
ZU064-05-FPR paper 31 October 2017 9:52

Under consideration for publication in J. Functional Programming 1

Ghostbuster: A Tool for Simplifying and
Converting GADTs

TIMOTHY A. K. ZAKIAN
University of Oxford

timothy.zakian@cs.ox.ac.uk

TREVOR L. MCDONELL
University of New South Wales
tmcdonell@cse.unsw.edu.au

MATTEO CIMINI
University of Massachusetts Lowell

matteo cimini@uml.edu

RYAN R. NEWTON
Indiana University

rrnewton@indiana.edu

Abstract

Generalized Algebraic Data Types, or simply GADTs, can encode non-trivial properties in the types
of the constructors. Once such properties are encoded in a datatype, however, all code manipulating
that datatype must provide proof that it maintains these properties in order to typecheck. In this
paper, we take a step towards gradualizing these obligations. We introduce a tool, Ghostbuster, that
produces simplified versions of GADTs which elide selected type parameters, thereby weakening
the guarantees of the simplified datatype in exchange for reducing the obligations necessary to
manipulate it. Like ornaments, these simplified datatypes preserve the recursive structure of the
original, but unlike ornaments we focus on information-preserving bidirectional transformations.
Ghostbuster generates type-safe conversion functions between the original and simplified datatypes,
which we prove are the identity function when composed. We evaluate a prototype tool for Haskell
against thousands of GADTs found on the Hackage package database, generating simpler Haskell’98
datatypes and round-trip conversion functions between the two.

1 Introduction

Languages in the Haskell, OCaml, Agda, and Idris traditions can encode complicated
invariants in datatype definitions. This introduces safety at the cost of complexity. For
example, consider the standard GADT (generalized algebraic datatype) formulation of
length-indexed lists:

1 data Vec a n where

2 VNil :: Vec a Zero

ZU064-05-FPR paper 31 October 2017 9:52

2 T. A. K. Zakian et al.

3 VCons :: a Ñ Vec a n Ñ Vec a (Succ n)

Although this datatype provides additional static guarantees—for example, that we cannot
take the head of an empty list—writing functions against this type necessarily involves
additional work to manage the indexed length type n. In some situations however, such
as when prototyping a new algorithm, the user may prefer to delay the effort required to
fulfill these type obligations until they can verify that the new algorithm is beneficial. In
that case, we can convert the length-indexed list into a regular list by erasing the length
index n and operating over a simplified representation:

1 data Vec' a where

2 Nil' :: Vec' a

3 Cons' :: a Ñ Vec' a Ñ Vec' a

before converting back to the original datatype in order to test the changes within the larger
code base.

However, this final step requires re-establishing the type-level invariants that were
encoded in the original datatype, which may not be straightforward. Perhaps the user
should stick to regular ADTs for this project? Unfortunately, that too may not be an option.
In the 16,183,864 lines of public Haskell code we surveyed, we found 11,213 existing
GADTs with type variables. A person tasked with working in an existing project is unlikely
to be able to reimplement all of a project’s datatypes and operations on them from scratch.

Inspired by the theory of ornaments (McBride, to appear; Dagand & McBride, 2012), we
can think about moving between families of related datatypes that have the same recursive
structure: rather than always working with a GADT, a user could choose to (initially)
write code against a simpler datatype, while still having it seamlessly interoperate with
code using the fancier one. A practical tool to do this could enable a gradual approach
to discharging obligations of indexed datatypes. In this paper, we present such a tool.
We require that it (1) defines canonical simplified datatypes; and (2) creates conversion
functions between the original and simplified representations.

Is it possible to define such a simplification strategy by merely choosing which type
indices to remove from a datatype? While such a method would be convenient for the user,
it is far from obvious that there exists a class of datatypes—or that this class of datatypes
is large enough to be meaningful—for which such an erasure selection yields a canonical
simplified datatype and guarantees that conversion functions can successfully round-trip
all values of the GADT through the simplified representation and back.

In this work, we show how to do exactly that. Using our tool—named Ghostbuster—the
user simply places the following pragma above the definition of Vec:

1 {-# Ghostbuster: synthesize n #-}

and Ghostbuster will generate the definition Vec' above as well as conversion functions
between the two representations:

1 upVec :: Typeable n ñ Vec a n Ñ Vec' a

2 downVec :: Typeable n ñ Vec' a Ñ Maybe (Vec a n)

Since downVec may fail at runtime if the actual size of the vector does not match the
expected size as specified (in the type n and checked at runtime via Typeable) by the

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 3

caller, we return the result wrapped in Maybe, but we could also choose to throw an error

on failure or return a diagnostic message using Either.1 Furthermore, sometimes during
the down-conversion process we cannot determine the specific type index that must be
synthesized, and we must therefore keep it sealed under an existential binding. We can
then make use of this sealed type in contexts that operate over any instance of the sealed
type:

1 data SealedVec a where

2 SealedVec :: Typeable n ñ Vec a n Ñ SealedVec a

3
4 downVecS :: Vec' a Ñ SealedVec a

5 withVecS :: SealedVec a Ñ (@ n. Vec a n Ñ b) Ñ b

Assuming we had such functionality, would that truly make our lives any easier, or
have we just moved our type-checking responsibilities elsewhere? We will show that
manipulating these simplified—or ghostbusted—datatypes is not at all burdensome, and
can indeed make life simpler. As an example, consider implementing deserialization for
our indexed list. With Haskell’98 datatypes such as Vec', a Read instance can be derived
automatically, but an attempt to do so with the Vec GADT results in a cryptic error
message mentioning symbols and type variables only present in the compiler-generated
code. Disaster! On the other hand, since Ghostbuster generates user-level code, we can
leverage the downVec function that is created by the tool to achieve this almost trivially: 2

1 instance (Read a, Typeable n) ñ Read (Vec a n) where

2 readsPrec i s =

3 [(v,s) | (v',s) Ð readsPrec i s

4 , let Just v = downVec v']

Another option for deserialization to GADTs is by using using GHC’s interpreter as a
library via the Hint package. 3 Using this method, after we have deserialized to a simpler—
non-type-indexed—datatype a code generator then converts expressions in this simplified
datatype into an equivalent Haskell expression using constructors of the original GADT.
This is then passed to Hint as a string and interpreted, with the value returned to the
running program. While this represents the most scalable method until now, it has many
downsides, and we compare this method against Ghostbuster in Section 8.

In this paper we scale up the above type-index erasure approach to handle a large number
of datatypes automatically. We make the following contributions.

