
Finding Lean Induced Cycles
in Binary Hypercubes?

Yury Chebiryak1, Thomas Wahl1,2, Daniel Kroening1,2, Leopold Haller2

1 Computer Systems Institute, ETH Zurich, Switzerland
2 Computing Laboratory, Oxford University, United Kingdom

Abstract. Induced (chord-free) cycles in binary hypercubes have many
applications in computer science. The state of the art for computing such
cycles relies on genetic algorithms, which are, however, unable to per-
form a complete search. In this paper, we propose an approach to find-
ing a special class of induced cycles we call lean, based on an efficient
propositional SAT encoding. Lean induced cycles dominate a minimum
number of hypercube nodes. Such cycles have been identified in Systems
Biology as candidates for stable trajectories of gene regulatory networks.
The encoding enabled us to compute lean induced cycles for hypercubes
up to dimension 7. We also classify the induced cycles by the num-
ber of nodes they fail to dominate, using a custom-built All-SAT solver.
We demonstrate how clause filtering can reduce the number of blocking
clauses by two orders of magnitude.

1 Introduction

Cycles through binary hypercubes have applications in numerous fields in
computing. The design of algorithms that reason about them is an active area
of research. This paper is concerned with obtaining a subclass of these cycles
with applications in Systems Biology.

Biochemical reactions in gene networks are frequently modeled using a sys-
tem of piece-wise linear ordinary differential equations (PLDE), whose number
corresponds to the number of genes in the network [4]. It is of critical impor-
tance to obtain stable solutions, because only stable orbits describe biologically
relevant dynamics of the genes. We focus on Glass PLDE, a specific type of
PLDE that simulates neural and gene regulatory networks [7].

The phase flow of Glass networks spans a sequence of coordinate orthants,
which can be represented by the nodes of a binary hypercube. The orientation
of the edges of the hypercube is determined by the choice of focal points of
the PLDE. The orientation of the edge shows the direction of the phase flow

? A part of this work was presented at the 7th Australia – New Zealand Mathematics
Convention, Christchurch, New Zealand, December 11, 2008. The work was sup-
ported by ETH Research Grant TH-19 06-3.

at the coordinate plane separating the orthants. Thus, the paths in oriented bi-
nary hypercubes serve as a discrete representation of the continuous dynamics
of Glass gene regulatory networks. A special kind of such paths, coil-in-the-
box codes, is used for the identification of stable periodic orbits in the Glass
PLDE. Coil-in-the-box codes with maximum length represent the networks
with longest sequence of gene states for a given number of genes [10].

If a cycle in the hypercube is defined by a coil-in-the-box code, the orienta-
tion of all edges adjacent to the cycle can be chosen to direct the flow towards
it (the cycle is then called a cyclic attractor). Such orientation ensures the con-
vergence of the flow to a periodic attractor that lies in the orthants included
in the path. If a node of the hypercube is not adjacent to the cycle, the node
does not have edges adjacent to the cycle, and the orientation of the edges at
this node does not affect the stability of the flow along the orthants that are
defined by the coil-in-the-box code. The choice of edge orientation in turn is
linked to the specification of focal points of the PLDE. Therefore, the presence
of nodes that are not dominated indicates that the phase flow along the at-
tractor is robust to any variations of the coefficients that define the equations
in the orthant corresponding to that node [20]. We say that a node that is not
dominated by the cycle is shunned by the cycle.

The computation of (preferably long) induced (i.e., chord-free) cycles that
dominate as few nodes as possible is therefore highly desirable in this context.
We call such cycles lean induced cycles.

The state-of-the art in computing longest induced cycles and paths relies
on genetic algorithms [5]. However, while this technique is able to identify
individual cycles with desired properties, it cannot guarantee completeness,
i.e., it may miss specific cycles. Many applications, including those in Systems
Biology, rely on a classification of all solutions, which precludes the use of any
incomplete random search technique.

