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In today’s world parallelism is ubiquitous, and di�erent types of parallel models and processors are becoming increasingly

common. Moreover, while our programs become increasingly heterogeneous in the parallelism they employ, user-visible

parallelism in our languages become increasingly homogeneous, with the parallelization onus put more-and-more on the

compiler or runtime. This increasing divide between what is and what happens in our languages makes being able to

determine the costs of running the same program on di�erent types of hardware increasingly important. However, while

there are formal means for pro�ling parallel programs written for the CPU, there are still no means to formally pro�le and

reason about parallel programs that use multiple types of parallel processor. In this paper, we present a theory that allows

pro�ling for both time and space in heterogeneous parallel programs, while also allowing higher-order constructs on the GPU.

We go on to show how this work could be useful in the �eld of compiler optimizations for parallel languages that support

CPU and GPU parallelism, and how it could be used to guide optimization and rewrite searches in compilers.
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1 INTRODUCTION
Determining the space and time usage of the programs that they write is a critical everyday task that programmers

perform. The trade-o�s between space and time that the programmer considers, and how this informs their

programs can have a dramatic impact on performance, and in turn, a seemingly small misjudgment of the resource

and time usage of programs can have disastrous consequences. While various theories have been developed

to automatically analyze parallel programs for space and time usage, these do not take into account the many

di�erent means of computation and parallelism that the modern programmer now has at their disposal.

To see an example of the problems faced by the modern programmer (and compiler writer), consider the

following program

lambda arrs : (Vec (int, int). parmap (lambda p:(int, int). (fst p * snd p)) arrs

where the parmap array operation can run in parallel on either the CPU or the GPU. How is the programmer — or

even the compiler — supposed to determine where to run this code? Currently, the only ways of determining this

are based either on empirically determining what should be done after multiple runs of the program and then using

heuristics to determine how the computation should be distributed (Ragan-Kelley et al. 2013), or based purely on

programmer know-how, and instinct. But the problems don’t simply end here. Indeed, let’s imagine the previous

program after undergoing a part of the compilation process where we have decided that it should run on the GPU.

One of the most common compiler optimization techniques in this case for the GPU are rewrite rules (McDonell et al.

2013; Steuwer et al. 2015). But once again we have a problem: while some rewrites can speed up the computation,

2017. 2475-1421/2017/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:2 • Timothy A. K. Zakian

other ones can have no e�ect, or even slow the computation down. So how do we determine which rewrite rules

are useful? What’s more, how do we determine which rewrite rules don’t slow the computation down? Once again,

we must fall back to heuristic methods and instinct (Chakravarty et al. 2011). Surely there must be a better way.

Indeed, there is a better way — for homogeneous computations. In the homogeneous case we are almost spoiled

for choice, and the theories have been quite well developed with a number of di�erent ways of determining the

costs of programs such as amortized resource analysis (Ho�mann et al. 2011), sized types (Vasconcelos 2008),

and cost semantics (Blelloch and Harper 2013; Ley-Wild et al. 2009; Sansom and Peyton Jones 1995; Spoonhower

et al. 2010). However, as we use more modern domains of computation we quickly run out of options: if we

wish to analyze a parallel homogeneous program, cost semantics (Spoonhower et al. 2010), and more empirical

methods are the only tools still useful to us; and if we try to add any type of heterogeneity we �nd that there

is no way to successfully pro�le our program other than through empirical and “best guess” methods. Moreover,

as the user-visible line between heterogeneous parts of the computation become increasingly blurred – with

some languages even completely eliding the distinction between CPU and GPU computations (Holk et al. 2014) —

our lack of ability to formally pro�le heterogeneous parallel computations is a problem that will only get worse.

Inspired by the work on cost semantics (Blelloch and Harper 2013; Spoonhower et al. 2010) this paper presents a

theory that will allow programmers to formally pro�le high-level heterogeneous parallel programs and allow com-

piler writers to formally reason about, and pro�le the optimizations that they perform during the compilation pro-

cess. While developing such a theory o�ers a number of advantages and opens up many new opportunities for pro-

grammers and compiler writers alike, such a theory also presents a number of challenges, and care must be taken

to account for a number of di�erent computational patterns that can have signi�cant impacts on the computational

complexity of our programs. In particular, a su�cient pro�ling theory must be able to account for the cost of mem-

ory transfers from the CPU to the GPU; for the di�erent costs of parallelism on the CPU and GPU; for the di�erent

costs associated with the same computational structures on the CPU versus the GPU; and �nally, for how di�erent

types of data might have di�erent cost implications on the CPU and the GPU. Moreover, since we are interested in

pro�ling higher-order (functional) heterogeneous parallel languages, we need to be able encode higher-order con-

structs in the GPU-runnable segments of our programs, and be able to take these into account in our cost system.

In order to allow higher-order constructs on the GPU, we build on the work done in Harlan (Holk 2016; Holk

et al. 2014) where a region based memory model (Tofte and Talpin 1997) is used to allow high-level language

features to run both on the CPU and the GPU. As we will see in later sections, a region based memory model

not only allows us to represent higher-order constructs on the GPU, but also simpli�es the process of reasoning

about space usage and memory transfer costs in our cost framework. Furthermore, the use of a region based

memory management makes this work readily applicable to recent developments in the programming languages

community both for low-level languages such as Rust (Mozilla Research 2010), and for distributed computing (Lu

et al. 2016; Yang et al. 2015) where grouping data with similar lifetimes together can provide signi�cant bene�ts

in terms of memory transfer, reclamation, and safety guarantees.

In this paper we present the theory and details of a formal pro�ling framework for a higher-order heteroge-

neous parallel language based on the operational semantics for the language, and couple this with a region based

memory and e�ect calculus. We make the following contributions.

• We introduce the �rst framework to formally pro�le heterogeneous parallel programs;

• We give a region based memory model for heterogeneous parallel languages, with bounded e�ects and

regions;

• We present a cost semantics for both time and space that takes into account memory transfer times and

merges, is parameterized by di�erent scheduling policies, and uses a region based memory management

system;

• We show how our cost semantic framework could be used to pro�le and guide rewrite optimizations

for both CPU and GPU.
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2 BACKGROUND AND MOTIVATION

2.1 Why Formal Profiling Methods?
There are a variety of di�erent ways of determining the space or time usage of programs. The easiest, and most

straightforward of these, is to simply run the program, and from this seek to determine on average how long

it takes to run, or how much memory it uses. In this paper, we will classify these types of approaches (broadly)

as being ‘informal pro�ling methods’, and classify those methods that seek to determine the costs of programs

in other ways than running the program (e.g., static or semantic means) as ‘formal pro�ling methods.’ In the

common case where the programmer has written their program, and simply wants to determine where they

should focus their optimization attention, informal methods will in general not only be good enough, but also

be the easiest to use. However, as the abstraction level of languages becomes higher and higher, the compiler

needs to be able to determine where it should focus its optimization e�orts, as well as whether the optimizations

that it performs are bene�cial to program performance. Using these more informal means to determine the

optimizations to perform have demonstrated dramatic improvements in speed and e�ciency (Ragan-Kelley et al.

2013), however these more informal methods often take a large amount of time in order to be e�ective — relying

on being able to compile and run the program hundreds, if not thousands of times. This makes the bar for entry

to optimize these programs incredibly high from both a time, and resource usage standpoint.

It is here that informal means of pro�ling fall short; if we are unwilling or unable to devote the amount of

time and resources that they require in order to accurately pro�le our programs, we must currently fall back to

heuristic methods in order to guide the optimizations that our compilers perform. These intuition-based methods

are exactly where we can, and should make formal pro�ling methods shine; if we can pro�le our programs based

on their semantic or static descriptions, we can compute at compile time whether or not certain transformations

performed by the compiler have improved the run time or space e�ciency of the program. We can in turn use this

extra compile-time information that we glean to iteratively guide search strategies for the compiler, to determine

whether or not certain optimizations should be performed (or rolled back), where optimization e�orts should

be focused, or where to place various computations in the heterogeneous setting. In this way, formal pro�ling

methods open up a number of ways for compiler writers to ask – and answer – runtime-type questions at compile

time, and inform their compilation strategies based on these answers.

2.2 Cost Semantics
Cost semantics as we know them today were originally described by Sansom in his dissertation (Sansom and

Sansom 1994) and in a paper with Peyton Jones (Sansom and Peyton Jones 1995) as a way to pro�le higher-order

lazy functional languages. The cost-semantic-system was designed to have an abstract — and hence extensible

— notion of cost, be syntax directed, and based on the operational semantics of the language. Thus the usual pre-

sentation of a cost semantics is through an annotated big-step semantics in which a cost (or costs) are associated

with each step. For instance, a run-of-the-mill cost semantics for the untyped λ-calculus where E; e ⇓ v ; c means

that the expression e evaluates to the value v with cost c in environment E might look like:

E (x ) = v

E;x ⇓ v ; 1
Var

E; λx .e ⇓ λx .e; 1
Lam

E; e1 ⇓ λx .e; c1 E; e2 ⇓ v
′
; c2 E[x 7→ v ′]; e ⇓ v ; c3

E; e1 e2 ⇓ v ; c1 + c2 + c3
App

TheVar and Lam rules say that looking up a variable in the environment, and reducing a lambda expression have

unit cost. TheApp rule says that the cost of applying e1 to e2 is the sum of the costs of evaluating e1 and e2 to values,

plus the cost of evaluating the body of the function in the environment that maps x to the reduced value of e2.
While these rules are remarkably simple for now, as we will see later these semantics will become quite complex.

The syntax-directed nature of the cost semantics is one of the crucial properties that compiler writers can

exploit to their bene�t, since this allows them to easily reason — formally — about how the optimizations they

write a�ect the cost of the underlying program based upon the syntactic transformations that are performed

on the program. However, reasoning about these abstract costs are not very useful unless we can somehow relate
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them to more explicit, real-world costs. In particular, a cost semantics needs to be mapped down to an abstract

(or physical) machine model. Moreover, the choice of the underlying abstract machine is important, since it often

a�ects the structure of the rules for the cost semantics as well as the structure of the costs themselves.

2.3 Other Cost Theories
Beyond cost semantics based on the operational semantics for the language, there have been a number of other

theories developed in order to describe the resource usage and complexity of programs. In particular, there have

been a number of non operational-semantics-based description of cost, for example Van Stone (2003) develops a

denotational cost semantics by interpreting the programs in certain enriched categories, and through this is able

to express costs for higher-order types, and for call-by-value and call-by-name evaluation strategies, in Danner

et al. (2015) the denotational approach to measuring complexity in languages is extended to also take into account

inductively de�ned types. Some of the other means that have been used in order to describe the complexity of

programs have been using program transformations to convert a source program into equations that compute the

original program complexity (Avanzini et al. 2015; Sands 1990). The use of resource-annotated types (Benzinger

2004; Ho�mann et al. 2011) and sized-types (Chin and Khoo 2001; Hughes et al. 1996; Vasconcelos 2008) have also

been a popular and useful means for automatically describing and studying the complexity of programs; however,

they take a more static approach to the description of costs. Loidl and Hammond (1996) introduce a sized type

theory for an eager functional parallel language, speci�cally looking at being able to infer these sized types, and

then using them to determine the cost of evaluating expressions and proving time and space bounds and to use

this information to inform the scheduling policies that are used. One other interesting example of parallelism in

this area is Gimenez and Moser (2016), who use the inherent parallelism found in interaction nets (Lafont 1990)

coupled with sized types to prove complexity results in an extended λ-calculus.

Another means of determining the resource use of languages has been through the use of code instrumentation.

