Temporal Logic Model Checking

Thomas Wahl

Computing Laboratory, Oxford University
Temporal Logics

LTL Model Checking

CTL Model Checking
Temporal Logics: Purpose

Temporal Logic: decidable logic to reason over program behavior along infinite timelines.

Is statement x executed infinitely often?

Is every request followed by a grant eventually?

Is there an execution along which always $x \geq 0$?
Temporal Logics: Ingredients

All temporal logics have **temporal operators**, which quantify over states along a program execution path:

“in all future states”
“in some future state”
“in the next state”

Some also have **branching operators**, which quantify over execution paths of a program:

“for all executions”
“for some execution”
Temporal Logics: Representatives

\textbf{LTL:} only temporal operators.
cannot distinguish different program executions

\textbf{CTL:} temporal + branching operators.
can explicitly specify behavior along different paths

\textbf{CTL*:} $\Downarrow LTL \cup CTL$

μ-calculus: \Downarrow CTL*

[\text{LTL: Pnueli ’77, CTL: Emerson/Clarke ’82}]
Temporal Logics: Which One to Use?

Infinite debate about which logic is “best”…

Criteria: easy of use, expressiveness, efficiency.

Allen Emerson: “Modalities for Model Checking: Branching Time Logic Strikes Back.” (1987)

Moshe Vardi: “Branching vs. Linear Time: Final Showdown.” (2001)
Outline

Temporal Logics

LTL Model Checking

CTL Model Checking
Linear Temporal Logic (LTL): Syntax

LTL formulas are built out of:

- atomic propositions: p, q, r
- Boolean operators: \land, \neg, \ldots
- temporal operators:
 - $X p$: “next time p”
 - $F q$: “eventually q”
 - $G r$: “always r”
 - $p U q$: “p until q”

Again: these apply to a fixed execution path
Linear Temporal Logic: Semantics

LTL formulas evaluated over a path \(\pi = \pi_0\pi_1\pi_2 \ldots \)

Suffix of \(\pi \) starting at the \(i \)th state: \(\pi^i \).

Validity is defined as follows:

\[
\begin{align*}
\pi \models p & \quad \text{iff} \quad p \in L(\pi_0) \\
\pi \models \neg f & \quad \text{iff} \quad \pi \not\models f \\
\pi \models g \land h & \quad \text{iff} \quad \pi \models g \text{ and } \pi \models h \\
\pi \models X f & \quad \text{iff} \quad \pi^1 \models f \\
\pi \models G f & \quad \text{iff} \quad \forall i : \pi^i \models f \\
\pi \models F f & \quad \text{iff} \quad \exists i : \pi^i \models f \\
\pi \models g U h & \quad \text{iff} \quad \exists i : (\pi^i \models h \text{ and } \forall j < i : \pi^j \models g)
\end{align*}
\]
Given Kripke structure \(M := (S, R, L, s_0) \) and LTL formula \(f \):
do all paths \(\pi \) through \(M \) satisfy \(f \)?

\[
M \models f := \forall \pi : \pi_0 = s_0 \land \pi \text{ path in } M : \pi \models f
\]

Approach:
- represent \(M \) and \(f \) in *same* data structure
- should be efficiently manipulatable

Solution: finite-state automata
Finite-State Automata (FSA)

... quite similar to a transition system like a Kripke structure:

\[A = (\Sigma, Q, \delta, Q_0, F) \]

- \(\Sigma, Q \) finite alphabet, finite state set
- Transition relation: \(\delta \subseteq Q \times \Sigma \times Q \)
- \(Q_0 \) initial states, \(F \) accepting states.

Automaton \(A \) accepts certain “words”, which form its language \(\mathcal{L}(A) \).
Kripke Structure and FSA

Goal: given structure M, define automaton A_M such that

$$L(A_M) = \{ \pi : \pi \text{ is a path in } M \}.$$

Pretty straightforward.

Technicality:
- FSAs have edge labels (“inputs”),
- M has state labels (atomic propositions).