Recent research suggests that SAT-based algorithms can solve many com-
binatorial problems efficiently: applications include oriented matroids [18], the
coverability problem for unbounded Petri nets [1], bounds on van der Waerden
numbers [12, 6], and many more. Solving a propositional formula that encodes
a desired combinatorial object with a state-of-the-art SAT solver can be more
efficient than the alternatives.

Contribution We encode the problem of identifying lean induced cycles in bi-
nary hypercubes as a propositional SAT formula and compute solutions using
a state-of-the-art solver. As we aim at the complete set of cycles, we modify
the solver to solve the All-SAT problem, and present three orthogonal opti-
mizations that reduce the number of required blocking clauses by two orders
of magnitude.

Our implementation enabled us to obtain a broad range of new results on
cycles of this kind. L. Glass presented a coil-in-the-box code with one shunned
node in the 4-cube [10]. We show that this is the maximum number of shunned

2

nodes that any lean induced cycle may have for that dimension. Then, we
show that the longest induced cycles in the next two dimensions are cube-
dominating: these cycles dominate every node of the cube. In dimension 7,
where an induced cycle can be almost twice as long as the shortest cube-
dominating cycles, there are lean induced cycles shunning at least three nodes.

2 Preliminaries

We define basic concepts used frequently throughout the paper. The Hamming
distance between two bit-strings u = u1 . . . un, v = v1 . . . vn ∈ {0, 1}n of length
n is the number of bit positions in which u and v differ:

dn
H(u, v) = | { i ∈ {1, . . . , n} : ui 6= vi } | .

The n-dimensional Hypercube, or n-cube for short, is the graph (V, E) with V =
{0, 1}n and (u, v) ∈ E exactly if dn

H(u, v) = 1 (see also [14]). The n-cube has
n · 2n−1 edges. We use the standard definitions of path and cycle through the
hypercube graph. The length of a path is the number of its vertices. A Hamil-
tonian path (cycle) through the n-cube is called a (cyclic) Gray code. The cyclic
distance of two nodes Wj and Wk along a cycle of length L in the n-cube is

dn
C(Wj, Wk) = min{|k− j|, L− |k− j|} .

In this paper, we are concerned with particular cycles through the n-cube.

Definition 1. An induced cycle I0 . . . IL−1 in the n-cube is a cycle such that any
two nodes on the cycle that are neighbors in the n-cube are also neighbors in the cycle:

∀j, k ∈ {0, . . . , L− 1} (dn
H(Ij, Ik) = 1 ⇒ dn

C(Ij, Ik) = 1) . (1)

Fig. 1 shows an induced cycle (bold edges) in the 4-cube. In this paper, we are
also interested in the immediate neighborhood of the cycle:

Definition 2. The cycle I0 . . . IL−1 dominates node W of the n-cube if W is adjacent
to some node of the cycle:

∃j ∈ {0, . . . , L− 1} dn
H(Ij, W) = 1 . (2)

We say the cycle shuns the nodes it does not dominate. A cycle is called cube-
dominating if it dominates every node of the n-cube; such cycles can be thought
of as “fat”. In contrast, in this paper we are interested in “lean” induced cycles,
which dominate as few nodes as possible:

Definition 3. A lean induced cycle is an induced cycle through the n-cube that domi-
nates a minimum number of cube nodes, among all induced n-cube cycles of the same
length.

Especially significant are induced cycles of maximum length. The induced cy-
cle in Fig. 1 is longest (length 8) in dimension 4. It is also lean, as it dominates
15 of the 16 cube nodes, and there is no induced cycle of length 8 dominating
less than 15 nodes.

3

0000

0001

0010

0011

0100

0101

0110

0111

1000
1010

1100 1110

1001 1011

1101 1111

Fig. 1. A lean induced cycle in the 4-cube. The cycle shuns node 1101

Lean induced cycles in cell biology. Hypercubes with lean induced cycles can aid
the synthesis of Glass Boolean networks with stable periodic orbits and sta-
ble equilibrium states. For example, C. elegans vulval development is known
to exhibit a series of cell divisions with 22 nuclei formed in the end of the
development. The cell division represents a complex reactive system and in-
cludes at least four different molecular signaling pathways [15]. If the state of
every signaling pathway is represented by a valuation of a Boolean variable,
the 4-cube in Fig. 1 is useful for synthesizing a Glass Boolean network with a
stable periodic orbit describing the cell division and an equilibrium depicting
the finale state (at node 1101) of the gene regulatory system.