In particular the CerCo project worked on creating a way to determine the cost of functions (and of whole

programs) via an instrumentation process (see e.g., Amadio et al. (2010) and Amadio and Régis-Gianas (2011)). In

particular, their method involves adding labels to the source code such that all loops and function calls (along with

a few other things) must go through a label, and verifying the translation process from the labeled source-code

to assembly. They then analyze the number of (assembly) instructions executed by each labeled section of code,

and then use this to annotate the source code with cost annotations.

2.4 Challenges and Limitations
While we might get the impression from the description of cost semantics above that it is perfect for our purposes,

it would be disingenuous to say that things simply fall into place. Indeed, any cost semantics must be accompanied

by an abstract machine model and a way of mapping the operational (cost) semantics down to this model. This in

particular presents substantial challenges to deal with in the combined CPU/GPU case, since the abstract machine

models for this are scarce, and quite di�cult to deal with (Fortune and Wyllie 1978; Nakano 2012) , especially

in the parallel case. Moreover, due to the heterogeneity of the computation, our machine models must also be

heterogeneous – amounting to two separate abstract machine models that are connected via a model of memory

transfers. As we will see later on, it is possible to create such a heterogeneous machine model that takes into

account the critical and most costly of the aspects of the computation, however, we must at the same time pick

our battles and elide some aspects of the underlying machine model in order to present a machine abstraction that

is usable. We discuss these trade-o�s in more depth and introduce the machine models that we use in Section 5.

While the cost semantic approach may be di�cult, we feel that it not only o�ers the most elegant and easiest

way to pro�le heterogeneous parallel programs, but also opens up the largest number of opportunities to extend

this work into more settings. In particular, the fact that various pro�ling questions can be phrased in terms of

questions about the cost graph that is built using the cost semantics not only greatly increases the power of
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the theory and tools at our disposal, but also makes the theory more readily extensible to other areas and more

amenable to implementation.

3 LANGUAGE DEFINITION AND TYPE SYSTEM
In this section we present the de�nition of the language that we will be using throughout the rest of this paper and

present a region-typing system that statically ensures safety and computational properties about the language.

3.1 Syntax
The core de�nition of our language which we’ll call λG is given in Figure 1, and is an extended form of the

language presented by Fluet and Morrisett (2006) with region abstraction and instantiation forms omitted for

brevity. While the language is particularly sparse for a region-based parallel language since we wish it to be

a usable intermediate language for a compiler, we have also designed it to be suitably expressive so as to allow

programmers to easily and directly express computations within it.

While the majority of the additions to the language are straightforward, the two most subtle – and important

forms – in the language that not only give us the ability to run heterogeneous computations, but also express

parallelism on them are the on and parmap forms. In particular, on e at ρω speci�es that the computation e
should be run on the GPU and that the result of this computation should be stored in the region ρ that is located

on the computational world ω. The other core form in the language that allows us to perform parallel operations

is parmap f [e1, . . . ,en] at ρω which speci�es that the function f should be applied in parallel to each of the

ei and that the result of this map should be stored in the region ρ on world ω. On the CPU, this form amounts

to a normal parallel map call, but on the GPU these coupled with an on correspond to GPU kernels, with each

f ei (approximately) corresponding to a work item. We will go into more detail on what exactly this entails and

how it works in Section 6.

We de�ne a number of metafunctions over the syntax; we de�ne f rv (e ) and f v (e ) to be the set of all free

region variables and variables occuring in e respectively. We likewise have a metafunction |v | that calculates

the size of heap value v . The de�nitions of these are standard, with the letregion form serving as the binder

for region variables.

3.2 Type System
The model of computation that we wish to express, how our computations are distributed, and the hierarchy

between computations and memory residing on di�erent devices is a critical aspect of the design of λG . In

particular, care must be taken to limit certain operations on the GPU since there are computational restrictions

– such as not sparking o� sub-kernels – on these devices. With this in mind, we represent the host and device

hierarchy in a similar way to Harlan (Holk et al. 2014); we only permit computations and memory to be ‘pushed’

to the GPU from the CPU, and memory can only be ‘pulled’ back to the CPU, moreover we limit the creation of

new regions of memory to the CPU. In this sense the CPU strictly dominates the GPU in terms of the operations

that are permitted to be performed on it.

We encode these device hierarchies and restrictions statically in the language through both the type system

and the region system. In particular, we statically disallow bad region accesses (i.e., cross-device region accesses

and out-of-scope accesses), invalid computations, and invalid control structures on device worlds by using

both a standard region-typing system enriched with “region kinds” that demarcate on which world the given

region resides as well as annotate the typing judgement with the current world that the computation is being

typechecked on. Through this use of world-annotated typing judgements and world-annotated regions, we can

disallow both o�-current-world region accesses and invalid device-speci�c computational structures.

The de�nitions for our types, contexts, e�ects, regions stacks, and worlds are given in Figure 1. Our computation

worlds are one of either C (for the CPU) or G (for the GPU), and our region variables are annotated with the
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i ∈ Z r ∈ RNames f ,x ∈ Vars ρω ∈ RVars o ∈ Nbounded

` ::= (r ,o) Region Locations

R ::= (ap,s,refcnt, {o1 7→ v1, . . . ,on 7→ vn }) Regions

S ::= · | S,r 7→ R Ordered Domain/Region Stack

φ ::= {ρ1, . . . ,ρn } E�ect Sets

ω ::= C | G Computation Worlds

T ::= {C 7→ S1,G 7→ S2} Con�guration Tables

τ ::= bool | (µ,ρ) Types

µ ::= int | τ1
φ
−→ τ2 | τ1 × τ2 | Vec τ Boxed Types

Ω ::= {ρ} | ρω ,Ω World Contexts

∆ ::= · | ∆,ρω � φ Region Constraints

Γ ::= · | Γ,x : τ Typing Contexts

e ::= i at ρ | True | False Terms

| if e then et else ef | x
| λx : τ .φe at ρ | e1 e2
| (e1,e2) at ρ | fst e | snd e
| letregion ρ in e | fix f : τ .u | e1‖e2 at ρ
| [e1, . . . ,en] at ρ | parmap f [e1, . . . ,en] at ρ
| on e at ρ

v ::= i | b | (v1,v2) | [v1, . . . ,vn] Heap Values

| clos (x ,e,E) | `

Fig. 1. Syntax of λG

computation world that they reside on. Each region variable in the program is assumed to be unique up-to

the world annotation i.e., all region variables on C are unique. Each region resides in a region stack S, and we

keep two region stacks for our program in a con�guration table T – one region stack for C and another for G.

Moreover, we use the naming convention that all regions copied from one world to another retain their names and

since we only ‘push’ regions from the CPU to the GPU, every region variable on the GPU is unique (on the GPU

region) and has the same region name as its parent region on the CPU. As we will see later on, this purposeful

name shadowing between CPU and GPU region names in the region stacks makes the process of transferring

computations from one world to another much simpler. Our types are standard for region-based typing systems:

booleans are not heap allocated and hence are not annotated with the region where they reside but all other types

are annotated with the region where they reside, and function types are annotated with their set of (latent) e�ects.

Each latent e�ect is a set of all current regions that are accessed by the body of the function – both for reading

and writing. Typing closures in this way statically ensures that the regions of memory that we access within

a given function’s body are valid wherever the function may be applied. In many region typing systems, function

types can be polymorphic over the set of their latent e�ects. We do not have e�ect polymorphism in our language;

since we are using a version of the bounded region calculus from Fluet and Morrisett (2006) we can express

an equivalent amount of polymorphism at the e�ect level as we can with e�ect polymorphism through region

abstraction and instantiation with bounding e�ects.

The typing judgements that we use take the standard form for a region-typing system with the exception that

each typing judgment is annotated with the current world of execution of the expression that is being inferred:

Ω;∆; Γ `ω
exp

e : τ ,φ
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`ctxt Ω;∆; Γ;φ
Ω;∆; Γ `ω

exp
e1 : τ1, φ1 Ω;∆; Γ `ω

exp
e2 : τ2, φ2

Ω `place ρω Ω;∆ `ee φ ⊇ φ1

Ω;∆ `er φ 3 ρω Ω;∆ `ee φ ⊇ φ2

Ω;∆; Γ `ω
exp

e1 ‖e2 at ρω : (τ1 × τ2, ρω ), φ

Ω;∆; Γ `ω
exp

e : (τ1
φ ′
−−→ τ2, ρ′ω ), φ Ω `place ρ′ω Ω;∆ `ee φ ⊇ φ ′

Ω;∆; Γ `ω
exp

ei : τ1, φ Ω;∆ `er φ 3 ρ′ω Ω;∆ `er φ 3 ρω

Ω;∆; Γ `ω
exp

parmap e [e1, . . . , en ] at ρω : ( Vec τ2, ρω ), φ

Ω;∆ `type τ `ctxt Ω;∆; Γ; {ρ1C, . . . , ρ
n
C
}

ρC, Ω;∆, ρC � {ρ1C, . . . , ρ
n
C
}; Γ `C

exp
e : τ , {ρ1

C
, . . . , ρn

C
, ρC }

Ω;∆; Γ `C
exp

letregion ρC in e : τ , {ρ1
C
, . . . , ρn

C
}

`ctxt Ω;∆; Γ; {ρ1C, . . . , ρ
n
C
} = φ ′ Ω `place ρC

ρC
G
, ρC1
G
, . . . , ρCn

G
, Ω;∆, ρCi

G
� {ρC

G
}, ρC
G
� φ ′; Γ `G

exp
e : {ρCi

G
, ρC
G
}

Ω;∆ `er φ 3 ρC Ω;∆ `ee φ ⊇ φ ′

∆; Γ `C
exp

on e at ρC : (t, ρC ), φ

Fig. 2. Typing rules for the parallel constructs of λG

where Ω is the current set of valid computational regions, ∆ is the current set of region constraints
1
, Γ is a

mapping from variables to types, and φ is a set of bounding e�ects for the expression e , and is read “expression

e running on computational world ω has type τ and bounding e�ects φ.” The most interesting typing judgements

for the language are presented in Figure 2. The typing rules for the the rest of the language are fairly standard,

and can be found along with context and type well-formedness rules in Appendix A.

It is in the typing rules in Figure 2 that we enforce the majority of the constraints on our language and which

operations are permitted on a given computational world. In particular, in the letregion rule, we enforce that

the current computational world must be the CPU when we encounter such a form. Since the typing rule for

the on form causes the subexpression to be typed on the GPU computational world, and since there is no way

of relocating computation to the CPU from the GPU, this then statically disallows having letregion expressions

within on forms. Likewise, the fact that the subexpression in the on form is typed in G further statically disallows

sparking o� sub-kernels on the GPU.

4 MEMORY MODELS
In this section we describe the memory model and layout for λG and detail the creation, layout, access, and

transfer of regions in the underlying memory model for this language. In particular we describe a region based

memory model with immutable regions and reference counting to deal with task parallelism. While region-based

memory models have been well studied in the general setting (Tofte and Talpin 1997), region-based memory

models for heterogeneous languages are a relatively new avenue of research having only been introduced in

the past three years (Holk 2016; Holk et al. 2014). And while we re-use a large amount of this previous work

on regions, and particularly the work on regions for heterogeneous languages, we depart from previous work

in some critical areas – especially on the GPU.