‚ We introduce the first practical solution to incrementalize the engineering costs
associated with GADTs.

1 For the rest of this paper, we have chosen to represent possibly-partial results in the same manner
as here—by wrapping them in Maybe.

2 Admittedly, this instance would be improved if the constructors of our simplified datatype used
the exact same names as the original, but we append an apostrophe to constructor and type names
as a convention to clearly distinguish the generated, simplified datatypes.

3 http://hackage.haskell.org/package/hint

http://hackage.haskell.org/package/hint

ZU064-05-FPR paper 31 October 2017 9:52

4 T. A. K. Zakian et al.

‚ We give an algorithm for deleting any type variable that meets a set of non-ambiguity
criteria. Our ambiguity criteria establish a gradual erasure guarantee: if a multi-
variable erasure is valid, then any subset of these variables also forms a valid erasure
(Section 5).

‚ We formalize the algorithm in the context of a core language. We show that up-
conversion functions are total and up-then-down is exactly the identity function on
all values in the original GADT (Section 6).

‚ We show how the encoding of dynamically typed values that emerges from the
algorithm can be asymptotically more efficient than a traditional type Dynamic

(Section 2.2).
‚ Viewed in the context of the literature on deriving typeclass instances for

datatypes, Ghostbuster increases the reach of deriving capabilities beyond previous
functional language implementations, by lifting derivations on simpler types to
fancier ones, as with Read above (Section 3).

‚ We describe the Ghostbuster tool, currently implemented as a source-to-source
translator for Haskell, but directly generalizable to other languages. We evaluate the
runtime performance of Ghostbuster conversions compared to the ad-hoc approach
to constructing GADTs using a runtime eval, and apply it to existing datatypes in
9026 packages on the Hackage Haskell package server (Section 8).

Although our approach does not handle all datatypes or Haskell features, it clearly
delineates the class of valid erasures and lays the groundwork for future research. Further,
while Haskell is used in this paper, care has been taken to ensure that the theory and tooling
that we develop is applicable to other functional languages with GADTs.

The layout of this paper is as follows. In the next section we describe the design
constraints and prerequisites for Ghostbuster and give an intuition for our ambiguity
criteria. In Section 3 we give some real-world examples and use cases. We then define and
formalize the core language used by Ghostbuster in Section 4. After this, we present our
ambiguity criteria in Section 5, and then detail our algorithm for down- and up-conversion
functions and prove the round-trip property for our algorithm in Section 6. In Section 7
we discuss some of the Haskell specific design decisions that we have made, possible
extensions, and possible challenges we might face when extending to other languages.
Section 8 then evaluates our prototype implementation of the algorithm against other
methods. We finish with a discussion of related work and conclusions in Sections 9 and 10.

A preliminary version of this paper appeared in the Proceedings of the 2016
International Conference on Functional Programming (McDonell etal., 2016). We have
added a discussion on how strongly-typed GADTs may preclude certain common
algorithms (Section 3.2), significantly expanded our formalization of the core language
(Sections 4.3 and 4.4), expanded the exposition of our ambiguity criteria (Sections 5.2
and 5.3), and expanded Section 6 to include our algorithm for generating type
representations and type equality operations.

2 Design Constraints

The central facility provided by Ghostbuster is a method to allow users to select a subset of
type variables of a given GADT, from which we derive a new datatype that does not contain

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 5

those type variables—they have been erased from the datatype. Furthermore, we generate
an up-conversion function from the original datatype to the newly generated one, as well as
a down-conversion function from the simplified type back to the original, re-establishing
type-level invariants as necessary.

Before jumping into the details of how this is implemented, we first highlight some of the
different problems that can occur when attempting to erase a type variable from a GADT,
which will give us some intuition on the design constraints and behavior of Ghostbuster.
Section 3 explores a larger example in more detail.

2.1 Prerequisite: Testing Types at Runtime

Ghostbuster blurs the line between having a statically-typed and dynamically-checked
program. With Ghostbuster, we can explicitly remove type-level information in one part
of the program (up-conversion), which we then re-establish at some later point (down-
conversion). To accomplish this, a central requirement for Ghostbuster is the ability to
examine types at runtime and to take action based on those tests. Haskell has supported
(open-world) type representations for years via the Typeable class:

1 class Typeable a where -- GHC-7.10

2 typeRep :: proxy a Ñ TypeRep

However, this is insufficient for our purposes because examining a TypeRep value gives us
no type-level information about the type that value represents. Instead, we require a type-
indexed type representation, which makes the connection between the two visible to the
type system:

1 class Typeable a where -- GHC-8.2

2 typeRep :: TypeRep a

While this new Typeable type representation in GHC 8.2 could be used in Haskell,
we have decided to instead generate these type-indexed TypeRep values ourselves for a
couple of reasons: using embedded TypeRep values rather than embedded Typeable class
constraints simplifies our core language since we don’t have to handle typeclass constraints
(Section 4); and other languages that have GADTs do not necessarily have such a way to
connect runtime type tests to the type system (e.g., OCaml), thus using locally-generated
TypeReps allows this work to be implemented in other languages that do not have typeclass
constraints or built-in type-indexed type representations.

We can then use the following functions to compare two types and gain type-level
information when those types are equal:

1 eqT :: (Typeable a, Typeable b) ñ Maybe (a :„: b)

2 eqTT :: TypeRep a Ñ TypeRep b Ñ Maybe (a :„: b)

3
4 data a :„: b where

5 Refl :: a :„: a

ZU064-05-FPR paper 31 October 2017 9:52

6 T. A. K. Zakian et al.

2.2 Erasure Method: Checked versus Synthesized

The basic operation that we provide to users is the ability to erase type variables from
a GADT. However, there are restrictions on which type variables are valid erasure
candidates. Consider the standard list:

1 {-# Ghostbuster: synthesize a #-} -- invalid!

2 data List a where

3 Nil :: List a

4 Cons :: a Ñ List a Ñ List a

If we remove the type parameter a and attempt to synthesize it when converting back to
the original datatype, we will find that it is not possible to write this down-conversion
function. In contrast to our initial Vec example (Section 1), if we remove the information
about the type of the list elements, we cannot later infer that information based solely on
the recursive structure of the list.