Co-existence of an induced cycle of maximum length and a shunned node
in a hypercube indicates that during cell division, the gene network may tra-
verse the maximum possible number of the different states before switching
to the final equilibrium.

3 Computing Lean Induced Cycles

In this section, we describe an encoding of induced cycles of a given length into
a propositional-logic formula. We then strengthen the encoding to assert the
existence of a certain number of shunned nodes. We finally illustrate how we
used the MiniSat solver to determine lean induced cycles where this number
of shunned nodes is maximized.

3.1 A SAT-Encoding of Induced Cycles with Shunned Nodes

Our encoding relies heavily on comparing the Hamming distance between
two hypercube nodes against some constant. We implement such comparisons

4

efficiently using once-twice chains, as described in [3]. In brief, a once-twice
chain identifies differences between two strings up to some position j based on
(i) comparing them at position j, and (ii) recursively comparing their prefixes
up to position j− 1.

Induced Cycles. We use n · L Boolean variables Ij[k], where 0 ≤ j < L and
0 ≤ k < n, to encode the coordinates of an induced cycle of length L in the
n-cube. The variable Ij[k] denotes the k-th coordinate of the j-th node. In order
to form a cycle in an n-cube, consecutive nodes of the sequence must have
Hamming distance 1, including the last and the first:

ϕcycle :=
(∧L−2

i=0
dn

H(Ii, Ii+1) = 1
)
∧ dn

H(IL−1, I0) = 1 .

To make the cycle induced, we eliminate chords as follows:

ϕchord-free :=
∧

0 ≤ i < j < L,
dn

C(Ii , Ij) ≥ 2

dn
H(Ii, Ij) ≥ 2 .

This also ensures that the nodes along the cycle are pairwise distinct. In prac-
tice, the formula ϕchord-free can be optimized by eliminating half of its clauses,
using an argument presented in [2].

The conjunction of these constraints is an encoding of induced cycles:

ϕIC := ϕcycle ∧ ϕchord-free .

Shunned Nodes. We encode the property that a cycle I0 . . . IL−1 shuns nodes
u0, . . . , uS−1, by requiring the distance of the nodes to the cycle to be at least 2:

ϕshunned :=
∧S−1

i=0

∧L−1

j=0
dn

H(ui, Ij) ≥ 2 .

We combine this with the condition that the nodes are distinct,

ϕdistinct :=
∧

0≤i<j<S
dn

H(ui, uj) ≥ 1 ,

to obtain an encoding of induced cycles with at least S shunned nodes:

ϕICS := ϕIC ∧ ϕshunned ∧ ϕdistinct . (3)

We point out some basic monotonicity properties of formula ϕICS. Let
IC(n, L, S+) be the number of induced cycles of length L in the n-cube with at
least S shunned hypercube nodes. It is easy to see that

n1 ≤ n2 ⇒ IC(n1, L, S+) ≤ IC(n2, L, S+) , and
S1 ≤ S2 ⇒ IC(n, L, S+

1) ≥ IC(n, L, S+
2) .

There is no analogous monotonicity law for the length parameter L of an in-
duced cycle. Intuitively, a medium value for L provides the greatest degree of
freedom for a cycle.

