Q(c) > v, where

Ai(l) = {Si(e) = (pi(e)) | I(pi(e)) >0, pi(e) € HBp} .
I is a model of a ground fuzzy dl-rule r of the form (1) under L,
denoted / =, r, iff
I(a) = v ®o IL(b1) @1 IL(b2) ®2 - @k—1 IL(bk) @k
Sk+1 IL(bk+1) k41 Om—1 @mlL(bm)a

l'is a model of a fuzzy dl-program KB = (L, P), denoted | = KB,
iff ' '=, r for all r € ground(P).



Stratified Fuzzy DL-Programs

Stratified fuzzy dl-programs are composed of hierarchic layers of
positive fuzzy dl-programs linked via default negation:

A stratification of KB= (L, P) with respect to DLp is a mapping
A:HBpUDLp—{0,1,..., k} such that

> MH(r)) = X\(a) (resp., A(H(r)) > A(a)) for each r € ground(P)
and a € B*(r) (resp., a€ B~(r)), and
> \(a) = A(&) for each input atom & of each a € DLp,

where k >0 is the length of . A fuzzy dl-program KB= (L, P) is
stratified iff it has a stratification A\ of some length k > 0.

Theorem: Every stratified fuzzy dl-program KB is satisfiable and has
a canonical minimal model via a finite number of iterative least
models (which does not depend on the stratification of KB).



Adding Probabilistic Uncertainty: Example

The buyer’s request, but in a “different” terminology:

query(x) «—g SportsCar(x) N\g hasPrize(x, y1) N hasPower(x, y>) \g
DL[LeqAbout22000](y1) Ag DL[Around150HP](y2) > 1

Ontology alignment mapping rules:

SportsCar(x) +g DL[SportyCar|(x) Ag SCpos > 1
hasPrize(x) < DL[hasInvoice|(x) Ng hipos > 1
hasPower(x) < DL[hasHorsePower|(x) Ag hhppos > 1,

Probability distribution p:



The following are some tight consequences:

KB |~ igne (E[g(MazdaMX5Miata)])[0.21,0.21]
KB |~ igne (Elq(MitsubishiEclipseSpyder)])[0.19,0.19].

Informally, the expected degree to which MazdaMX5Miata
matches the query q is 0.21, while the expected degree to
which MitsubishiEclipseSpyder matches the query q is 0.19,

Thus, the shopping agent ranks the retrieved items as follows:
rank ‘ item ‘ degree

1. MazdaMX5Miata 0.21
2. | MitsubishiEclipseSpyder | 0.19




Summary

» Description logic programs that allow for dealing with
probabilistic uncertainty and fuzzy vagueness.

» Semantically, probabilistic uncertainty can be used for data
integration and ontology mapping, and fuzzy vagueness
can be used for expressing vague concepts.

» Query processing based on fixpoint iterations.
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Probabilistic Datalog+/—: Key ldeas

» Probabilistic Datalog+/— ontologies combine “classical”
Datalog+/— with Markov logic networks (MLNSs).

» The basic idea is that formulas (TGDs, EGDs, and NCs)
are annotated with a set of probabilistic events.

» Event annotations mean that the formula in question only
applies when the associated event holds.

» The probability distribution associated with the events is
described in the MLN.

» Key computational problems: answering ranking queries,
conjunctive queries, and threshold queries.

» Application in data extraction from the Web, where
Datalog+/— is used as data extraction language (DIADEM).



Example

Consider the problem of entity extraction over the following text
snippet:

. . i :| number
Fifty novels drop in sales- ook

has vacated the top of the book charts 0
after/ 22 weeks, according to trade magazine K
The [Bookseller, @ author

. . country
According to the Bookseller, £29. 3@ was ] magazine
spent at booksellersfb—efween 15 and i money
- a rise of [§700,000]on the =

previous week.

i date



Datalog+/—: Encoding Ontologies in Datalog

Plain Datalog allows for encoding some ontological axioms:
» concept inclusion axioms:
person(X) < employee(X) iff employee C person;,
» role inclusion axioms:

manages(X, Y) « reportsTo(Y, X) iff
reportsTo~' C manages;

» concept and role membership axioms:
person(John) « iff person(John);
manages(Bill, John) < iff manages(Bill, John).