For this reason, we allow a second, weaker form of type index erasure. Given the
declaration

1 {-# Ghostbuster: check a #-}

Ghostbuster will generate the following simplified representation of List together with its
conversion functions:

1 data List' where

2 Nil' :: List'
3 Cons' :: @ a. TypeRep a Ñ a Ñ List' Ñ List'
4
5 upList :: Typeable a ñ List a Ñ List'
6 downList :: Typeable a ñ List' Ñ Maybe (List a)

In contrast to Vec', where the erased type was synthesized during down-conversion,
when erasing type variables in checked mode we must embed a representation of the
type directly into the constructor Cons', otherwise this information will be lost. We refer
to the type parameter a as newly existential, as it was not existentially quantified in the
original datatype fed to Ghostbuster. It is only newly existential type variables that require
an explicit type representation to be embedded within the simplified datatype. This is
important, as we surely do not want the user to have to create and manipulate TypeRep

values for all erased parameters.
During down-conversion, we check that each element of the list does indeed have the

same type the user expects:

1 downList :: @ a. Typeable a ñ List' Ñ Maybe (List a)

2 downList Nil' = Just Nil

3 downList (Cons' a' x xs') = do

4 Refl Ð eqTT a' (typeRep :: TypeRep a)

5 xs Ð downList xs'
6 return (Cons x xs)

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 7

Compare this to the definition of down-conversion for our original Vec datatype, which
erased its type-indexed length parameter in synthesized mode:

1 downVecS :: Vec' a Ñ SealedVec a

2 downVecS VNil' = SealedVec VNil

3 downVecS (VCons' x xs') =

4 case downVecS xs' of

5 SealedVec xs Ñ SealedVec (VCons x xs)

6
7 downVec :: Typeable n ñ Vec' a Ñ Maybe (Vec a n)

8 downVec v' =

9 case downVecS v' of

10 SealedVec v Ñ gcast v

This highlights the key difference between erasures in checked versus synthesized mode.
In order to perform down-conversion on List' we must examine the type of each element
and compare it to the type that we expect; thus, we cannot create a SealedList which
hides the type of the elements, since we would not know what type to compare against in
order to perform the conversion. In contrast, down-conversion for Vec' does not need to
know a priori what the type n should be; only if we wish to open the SealedVec do we
need to check (via Data.Typeable.gcast) that the type that was synthesized is indeed
the type we anticipate4. In this sense, synthesized variables require a posteriori knowledge
about what they should be, while checked variables require a priori knowledge of their type
during the down-conversion process.

Connection to dynamic typing We note that this embedded type representation
essentially makes each list element a value of type Dynamic. Why then do we use explicit,
unbundled type representations when Dynamic has existed in Haskell for years? For the
List type above, we would perform the same Opnq number of runtime type checks with
either approach, but consider the following list-of-lists datatype:

1 data LL a where

2 NilL :: LL a

3 ConsL :: [a] Ñ LL a Ñ LL a

These two competing approaches would yield the following simplified types for ConsL
respectively:

1 ConsL'_dyn :: [Dynamic] Ñ LL' Ñ LL'
2 ConsL'_rep :: TypeRep a Ñ [a] Ñ LL' Ñ LL'

Thus, during down-conversion the former would require a runtime type check on every
element of the inner list, whereas our unbundled representation requires only a single check
for each element of the outer list—an improvement in asymptotic efficiency. This is one
reason that we design Ghostbuster to inject explicit type representations using TypeRep.

4 Where Data.Typeable.gcast performs runtime type tests and type-casts and returns Just
something if test and cast is successful and Nothing otherwise.

ZU064-05-FPR paper 31 October 2017 9:52

8 T. A. K. Zakian et al.

Finally, this observation suggests an appealing connection to gradual typing—
when Ghostbusted, data structures that were refined by type indexing become regular,
parametrically polymorphic data structures, which in turn become dynamic datatypes once
all type parameters are erased.

2.3 Unrecoverable Information

Consider the following definition of a strange binary tree:

1 {-# Ghostbuster: synthesize a #-} -- invalid!

2 data Bad a where

3 Leaf :: x Ñ Bad x

4 Node :: Bad y Ñ Bad z Ñ Bad z

Here, only the rightmost leaf of the tree is usable, since every leftward branch is of
some unknown, unusable type y. According to our policy of embedding an explicit type
representation for any newly-existential types (Section 2.2) we will add a TypeRep to the
Leaf constructor to record the erased type x. However, what type representation do we
select for y? Since this type is already unknowable in the original structure we cannot
possibly construct its type representation, so such erasures are not supported.

2.4 A Policy for Allowed Erasures

As we saw in Section 2.2, the defining characteristic of which mode a type variable can be
erased in is determined by whether the erased information can be recovered from what
other information remains. As a more complex example (which we explore further in
Section 3) consider the application case for an expression language:

1 {-# Ghostbuster: check env, synthesize ans #-}

2 data Exp env ans where

3 App :: Exp e (a Ñ b) Ñ Exp e a Ñ Exp e b

Why does the type variable a, which is existentially quantified, not cause a problem? It is
because a is a pre-existing existential type (not made existential by a Ghostbuster erasure).
The type a can be synthesized by recursively processing fields of the constructor, unlike the
Bad example above. Thus, we will not need to embed a type representation so long as we
can similarly rediscover in the simplified datatype the erased type information at runtime.
This is an information-flow criterion that has to do with how the types of the fields in the
data constructor constrain each other.5

Checked mode: right to left In the App constructor, because the env type variable is
erased in checked mode, its type representation forms an input to the downExp down-
conversion function. This means that since we know the type e of the result Exp e b

(on the right), we must be able to determine the e in the fields to the left, namely in

5 This information flow criteria is closely related to inherited and synthesized attributes in attribute
grammars which is discussed in Section 9.

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 9

App e (a b)Exp:: Exp e a Exp e b

!
!! ! !

Fig. 1: Information flow within Ghostbuster for type variables in checked and synthesized
contexts for the App constructor. Boxes are placed around those places where base type
information is determined.

Exp e a and Exp e (a Ñ b). Operationally, this makes sense if we think how the
downExp function must call itself on each of the fields of the constructor, passing the
(same) representation for the type e to each recursive call.

Synthesized mode: left to right Conversely, the type ans forms part of the output of the
down-conversion process, since this type is synthesized by downExp, and we only check
after the conversion that the generated type is the type that we anticipate. This means
that the recursive calls on the fields of the constructor will generate the types (a Ñ b)

and a from the left, which in turn are used to determine the output type b on the right.
Figure 1 shows how this type information is flowed through the App type constructor for
type variables in checked and synthesized position, where to-be-checked type information
during our recursive processing of the datatype is represented by dashed black arrows,
synthesized type information being returned out from the recursive processing of the
constructor is represented by grey arrows, and the shaded grey arrow represents the
determination of b based on the synthesized information about a Ñ b and a.