But that can be fixed . . .
Kripke Structure and FSA

\[M: \]
\[M_A: \]

\[s_0 \rightarrow \{ p, q \} \]
\[s_0 \rightarrow \{ q \} \]
\[s_1 \rightarrow \{ p \} \]
\[s_2 \rightarrow \{ q \} \]

Every state of \(M_A \) is accepting.
LTL Formula and FSA

Goal: given LTL formula f, define automaton A_f such that

$$\mathcal{L}(A_f) = \{\pi : \pi \models f\}.$$

Achieve this using Büchi acceptance condition:

Infinite path is accepted by a FSA if some accepting state is visited infinitely often.

Means: path goes through a **cycle** that contains an accepting state.
LTL Formula and FSA

(These FSAs represent which LTL formulas?)

“Tableau Construction” [GPVW 1985-95]
Finally: LTL Model Checking, by Language Containment:

\[M \models f \quad \text{iff} \quad \mathcal{L}(A_M) \subseteq \mathcal{L}(A_f) \]

iff \[\mathcal{L}(A_M) \cap \neg \mathcal{L}(A_f) = \emptyset \]

iff \[\mathcal{L}(A_M) \cap \mathcal{L}(A_{\neg f}) = \emptyset \]

iff \[\mathcal{L}(A_M \cap A_{\neg f}) = \emptyset. \]

Terminology in MCer SPIN: \(\neg f \) is a “never claim”

Our algorithm looks for violations of \(f \).
LTL Model Checking

We had:

\[M \models f \iff \mathcal{L}(A_M \cap A_{\neg f}) = \emptyset. \]

Intersection of two FSAs:
by lock-step execution (standard constructions)

Emptiness of a FSA \(A \) with Büchi acceptance condition:

\[\mathcal{L}(A) \neq \emptyset \iff \text{there is a reachable cycle through } A \text{ that contains an accepting state}. \]
Final remarks.

Counter examples: If $\mathcal{L}(A_M \cap A_{\neg f}) \neq \emptyset$, then $M \not\models f$.

The path to and through the accepting cycle is a counter example.

Complexity: $O(|M| \cdot 2^{|f|})$.

Exponential complexity in $|f|$ is not as big a problem in practice as it may seem:

Usually, $|f| \ll |M|$.
Outline

Temporal Logics

LTL Model Checking

CTL Model Checking
Computation Tree Logic (CTL): Syntax

Combines branching operators

A: “for all executions” (“futures”, “paths”)
E: “for some execution”

and temporal operators X, F, G, U, but only in specific ways:

\[
\begin{bmatrix}
 A \\
 E
\end{bmatrix}
\begin{bmatrix}
 X \\
 F \\
 G \\
 U
\end{bmatrix}

\]

and arbitrarily nested:

AG EF reset \hspace{1cm} E(req U ack) \hspace{1cm} EX AX false

Not: A E p (makes no sense), A FG p (allowed in CTL*, not CTL)
Temporal Logics

LTL Model Checking

CTL Model Checking

CTL: Intuitive Semantics

\[\mathit{AX}p\]

"p imminent"

\[\mathit{AF}p\]

"p inevitable"

\[\mathit{EF}p\]

"p reachable"

\[\mathit{AG}p\]

"p invariant"
CTL Model Checking

Input: \(M := (S, R, L, s_0) \) and CTL formula \(f \)

Goal: determine whether \(M, s_0 \models f \).

We will do this by

1. computing \(S_f = \{ s \in S : M, s \models f \} \), and then
2. checking whether \(s_0 \in S_f \), possibly on the fly.
The Tarski-Knaster Theorem

View CTL formula as set of states satisfying it. Then observe:

\[EG \, p \, = \, p \land EX \, p \land EX \, EX \, p \land \ldots \]
\[= \, p \land EX(p \land EX(p \land \ldots)) \]
\[= \, p \land EX(EG \, p) . \]
The Tarski-Knaster Theorem

View CTL formula as set of states satisfying it. Then observe:

\[\text{EG} \, p = p \land \text{EX} \, p \land \text{EX} \, \text{EX} \, p \land \ldots \]
\[= p \land \text{EX}(p \land \text{EX}(p \land \ldots)) \]
\[= p \land \text{EX}(\text{EG} \, p) \].