4.1 Region Based Memory Management
Representing our heap as a series of “heaplets” on a stack—the region stack—that grows and shrinks as we progress

through the expression and encounter letregion forms greatly simpli�es the space and transfer cost analysis

that we will later conduct. However, introducing a RBMM system especially in a hetrogeneous parallel setting

introduces its own challenges that need to be overcome. In particular, we need to be careful not only about

disallowing same-world race conditions for allocation within regions, but also disallowing cross-world race

conditions while merging parent and child regions. However, before we can conquer these challenges we must

�rst de�ne the lay of the land. We thus start out de�ning what exactly a region ‘is’:

De�nition 4.1 (Region). We de�ne a region R to be a tuple (ap,s,refcnt,ν ) where:

1
Where ρω � ρ′ω means that ρ′ω outlives ρω , or in other words, that ρω occurs to the left of ρ′ω in the region stack.
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|v | + ap > |R | o = ap n =max (BSIZE, |v | + ap − |R |)

R;v ↓δ o@(ap + |v | + 1,s + n,refcnt,ν[o 7→ v])

|v | + ap ≤ |R | o = ap

R;v ↓δ o@(ap + |v | + 1,s,refcnt,ν[o 7→ v])

` = (r ,o) S (r ) = (ap,_,_,_,ν )
o < ap o ∈ dom(ν ) v = ν (o)

S; ` ↑δ v

Fig. 3. Allocation and Reading

• ap is the allocation pointer for the region. Access is atomic;

• s is the size (in bytes) of the region. Access is atomic;

• refcnt is the reference count for the region. Access is atomic;

• ν : Nbounded → v is a mapping from o�sets o in the underlying memory for the region to heap values

v . The o�sets are bounded by the size s of the region.

Since our regions are simply a pair of values to manage the book-keeping for the underlying memory of the

region, creating them is a fairly straightforward process with the exception of initializing the allocation pointer;

since we must record the base of the region (i.e., where the region begins in global memory) this involves in the

simplest case, global synchronous access to a global o�set. Therefore in order to simplify things, in this paper we

assume that creation of regions involves a singular atomic fetch-and-add on the global allocation pointer (where

we add a predetermined base size BSIZE to the global allocation pointer). Bumping a global allocation pointer

to determine allocation areas for new regions is a non-optimal algorithm since we will quickly run out of space

in which to create regions, with a better solution being to use a global free-list of start locations for regions (and

push and pop to these). We do not do this however since it is not critical for the theory, and merely complicates

things. We thus make the following simplifying assumptions about allocation (and de-allocation) of regions:

i ). All creation of regions are race-free (either through a critical section, or since they can be created atomically);

ii ). Once a region is popped o� from the region stack, the portion of memory used by that region may now

be used either by surrounding regions, and/or may be used to create other regions;

iii ). The size of global memory is large enough that all allocations of new regions will succeed.

Also, in order to lessen the notational burden, we shall often con�ate the region R = (ap,s,refcnt,ν ) with its

underlying memory ν where there is no ambiguity. e.g., |R | is the size of ν ,dom(R) = dom(ν ) etc.

Once a region has been allocated, allocations within that region simply involve an atomic bumping of the region

allocation pointer, with the only di�culty arising when we run out of space in the underlying memory. In the

latter case we extend the existing region’s underlying memory with enough space and then retry the allocation.

2
This allocation into regions is formalized by the judgement R;v ↓δ o@R′ which says that allocation of the heap

value v has cost δ and is allocated at o�set o in the modi�ed region R′. We similarly have a rule S; ` ↑δ v for

reading locations in memory which says that reading location ` results in value v in store S with cost δ . The

judgements for these two forms can be found in Figure 3. It may be useful to the reader (indeed we encourage

the reader) to ignore the costs for now, since these will be explained and only become useful in Section 6.

A critical aspect of our regions is that the memory in them is immutable. In particular, not subject to race

conditions. Forcing our regions to be immutable gives us the internal structure to the region that allows us to

easily merge regions that have possibly evolved in parallel on both host and device; since during the merge

process, we know that those sections of the region that are shared will be the same (i.e., we don’t have to worry

2
As a simplifying assumption, we will assume for now that this simply involves increasing the size of the underlying memory, and that

we do not have to reallocate the whole underlying memory bu�er in some other area global memory.
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about merge con�icts in our regions). Another imporant aspect that will be useful is the external structure

between regions given by the region stack; regions in the regions stack form a bounded join semilattice with

respect to the relation :> and a given region stack S, where we say that R1 :> R2 if there exist region stacks

S1,S2, and S3 (all possibly empty) such that for our current store S, S = S1,R1,S2,R2,S3. In this case we say

that R1 is an ancestor of R2. We also de�ne any region to be an ancestor of itself (i.e., R :> R for any region R).

4.2 Properties of GPU Memory
While CPU and GPU memory are similar in many ways, there are some crucial di�erences both in how memory

accesses take place, and how where in memory the data resides can a�ect the cost of reading that location. The

memory hierarchy of the GPU, while similar to that of the CPU, di�ers in some critical ways that a�ect both who

can access the memory as well as the cost of the accesses
3
. In particular, in a similar vein to CPU memory, we have

a hierarchy of levels of memory – private work item memory, local work group memory, and global or constant

memory. However, access to global memory is unsynchronizable, but we do have access to atomics. With these

restrictions in mind, this then means that on the GPU, we cannot resize the region – since this would require

synchronization operations (since we would need to perform multiple operations atomically in order to avoid race

conditions). This means that we are only able to allocate from the space already available within the region when it

is copied over to the GPU. This is also one of the main reasons for restricting region creation to be on the CPU only.

On the GPU, the regions are represented using standard memory bu�ers (and hence reside in global memory).

While this leaves open the possibility of optimizing region placement in non-global memory in order to speed-up

access from within a kernel based on the work on logical regions by Bauer et al. (2012) we do not address this here

and leave it to future work – however the theory we present does take into account local (work group) memory

characteristics. While it may be more optimal to instead lazily transfer regions across as they are needed, this

complicates the cost reasoning both for space usage and memory transfer costs in our semantics. We therefore take

the view that data is copied and allocated immediately for each region that is needed by the expression that we are

about to run on the device when we perform an on call, and that these regions are immediately deallocated upon

completion of the on form and after the requisite copies from device to host memory are performed. Since allocat-

ing bu�ers on the GPU is relatively inexpensive as compared to the cost of transferring region contents from host

to device memory, we are not overly concerned with coalescing memory transfers and trying to not deallocate data

that may just be copied back later (although this would be possible, it would complicate the theory considerably).

4.3 Transferring Memory
Copying regions from the host to the device and vice-versa is done in a piecewise fashion for a given expression;

if e is an expression that uses regions R1,R2 and R3, then we will generate a separate copy call
4

for each separate

region at the time that the on form is encountered. Since this copy is done ‘pointwise’ on each region in our

memory, we not only have that this will preserve the same lattice structure on the GPU as we had on the CPU

between the copied regions, but also that the composition of copies will preserve the region structure that we have

from :> i.e., :> is a bounded join semilattice on regions, and our copy functions create a lattice homomorphism.

This preservation of lattice structure throughout the memory transfer process is critical to the safety of our

language, since if we lose this lattice structure, our type system may no longer re�ect the liveness properties

that are used at the type level of our program – in other words, it would possibly allow well-typed programs to

go wrong. The fact that preservation of the term-level ancestor relationship (:>) preserves the type-level outlives

(�) relationship that we require and vice-versa is formalized in the following theorem:

Theorem 4.2. Let ρω and ρ ′ω be two region types, and let e be an expression whose type has e�ects that encompass

3
See Section 6 for how these memory di�erences a�ect the read and write judgements in Figure 3.

4
Such as clEnqueueReadBuffer and clEnqueueWriteBuffer
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ρω and ρ ′ω , and such that there exists a subexpression e ′ of e such that ρω ,ρ ′ω ∈ f rv (e ′). Then if, during an
evaluation step of e , T (ω) (E (ρω )) = R1 and T (ω)

(
E (ρ ′ω )

)
= R2 then the following statements hold:

1). R1 and R2 are both regions on ω;
2). Let e = C[e ′] for some valid context C . Then R1 :> R2 on the subexpression e ′ of e i� Ω;∆ `rr ρω � ρ

′
ω . Where

Ω and ∆ are the region context, and region constraints respectively that are built from typechecking e until the
end of the e ′.

Proof. By induction on the structure of the typing rules and operational semantics. �

Now that we are transferring regions of memory to- and from device memory, as hinted at earlier, one of the

critical questions to ask is whether regions that have possibly evolved in parallel on both CPU and GPU can have

‘merge con�icts’ when we go to transfer a given region on the GPU back to its parent region on the CPU. In

the end, due to immutability of the data in our regions, we can prove that con�icts do not arise in device-to-host

transfers. In order to formalize this however, we �rst need to de�ne the device-host region merging process:

De�nition 4.3 (RegionMerging). LetR be a region onC andR′ be a copy ofR onG. TakeR1 = (ap
1
,s1,refcnt1,ν1)

and R′
1
= (ap′

1
,s ′
1
,refcnt′

1
,ν ′

1
) to be (possibly empty) evolutions of R and R′ respectively. Then we de�ne the

merge R2 of R1 and R′
1

with cost δ , written R1;R
′
1
B R2;δ as:

δ = ω†β (R1 \ R
′
1
) R2 =memcpy (R1 \ R

′
1
,ap

1
)

R1;R
′
1
B R2;δ

Wherememcpy is a native way of transferring memory from device to host
5

and each of the underlying functions

that we use to transfer memory from one computational world to another are associated with primitive cost

functions ω?
β : ν → Nbounded and ω†β : ν → Nbounded that given a segment of memory on one computational

world determine the cost of transferring that memory over the bus. We will de�ne what exactly these bus-transfer

cost functions are, and how they can be derived in Section 6.

Using this de�nition of region-merging, we can now formalize merge-con�ict freedom in the device-host transfer

process:

Theorem 4.4 (Merge Conflict Freedom). Let R1;R
′
1
B R;δ . Then ∀v ∈ range(R1).v ∈ range(R) ∧ ∀v ∈

range(R′
1
).v ∈ range(R) and ∀o ∈ dom(R1) ∩ dom(R′

1
).ν1 (o) ≡ ν2 (o).

Proof. By de�nition of R1;R
′
1
B R;δ and by immutability of region memory. �

Now that we’ve de�ned how to reason about transferring memory between our di�erent computational worlds,

we move on to de�ning the machine models for those worlds and how they interact with one another.

5 ABSTRACT MACHINE MODELS
Since the cost semantics that we will be using are derived from a low-level operational semantics in which we read

and write to locations in memory, phrasing the costs in terms of the amount of time it takes to access those locations

in memory is the most useful and straightforward way of obtaining accurate costs using our semantic model. The

de facto standard for detailing the costs of reading and writing to memory is through an abstract machine model,
wherein each read or write access to memory is associated with a certain cost or latency. Abstract machine models

are well studied, designed to take into account the critical aspects of memory accesses without concerning them-

selves with the actual workings of the machine or by describing the memory accesses so accurately that the theory

becomes unusable. In this way an abstract machine model is perfect for our uses; since we will be de�ning the cost

5
Such as clEnqueueReadBuffer
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of the underlying reads and writes to memory in terms of the underlying abstract machine model for the current

computation, we want these to be as accurate as possible while still being usable. However, before we get too far

ahead of ourselves de�ning these costs though, let’s �rst de�ne the machine models we’ll be using to derive them.