» transitivity axioms:

manages(X, Y) <+ manages(X,Z), manages(Z,Y) iff
(Trans manages)



However, it cannot express other important ontological axioms:

» concept inclusion axioms involving existential restrictions
on roles in the head:

Scientist T JisAuthorOf;

» concept inclusion axioms stating concept disjointness:

JournalPaper C —ConferencePaper;

» functionality axioms:
(funct hasFirstAuthor).

Question: Can Datalog be extended in such a way that
it can be used as ontology language?



Answer: Yes, by introducing:

» tuple-generating dependencies (TGDs):

VXVYYIZ VU (X, Z) + d(X,Y),
where ®(X, Y) and W(X, Z) are conjunctions of atoms;

Example: 3P directs(M, P) < manager(M);

» negative constraints:

VX L+ &(X),
where ®(X) is a conjunction of atoms;

Example: | <+ c(X), c/'(X);

» equality-generating dependencies (EGDs):
VX Xi = X; «+ &(X),
where X;, X; € X, and ¢(X) is a conjunction of atoms
Example: Y =Z «+ (X, Y), (Y, 2).



The Chase

Given:
» D: database over dom(D).

» Y : set of TGDs and/or EGDs

Question: How do we perform query answering?

Answer: Via the chase: If D }~ ¥, then
» either DU X is unsatisfiable due to a “hard” EGD violation, or

» the rules in X can be enforced via the chase by

» adding facts in order to satisfy TGDs, where null values are
introduced for 3-variables

» equating nulls with other nulls or with dom(D) elements in
order to satisfy EGDs.



The Chase is a Universal Model

For each other model M of D and &,
there is a homomorphism from chase(D, X) to M.

= conjunctive queries to D U ¥ can be evaluated on
chase(D, X):
DUY = Q iff chase(D.X) = Q



Facts about the Chase

» Depends on the order of rule applications:
Example: D = {p(a)} and X = {p(x)—3y q(y); p(x)—q(x)}:

Solution 1 = {p(a), q(u), g(a)}
Solution 2 = {p(a), g(a)}

= Assume a canonical ordering.

» Can be infinite:
Example: D = {p(a,b)} and X = {p(x,y) — Izp(y, 2)}:
Solution = {p(a, b), p(b, u1), p(uy, U2), p(Us, Us), ...}

= Query answering for D and TGDs alone is undecidable.
= Restrictions on TGDs and their interplay with EGDs.



Guarded and Linear Datalog+/—

A TGD o is guarded iff it contains an atom in its body that
contains all universally quantified variables of o.

Example:

» r(X,Y),s(Y,X,Z2)—3IWs(Z, X, W) is guarded,
where s(Y, X, Z) is the guard, and r(X, Y) is a side atom;

» r(X,Y), r(Y,Z) — r(X,Z) is not guarded.
A TGD is linear iff it contains only a singleton body atom.
Example:

» manager(M) — 3P directs(M, P) is linear;

» r(X,Y),s(Y,X,Z2)—3IWs(Z, X, W) is not linear.



Markov Logic Networks

» We use Markov logic networks (MLNs) to represent
uncertainty in Datalog+/—.

» MLNs combine classical Markov networks (a.k.a. Markov
random fields) with first-order logic (FOL).

» We assume a set of random variables X = {Xi,..., Xy},
where each X; can take values in Dom(X;).

» A value for X is a mapping x: X — |J7_,; Dom(X;) such that
X(X;) € Dom(X;).

» MLN: set of pairs (F, w), where F is a FO formula, and
w is a real number.



» The probability distribution represented by the MLN is:

P(X =x) =% exp(3; w; - nj(x)),

where n; is the number of ground instances of formula F;
made true by x, w; is the weight of formula F;, and
Z =3 vex exp(>_; w; - nj(x)) (normalization constant).

» Exact inference is #P-complete, but MCMC methods
obtain good approximations in practice.

» A particularly costly step is the computation of Z,
but this is a one-time calculation.