5

dim. n length L max. # shunned nodes
3 6 0
4 8 1
5 14 0
6 26 0
7 48 ≥ 3

Table 1. Length of longest induced cycles, and number of shunned nodes

3.2 Computing Lean Induced Cycles using a SAT Solver

Every solution to equation (3) corresponds to an induced cycle of length L in
the n-cube with at least S shunned nodes. In order to make the cycle lean, we
need to maximize S. We achieve this by starting with cube-dominating induced
cycles, i.e., with S = 0, and increasing S in equation (3) until the SAT solver
reports unsatisfiability.3

Table 1 shows our findings for hypercubes up to dimension 7. For the clas-
sical cube of dimension 3, the longest induced cycles have length 6. All of those
are cube-dominating. In dimension 4, the longest induced cycles have length
8; an example is shown in Fig. 1. Some of these cycles shun 1 of the 16 cube
nodes; the others are cube-dominating. Interestingly, in dimensions 5 and 6,
all longest induced cycles are again cube-dominating.

In dimension 7, we found longest (length 48) induced cycles shunning 3
nodes. For larger values of S, our search timed out after 24h. In our experi-
ments, we used the MiniSat solver by Eén and Sörensson [9]. MiniSat pro-
vides interfaces for incremental solving and All-SAT; the current version uses
preprocessing techniques [8] that simplify the original formula. All experi-
ments were carried out on an Intel Xeon 3.0 GHz, 4-GB RAM PC running
Linux.

4 Classification of Induced Cycles

The goal of this section is to determine how many distinct induced cycles of
length L and with S shunned nodes exist in the n-cube, for a given triple
(n, L, S). By distinct, we mean that the cycles cannot be transformed into each
other by applying a symmetry permutation of the n-cube. That is, for each
tuple (n, L, S), we classify the induced cycles into equivalence classes.

The classification of induced cycles with respect to symmetries of a hyper-
cube is of interest in Glass models for neural and gene regulatory networks,
because the number of the equivalence classes of the codes indicates how many
different types of cells can be regulated by a set of genes [21, 10].

3 Since the range of values for S for which (3) is satisfiable is contiguous, a binary
search strategy is also possible, using a heuristically determined initial value for S.

6

The enumeration of the equivalence classes is achieved using a custom-
made All-SAT solver derived from MiniSat. We introduce blocking clauses
that suppress solutions symmetric to one encountered before. We observe that
cycles identical up to cube symmetries belong to the same class (n, L, S). This
ensures that the symmetry breaking does not eliminate solutions with a differ-
ent set of parameters. In the rest of this section, we describe the classification
and the symmetry breaking in more detail.

4.1 Identifying Equivalence Classes using Coordinate Sequences

In order to identify symmetry equivalence classes of cycles, it proved efficient
to encode cycles in a slightly different way.

Definition 4 ([10]). The coordinate sequence of a cycle I0 . . . IL−1 in the n-cube is
the sequence (c0, . . . , cL−1) ∈ {0, . . . , n− 1}L such that ci is the unique coordinate
that distinguishes Ii and Ii+1 mod L.

For example, the coordinate sequence of the cycle in Fig. 1 is the sequence
cs := (0, 1, 2, 0, 3, 2, 1, 3) , assuming I0 = 0000 and I1 = 0001. In the figure,
the dimensions are listed in the order 3210.

Given coordinate sequences, we can define cube symmetries.

Definition 5. Two cycles C1 and C2 in the n-cube are equivalent, C1 ∼ C2, if their
coordinate sequences are identical up to axis permutations, reflections about the center
position, and rotations by an arbitrary number of coordinates.

Given n and L, let CS denote the set of coordinate sequences of cycles of
length L in the n-cube. A reflection or rotation on CS is a permutation π on
the set {0, . . . , L− 1} that maps a coordinate sequence (ci)L−1

i=0 to the sequence
(cπ(i))

L−1
i=0 , that is, by acting on the position indices of the sequence. In contrast,

an axis permutation on CS is a permutation π on the set {0, . . . , n − 1} that
maps a coordinate sequence (ci)L−1

i=0 to the sequence (π(ci))L−1
i=0 , that is, by

acting on the coordinate values of the sequence. For example, the coordinate
sequence cs′ := (1, 0, 2, 3, 0, 1, 3, 2) is equivalent to sequence cs above, since
cs′ can be obtained from cs by a left-rotation by one position, followed by a
reflection and an axis permutation (1 2 3 0), mapping 1 to 2, 2 to 3, etc.