5.1 CPU Machine Model
There are a number of di�erent well-known abstract machine models that exist for the CPU, and in this paper

we will be using the Parallel Random Access Machine (PRAM) model for the CPU (Fortune and Wyllie 1978)

with Concurrent Read and Concurrent Write (CRCW). While other models such as LogP (Culler et al. 1993)

and BSP (Valiant 1990) can be used, we have chosen the PRAM model due to its simplicity while still o�ering

relatively accurate descriptions of asymptotic complexity

In the PRAM model, a set of P processors share a single memory system. In a single unit of time, each processor

can perform an arithmetic, logical, or memory access operation. Moreover each execution step performed by a

given processor is synchronized with all other currently running processors. The most important facts to us about

the PRAM model are that each operation is unit cost, and that operations are synchronized between processors.

5.2 GPU Machine Model
For the GPU, we have less choice for the machine models that we can use. Particularly, we use the Uni�ed

Memory Machine (UMM) model presented by Nakano (2012). Since the UMM model for the GPU is based o�

of the Discrete Memory Machine (DMM) also presented by Nakano (2012), it’s best to start with the DMM and

then derive the UMM model from this.

The DMM model for the GPU is parametrized by the number of threads p, the width w , and the latency l ,
which corresponds to memory banks of size w with (global) read and write latency l . In particular the memory is

separated into banks B of memory, where B[j] = {m[j],m[j +w],m[j + 2w], . . .} denotes the j’th bank of memory

(where eachm[j] is a memory cell). Memory cells that reside in di�erent banks of memory can be accessed in

unit time, and l time units are required in order to complete an access request to global memory, and continuous

requests are processed in a pipeline fashion. Thus, it would take k + l − 1 time units to perform k continuous

access requests to global memory.

The machine is assumed to have a number of threads T (0), . . . ,T (p − 1). These p threads are then partitioned

into p/w work groups (or warps)W (0), . . . ,W (p/w − 1) such that the i’th work groupW (i ) = {T (i +w ),T (i ∗
w + 1), . . . ,T ((i + 1) ∗w − 1)}. Each work groupW (i ) is activated for (possible) memory access in a round-robin

fashion if any of the work groups requests memory access, and when a given work group is activated, each of

its w threads send memory access requests (one request per thread) to the memory bank. Moreover once a given

thread has sent a memory request, it cannot send another memory request until the previous request has been

completed i.e., it must wait l time units between memory requests.

The UMM model is then de�ned in terms of the DMM model by adding address groups A where A[j] = {m[j ∗
w],m[m∗w+1], . . . ,m[(j+1)∗w−1]} denotes the j’th address group. Thus memory cells in the same address group

do not reside in the same memory bank, and can therefore be accessed simultaneously (and thus a warp access to

a single address group takes only unit time regardless of the number of memory cells in the address group that are

accessed). Moreover, memory accesses in di�erent address groups cost one time unit each since we will then be

accessing multiple memory locations in the same memory bank possibly and since we take into account pipelining

of instructions. We also have the same work group, threading, and work group access pattern as in the DMM model.

This is all that we need to know about the UMM model in order to develop a reasonable cost model for the

GPU. The interested reader is directed to Nakano (2012) for examples of the UMM and DMM models, and a

comparison between the two.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:12 • Timothy A. K. Zakian

5.3 Connecting Machines
Connecting the machines is, in fact, quite straightforward – or at least moreso than one would imagine. In

particular, since we assume implementation-speci�c memory transfer functions (i.e., memory transfer functions

from either openCL (Stone et al. 2010), or CUDA (Nickolls et al. 2008)), the actual connections between the two

machine models are straightforward. In a sense the underlying memory transfer functions are extrinsic forces

acting on our memory and machines, where the only things we can do are to observe how much they cost via

the primitive cost providers (Section 6.6) for those transfer mechanisms. Thus we need not worry about how

the two machine models interact with one another beyond the fact that when we transfer memory from C to

G (or G to C), that the data will reside in global memory, some of it will be placed on local memory on the GPU,

and we have a way to measure how much this process costs.

6 COST SEMANTICS
Now that we have de�ned the machine models for our language, we can develop the cost theory for λG . Since

we are dealing with a parallel language, the scheduling of the threads that we have on the CPU can directly

a�ect the space and time usage of our program. In order to account for these di�erent schedules, we use a similar

technique to that introduced by Spoonhower et al. (2010) whereby our cost semantics build a series-parallel DAG

of operations for the portions of our programs that reside on the CPU, on which we then impose di�erent traversal

strategies. Moreover, in order to account for the high degree of parallelism for GPU programs (i.e. kernels), we

introduce the notion of a device box that takes into account work item cost and is given certain information about

the work group size and memory state of the GPU in order to calculate the cost of the GPU expression (more

on this in Section 6.4). We then use the machine models that we have just de�ned to develop costs for the nodes

that represent the underlying memory accesses of the the computation in the cost graph that we build.

6.1 Cost Graphs
Earlier, we left some detail out when we said that we build up a DAG with our cost semantics; in reality we

wind up building a weighted DAG for our cost graph coupled with special ‘blackboxes’ – or device boxes – that

represent GPU kernels in the CPU cost graph. With this graph structure in mind, we de�ne the the grammar

for our graphs along with our core graph combinators in Figure 4. The notation, terminology, and structuring

of our graphs does not di�er that much from standard graph terminology with the exception of the dvb edges

which correspond to device boxes. We’ll hear more about these special edges shortly in Section 6.4, and while

we prepare ourselves for this, let’s in the meantime discuss the basic operations that we have on our cost graphs.

Since we aren’t concerned with expressing data parallelism on the CPU – and hence only need to express task

parallelism in our CPU cost graph – we simply need to be able to express two computations either running in

parallel or in serial. We thus only need two core combinators for our graphs: ⊕ for serial composition of graphs

(run one computation after the other); and ⊗ for parallel composition, in which we run the two computations

in parallel, and where the δs represent the edge weights for the new edges that we will be adding to the graph

via these combinators. In the case that all of the δs are 1, we simply write ⊕ and ⊗. Moreover, we abuse notation

so that when we write ⊗ici and the current computational world is G this gives us an n-ary version of parallel

composition that does not form a series-parallel graph for our GPU cost graphs.

Notation & Cost Paths. Since our cost graphs are associated with expressions it will prove useful to be able

reason about the unweighted cost graph a given expression generates, we thus de�ne E↓ (e ) to be the unweighted

cost graph generated by e . Another notion that will prove useful to us later on is that of a cost path, which is a

cost graph made entirely out of sequential compositions (i.e., it is a purely sequential cost graph); we’ll sometimes

call these threads.
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v ∈ VVars δ ∈ Nbounded δ?,δ† : R × R × . . . × R → Nbounded

dvb ::=
(
v1,v2,D, {R1, . . . ,Rn } ,δ

?,δ†
)

Device Boxes

e ::= (v1,v2,δ ) | dvb Directed Weighted Edges

V ::= {v1, . . . ,vn } Vertex Set

E ::= {e1, . . . ,en } Edge Set

G ::= (v1,v2,V ,E) Graphs

[v] = (v,v, {v},∅)
[(v1,v2,δ )] = (v1,v2, {v1,v2}, {(v1,v2,δ )})
(v ′

1
,v1,V ,E) ⊕δ (v ′

2
,v2,V

′,E ′) = (v ′
1
,v2,V ∪V

′,E ∪ E ′ ∪ {(v1,v
′
2
,δ )})

(v ′
1
,v1,V ,E) ⊗

δ ′
1

δ ′
2

δ1 δ2
(v ′

2
,v2,V

′,E ′) =

(v ′,v,V ∪V ′ ∪ {v ′,v},E ∪ E ′ ∪ {(v ′,v ′
1
,δ ′

1
), (v ′,v ′

2
,δ ′

2
), (v1,v,δ1), (v2,v,δ2)}) (v,v ′ fresh)

Fig. 4. Cost Graph Operations

6.2 Semantic Rules
The low-level (heap-location-based) operational semantics for the language are also responsible for building the

cost graphs that we analyze to determine the cost of our programs. The rules for the operational semantics and

how they build up the cost graph are presented in Figures 5 and 6 where the judgment

E;σ ;T ;ω; e ⇓ `;σ ′;T ′; c

is read “in environment E, local store σ , and con�guration table T , e evaluates to a value stored at location `
with updated local store σ and con�guration table T ′ and has cost graph c on world ω.” The fact that these

are low-level operational semantics is important for the correctness of our theory, since the underlying costs

are calculated based on the cost of reads and writes to memory. The majority of the rules for the language are

straightforward except for the parallel, region creation, and computational placement rules, so we’ll focus on

explaining those in this section and leave the rest of the reasoning about the simpler rules to the reader. Since

the GPU is a distinctly second-class citizen in terms of its power to control computational placement in our

framework, the operational semantics, and the cost graph that they build all take place and reside on C , and GPU

computations are represented as device box edges in the (CPU) cost graph which are then analyzed separately.
6

One of the critical aspects about the cost graphs that we build is that every region operation needs to be

explicitly represented in the cost graph, and that any pushes and pops to the region stack are marked by nodes

in the cost graph as well. This explicit representation of creation and death of regions along with memory

operations in our cost graph allows us to pro�le for space much more easily than we would otherwise be able

to, as well as take into account the cost of allocating new regions as well as any (possible) deallocation costs

for our regions. Moreover, making our memory operations explicit in the cost graph is critical to proper cost

inference on the graph that is built up and to ensure that we meet the requirements of the abstract machine

models that we are using. We also introduce some notation that we haven’t seen before so we don’t get bogged

down with notation in the rules: we write T [R′/R] for updating (in place) the region R in T with the updated

region R′; we write T (ω) to mean that we are accessing the region stack for computational world ω; and �nally

we write T1; . . . ;Tn � T ;δ to mean that T is the merge of all of the shared regions in the Ti and a copy of all

the non-shared regions, and that this has computational cost δ . It is important to note that we have this explicit

merging and separation of con�guration tables in parallel rules in order to ensure that on a per-thread basis that

6
We can get away with this since the CPU/host is the one responsible for computational placement. Thus we don’t have to worry about

GPU code ever calling into CPU code.
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x ∈ dom(E )

E ;σ ; T ;ω ; x ⇓ E (x );σ ; T ; ∅

r = E (ρω ) R = T (ω ) (r ) R;σ ; i ↓δ o@R′;σ ′

T ′ = T (w )[R′/R] ` = (r , o)

E ;σ ; T ;ω ; i at ρω ⇓ `;σ ′; T ′; [u1] ⊕δ [u2]

(u1, u2 fresh)

E ;σ ; T ; True ⇓ True ;σ ; T ; [u]
(u fresh)

E ;σ ; T ;ω ; False ⇓ False ;σ ; T ; [u]
(u fresh)

E ;σ ; T ;ω ; e1 ⇓ `;σ ′; T ′; c1 T ′(ω );σ ′; ` ↑δ True ;σ ′′

E ;σ ′′; T ′; e2 ⇓ `′; T ′′; c2
E ;σ ; T ;ω ; if e1 then e2 else e3 ⇓ `′; T ′′; c1 ⊕δ c2

E ;σ ; T ;ω ; e1 ⇓ `;σ ′; T ′; c1 T ′(ω );σ ′; ` ↑δ False ;σ ′′

E ;σ ′′; T ′; e3 ⇓ `′; T ′′; c2
E ;σ ; T ;ω ; if e1 then e2 else e3 ⇓ `′; T ′′; c1 ⊕δ c2

r = E (ρω ) R = T (ω ) (r ) R;σ ; clos (x, e, E ) ↓δ o@R′;σ ′

T ′ = T [R′/R] ` = (r , o)

E ;σ ; T ;ω ; λx : τ .φ e at ρω ⇓ `;σ ′; T ′; [u1] ⊕δ [u2]

(u1, u2 fresh)