Fortunately, whether or not type variables a and b can be determined by examining the
other types in the constructor is a purely local check that can be determined in isolation on
a per-constructor/per-datatype basis.6 The same local reasoning holds for the requirements
on checked types as well as synthesized. Together, we call these information flow checks
our ambiguity criterion and formalize this in Section 5.

Erased types that escape Ghostbuster performs one final check before declaring that an
erasure is valid: datatypes undergoing erasure can only be used directly in the fields of
a constructor, not as arguments to other type constructors. For example, what should the
behavior be if we attempt to erase the type variable a in the following:

1 data T a where

2 MkT :: [T a] Ñ T a

6 This is more local than other (tangentially related) features such as the “.” notation in Idris (Brady
etal., 2004) and Agda, which signifies a type is runtime-irrelevant and should be erased during
compilation. Irrelevance requires a whole-program check to verify whether the annotation can be
fulfilled.

ZU064-05-FPR paper 31 October 2017 9:52

10 T. A. K. Zakian et al.

We might expect a sufficiently clever implementation to notice that it can utilize the
Functor instance to apply up- and down-conversion to each element of the list. But what
if the type constructor does not have a Functor instance, or is only exported abstractly,
thereby prohibiting further analysis? Moreover, even if a type constructor fits all these
criteria, we can’t be assured that a valid Functor instance would give rise to valid erasures:
if we took the default Functor instance for pairs in Haskell, the conversion would only
be applied to the second element of the pair which is nothing like what we would like to
get out of our conversion process. This is an incredibly tricky design space, and one in
which it is not only difficult to determine the intended behavior that we would want for
any particular Functor instance to give rise to valid erasures, but also one in which it is
impossible to determine a priori whether or not a given Functor instance has those desired
behaviors. We therefore do not handle these cases in Ghostbuster.

Thus all the datatypes we consider—from Vec to List to Exp and the thousands of
others we survey in Section 8—only have Ghostbusted types directly as fields, not as
type arguments. Only when all of these constraints are met will Ghostbuster generate the
requested datatypes and conversion functions, guaranteeing that they will type-check and
successfully round-trip all (type-correct) values.

3 Life with Ghostbuster

In this section, we describe several concrete scenarios in which Ghostbuster can be used to
make life easier for the programmer by allowing them to more easily implement standard
algorithms over a GADT AST (Section 3.2), and derive standard typeclasses in Haskell for
GADTs that would otherwise require hand-written instances (Section 3.3). We take as a
running example the simple expression language which we define below.

3.1 A Type-safe Expression Language

Implementing type-safe abstract syntax trees (ASTs) is perhaps the most common
application of GADTs. Consider the following language representation:7

1 data Exp env ans where

2 Con :: Int Ñ Exp e Int

3 Add :: Exp e Int Ñ Exp e Int Ñ Exp e Int

4 Var :: Idx e a Ñ Exp e a

5 Abs :: Typ a Ñ Exp (e, a) b Ñ Exp e (a Ñ b)

6 App :: Exp e (a Ñ b) Ñ Exp e a Ñ Exp e b

Each constructor of the GADT corresponds to a term in our language, and the types of
the constructors encode both the type that that term evaluates to (ans) as well as the type
and scope of variables in the environment (env). This language representation enables the
developer to implement an interpreter or compiler which will statically rule out any ill-
typed programs and evaluations. For example, it is impossible to express a program in this
language which attempts to Add two functions.

7 https://github.com/shayan-najd/MiniFeldspar

https://github.com/shayan-najd/MiniFeldspar

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 11

Pass 1 Pass 3

Pass 2up
conversion

down
conversion

GADT
AST

GADT
AST

ADT AST

Fig. 2: In this scenario, we wish to add a prototype transformation into a compiler that uses
sophisticated types, but against a simpler representation. For example, we may want to verify
that an optimization does indeed improve performance, before tackling the type-preservation
requirements of the GADT representation.

Handling variable references is an especially tricky aspect for this style of encoding. We
use typed de Bruijn indices (Idx) to project a type t out of a type level environment env,
which ensures that bound variables are used at the correct type (Altenkirch & Reus, 1999).

1 data Idx env t where

2 ZeroIdx :: Idx (env, t) t

3 SuccIdx :: Idx env t Ñ Idx (env, s) t

Finally, our tiny language has a simple closed world of types Typ, containing Int and (Ñ).

1 data Typ a where

2 Int :: Typ Int

3 Arr :: Typ a Ñ Typ b Ñ Typ (a Ñ b)

Using GADTs to encode invariants of our language (above) into the type system of the
host language it is written in (Haskell) amounts to the static verification of these invariants
every time we run the Haskell type checker. Furthermore, researchers have shown that this
representation does indeed scale to realistically sized compilers: Accelerate (Chakravarty
etal., 2011; McDonell etal., 2013; McDonell etal., 2015) is an embedded language in
Haskell for array programming which includes optimizations and code generation all
written against a GADT AST, maintaining these well-typed invariants through the entire
compiler pipeline.

Where then does the approach run into trouble? The problem is that manipulating this
representation requires the developer to discharge a (potentially non-trivial) proof to the
type system that all of these invariants are maintained. As such, the programmer’s time
may be spent searching for a type-preserving formulation of their algorithm, rather than
working on the algorithm itself. While ultimately such effort is justified in that it rules out
entire classes of bugs from the compiler, we question whether or not this effort should be
required up front, and wonder if, without this extra initial burden, other optimizations or
language features might have been implemented by the Accelerate authors and external
contributors over the life of the project so far.

In the next section, we discuss how Ghostbuster can be used to realize the situation
shown in Figure 2, where we wish to implement a prototype transformation over our
expression language, without needing to discharge all of the typing obligations up front.
Of course, other alternatives exist:

ZU064-05-FPR paper 31 October 2017 9:52

12 T. A. K. Zakian et al.

Competing approach #1: hand-written conversions Rather than using a tool such as
Ghostbuster, a user could just as well build the same conversion functions to and from
a less strictly typed AST representation themselves. Indeed, Ghostbuster itself is written
entirely in Haskell, and no modifications to the GHC compiler were required to support it.
However, this introduces a maintenance burden. Moreover, these conversion functions are
tricky to implement, and since the Haskell type checker cannot stop us from writing ill-
typed conversions to or from our untyped representation, these errors will only be caught
when the runtime type tests fail.

Competing approach #2: runtime eval Another approach is to avoid the fine-grained
runtime type checks necessary for down-conversion entirely, by generating the GADT term
we require as a string, and using GHC embedded as a library in our program to typecheck
(eval) the string at runtime. Implementing a pretty-printer is arguably less complex than
the method we advocate in this work, but there are several significant disadvantages to this
approach which we will demonstrate in Section 8.