Our goal is to classify induced cycles based on cube symmetries, for a
given parameter tuple (n, L, S). In order for this classification to be sound, the
symmetry permutations must not alter the (n, L, S) parameters of a cycle.

Lemma 1. Let C1 and C2 be two equivalent cycles. Then C1 and C2 have the same
length and shun the same number of cube nodes.

Proof (sketch). Since C1 and C2 are equivalent, there is a sequence Π of permu-
tations, of the type mentioned in definition 5, such that Π(C1) = C2. Reflec-
tions and rotations of the coordinate sequence of C1 translate to reversals of

7

C1’s orientation, and to rotations of C1, respectively. These operations change
neither the length of the cycle, nor the distance of cube nodes to it.

For an axis permutation π, we have to show that definition 2, dominates, is
invariant under π. We omit the technical derivation of this property. �

As an example, the unique cycle of the 4-cube corresponding to the above-
mentioned coordinate sequence cs′, after fixing I0 := 0000 and I1 := 0010, is
lean and induced, as is the cycle in Fig. 1. Both cycles shun one cube node.
Conversely, cycles with the same parameters (n, L, S) may not be equivalent:
Table 2 (see Appendix) lists two distinct – in the above sense – cycles with
(n, L, S) = (4, 8, 0).

We determine the number IC(n, L, S) of ∼ equivalence classes of induced
cycles of length L with exactly S shunned nodes as the difference between the
number of classes of cycles shunning at least S and S + 1 nodes, respectively:

IC(n, L, S) = IC(n, L, S+) − IC(n, L, (S + 1)+) . (4)

The quantities on the right are computed, separately for S and S + 1, by enu-
merating satisfying assignments to Eq. (3), using an All-solutions SAT solver,
implemented on top of MiniSat (see Algorithm 1 on the next page).

As proposed in [3], we encode coordinate sequences using XOR gates on
Boolean variables denoting coordinates of a cycle. We write xork[m] to re-
fer to the m-th bit in bitwise xor-operation over coordinates of nodes Ik and
Ik+1 mod L. For example, if xor3[2] evaluates to true, dimension 2 is traversed
while going from I3 to I4. We call the variables xork[m] the “xor-variables”.

To ensure a single representative for each ∼ equivalence class, we add
blocking clauses for each solution found that prevent permutations of axes, ro-
tations and reflections of the coordinate sequence of the solution. The number
of blocking clauses to add per solution is (2L · n!). This is clearly a computa-
tional burden for the SAT solver, especially when the solution space is nearly
exhausted, and the All-SAT procedure is about to find the formula to be un-
satisfiable. In the rest of this section, we present techniques that reduce both
the number and the length of the blocking clauses.

4.2 Optimizations

Compressing blocking clauses. A blocking clause for a given induced cycle, bar-
ring permutations of axes and rotations/reflections of a coordinate sequence,
is expressed in terms of the variables encoding the sequence. For instance, to

8

Algorithm 1: Compute-Equivalence-Classes

Input: the SAT instance I with fixed n, L, S;
the equivalence relation ∼

Output: The set of equivalence classes EC

1: EC := {}
2: SAT_solver.solve(I)
3: while SAT
4: do IC = SAT_solver.decode()
5: EC ← EC ∪ {IC}
6: ∀ICj ∼ IC. I.add_blocking_clause(ICj)
7: SAT_solver.solve(I)

block permutations of the cycle in Fig. 1, we add the following clause:

(¬xor0[0] ∨ xor0[1] ∨ xor0[2] ∨ xor0[3]

∨ xor1[0] ∨ ¬xor1[1] ∨ xor1[2] ∨ xor1[3]
...

∨ xor7[0] ∨ xor7[1] ∨ xor7[2] ∨ ¬xor7[3]) .