E ;σ ; T ;ω ; e1 ⇓ `1;σ1; T1; c1 T1 (ω );σ1; `1 ↑δ clos (x, e, E );σ2
E ;σ2; T1;ω ; e2 ⇓ `2;σ3; T2; c2 E[x 7→ `2];σ3; T2; e ⇓ `3;σ4; T3; c3

E ;σ ; T ;ω ; e1 e2 ⇓ `3;σ4; T3; c1 ⊕δ c2 ⊕ c3

E ;σ ; T ;ω ; e1 ⇓ `1;σ1; T1; c1 E ;σ1; T1;ω ; e2 ⇓ `2;σ2; T2; c2
r = E (ρω ) R = T2 (r ) R;σ2; (`1, `2 ) ↓δ o@R′;σ3 T3 = T2[R′/R] ` = (r , o)

E ;σ ; T ;ω ; (e1, e2 ) at ρω ⇓ `;σ3; T3; c1 ⊕ c2 ⊕δ [u]
(u fresh)

E ;σ ; T ;ω ; e ⇓ `;σ ′; T ′; c1 T ′(ω );σ ′; ` ↑δ (`1, `2 );σ ′′

E ;σ ; T ;ω ; fst e ⇓ `1;σ ′′; T ′; c1 ⊕δ [u]
(u fresh)

E ;σ ; T ;ω ; e ⇓ `;σ ′; T ′; c1 T ′(ω );σ ′; ` ↑δ (`1, `2 );σ ′′

E ;σ ; T ;ω ; snd e ⇓ `2;σ ′′; T ′; c1 ⊕δ [u]
(u fresh)

r = E (ρω ) R = T (ω ) (r ) R;σ ; clos (f , u, E[f 7→ (r , o)]) ↓δ o@R′;σ ′

T ′ = T [R′/R] E[f 7→ (r , o)];σ ′; T ′;ω ;u ⇓ `′;σ ′′; T ′′; c

E ;σ ; T ;ω ; fix f : (µ, ρω ).u ⇓ `′;σ ′′; T ′′; [u1] ⊕δ c
(u fresh)

Fig. 5. Cost semantics for the serial portion of λG

the ordering constraints on our region stacks are not violated.
7

The parameterization of the cost semantics by the world of execution is a critical aspect of its de�nition. Since

as we will see in Section 6.4 the GPU cost graphs overlay these cost semantics with scheduling policies and extra

state that we pass in through the local store σ . This then gets re�ected in the read and write costs to memory.

Thus, these operational semantics are used not only for building up the CPU cost graph, but also the cost path

for each individual GPU thread executing within a warp on the device.

Since the local store is only used for GPU computations currently
8

we don’t have to worry about merging,

or how we thread the local state through these rules on the CPU. However, we do need to worry about how the

local state is dealt with in the parallel rules for the GPU. In this case, we use the underlying machine serialization

to memory banks and read/write consistency of global GPU memory to our bene�t, and since local request state

Σji in σ is only there for us to track our memory costs (which take into account these GPU memory artifacts)

we can get around having to deal with parallel merges of the local store
9
. In particular, we use these underlying

machine and semantic artifacts to say that all access to the local store is seen globally within that warp’s work

7
Although the underlying memory for the regions that the region names within the region stack point to are shared between threads.

8
Although, the theory could be easily extended to also encompass CPU caches.

9
Although we could do this via merge functions, but this would then lead to a number of uni-task functions in order to calculate bank-con�ict

costs etc.
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E;σ ;T ;ω; e1 ⇓ `1;σ
′
;T1; c1 E;σ ;T ;ω; e2 ⇓ `2;σ

′
;T2; c2

T1;T2 � T3;δ r = E (ρω ) R = T3 (ω) (r )

R;σ ′; (`1, `2) ↓
δa o@R′;σ1 T4 = T3[R

′/R] ` = (r ,o)

E;σ ;T ;ω; e1‖e2 at ρω ⇓ `;σ1;T4; (c1 ⊗ c2) ⊕δ [u1] ⊕δa [u2]
(u1, u2 fresh)

E;σi−1;Ti−1;ω; ei ⇓ `i ;σi ;Ti ; ci r = E (ρω ) R = Tn (ω) (r )

R;σn ; [`1, . . . , `n] ↓
δ o@R′;σ ′n ` = (r ,o) T ′n = Tn[R

′/R]

E;σ0;T0;ω; [e1, . . . ,en] at ρω ⇓ `;σ ′n ;T
′

n ;

(⊕
i ci

)
⊕δ [u]

(u fresh)

E;σ ;T ; f ei ⇓ `i ;σ
′
;Ti ; ci T1; . . . ;Tn � T ′;δm

r = E (ρω ) R = T ′(ω) (r )

R;σ ′; [`1, . . . , `n] ↓
δa o@R′;σ ′′ T ′′ = T ′[R′/R]

E;σ ;T ;ω; parmap f [e1, . . . ,en] at ρω ⇓ `;σ ′′;T ′′; *
,

⊗
i

ci+
-
⊕δm [u1] ⊕δa [u2]

(u1, u2 fresh)

R = newReдion(T ) rC fresh rC < dom(T [C]) δR = ∆a ( |R |)
E[ρC 7→ rC];σ ;T (C)[rC 7→ R];C; e ⇓ `;σ ;T ′; c

T ′′ = T ′ \ rC

E;σ ;T ;C; letregion ρC in e ⇓ `;σ ;T ′′; [u1] ⊕δR [u2] ⊕ c ⊕ [u3]
(u1, u2, u3 fresh)

{ρ1
C
, . . . ,ρn

C
} = f rv (e ) ri = E (ρi

C
) Ri = T (C) (ri )

push(Ri ,R
′
i ) T ′ = T (G)[ri 7→ R′i ]

δ? = λ{R1, . . . ,Rn } →
∑
Ri ω

?
β (Ri )

D = Je,T ′, `KD Ri ;R
′
i B R̃i ;δi

T ′′ = T [R̃1/R1, . . . , R̃n/Rn] δ† =
∑
i δi

E;σ ;T ;C; on e at ρC ⇓ `
′
;T ′′; (u1,u2,D, {R1, . . . ,Rn },δ

?,δ†)
(u1, u2 fresh)

Where `′ is the corresponding location on C to the location ` on G after region merging.

Fig. 6. Cost semantics for the parallel and region creation portion of λG

group, and is atomic. Thus in the cost graph computation nodes can be represented as running in parallel, but

memory accesses in their underlying read/write judgments assume sequentiality and the accesses to the local

store are serialized (/atomic); we simply ‘forget’ about these serialization costs in the graph we build up in order

to represent that reads and writes will (or can) happen in parallel in reality.

Now that we’ve discussed the overall structuring of our rules, it’s time to discuss the intricacies of some of

the more interesting rules that are presented in Figure 6: the parallel composition rule e1‖e2 �rst builds the cost

graphs c1 and c2 for the the expressions e1 and e2 respectively, our con�guration tables have “split” at this point,

so we must merge them back together with cost δ in order to continue on; we then write this pair to memory

with cost δa . We thus create a cost graph structure in which we compose c1 and c2 in parallel, and then charge

a cost of δ , and then a cost of δa . We explicitly don’t combine the edge weights of δ and δa in order to get rid

of an extra node, since we require that each memory operation be made explicit in our cost graph.

For the letregion rule, we create a new backing region R in memory, as well as an underlying name rC for

the region, and then add this mapping into the correct region stack in our con�guration table and update the

environment so that the environment points to the correct underlying name in our region stack. We then charge
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δR cost of creating this backing region via our ∆a
primitive cost provider, and then build the cost graph c for

the body of the letregion . We then create an edge with weight δR to account for the region creation cost, and

add a node (u2) to demarcate the pushing of the new region onto the region stack. We then serially compose

this with the cost graph for the body, and then add an edge to another node (u3) to demarcate popping o� R from

the region stack at the end of letregion s scope.

The expression e within an on expression corresponds to a kernel on the GPU. Thus we �rst transfer regions

that e uses to the GPU using push which corresponds to a native copy function from the CPU to the GPU (such

as clEnqueueWriteBuffer). We then update the con�guration table with these new regions, shadowing the

underlying region names from the CPU region stack in the GPU region stack. This purposeful name shadowing

ensures that any uses of a given region variable within e will result in the correct region on G being used. We

then form a kernel graph (or device box) for e by �rst creating an unweighted cost graph E↓ (e ) from the body

of the on form, but without �ring the allocation rules in the semantics. We then eagerly group paths through

G into w threads of warps, and then group each of these warps into groups of size p which we call work groups.

The precise way we form these graphs from the normal computation graph is described in Section 6.4. Through

this process, we generate a device box D for the expression e . We then serially compose vertices u1 and u2 onto

this device box that represent the memory transfers to- and from the GPU, as well as have the appropriate edge

weight given by δ? that takes into account the regions that need to be transferred to the GPU, and δ† which

accounts for both the cost of transferring memory back to the CPU, but also the process of merging regions.

6.3 Schedules
While we do not need to worry about di�erent schedules on the GPU since our underlying GPU machine model

requires a given schedule (see Nakano (2012) for more), we still need to factor in how di�erent scheduling policies

for CPU computations can directly e�ect which, and when nodes in the cost graph become active. This, in turn, can

have a large impact on the space and time usage of the program. In order to parameterize our CPU cost graphs by

the scheduling policy that is chosen, we use a similar technique to that of Spoonhower et al. (2010) where a schedule
order E for the cost graph д is de�ned on д’s nodes such that ∀v ∈ д . v E v , and ∀v1,v2 ∈ д . v1 ≺д v2 ⇒ v1 /v2,
where ≺д means thatv1 is a parent ofv2

10
and / is the corresponding strict partial order given by the re�exive reduc-

tion of E. This notion of a schedule between nodes can then be easily extended to schedule orders for sets of nodes:

V1 E V2 ⇐⇒ ∀v1 ∈ V1,v2 ∈ V2 . v1 / v2 (1)

This then provides a way to talk — globally — about all of the events that occur during the evaluation of a

program. However as we will see in a moment, when we are discussing space usage it will be useful to be able

to restrict our view at times to only those nodes that are scheduled simultaneously:

v1 ./ v2 ⇐⇒ v1 E v2 ∧v2 E v1 (2)

We then use this to partition the graph into sets of simultaneously scheduled nodes called steps:

steps(E) = V1, . . . ,Vk such that




∃i . ∀v ∈ д . ∃Vi .v ∈ Vi ,
V1 / . . . /Vk ,
∀i . ∀Vi . ∀v1,v2 ∈ Vi . v1 ./ v2

(3)

From this, we can then de�ne the closure V̂i of the step Vi as

V̂i =
i⋃

k=1

Vk (4)

10
the ordering v1 E v2 can be read as “v1 is scheduled no later than v2”
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a ∈ ValidAddresses ⊂ Nbounded
Σi ::= {a1, . . . ,an }
Li ::= {B[0], . . . ,B[n]}

W
j
i ::=

〈
W k0 (0), . . . ,W kn (n),Lji

〉
ṽ ::= W

j
i | finish | start




W j (i ) ::=
〈{
G ji+w (i +w ), . . . ,G j

l ((i + 1) ∗w − 1)
}
,Σji

〉
Ẽ ::=

(
W

j
i ,W

j+1
i ,δ

)
|

(
W

j
i ,finish,δ

)
|

(
start,W j

i ,δ
)

G̃ ::=
(
start,finish, {ṽ}, Ẽ

)
D ::= start ⊕

⊗
i

*..
,

⊕
j ∆

(
W

j
i ,W

j+1
i

)W j
i

+//
-
⊕ finish

Fig. 7. Warp- and device box definitions.