3.2 Example #1: Substitution

Consider the task of inlining a term into all use sites of a free variable. For our richly-typed
expression language, where the types of terms track both the type of the result as well
as the type and scope of free variables, this requires a type-preserving but environment
changing value-level substitution algorithm. Luckily, the simultaneous substitution method
of McBride (2006) provides exactly that, where renaming and substitution are instances of
a single traversal, propagating operations on variables closed under shifting structurally
through terms. Listing 1 outlines the method.

Although the simultaneous substitution algorithm is very elegant, we suspect that
significant creativity was required to come up with it. Compare this to the implementation
shown in Listing 2; since no type-level environment manipulation needs to be taken into
account when performing substitution (using shift and rebuild), this simply amounts
to simple structural recursion on terms. In particular, this is implemented against the
simplified representation generated by Ghostbuster using the erasure pragma:8,9

1 {-# Ghostbuster: check env, synthesize ans #-}

which yields the following expression datatype:

1 data Exp' where

2 Con' :: Int Ñ Exp'
3 Add' :: Exp' Ñ Exp' Ñ Exp'
4 Mul' :: Exp' Ñ Exp' Ñ Exp'
5 Var' :: Idx' Ñ Exp'
6 Abs' :: Typ' Ñ Exp' Ñ Exp'

8 The environment type env needs to be provided by the client (checked mode) because otherwise
it is ambiguous. For example, the constant term Con 42 can be typed in any environment.

9 We simultaneously request erased versions of Idx and Typ using the same settings, but elide those
for brevity.

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 13

1 class Syntactic f where

2 varIn :: Idx env t Ñ f env t

3 expOut :: f env t Ñ f env t

4 weaken :: f env t Ñ f (env, s) t

5
6 instance Syntactic Idx

7 instance Syntactic Exp

8
9 shift :: Syntactic f

10 ñ (@ t'. Idx env t' Ñ f env' t')
11 Ñ Idx (env, s) t

12 Ñ f (env', s) t

13 shift _ ZeroIdx = varIn ZeroIdx

14 shift v (SuccIdx ix) = weaken (v ix)

15
16 rebuild :: Syntactic f

17 ñ (@ t'. Idx env t' Ñ f env' t')
18 Ñ Exp env t

19 Ñ Exp env' t

20 rebuild v exp =

21 case exp of

22 Var ix Ñ expOut (v ix)

23 Abs t e Ñ Abs t (rebuild (shift v) e)

24 . . .

25
26 substitute :: Exp (env, s) t Ñ Exp env s Ñ Exp env t

27 substitute old new = rebuild (subTop new) old

28 where

29 subTop :: Exp env s Ñ Idx (env, s) t Ñ Exp env t

30 subTop = . . .

Listing 1: Substitution algorithm for richly-typed terms

7 App' :: Exp' Ñ Exp' Ñ Exp'

and conversion functions:

1 upExp :: (Typeable env, Typeable t)

2 ñ Exp env t Ñ Exp'
3
4 downExp :: (Typeable env, Typeable t)

5 ñ Exp' Ñ Maybe (Exp env t)

Referring to the implementation of Listing 2, note that although the Var' and Abs'
cases constitute environment changing operations, we do not need to manipulate any
embedded TypeRep env values; needing to do so would seriously compromise usability,

ZU064-05-FPR paper 31 October 2017 9:52

14 T. A. K. Zakian et al.

1 shift :: Idx' Ñ Exp' Ñ Exp'
2 shift j exp =

3 case exp of

4 Var' ix | ix < j Ñ Var' ix

5 | otherwise Ñ Var' (SuccIdx' ix)

6 Abs' t e Ñ Abs' t (shift (SuccIdx' j) e)

7 . . .

8
9 substitute :: Exp' Ñ Exp' Ñ Exp'

10 substitute = go ZeroIdx'
11 where

12 go j old new =

13 case old of

14 Var' ix | ix == j Ñ new

15 | ix > j, SuccIdx' i Ð ix Ñ Var' i

16 | ix < j Ñ old

17 Abs' t e Ñ Abs' t (go (SuccIdx' j) e

18 (shift ZeroIdx' new))

19 . . .

Listing 2: Substitution algorithm implemented against the simplified datatype generated by
Ghostbuster

and Ghostbuster is instead able to recover this information automatically (see Sections 2.2
and 2.4).

While in this case an algorithm for operating directly on the richly-typed terms already
existed, there is no guarantee that we will be so lucky for all of the operations we may
wish to perform. An example of this arises in the common compiler optimization of
shrinking (Appel, 2007) in which functions that are only used once are inlined, dead-
code is eliminated, and constant folding is performed. In particular, while linear-time
shrinking algorithms are known for normal ASTs (Appel & Jim, 1997; Benton etal., 2005),
when using ASTs in which GADTs are used to maintain type-level invariants (such as in
our richly-typed expression language) we are no longer able to use these algorithms: the
linear-time shrinking algorithm must be able to contract redexes in any order, however
doing this efficiently requires the ability to in-place update the AST of our program —
which then requires us to prove (and re-prove) that the type-level invariants in our AST are
maintained for each transformation. This represents at the very best a significant—if not
insurmountable— barrier to implementing such an algorithm for richly-typed ASTs.

3.3 Example #2: Template Haskell and Typeclass Deriving

One great feature of Haskell is its ability to automatically derive certain standard typeclass
instances such as Show and Read for Haskell’98 datatypes. Unfortunately, attempting to
do the same for GADTs results only in disappointment and cryptic error messages from

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 15

compiler-generated code. However, as we saw in Section 1, we can regain this capability
by using Ghostbuster and leveraging derived instances for the simplified datatypes instead.

1 instance (. . .) ñ Show (Exp env t) where

2 show = show . upExp

Similarly, some libraries include Template Haskell (Sheard & PeytonJones, 2002)
routines that can be used to automatically generate instances for the typeclasses of that
library. Although these run into problems when applied to GADTs10, once more we can
use Ghostbuster to circumvent this limitation. As an example, we can easily generate JSON
(de)serialization instances for the aeson package11 applied to our richly-typed terms:

1 $(deriveJSON defaultOptions ''Exp')
2
3 instance (. . .) ñ ToJSON (Exp env t) where

4 toJSON = toJSON . upExp

5
6 instance (. . .) ñ FromJSON (Exp env t) where

7 parseJSON v = do

8 v' Ð parseJSON v :: Parser Exp'
9 return $ fromMaybe (error " . . . ") (downExp v')

These examples demonstrate that Ghostbuster enables a synergy with existing Haskell
libraries and deriving mechanisms, providing a convenient method to lift these operations
to GADTs, which may be otherwise precluded.