The length of this blocking clause is (n · L). Our first, and simplest, optimiza-
tion is to omit literals that evaluate to false, since we know that these variables
encode unit Hamming distance:

(¬xor0[0] ∨ ¬xor1[1] ∨ ¬xor2[2] ∨ ¬xor3[0] ∨ . . .) .

This reduces the length of a clause to L.

Symmetric Cycles. The following optimization applies to specific cycles, called
symmetric induced cycles. A Gray code is symmetric4 if elements of its coordinate
sequence that are L/2 apart are identical [19]. For a symmetric induced cycle,
the number of blocking clauses to be added can be reduced by one-half: rota-
tions by more than L/2 positions result in cycles that were already blocked.

Prefix Filtering. Without loss of generality, we fix the first two elements of the
coordinate sequence to (0, 1). For the next coordinate, dimension 0 cannot be
traversed because this would form a chord. Neither can dimension 1, since
4 This definition is not to be confused with the definition in [13], where this term refers

to a code for which the number of bit changes is uniformly distributed among the
bit positions, hence called a balanced Gray code in [17, p. 7].

9

the cycle must be simple. Out of higher dimensions, we can restrict the search
to the canonical class5 with prefix (0, 1, 2). We enforce this prefix by fixing the
values of the corresponding xor-variables using the following three clauses:

xor0[0] ∧ xor1[1] ∧ xor2[2] . (5)

This drastically reduces the number of solutions in each equivalence class,
and eliminates a large number of blocking clauses. For example, it becomes
unnecessary to add a blocking clause for the coordinate sequence cs′ on page 7,
as cs′ is blocked by Eq. (5).

Phase Saving. In an attempt to speed up the enumeration of solutions, we
added phase-saving [16] to MiniSat. By default, MiniSat assigns false to all
decision variables. With phase saving, they are assigned their most recent
values in the search. Phase saving combines well with aggressive restarting
schemes, since it retains more information between restarts. Our intuition was
that after finding a solution, the solver might be able to quickly identify neigh-
boring solutions. Phase-saving alone, however, did not result in any speedups.

Ordering decision variables. Upon closer inspection of All-SAT runs, we found
that the activity-based variable selection heuristic mainly chooses from a small
set of branching variables. These variables correspond closely to the encod-
ing of solutions in the input CNF. In order to make use of this insight, we
extended the solver to allow for prioritization of important variables in the
decision heuristic: In this modification, unprioritized variables are only con-
sidered for branching after all prioritized variables are assigned a value. We
tested a number of possible restrictions, and found that prioritizing the vari-
ables that encode the induced-cycle nodes I0, . . . , IL−1 works well for some
instances, but yields bad results in general.

Combined Restart Policy. We found that the enumeration of solutions could be
sped up by disabling the geometric restart scheme, but this led to bad perfor-
mance on the final hard instances. By combining an initial high restart limit
(100000 conflicts) with a subsequent switch to MiniSat’s original geometric
policy, starting again from a very low limit (100 conflicts), we were able to
gain a 20% overall speed-up. Easier SAT instances can then be solved before
the first restart, while hard instances still profit from aggressive restarts.

Further experiments with different combinations of the discussed strategies
revealed that a combination of a high-restart limit, variable prioritization, and
phase saving also led to a performance increase of about 20%.

5 A canonical coordinate sequence is the one in which each coordinate k appears before
the first appearance of k + 1 [11].

10

4.3 Evaluation

Using prefix filtering and the optimizations for symmetric cycles, we are able
to reduce the number of clauses drastically. As an example, consider an in-
stance encoding induced cycles of length 26 in a 6-dimensional hypercube. In
order to block a solution, we need to add only 312 blocking clauses in the
non-symmetric case and 156 clauses for a symmetric cycle, instead of origi-
nally 37440. Our findings are presented in Fig. 2 and extend the classification
presented in [22].

For some circuit length values L, the time required by the All-SAT solver
increases with the number of shunned nodes. For such values of L, it is faster
to perform the classification for a small value of S and then check how many
nodes the cycles dominate.