Thus while all the nodes in V̂i are not necessarily scheduled simultaneously, we have that V̂i /Vi+1. With this

framework, we can then think of the schedule as de�ning a wavefront that progresses across the graph (where

each “wave” is the next step Vi ).
Since our DAG is weighted, it will prove useful to be able to talk about the maximum weight edge that we

encounter during a given step since this will determine the amount of time that a given step in the graph

G = (v1,v2,V ,E) takes:

stepw (Vi ) =

{
0 i = 1

max {δ | vi ∈ Vi , vi−1 ∈ Vi−1, (vi−1,vi ,δ ) ∈ E} otherwise

(5)

6.4 Device Boxes
Due to the high amount of parallelism and special memory characteristics of the GPU, the standard approach

of analyzing costs via a normal computation graph structure annotated with costs is infeasible. In order to get

around these parallelism and memory problems we group GPU computations in our cost graph based on the

underlying computational structure of the GPU; work items (threads) represent a single piece of work, which

are then grouped into warps, and then into work groups (a warp box) which then constitute vertices in the GPU

cost graph (a device box). Each of these work group nodes has some local state – or local memory – that it keeps

track of in addition to a set of warps that make up that particular work group. Since the GPU can have many of

these work groups running simultaneously for a given kernel, the GPU cost graph will be a (not series-parallel)

weighted DAG, where each node in the graph is a single step of one of these work groups. Thus the de�nition

of these cost graphs for the GPU are – while similar from the macro perspective – quite di�erent in important

ways from the cost graphs we have seen before, and the de�nition of them can be found in Figure 7.

A device box D is a weighted DAG, in which each node in the graph is a warp box at a given step j which

contains the local (shared) memory for the warps that are in the work group that it represents. Since every

warp is run in parallel within each work group we dictate that at each step of the warp boxW
j
i _W j+1

i every

(runnable) warpW k (i ) is advanced one (and only one) step: ∀W k (h) ∈ W j
i .W

k (h) �W k+1 (h)11
. Thus if we

have n warps in a warp boxWi with each warp taking k steps to complete, then it would take at least k steps for

Wi to complete. A brief de�nition of the two stepping relations between our warp boxes and warps along with

an example of what the interaction between the two might look like in the device box graph is given in Figure 8.

In order to determine bank con�icts, within each step of a warp we de�ne meta-functions [−]B and A (−)12

that given an address returns the bank equivalence class for that address, and the global address for a given

(region) location. We can then easily de�ne what it means to have a bank con�ict, multicast, and broadcast using

these two meta-functions: we say that a warp at step j has a bank con�ict if there exists a cost path G j (k ) in

11
When a given warp has no more work left, we mark it as dead.

12
We shall abuse notation somewhat and also use A (R, o) to mean the global address for o�set o in region R .
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. . . . . .
G0(0)G0(0)

Gk(1)Gk(0)

G0(1) Gj(0)G0(w � 1)

Gk(w � 1) Gk(w)

. . .
G0(dn/we)

Gk(dn/we) Gk(dn/we + 1)

G0(dn/we + 1) G0((dn/we + 1)w)

Gk((dn/we + 1)w)

. . . . . .
G0(0)G0(0)

Gk(1)Gk(0)

G0(1) Gj(0)G0(w � 1)

Gk(w � 1) Gk(w)

. . .
G0(dn/we)

Gk(dn/we) Gk(dn/we + 1)

G0(dn/we + 1) G0((dn/we + 1)w)

Gk((dn/we + 1)w)

�(W0
0 , W1

0 ) �(W0
dk/pe, W1

dk/pe)

�?

... ...

W
j
i _W j+1

i ::= ∀W j
k ∈ W

j
i .W

j (k ) �W j+1 (k )
W j (i ) �W j+1 (i ) ::= ∀G jl (k ) ∈W j (i ) . G jl (k ) ⇀ G jl+1 (k )

Fig. 8. Stepping relations between warp boxes and warps. Dashed lines are currently active edges, grey ones are to-be-active,
and black ones have been ‘run’.

W j (i ) that accesses or write to a location ` such that

∃a ∈ Σji . [a]B ≡ [A (`)]B ∧ a . A (`)

and we also say in this case that address ` creates a bank con�ict with local request-state Σji and we write this

as [`]B G Σ
j
i . We can likewise say that a warp box at step j has a multicast if there exists an a ∈ Lji such that

���{G
j (k ) | G j (k ) ∈ W j

i ∧ A (`k ) ≡ a}��� > 1 (6)

where `k is the location being accessed by cost path G j (k ). We say that this is a broadcast if Equation (6) is equal

to the number of active threads (i.e., cost paths) inW j (i ).

Building device box graphs. Now that we’ve formalized bank con�icts and broadcasts, we can formalize the

construction of both the device box graph, the warp boxes, and the warps: let G = E↓ (e ) and let {G (0), . . . ,G (n)}
be the set of distinct paths through this graph. We de�ne the step⇀ of a cost path to be the traversal of one

(and only one) edge in the graph and we denote the path G (i ) at step j by G j (i ), and if there are no more vertices
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to traverse,⇀ is a no-op
13

. We then create dn/we warps, where w is our warp-width, as follows:

W 0 (0) =
〈{
G0 (1), . . . ,G0 (w )

}
, {}

〉
, . . . ,W 0 (dn/we) =

〈{
G0 (dn/wew + 1), . . . ,G0 ((dn/we + 1)w )

}
, {}

〉
Where the {} are the empty local-memory request states for each warp. We then group these warps into dk/pe
warp boxes (where p is our work group size and k = dn/we) in the same manner as we built up our warps:

W0

0
=

〈{
W 0 (0), . . . ,W 0 (w )

}
,L0i

〉
, . . . ,W0

dk/p e =
〈{
W 0 (dk/pep), . . . ,W 0 (dk/pe + 1)p

}
,L0
dk/p e

〉
We now de�ne timeδ (G

j (i ),G j+1 (i )) to be the weight of the edge between the j’th and j’th plus 1 vertices in the

cost path G (i )14
. Using this, we then de�ne the edge weight ∆

(
W

j
i ,W

j+1
i

)
to be

∆
(
W

j
i ,W

j+1
i

)
= max

G j (i )∈W j
i

timeδ (G
j (i ),G j+1 (i )) − Bij

where Bij corrects for the memory reads and writes that we have counted as bank con�icts which in fact have

led to multicasts or broadcasts, and is thus calculated as Bij = max {0, (n − k )2} where k is the size of the set

in Equation (6) and n is the total number of (GPU) threads inW
j
i . We then de�ne our device box D using these

warp boxes, and the de�nition of D in Figure 7 where we recall that since we are on G that ⊗ forms the n-ary

parallel composition of its arguments
15

. We then de�ne the (meta) function Je,T , `KD to be the function that

returns to us this device box graph given an expression e that starts out with con�guration table T and returns

its result value at location `.
The intuition behind this construction of a warp’s cost graph is that it is a normal (CPU) cost graph that has

been built up of a number of parallel threads in which each thread is a cost path through a cost graph built using

the operational and cost semantics in Figures 5 and 6 using the evaluation world G passing in the local state

(Lji ,Σ
j
i ). We then impose a stepping relation� on the set of cost paths in the warp that ensures that all of the

threads in the warp are evaluated in lock-step. The fact that the threads in a warp move in lock-step and that

at each step of the warp each cost path in the warp may send one – and only one – memory access request is

critical in order to stay true to the UMM abstract machine model. The fact that these cost paths may send only

one memory request per step makes our explicit representation of every memory operation as a node in the cost

graph crucial to the correctness of the costs, since in this way we can directly link traversal of an edge in a cost

path (i.e.,⇀) and a (possible) memory access request.

6.5 Costs of Reading and Writing Memory
Now that we’ve de�ned device boxes, we need to update the allocation and read judgements for the GPU, as

well as further re�ne the costs for reads and writes on the CPU. We therefore amend Figure 3 so that the cost

determinations in our allocation judgements now di�er based upon the computational world that we are on, as

well as the underlying memory characteristics of the machine. Since we need to be able to track local memory

and local memory requests on the GPU code we also introduce another argument and return value σ in the read

and write judgement. We thus obtain the following judgements:

R;σ ;v ↓c o@R′;σ ′

S;σ ; ` ↑c v ;σ ′

These are read respectively as “allocating heap value v in region R with current local store σ has cost c and

results in an updated region R′ and updated local store σ ′”, and “reading location ` from region stack S with

13
This can be de�ned in terms of our schedule orders before, but we elide that here for simplicity.

14
Note that the weight on these paths is computed on the G computational world and therefore this cost takes into account local memory

and bank con�icts.

15
Hence why the graphs on the GPU are not series-parallel.
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Memory Costs Metrics for CPU

ExpandW

n =max (BSIZE, |v | + ap − |R |)
|v | + ap > |R | o = ap δ = ∆a (n)

R; ();v ↓δ o@(ap + |v | + 1, s + n, refcnt, ν [o 7→ v]); ()
NoExpandW

|v | + ap ≤ |R | o = ap

R; ();v ↓1 o@(ap + |v | + 1, s, refcnt, ν [o 7→ v]); ()

` = (r , o) S (r ) = (ap, _, _, _, ν ) o < ap o ∈ dom(ν ) v = ν (o)

S; (); ` ↑1 v ; ()

Memory Costs Metrics for GPU

NoExpandWE
|v | + ap > |R |

R; (L ji , Σ
j
i );v ↓

δ err ; (L ji , Σ
j
i )

BankConfW

|v | + ap ≤ |R | o = ap [A (R, o)]B G Σ
j
i

Σj+1i = Σji δ = 2

R; (L ji , Σ
j
i );v ↓

δ o@(ap + |v | + 1, s, refcnt, ν [o 7→ v]); (L ji , Σ
j+1
i )

NBankConfW

|v | + ap ≤ |R | o = ap [A (R, o)]B 6G Σ
j
i

Σj+1i = A (R, o) :: Σji δ = A (R, o) ∈ L ji ? 1 : l

R; (L ji , Σ
j
i );v ↓

δ o@(ap + |v | + 1, s, refcnt, ν [o 7→ v]); (L ji , Σ
j+1
i )

BankConfR

` = (r , o) S (r ) = R {ap, _, _, _, ν } [A (R, o)]B G Σ
j
i

o < ap o ∈ dom(ν ) v = ν (o) Σj+1i = Σi δ = 2

S; (L ji , Σ
j
i ); ` ↑

δ v ; (L ji , Σ
j+1
i )

NBankConfR

` = (r , o) S (r ) = R {ap, _, _, _, ν } [A (R, o)]B 6G Σ
j
i

o < ap o ∈ dom(ν ) v = ν (o) Σj+1i = A (R, o) :: Σi δ = A (R, o) ∈ L ji ? 1 : l

S; (L ji , Σ
j
i ); ` ↑

δ v ; (L ji , Σ
j+1
i )

Fig. 9. Definitions of the read and write cost metrics for C and G.

local store σ has cost c and results in heap value v and updated local store σ ′.”16

The CPU read and write judgements in Figure 9 are largely unchanged from Figure 3 with the exception of the

ExpandW rule in which we see a primitive cost provider ∆a (n) introduced. Primitive cost providers are extrinsic

cost functions that are derived either through empirical measurement, or based upon the hardware or software

speci�cation (see Section 6.6 for more). In this case, we say that the cost of allocating a value in a region that

needs to be expanded in order to �t the new value is the cost of expanding the given region – either by a given

base expansion-step size BSIZE or by the amount needed in order to make enough room for the new value.