4 Core Language Definition

Before covering the ambiguity criteria and core algorithm for Ghostbuster in Sections 5
and 6, we first formalize a core language to facilitate the precise description of the
transformations performed by the Ghostbuster tool. This core language also serves as the
intermediate representation of the Ghostbuster implementation. Although we implement
our prototype in Haskell, it is easily extended to generate code for any language that
supports GADTs.

The core language definition is given in Figure 4. The input to Ghostbuster is a set of
datatype definitions, dd1 . . .ddn. The term language is used only as an output language
for generating up- and down-conversion functions. As such, we are not interested in the
problem of type inference for GADTs, rather we assume type annotations that allow us
to use the permissive, natural type system for GADTs (Schrijvers etal., 2009a), which
supports decidable checking (Cheney & Hinze, 2003; Simonet & Pottier, 2007) (but
not inference). Our implementation runs a checker for this type system, and, to support
checking, case and typecase forms are labelled with their return types as well, though
we will elide these in the code throughout the rest of the paper.

10 https://www.reddit.com/r/haskell/comments/5acj3g/derive_fromjson_for_
gadts/

11 https://hackage.haskell.org/package/aeson

https://www.reddit.com/r/haskell/comments/5acj3g/derive_fromjson_for_gadts/
https://www.reddit.com/r/haskell/comments/5acj3g/derive_fromjson_for_gadts/
https://hackage.haskell.org/package/aeson

ZU064-05-FPR paper 31 October 2017 9:52

16 T. A. K. Zakian et al.

data defs

haskell-
src-exts

Generate
simplified

.hs file Ghostbuster
Pipeline

Ambiguity
check

haskell-
src-exts

Lower
TypeRep

.hs file

Typecheck

Haskell
codegen

pretty-printing

Fig. 3: The architecture of the Ghostbuster tool, which processes data definitions in several
passes, resulting in pretty-printed Haskell source on disk. Note that only the ingestion and
code generation phases are Haskell specific: the ambiguity check through lowering phases are
implemented in terms of our core language.

4.1 Syntax

The syntax of terms and types in Figure 4 resembles Haskell syntax with extensions for
type representation handling and extra conventions related to type arguments (k c s) to
indicate the erasure level (respectively, type variables which are kept unchanged in the
output, and those which are erased in checked and synthesized mode, as discussed in
Section 2.2). Without loss of generality, we assume that type constructor arguments are
sorted into these kept, checked, and synthesized categories. This simplifies the discussion
of which type arguments occur in which contexts, based on position. The implemented
Ghostbuster tool does not have this restriction and the status of type arguments are specified
in pragmas, as we saw earlier.

A program consists of a number of datatype declarations followed by mutually-recursive
value definitions (vd) and a “main” term e. The generated up- and down-conversions
will form a series of vds. Terms in our language consist of the lambda calculus, a non-
recursive let with explicit type signatures, simple case expressions and ways of creating,
casing on, and querying equality of runtime type representations, which we call typerep,
typecase, and »τ . The »τ operator must work over arbitrary monotype representations,
comparing them for equality at runtime. typecase also performs runtime tests on type
representations, and enables deconstructing type representations into their component
parts—for example, splitting a function type into an input type and output type. An
example of using typecase to perform this destructuring of typereps can be seen in
the code on Page 33.

We specifically do not handle typeclasses. If we were to handle them, we would need
to be able to discover and then prove the various typeclass constraints in the same way
that we do for type constraints. However, verifying such constraints is impossible without
either using Constraints from GHC.Prim, using unsafeCoerce, or dropping down into
GHC’s intermediate language. More generally, in order to allow typeclass constraints, we
would need not only type-indexed, but typeclass-indexed type representations. And while
GHC allows us to do this by hooking into the underlying intermediate language, this is not
something that is a feature of Haskell or any other (non-intermediate) languages that we
are aware of.

We deviate from the standard presentation of GADTs. Typically, the return type of each
constructor is normalized to the form T a, with any constraints on the output type pushed

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 17

Data constructors K
Type constructors T,S
Type variables a,b,k,c,s
Term variables x,y,z

Monotypes τ ::= a | τ Ñ τ | T τ | TypeRep τ

Type Schemes σ ::= τ | @a.τ
Typing Environments Γ ::= ¨ | x : σ ,Γ

Constraints C,D ::= ε | τ „ τ |C^C
Substitutions φ ::= H | φ ,ta := τu

Programs prog ::= dd1 . . .ddn; vd1 . . .vdm; e
Data Definitions dd ::= data T k c s where

K :: @ k,c,s,b.
τ1 Ñ ¨¨ ¨ Ñ τp Ñ T τk τc τs

Value Definitions vd ::= x :: σ ; x = e
Terms e ::= x | λx :: τ.e | e e | e τ1B τ2

| let x :: σ = e in e
| caserτs e of rpi Ñ eisiPI

| typecaserτs e of
ptyperep Tq x1 . . .xn Ñ e | Ñ e

| if e»τ e then e else e
| K tau | typerep T

Values v ::= K tau e | λx :: τ.e
Patterns p ::= K x1 . . .xn

Type names T ::= T | ArrowTy | Existential

Fig. 4: The core language manipulated by Ghostbuster

into a per-data-constructor constraint (C):

Ki :: @a,b.Cñ τ1 Ñ ¨¨ ¨ Ñ τp Ñ T a

We avoid this normalization. Because we lack typeclass constraints in the language (and
equality constraints over existentially-bound variables can easily be normalized away),
we simply omit per-data-constructor constraints. This means that when scrutinizing a
GADT with case, we must synthesize constraints equating the scrutinee’s type T τ with
T τk τc τs in each Ki clause and then add this into a constraint C, which we will use
during type-checking (Figure 6). The advantage is that avoiding per-constructor constraints
greatly simplifies our definition of the allowable space of input datatypes for Ghostbuster
(Section 5). The absence of per-constructor typeclass constraints from our core language
is also why we require type-indexed TypeRep values (rather than equivalent Typeable
constraints) to observe the type of newly existential type variables (Sections 2.1 and 2.2).