In general, the time required to find the first induced cycle is a few orders
of magnitude less than that to perform the classification, even in the case of
one class only, as the run-time is dominated by the final unsatisfiable instance.

5 Conclusion

In this paper we have formalized a combinatorial problem relevant in Sys-
tems Biology: finding lean induced cycles in a hypercube, i.e., induced cycles
that dominate a minimum number of hypercube nodes. We have presented
a solution to this problem based on an efficient SAT encoding, and used this
encoding to find lean induced cycles using a SAT solver. When compared to
genetic algorithms, our method can provide guarantees for finding solutions,
or prove the absence thereof.

Our method is suitable for classifying large sets of solutions into symmetry
equivalence classes. As suggested by Fig. 2, this allows insights into the distri-
bution of distinct solutions across the parameters n, L, and S. The SAT solver’s
performance is improved by filtering blocking clauses based on combinatorial
properties of induced cycles, and by applying All-SAT specific internal tun-
ings.

Acknowledgments

The authors would like to thank Dr. Igor Zinovik for bringing their attention
to the problem of lean induced cycles and helping with preparing this script.
They also thank the anonymous reviewers for suggestions on how to improve
the draft.

11

 0

 20

 40

 60

 80

 100

 120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#c
la

ss
es

S

n=6, L=16

 0

 50

 100

 150

 200

 250

 300

0 1 2 3 4 5 6 7 8 9 10 11

#c
la

ss
es

S

n=6, L=18

 0

 50

 100

 150

 200

 250

 300

0 1 2 3 4 5 6 7 8 9

#c
la

ss
es

S

n=6, L=20

 0
 20
 40
 60
 80

 100
 120
 140
 160

0 1 2 3 4 5 6

#c
la

ss
es

S

n=6, L=22

 0
 10
 20
 30
 40
 50
 60
 70
 80

0 1 2 3 4 5

#c
la

ss
es

S

n=6, L=24

Fig. 2. Classification of induced cycles by cube symmetries, for select triples (n, L, S)

References

1. P. A. Abdulla, S. P. Iyer, and A. Nylén. SAT-solving the coverability problem for
Petri nets. Formal Methods in System Design, 24(1):25–43, 2004.

2. Y. Chebiryak and D. Kroening. An efficient SAT encoding of circuit codes. In
Procs. IEEE International Symposium on Information Theory and its Applications, pages
1235–1238, Auckland, New Zealand, December 2008.

3. Y. Chebiryak and D. Kroening. Towards a classification of Hamiltonian cycles in
the 6-cube. Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 4:57–74,
2008.

4. H. de Jong and M. Page. Search for steady states of piecewise-linear differential
equation models of genetic regulatory networks. IEEE/ACM Trans. Comput. Biology
Bioinform., 5(2):208–222, 2008.

5. P. A. Diaz-Gomez and D. F. Hougen. Genetic algorithms for hunting snakes in hy-
percubes: Fitness function analysis and open questions. In SNPD-SAWN ’06: Pro-
ceedings of the Seventh ACIS International Conference on Software Engineering, Artificial

12

Intelligence, Networking, and Parallel/Distributed Computing, pages 389–394, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

6. M. R. Dransfield, V. W. Marek, and M. Truszczynski. Satisfiability and computing
van der Waerden numbers. In E. Giunchiglia and A. Tacchella, editors, SAT, volume
2919 of Lecture Notes in Computer Science, pages 1–13. Springer, 2003.

7. R. Edwards. Symbolic dynamics and computation in model gene networks. Chaos,
11(1):160–169, 2001.

8. N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause
elimination. In Theory and Applications of Satisfiability Testing (SAT), volume 3569 of
LNCS, pages 61–75. Springer, 2005.

9. N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications of
Satisfiability Testing (SAT), volume 2919 of LNCS, pages 502–518. Springer, 2004.

10. L. Glass. Combinatorial aspects of dynamics in biological systems. In U. Landman,
editor, Statistical mechanics and statistical methods in theory and applications, pages
585–611. Plenum Press, 1977.