The read and write rules for the GPU on the other hand have been changed drastically. In particular, they have

been changed in order to take into account not only local memory but also bank con�icts within local memory

based upon the description of the UMM model. Moreover the rules speci�cally disallow any possible increase in

region size on the GPU with any allocation that might lead to such a situation raising an error (NoExpandWE). The

BankConfW rule says that if the region that we are allocating into has enough space, and if the (global address)

location that has been chosen for its allocation has a bank con�ict, that the write operation is charged a cost

of 2, and similarly for BankConfR except for the read we don’t need to ensure that there is enough room in the

region. The NBankConfW rules states that if there is enough room in the region, and if there are no bank con�icts

16
Note that we will only use this local store for the GPU for now, but this local store and how the judgements (might) interact with them

has similarities to the cost judgments found in Blelloch and Harper (2013) for determining the cache e�ciency of programs.
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for the chosen location, then the write is charged either 1 or l cost based on whether or not it is a write to local

or global memory. We reason similarly for reading non bank-con�icting locations in the NBankConfR rule as

we did in the NBankConfW rule.

6.6 Primitive Cost Providers
The primitive cost providers (PCPs) for the language are the extrinsic actors in our cost-semantic theory that

ground it in reality and are critical to both its expressivness and extensibility. Speci�cally, PCPs are costs that

cannot accurately be determined within the cost framework due to them being implementation and/or machine-

type speci�c. And just as the read and write costs from the underlying abstract machines form the “atomic cost

element” in our framework that we use to build our cost graphs, these PCPs form the “atomic cost elements”

for memory allocation and transfer costs
17

. These user-provided costs have the bene�t of making our cost

model more extensible and accurate over a wider range of computational layouts and CPU/GPU con�gurations

since we can have di�erent PCPs that model the di�erent behaviors of allocation and transfer on the di�erent

machine-types and layouts that we may encounter. However, these external costs also introduce a point of failure

in our cost model; if invalid or inaccurate primitive cost providers are supplied, then the results calculated by

the cost model may well be very far o� from reality.

The three primitive cost providers that the user needs to supply are the following:

i). A function ∆a
: Nbounded → Nbounded that is used to calculate the cost of allocating a chunk of memory

of a given size. How this cost is calculated is up to the user, but as was discussed earlier, lack of accuracy

here will only be magni�ed by the cost semantics.

ii). Two functions

ω?
β : ν → Nbounded Cost of CPU/GPU Transfer of Memory ν

ω†β : ν → Nbounded Cost of GPU/CPU Transfer of Memory ν
(7)

Since the cost of transferring memory from the CPU to the GPU and vice-versa can be very costly in compari-

son to the cost of the actual computation that is done on the GPU the accuracy of these functions are also quite

imporant, with lack of accuracy also being magni�ed in the overall cost that we derive for the program
18

.

6.7 Costs
Determining space costs. In order to determine the space usage of our program, we utilize techniques similar to

that described by Spoonhower et al. (2010). However instead of keeping a heap graph and having a reachability

relation on this graph to track the locations that need to be kept alive, we instead look at the region stacks for

both the CPU and the GPU that we maintain and build throughout our graph traversal (on both the CPU cost

graph, and within our device boxes). Moreover, since the operations on our con�guration table and region stacks

are explicit nodes in our cost graphs and device boxes, the con�guration table at any given point is completely

determined by the closure of our current computation step. We thus de�ne T (Vi ,E) to be the con�guration table

at step i under schedule E.

With this de�nition of a con�guration table at step i , we may then de�ne the space usage at a given step in

the computation as the total space used by the locations in the con�guration table at that step:

space(V ,E) = |{` ∈ R | R ∈ S1 ∨ R ∈ S2}| , T (Vi ,E) = {S1,S2} (8)

We can then say that the space required by a schedule E that computes value v is the maximum space usage

17
Indeed, if we had an abstract machine that provided both transfer costs and accounted for allocation we could use those cost metrics here.

18
There has been recent work on calculating accurate costs for these transfers in (Van Werkhoven et al. 2014) but the programmer is free

to use other means of calculating the costs of memory transfers.
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required by any step in the schedule

spacev (E) = max

{
space(Vi ,E) | Vi ∈ steps(E)

}
(9)

Determining time costs for our program is relatively straightforward, with the only intricacies arising from

the device boxes in our cost graph since these determine ‘higher-order edges.’ The weights of these device box

edges in the CPU cost graph can be determined as the sum of applying the regions that need to be transferred

to the function δ? that accounts for the transfer costs of the regions used by the device box
19

, and the time cost

for the device box D is calculated as the longest path from start to finish node. Thus the total amount of time

taken by a program e under schedule E with cost graph G = (v1,v2,V ,E) is the sum of the time taken for each

step given by E through G, or in other words

time(e,E) =
∑

Vi ∈steps(E)

stepw (Vi )

where stepw was de�ned in Equation (5).

7 DISCUSSION
In this section we give a brief example of how the theory infers costs for a program, and use this example to moti-

vate future possible applications and avenues of research building on the theory that we have developed. In partic-

ular, we brie�y look at how the cost semantic theory that we’ve presented in this paper creates the opportunity to:

• Determine whether certain expressions within an on form should actually be run on the GPU (i.e., should

an on form be inserted);

• Use the cost semantics as a scoring function to guide rewrite and computational placement strategies

and memory placement strategies during compilation.

7.1 A brief example
Take the following program in λG that given two vectors of integers that have been zipped together returns a

vector with the product of the two:

letregion r0 in
lambda arrs : (Vec (int r0, int r0), r0) [r0].

on parmap (lambdap:((int r0, int r0), r0) [r0].(fst p * snd p) at r0) arrs at r0

at r0

and where we want to determine whether or not we want to insert the underlined on form. Moreover, in case

we do decide to run the expression in gray on the GPU, we also want to know how much it would cost if we

didn’t use any local memory on the GPU, and if we used w work groups of size p for the kernel.

We �x the following for our analysis: we will use P = 2 processors on the CPU, and set E to be a greedy

depth-�rst schedule on the nodes; we shall simplify and assume that all values within the array arrs have been

evaluated, and are simply pairs of locations (`1, `2) that both point to integers i allocated in the r0 region.

We thus have from the rules in Figure 5 that we will build up the cost graph in Figure 10 for each application

f ei where δr is the cost of reading a memory location on our current computation world, and δw is the cost

of writing to a memory location. In order to simplify the cost analysis, we’ll also assume that the region doesn’t

need to be resized during the running of the grayed-out code.

19
Since regions cannot be expanded on the GPU, we can calculate the merging cost by taking the worst case scenario that all the free space

in the regions that are being transferred to the GPU are �lled and need to be transferred back to their CPU parent regions, however instead

we have it tracked in the region merging de�nition in De�nition 4.3.
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Fig. 10. The (annotated) cost graph generated from the lambda expression inside the grayed-out code in Listing 7.1

c1

c2

cn

1

1

1
1

Fig. 11. The DAG generated by the grayed code in
Listing 7.1 and where the double-struck edges represent
the DAG in Figure 10.
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Fig. 12. Device box generated by the on in Listing 7.1.
Where each thread inside the boxes is an f ei generated
from the parmap.

7.1.1 CPU cost. On the CPU, the PRAM model tells us that the read and write costs to memory are both 1,

we therefore have that δr = δw = 1, and that f ei has a cost of 6 time units. Based on the rules in Figure 6 we

have that the parmap will then create the DAG in Figure 11. Analyzing this, we then determine that given an

array of size n, the grayed-out code will take
4(n−1)+6n

2
units of time to compute the result where the 4(n − 1)

term comes from the edges of weight 1 that are added by the ⊗ operator. Since we only use one region (r0) for

the entirety of the computation, and since this is not resized, as well as since other parts of the region are not

deallocated, we have that our space usage for the program will be bounded by |r0| at the last step in the cost

graph that we build up. We thus get that the space usage for this program is 3n (2 for the closure and 1 for the

allocation of the result for each element of the result array).
20

7.1.2 GPU cost. Since we will be running the code in gray on the GPU, this will generate the device box

in Figure 12, which takes into account the cost of transferring memory to the GPU and the cost of merging that

memory back to the CPU. We shall assume the size of our warps are w and that we have p of these per work

group (warp box). Thus for a kernel on an array of size n we will have k = n/(w ∗ p) work groups. We’ll use

H to denote the total number of threads available on the GPU.

Global memory only. In the case where we use only global memory on the GPU, we have that each memory

read and write will cost l , and therefore that δa = δw = l and hence from Figure 10 that each thread will cost

20
We could very well change the semantics to only create the closure once but we have decided against that for clarity.
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5 · l + 1. Since all of these will be run in parallel, we have that running the code on the GPU will have total time

cost δ?(r0) + δ
† (r0) + (5 · l + 1) · (d(n/H )/ke) where the (d(n/H )/ke) term denotes the number of ‘rounds’ of

work groups that need to be run in the case where the size n of our vector is larger than the total number of

threads H that we have on the GPU.

Using local memory. If we use local (work group shared) memory (We’ll assume no bank con�icts), each read

or write will cost 1 and therefore δr = δw = 1. We again have by Figure 10 that the cost per thread will then

be 5 ∗ 1 + 1, and we then have that it will have total time cost: δ?(r0) + δ
† (r0) + (5 · 1 + 1) · (d(n/H )/ke) + (l ∗ k ).

Where the l ∗ k term comes from the fact that one thread in each work group must write the results for its work

group to global memory after all the threads in the work group have �nished their computations.

The space usage for the GPU cases will be in the same asymptotic class as the CPU, and will take up 6n and

9n space respectively – since during the transfer process from the GPU to the CPU both regions need to be alive,

and since the local version will replicate the local memory state to global memory at the end of the work group

computations.

Once the user provides de�nitions for the primitive cost providers, they can then start calculating the total com-

putational cost for the various options that they have tried, both in terms of computational and memory placement.

7.2 Discussion
While the example above is small and not that complex since we are working through it by hand, we don’t see

the main application of this theory being user-inspection based analysis of the costs of our programs. Instead, we

view this theory as the core of a pro�ling framework similar to Spoonhower et al. (2010) where computational

costs and memory usage can be automatically inferred given a set of primitive cost providers and information

on the various underlying abstract machine model costs, and various scheduling policies to consider.

Viewing the theory that we have presented in this light, a pro�ling framework based on this theory could be

used to better determine placement of computation using similar reasoning to that in the example (but automated),

or after we have decided that a particular portion of the program should run on the GPU, to determine not only

how we should segment the kernel generated by the computation amongst work groups, but also how we should

layout work-group-shared and global memory. Moreover, such a pro�ling framework could be used to create

scoring functions for guiding other optimizations throughout the compilation process.

8 CONCLUSIONS AND FUTURE WORK
In this paper we have developed a cost semantic theory for the pro�ling of heterogeneous parallel programs.

In order to do this however, we have had to make a number of simplifying assumptions. In particular, we haven’t

considered the full power of the GPU and the other forms of memory such as constant and thread local memory

that are available on it. We have also not considered the cache characteristics for our programs on the CPU. We

feel as though that this would be a fairly straightforward addition and could be seen as an extension of the work

by Blelloch and Harper (2013).

While the theory we have presented takes into account work-group-shared memory we do not tackle how

exactly to direct the placement of memory into this work-group-shared memory when we place computations

on the GPU. An interesting extension to this work would be to look at logical regions (Bauer et al. 2012) and

use this work to help guide the placement of memory into local (work group) shared memory.