ZU064-05-FPR paper 31 October 2017 9:52

18 T. A. K. Zakian et al.

4.2 Type System

The typing rules for our language are syntax-directed and are given in Figures 5 to 8. The
main judgment forms are the following:

Well-typed Expressions Well-typed Patterns
C,Γ$e e : τ C,Γ$p pÑ e : τ1 Ñ τ2

along with judgments for extending Γ for data definitions pΓ$d dd : Γ1q, value definitions
pΓ$v vd : Γ1q, and for typing whole programs pΓ$prog prog : τq. We also make use of
some syntactic sugar in the typing rules and we will often write τ1, . . . ,τn as τ

n, and τ1 Ñ

. . .Ñ τn Ñ τ as τ
n Ñ τ .

Many of the typing rules are standard, but a few—in particular TYPEREP, TYPECASE,
and IFTYEQ—are unique to our language and separated into Figure 5. Here the TYPEREP

and TYPECASE rules only cover the type constructor T cases, the elided rules for the built-
in type representations T= Existential and T= ArrowTy are nearly identical.

The TYPEREP and TYPECASE rules together allow us to encapsulate the arguments to
the type constructor T in such a way that we can later on—at runtime—destructure and
bind type information for later use, and is why the TYPEREP rule requires that each of its
arguments are TypeReps, and why each xi is given the correct TypeRep type in the right
hand side of the first branch in the TYPECASE rule. Most importantly, both the TYPECASE

and IFTYEQ rules are the way in which we reflect the runtime type-tests that are performed
statically in the typing judgments for the different branches; notice in the TYPECASE rule
that not only is e1 typed with each xi : TypeRep τi but also with the added constraint
that τ0 „ T τ

n, and similarly for the IFTYEQ rule the consequent is typed with the added
constraint τ0 „ τ1. This can be viewed as being similar to what is done in occurence-
typing (Tobin-Hochstadt & Felleisen, 2010a) where type-level information is added to an
expression based upon the knowledge of a given (runtime) predicate having passed.

We depart from previous approaches in the EQ rule in Figure 6 by making the coercion
of an expression from one type (τ1) to another (τ2) explicit via the form e τ1 B τ2

(cf. Schrijvers etal. (2009a)). Without these explicit coercions, when a reduction in our
semantics pushes us under a true branch in a type equality check there would be no
way of recovering the (possibly needed) equations in our constraint environment to show
type equality within that subexpression. We could get around this need for explicit type
coercions in our language by having our semantics return both an expression along with
a constraint environment that is then used in the statement of type preservation, but this
would significantly complicate our semantics.

We lack a full kind system, but we do track the arity of constructors, with T : ‹n P Γ as a
shorthand for the T being an arity-n type constructor. We require that all type constructors
be fully applied except when referenced by name through the (typerep T) form.

It will prove useful later on to only deal with constraint contexts in which all of the types
in our type constraints have been reduced to the smallest possible. We therefore define a
reduction relationá on type constraints τ1 „ τ2 and reduce the type constraints in C based

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 19

upon these:

pTCONRq T τi „ T τk á τi1 „ τk1 ^ . . .^ τin „ τkn

pTYREPRq typerep τ1 „ typerep τ2 á τ1 „ τ2

pARROWRq pτ1 Ñ τ2q „ pτ
1
1 „ τ 12q á τ1 „ τ 11^ τ2 „ τ 12

(1)

Since conjunction is commutative, the order in which we perform the reductions on the
type constraints in C doesn’t matter. If one of the reduction relations defined above applies
to a type constraint τ1 „ τ2, we’ll call that constraint reducible. The one-step reduction of
a constraint CáC1 is then defined to be the reduction of a single reducible type constraint
in C.

We would like for our reduced constraints to have the same power as our original
constraints. Luckily, this proves to be the case: since each constraint reduction relation
has a corresponding expansion in our equality theory, any constraint reduction that we
perform can always be “re-expanded” to get back to the original constraints.

Lemma 1 (Constraint Reduction Preserves Power)
Let C be a constraint, and C1 a one-step reduction of C. Then if C |ù τ1 „ τ2, then C1 |ù
τ1 „ τ2

Proof
It suffices to show that given any C, and one-step reduction C1 of C, that we can transform
C1 back to C. We proceed by case analysis on the reduction relation used from C to C1. If

C =CL^T τi „ T τk^CR

then we will use the TCONR reduction rule to get

C1 =CL^ τi1 „ τk1 ^ . . .^ τin „ τkn
loooooooooooooomoooooooooooooon

p‹q

^CR

Applying rule TSTRUCT w.r.t. T and (‹), we get

CL^T τi „ T τk^CR

which is equal to C.
We apply the exact same reasoning in the other cases, replacing the use of TSTRUCT

with TYREPSTRUCT and ARRSTRUCT for TYREPR and ARROWR respectively.

Definition 1 (Constraint Normalization)
We say that a constraint C is normalized if Eτ1 „ τ2 PC such that τ1 „ τ2 is reducible.

We can now easily show that normalized constraint contexts have the same expressive
power as the original constraints using Lemma 1.

Theorem 1 (Normalization Preserves Power)
Let C be a constraint, and C1 it’s normalization. Then if C |ù τ1 „ τ2, then C1 |ù τ1 „ τ2

Proof
By the definition of normalization we have the following

C =C0 áC1 á . . .áCn =C1

ZU064-05-FPR paper 31 October 2017 9:52

20 T. A. K. Zakian et al.

TYPECASE
C,Γ$e typerep T : TypeRep τ

n
Ñ TypeRep pT τ

nq C,Γ$e e : TypeRep τ0
C^pτ0 „ T τ

nq,ΓYtx1 : TypeRep τ1, . . . ,xn : TypeRep τnu $e e1 : τ C,Γ$e e2 : τ

C,Γ$e typecaserτs e of pptyperep T q x1 . . .xnq Ñ e1 | Ñ e2 : τ

TYPEREP
T : ‹n P Γ

C,Γ$e typerep T : TypeRep τ
n
Ñ TypeRep pT τ

nq

IFTYEQ
C,Γ$e e1 : TypeRep τ1 C,Γ$e e2 : TypeRep τ2

C^pτ1 „ τ2q,Γ$e e1 : τ C,Γ$e e2 : τ

C,Γ$e if e1 »τ e2 then e1 else e2 : τ

Fig. 5: Typing rules for type representations and operations on them

Where each Ci is the one-step reduction of Ci´1 for i ě 1. We then have by repeated
application of Lemma 1 that for each Ci, Ci |ù τ1 „ τ2. From this we get that Cn |ù τ1 „ τ2.
Since C =C0 and Cn =C1 we are done.