11. D. E. Knuth. The Art of Computer Programming, volume 4, fascicle 2: Generating All
Tuples and Permutations. Addison-Wesley Professional, 2005.

12. M. Kouril and J. V. Franco. Resolution tunnels for improved SAT solver perfor-
mance. In F. Bacchus and T. Walsh, editors, Theory and Applications of Satisfiabil-
ity Testing (SAT), volume 3569 of Lecture Notes in Computer Science, pages 143–157.
Springer, 2005.

13. X. Liu and G. F. Schrack. A heuristic approach for constructing symmetric Gray
codes. Appl. Math. Comput., 155(1):55–63, July 2004.

14. M. Livingston and Q. Stout. Perfect dominating sets. Congressus Numerantium,
79(187–203):187–203, 1990.

15. D. Na’aman Kam, H. Kugler, A. Rami Marelly, J. Hubbard, and M. Stern. Formal
modelling of C. elegans development. A scenario-based approach. Modelling in
Molecular Biology, pages 151–174, 2004.

16. K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for
satisfiability solvers. In J. Marques-Silva and K. A. Sakallah, editors, SAT, volume
4501 of Lecture Notes in Computer Science, pages 294–299. Springer, 2007.

17. C. Savage. A survey of combinatorial Gray codes. SIAM Review, 39(4):605–629,
1997.

18. L. Schewe. Generation of oriented matroids using satisfiability solvers. In A. Igle-
sias and N. Takayama, editors, ICMS, volume 4151 of Lecture Notes in Computer
Science, pages 216–218. Springer, 2006.

19. R. C. Singleton. Generalized snake-in-the-box codes. IEEE Transactions on Electronic
Computers, EC-15(4):596–602, 1966.

20. I. Zinovik, Y. Chebiryak, and D. Kroening. Cyclic attractors in Glass models for
gene regulatory networks. IEEE Trans Inf Theory: Special Issue on Molecular Biology
and Neuroscience, December 2009. Accepted.

21. I. Zinovik, D. Kroening, and Y. Chebiryak. An algebraic algorithm for the identi-
fication of Glass networks with periodic orbits along cyclic attractors. In H. Anai,
K. Horimoto, and T. Kutsia, editors, Algebraic Biology (AB), volume 4545 of LNCS,
pages 140–154. Springer, 2007.

22. I. Zinovik, D. Kroening, and Y. Chebiryak. Computing binary combinatorial Gray
codes via exhaustive search with SAT-solvers. IEEE Transactions on Information The-
ory, 54(4):1819–1823, April 2008.

13

6 Appendix

Table 2 shows runtimes, and number of equivalence classes of induced cycles
found, for various values of (n, L, S).

Table 2: Classification of induced cycles, with runtimes

n L S Time (sec) #classes
first cycle All-SAT IC(n, L, S+) IC(n, L, S)

4 6 0 0.003 0.010 1 0
1 0.006 0.017 1 0
2 0.010 0.028 1 1
3 0.031 0

8 0 0.007 0.305 3 2
1 0.009 0.048 1 1
2 0.015 0

5 10 0 0.016 400.378 10 0
1 0.017 419.881 10 0
2 0.027 392.274 10 3
3 0.031 370.277 7 3
4 0.047 356.335 4 3
5 0.043 210.137 1 0
6 0.095 183.403 1 1
7 167.397 0

14 0 0.033 535.027 3 3
1 3.012 0

6 16 0 0.02 486.37 563 1
1 0.01 534.55 562 0
2 0.03 481.12 562 1
3 0.02 514.36 561 1
4 0.04 501.77 560 13
5 0.04 768.08 547 14
6 0.04 3252.77 533 44

6 24 0 0.08 1183.50 110 76
1 0.07 695.37 34 14
2 0.30 689.22 20 15
3 1.76 592.51 5 3
4 5.65 1062.92 2 1
5 26.56 1364.86 1 1
6 - 1014.34 0

6 26 0 0.42 583.43 4 4
1 - 750.39 0 0

14