\(\text{EG} \, p \) is a fixpoint of the operator \(\tau(Z) = p \land \text{EX} \, Z \):

- in fact the greatest fixpoint of \(\tau \)
- computable by series of overapproximations:

\[
Z_0 = S \supseteq \quad Z_1 = p \land \text{EX} \, Z_0 \quad \supseteq \quad Z_2 = p \land \text{EX} \, Z_1 \quad \ldots \quad = \quad \nu Z. \, p \land \text{EX} \, Z
\]
Computing Fixpoints

Least fixpoint
\[\mu Z. \tau(Z) :\]
1: \(Z := \emptyset \)
2: repeat
3: \(\tilde{Z} := Z \)
4: \(Z := \tau(Z) \)
5: until \(Z = \tilde{Z} \)
6: return \(Z \)

Greatest fixpoint
\[\nu Z. \tau(Z) :\]
1: \(Z := S \)
2: repeat
3: \(\tilde{Z} := Z \)
4: \(Z := \tau(Z) \)
5: until \(Z = \tilde{Z} \)
6: return \(Z \)

Only difference: initial value of \(Z \)

18 Feb, 2009 Thomas Wahl, Oxford University
Fixpoint Characterization of CTL

\[
\begin{align*}
\text{EF } h & = \mu Z.(h \lor \text{EX } Z) \\
\text{EG } h & = \nu Z.(h \land \text{EX } Z) \\
\text{E}(g \text{ U } h) & = \mu Z.(h \lor (g \land \text{EX } Z)) \\
\text{AF } h & = \mu Z.(h \lor \text{AX } Z) \\
\text{AG } h & = \nu Z.(h \land \text{AX } Z) \\
\text{A}(g \text{ U } h) & = \mu Z.(h \lor (g \land \text{AX } Z))
\end{align*}
\]

- F, U: least fixpoint \(\mu \), uses “\(\lor \)”. Liveness properties
- G: greatest fixpoint \(\nu \), uses “\(\land \)”. Safety properties
CTL Model Checking: Complexity

Example $AG\ EF\ p$: “It is always possible to reach a p-state.”

$$AG\ EF\ p = AG(EF\ p) = \nu Z. (\mu Y.p \lor EX\ Y) \land AX\ Z.$$

Procedure:

1. $Y_0 := \mu Y.p \lor EX\ Y\ (O(|M|))$
2. $Z_0 := \nu Z.Y_0 \land AX\ Z\ (O(|M|))$
3. return Z_0

$\Rightarrow cost \approx 2 \times |M|.$
CTL Model Checking: Complexity

Each fixpoint costs $O(|M|)$ steps
(and each step only involves EX, AX, \land, \lor)

number of fixpoint computations =
number of EF, EG, AF, AG’s that appear in f

\Rightarrow complexity $O(|M| \times |f|)$.

Compare: LTL model checking: $O(|M| \times 2^{|f|})$.
All we need to do is implement the fixpoint routines:

Set of states satisfying $\text{EF} \ p$:

1. $Z := \emptyset$
2. repeat
3. $\tilde{Z} := Z$
4. $Z := p \lor \text{EX} \ Z$
5. until $Z = \tilde{Z}$
6. return Z

Need:
- disjunction \lor
- (pre-)image EX
- termination $Z = \tilde{Z}$

Termination easy with BDDs: canonicity!
Symbolic Transition Relations

set of states: constraint over the state variables
set of transitions: constraint over two copies of the state variables:

\[\text{if } x \text{ then } y := true \]

as a Boolean formula over 4 (not 2) variables:

\[R(x, x', y, y') = ((x \land y') \lor (\neg x \land y' = y)) \land x' = x \]
Symbolic Image Operations

Pre-image (predecessors) of a set of states Z:

$$\text{EX } Z = \{ s : \exists z \in Z : R(s, z) \} .$$

Given:

- BDD Z over x_1, \ldots, x_k, and
- BDD R over $x_1, \ldots, x_k, x'_1, \ldots, x'_k$.

Wanted: BDD for $\text{EX } Z$ over x_1, \ldots, x_k.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Result over variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $Z' := Z$ with x_i renamed to x'_i</td>
<td>$x'_1 \ldots x'_k$</td>
</tr>
<tr>
<td>2. $L := Z' \land R$</td>
<td>$x_1 \ldots x_k, x'_1 \ldots x'_k$</td>
</tr>
<tr>
<td>3. result := $\exists x'_1 \ldots x'_k : L$</td>
<td>$x_1 \ldots x_k$</td>
</tr>
</tbody>
</table>