Example

Consider the following MLN:

@1 ann(Sy, Iy, num) A ann(Sz, I, X) A overlap(ly, k) : 3
@2 = ann(Sy, Iy, shop) A ann(S,, I, mag) A overlap(ly, k) : 1
¢z - ann(Sy, Iy, dl) A ann(Ss, b, pers) A overlap(ly, ) : 0.25

Graph representation (for a specific set of constants):

| a;: ann(shades,int; 1o, num) I | ay: ann(shades,int; 14,mag) |

| az: ann(shades,int; 19,5hop) | | ay: ann(shades,int; 1o,dl) |

as: overlap(int 1o,imt; 10)

ag: ann(shades,ints 9,pers)




Computing probabilities w.r.t. this MLN:

-ﬂﬂﬂﬂﬂﬂ_ Probabity

False False False False False False e?/Z
2 False False False True True True bs e®?5 /7
3 True  False False True True  True Oy, O3 e3+0.25 /7
4 True False True True True  True Oy, O3 e3+0.25 /7
5 False True False False True False - e®/z
6 False True True False True True b, el/z
7 False True True True True True by, O3 el*0.25 /7
8 True True True True True  True b1, &a, O3 e3+1+0.25 /7

. (64 possible settings for the binary random variables)



Probabilistic Datalog+/— Ontologies

» A probabilistic Datalog+/— ontology consists of a classical
Datalog+/— ontology O along with an MLN M.

Notation: KB = (O, M)
» Formulas in O are annotated with a set of pairs (X; = X;),
with x; € {true, false} (we also use 0 and 1, respectively).

Variables that do not appear in the annotation are
unconstrained.

Possible world: a set of pairs (X; = x;) where each X; € X
has a corresponding pair.

» Basic intuition: given a possible world, a subset of the
formulas in O is induced.



Example Revisited

The following formulas were adapted from the previous
examples to give rise to a probabilistic Datalog+/— ontology:

book(X) — cditorialProd(X) {}
magazine(X) — editorialProd(X) {}
author(X) — person(X,P) {}
descLogic(X) N author(X) — L Aann(X,1,dl) = 1 A ann(X, L, pers) = 1

overlap(L,I,) = 0}

shop(X) A editorialProd(X) — L A{ann(X,1;,shop) = 1 A ann(X,,,mag) = 1
overlap(L,I,) = 0}

number(X) A date(X) — L Aann(X,L,num) = 1 A ann(X, 1}, date) = 1
overlap(L,I,) = 0}

Formulas with an empty annotation always hold.



Ranking Queries

Ranking Query (RQ): what are the ground atoms inferred from
a KB, in decreasing order of probability?
Semantics: the probability that a ground atom ais true is

equal to the sum of the probabilities of possible worlds where

the resulting KB entails the CQ a.
* Recall that possible worlds are disjoint events.

* Unfortunately, computing probabilities of atoms is intractable:

Theorem: Computing Pr(a) w.r.t. a given probabilistic ontology is #P-
hard in the data complexity.

* We now explore ways to tackle this uncertainty.



Conjunctive MLNs

* First, we propose a special class of MLNs:

A conjunctive MLN (cMLN) is an MLN in which all formulas
(F,w) in the set are such that F'is a conjunction of atoms.

* This restriction allows us to define equivalence classes
over the set of possible worlds w.r.t. M :

* Informally, two worlds are equivalent iff they satisfy the
same formulas in M.

* Though there are still an exponential number of classes,
there are some properties that we can leverage.

* Proposition 1: Given cMLN J/, deciding if an
equivalence class C'is empty is in PTIME.



Conjunctive MLNs: Properties

* Proposition 2: Given cMLN 1/, and equivalence class C, all
elements in C'can be obtained in linear time w.r.t. the size

of the output.

* Proposition 3: Given cMLN 1/, and worlds X\, and \,, we
have that if \; ~,; \, then Pr(\;) = Pr(\,).

* Proposition 4: Given cMLN )/, and worlds X\; and \,,
deciding if Pr(\;) < Pr(\,) isin PTIME.
* Computing exact probabilities in cMLNs, however, remains

intractable:

Theorem: Let a be an atom; deciding if Pr(a) > kis PP-hard in the
data complexity.



Summary

* Presented an extension of the Datalog+/- family of
languages with probabilistic uncertainty.

* Uncertainty in rules is expressed by means of annotations
that refer to an underlying Markov Logic Network.

* The goal is to develop a language and algorithms capable of
managing uncertainty in a principled and scalable way.

Scalability in our framework rests on two pillars:

* We combine scalable rule-based approaches from the DB literature
with annotations reflecting uncertainty;

* Many possibilities for heuristic algorithms; MLNs are flexible, and
sampling techniques may be leveraged.



* Also studying other kinds of probabilistic queries:

Threshold queries: what is the set of atoms that are
inferred with probability at least p?

Conjunctive queries: what is the probability with which a
conjunction of atoms is inferred?

* We are studying the tractability of all three kinds of
queries under both sampling techniques.

* Also considering different kinds of restrictions on
MLNSs.
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