Another interesting avenue that remains to explore is how this theory could be used to create scoring func-

tions both for machine learning better optimizations for programs and how to better determine placement of

computations. We feel as though this work coupled with the ideas one can �nd in query optimization (Chaudhuri

1998) speci�cally as it applies to the computation graph that we build up could prove incredibly useful to both

determine the e�cacy of optimization techniques for heterogeneous parallel languages in general, as well as

help guide the placement of computation both in the heterogeneous and distributed parallel settings.
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A TYPE SYSTEM
In this section we detail the type and region system for λG . This takes the form of a bounded region calculus

similar to that found in Fluet and Morrisett (2006), which allows us to elide e�ect polymorphism in our type system.

The type system is also designed to statically enforce the constraints that regions cannot be created on the GPU,

and that we cannot create more GPU computations while we are on the GPU; essentially, we enforce that memory

and computations can only be “pushed” from the CPU to the GPU, and “pulled” back from the GPU to the CPU.

The various typing judgements for our type and region system can be found in Figure 14, and Figure 2. Region

contexts Ω are ordered lists of region variables, and region constraint contexts ∆ are ordered lists of region

constraints. Value contexts Γ are unordered lists of variables and types. The well-formedness rules for region

contexts, typing contexts, and e�ects are given in Figures 15, 16, and 17. We summarize the various typing and

context and e�ect well-formedness judgements in the following table:

Judgement Meaning

`reg Ω Region context Ω is well-formed

Ω `rctxt ∆ Region constraint context ∆ is well-formed

Ω;∆ `vctxt Γ Typing context Γ is well-formed

`ctxt Ω;∆; Γ;φ In valid contexts Ω, ∆, and Γ, the latent e�ect φ is well-formed.

Ω;∆ `btype µ The boxed type µ is well-formed

Ω `place ρω The region ρ is valid region variable in Ω
Ω;∆ `type τ Type τ is well-formed

Ω;∆ `e� φ In region context Ω and region constraints ∆, the latent e�ect φ is well-formed

Ω;∆ `rr ρ � ρ
′

If region ρ is alive, then ρ ′ is live as well (region ρ ′ outlive ρ)

Ω;∆ `re ρ � φ If region ρ is alive, then all regions in φ are alive (all regions in φ outlive ρ).

Ω;∆ `er φ 3 ρω The region ρω is a region in the latent e�ect φ
Ω;∆ `ee φ ⊇ φ

′
The latent e�ect set φ ′ is a subset of the latent e�ect φ

∆; Γ `ω
exp

e : τ ,θ Term e running on world ω has type τ and e�ects bounded by region θ
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i ∈ Z r ∈ RNames f ,x ∈ Vars ρω ∈ RVars o ∈ Nbounded

` ::= (r ,o) Region Locations

R ::= (ap,s,refcnt, {o1 7→ v1, . . . ,on 7→ vn }) Regions

S ::= · | S,r 7→ R Ordered Domain/Region Stack

φ ::= {ρ1, . . . ,ρn } E�ect Sets

ω ::= C | G Computation Worlds

T ::= {C 7→ S1,G 7→ S2} Con�guration Tables

τ ::= bool | (µ,ρ) Types

µ ::= int | τ1
φ
−→ τ2 | τ1 × τ2 | Vec τ Boxed Types

Ω ::= {ρ} | ρω ,Ω World Contexts

∆ ::= · | ∆,ρω � φ Region Constraints

Γ ::= · | Γ,x : τ Typing Contexts

e ::= i at ρ | True | False Terms

| e1 ∗ e2 | e1 < e2
| if e then et else ef | x
| λx : τ .φe at ρ | e1 e2
| (e1,e2) at ρ | fst e | snd e
| letregion ρ in e | fix f : τ .u | e1‖e2 at ρ
| [e1, . . . ,en] at ρ | parmap f [e1, . . . ,en] at ρ
| on e at ρ
| e[ρ] | λρ � φ .φ

′

u at ρ
v ::= i | b | (v1,v2) | [v1, . . . ,vn] Heap Values

| clos (x ,e,E) | `

Fig. 13. Full Syntax of λG
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Ω;∆; Γ `ω
exp

e : τ ,φ

`ctxt Ω;∆; Γ;φ
Ω `place ρω Ω;∆ `er φ 3 ρω

Ω;∆; Γ `ω
exp

i at ρω : ( int ,ρω ),φ

Ω;∆; Γ `ω
exp

e1 : ( int ,ρ1ω ),φ Ω;∆ `er φ 3 ρ
1

ω
Ω;∆; Γ `ω

exp
e2 : ( int ,ρ2ω ),φ Ω;∆ `er φ 3 ρ

2

ω
Ω `place ρω ∆ `er φ 3 ρω

Ω;∆; Γ `ω
exp

e1 ∗ e2 at ρω : ( int ,ρω ),φ

Ω;∆; Γ `ω
exp

e1 : ( int ,ρ1ω ),φ Ω;∆ `er φ 3 ρ
1

ω
Ω;∆; Γ `ω

exp
e2 : ( int ,ρ2ω ),φ Ω;∆ `er φ 3 ρ

2

ω

Ω;∆; Γ `ω
exp

e1 < e2 : bool ,φ

`ctxt Ω;∆; Γ;φ

Ω;∆; Γ `ω
exp

False : bool ,φ

`ctxt Ω;∆; Γ;φ

Ω;∆; Γ `ω
exp

True : bool ,φ

Ω;∆; Γ `ω
exp

eb : bool ,φ
Ω;∆; Γ `ω

exp
et : τ ,φ

Ω;∆; Γ `ω
exp

ef : τ ,φ

Ω;∆; Γ `ω
exp

if eb then et else ef : τ ,φ

`ctxt Ω;∆; Γ;φ
x ∈ dom(Γ) Γ(x ) = τ

Ω;∆; Γ `ω
exp

x : τ ,φ

Ω;∆; Γ,x : τ1 `
ω
exp

e ′ : τ2,φ
′

Ω `place ρω Ω;∆ `er φ 3 ρω

Ω;∆; Γ `ω
exp

λx : τ1.
φ ′e ′ at ρω : (τ1

φ ′
−−→ τ2,ρω ),φ

Ω;∆; Γ `ω
exp

e1 : (τ1
φ ′
−−→ τ2,ρω ),φ

Ω;∆ `er φ 3 ρω
Ω;∆; Γ `ω

exp
e2 : τ1,φ Ω;∆ `ee φ ⊇ φ

′

Ω;∆; Γ `ω
exp

e1 e2 : τ2,φ

Ω;∆; Γ `ω
exp

e1 : τ1,φ
Ω;∆; Γ `ω

exp
e2 : τ2,φ

Ω `place ρω Ω;∆ `er φ 3 ρω

Ω;∆; Γ `ω
exp

(e1,e2) at ρω : (τ1 × τ2,ρω ),φ

Ω;∆; Γ `ω
exp

e : (τ1 × τ2,ρω ),φ
Ω;∆ `er φ 3 ρω

Ω;∆; Γ `ω
exp

fst e : τ1,φ

Ω;∆; Γ `ω
exp

e : (τ1 × τ2,ρω ),φ
Ω;∆ `er φ 3 ρω

Ω;∆; Γ `ω
exp

snd e : τ2,φ

Ω;∆; Γ `ω
exp

ei : τ ,φ
Ω `place ρω Ω;∆ `er φ 3 ρω

Ω;∆; Γ `ω
exp

[e1, . . . ,en] at ρω : ( Vec τ ,ρω ),φ

ρω ,Ω;∆,ρω � φ
′′
; Γ `ω

exp
u ′ : τ ,φ ′

Ω `place ρω Ω;∆ `er φ 3 ρω

Ω;∆; Γ `ω
exp

λ ρω � φ
′′.φ

′

u ′ at ρω : (Πρω � φ
′′.φ

′

τ ,ρω ),φ

Ω;∆; Γ `ω
exp

e : (Πρω � φ
′′.φ

′

τ ,ρ1ω ),φ Ω;∆ `er φ 3 ρ
1

ω
Ω `place ρ

2

ω Ω;∆ `re ρ
2

ω � φ
′′ Ω;∆ `ee φ ⊇ φ

′
[ρ2ω/ρω ]

Ω;∆; Γ `ω
exp

e[ρ2ω ] : τ [ρ
2

ω/ρω ],φ

Ω;∆; Γ, f : τ `ω
exp

u : τ ,φ

Ω;∆; Γ `ω
exp

fix f : τ .u : τ ,φ

Fig. 14. The base typing rules for λGbased on the Bounded E�ect Calculus of Fluet and Morrise� (2006)

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:30 • Timothy A. K. Zakian

Ω;∆ `rr ρω � ρ
′
ω

Ω `rctxt ∆ Ω `place ρω
∆ `re ρω � {ρ

1

ω , . . . ,ρ
i
ω , . . . ,ρ

n
ω }

Ω;∆ `rr ρω � ρ
i
ω

Ω `place ρω

∆ `rr ρω � ρω

Ω;∆ `rr ρω � ρ
′
ω Ω;∆ `rr ρ

′
ω � ρ

′′
ω

Ω;∆ `rr ρω � ρ
′′
ω

Ω;∆ `re ρω � φ Ω;∆ `er φ 3 ρω Ω;∆ `ee φ ⊇ φ
′

Ω `rctxt ∆
Ω;∆ `rr ρω � ρ

i
ω i = 1, . . . ,n

Ω;∆ `re ρω � {ρ
1

ω , . . . ,ρ
n
ω }

Ω `place ρ
i
ω

Ω;∆ `e� {ρ
1

ω , . . . ,ρ
n
ω }

Ω;∆ `er {ρ
1

ω , . . . ,ρ
n
ω } 3 ρ

i
ω

Ω;∆ `e� φ Ω;∆ `er φ 3 ρ
i
ω

Ω;∆ `ee φ ⊇ {ρ
i
ω }

n
i=1

Fig. 15. Well formedness rules for regions and e�ects

Ω;∆ `btype µ

Ω `rctxt ∆

Ω;∆ `btype int

Ω;∆ `type τ1 Ω;∆ `e� φ Ω;∆ `type τ2

Ω;∆ `btype τ1
φ
−→ τ2

Ω;∆ `type τ1 Ω;∆ `type τ2

Ω;∆ `btype τ1 × τ2

Ω;∆ `e� φ
′ ρω ,Ω;∆,ρω � φ

′ `e� φ ρω ,Ω;∆,ρω � φ
′ `type τ

Ω;∆ `btype Πρω � φ
′.φτ

Ω `place ρω Ω;∆ `type τ Ω;∆ `e� φ

ρω ∈ Ω

Ω `place ρω

Ω `rctxt ∆

Ω;∆ `type bool

Ω;∆ `btype µ Ω `place ρω

Ω;∆ `type (µ,ρω )

Ω `rctxt ∆ Ω `place ρ
i
ω

Ω;∆ `e� {ρ
i
ω }

n
i=1

Fig. 16. Well formedness rules for types

Ω `rctxt ∆ Ω;∆ `vctxt Γ

`rctxt ·

Ω `rctxt ∆ ρω < dom(∆)
Ω `place ρω Ω;∆ `e� φ

Ω `rctxt ∆,ρω � φ

Ω `rctxt ∆

Ω;∆ `vctxt ·

Ω;∆ `vctxt Γ Ω;∆ `type τ
x < dom(Γ)

Ω;∆ `vctxt Γ,x : τ

`reg Ω `ctxt Ω;∆; Γ;φ

`reg {ρω }

`reg Ω ρω ∈ RVars

`reg ρω ,Ω

Ω;∆ `vctxt Γ Ω;∆ `e� φ

`ctxt Ω; Γ;φ

Fig. 17. Well formedness rules for contexts
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