Now that we’ve shown that we don’t lose any expressive power through normalizing the
constraints, from now on we assume that all constraints in C are normalized.

4.3 Semantics

The operational semantics for our language is largely straightforward, with the only
intricacies arising from our embedded type representations and how we handle type
coercions. As we mentioned in the previous section, since our operational semantics does
not build up or keep a constraint environment, we need to be able to erase type coercions
and substitute types in our semantics in order to reflect the runtime type-information that
we gather at the type level. This substitution and type coercion erasure in our semantics
can be seen as replacing the propositional equality between types that we have in our type
system with syntactic equality.

Since the type coercions in our language represent tranformation-time promises of type
equalities that must be proved later on at runtime, the erasure of a type coercion in the
semantics represents a discharging of the proof obligation for that coercion to be valid.
Likewise, a substitution of one type for another can be seen as discharging any possible
future proof obligations of type equality between the two types that may be needed later
— changing some propositional equalities (that would rely on some possibly no-longer-
provable constraint) during type checking into syntactic equalities. To this end, once
we have proved that two types are equal we eagerly substitute one of them in for all
occurrences of the other in the remaining term, and perform any coercion erasures that
we can. This leads to the following definition of a type substitution and coercion erasure
function errτ1{τ2ss that recurses naturally on terms, and performs a standard subtitution on

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 21

C,Γ$p pÑ e : τ1 Ñ τ2

PAT

pK : @k c s,b. τx
p Ñ T τ 1

m
q P Γ fvpC,Γ,τm,τrqXb =H

D =

˜

ľ

i=1...m

τ
1
i „ τi

¸

C^D,ΓYtx : τx
pu $e e : τr

C,Γ$p K xp Ñ e : T τ
m Ñ τr

C,Γ$e e : τ

VAR

px : @a.τ 1q P Γ φ = ta := τu

C,Γ$e x : φpτ 1q

LAM

C,ΓYtx : τxu $e e : τ

C,Γ$e λx :: τx.e : τx Ñ τ

APP

C,Γ$e e1 : τ1 Ñ τ2 C,Γ$e e2 : τ1

C,Γ$e e1 e2 : τ2

EQ

C,Γ$ e : τ1

C |ù τ1 „ τ2

C,Γ$ e τ1B τ2 : τ2

CASE

C,Γ$e e : τ @i P I. C,Γ$p pi Ñ ei : τ Ñ τ
1

C,Γ$e case rτ
1s e of rpi Ñ eisiPI : τ

1

LET

C,Γ$e e1 : τ1

C,ΓYtx : @a.τ1u $e e2 : τ2

C,Γ$e let x :: @a.τ1 = e1 in e2 : τ2

CON

pK : @a.τ1 Ñ . . .Ñ τn Ñ T τq P Γ φ = ta := τu

τ
1
1 Ñ . . .Ñ τ

1
n Ñ T τ 1 = φpτ1 Ñ . . .Ñ τn Ñ T τq

C,Γ$e ei : τ
1
i

C,Γ$e K e1 . . .en : T τ 1

Fig. 6: Typing rules for the core language

types and handles coercions as follows:

xrrτ1{τ2ss = x
pλx :: τ.eqrrτ1{τ2ss = λx :: τrτ1{τ2s.errτ1{τ2ss

pe1 e2qrrτ1{τ2ss = e1rrτ1{τ2ss e2rrτ1{τ2ss

pe τ3B τ4qrrτ1{τ2ss = errτ1{τ2ss

if τ3rτ1{τ2s ” τ4rτ1{τ2s

pe τ3B τ4qrrτ1{τ2ss = errτ1{τ2ssτ3rτ1{τ2sB τ4rτ1{τ2s

if τ3rτ1{τ2s ı τ4rτ1{τ2s
...

(2)

ZU064-05-FPR paper 31 October 2017 9:52

22 T. A. K. Zakian et al.

TRUE

C |ù ε

REFL

C |ù τ „ τ

SYM

C |ù τ2 „ τ1

C |ù τ1 „ τ2

GIVENR

C1^C2 |ùC2

GIVENL

C1^C2 |ùC1

TRANS

C |ù τ1 „ τ2 C |ù τ2 „ τ3

C |ù τ1 „ τ3

CONJ

C |ùC1 C |ùC2

C |ùC1^C2

TSTRUCT

C |ù τi „ τ 1i

C |ù T τ i „ T τ 1i

TCON

C |ù T τ i „ T τ 1i

C |ù τi „ τ 1i

ARRSTRUCT

C |ù τi „ τ 1i

C |ù τ1 Ñ τ2 „ τ
1
1 Ñ τ

1
2

ARRCON

C |ù τ1 Ñ τ2 „ τ
1
1 Ñ τ

1
2

C |ù τi „ τ 1i

TYREPSTRUCT

C |ù τ1 „ τ2

C |ù typerep τ1 „ typerep τ2

TYREPCON

C |ù typerep τ1 „ typerep τ2

C |ù τ1 „ τ2

Fig. 7: Equality Theory for the Ghostbuster Type System

Γ$v vd : Γ1

VDEF

ε,Γ1 $e e : τ Γ
1 = ΓYtx : @a.τu

Γ$v x::@a.τ;x = e : Γ
1

$d dd : Γ1

DATA

$d data T an where K :: σ : ΓYtT : ‹n,K : σu

$prog prog : τ

PROG

$d dd : Γd Γd $v vd : Γv ε,Γv $e e : τ

$prog dd;vd;e : τ

Fig. 8: Environment and program typing rules

where the last rule handles the case where we are erasing a type that may occur within
another type, a simple example of which can be seen in the following, where we are saying

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 23

that we have shown τ1 equal to τ3, and τ2 equal to τ4:

pe pτ1 Ñ τ2qB pτ3 Ñ τ4qq rrτ1{τ3ssrrτ2{τ4ss

= perrτ1{τ3ss pτ1 Ñ τ2qrτ1{τ3sB pτ3 Ñ τ4qrτ1{τ3sq rrτ2{τ4ss

= perrτ1{τ3ss pτ1 Ñ τ2qB pτ1 Ñ τ4qq rrτ2{τ4ss

= perrτ1{τ3ssrrτ2{τ4ss pτ1 Ñ τ2qrτ2{τ4sB pτ1 Ñ τ4qrτ2{τ4sq

= errτ1{τ3ssrrτ2{τ4ss

We are now in a position to present the (small-step) operational semantics for our
language, and defined in Figures 9 and 10. The judgment takes the form

Σ;D$ e ãÑ e1

where Σ : TermVarÑ Exp is an environment mapping term variables to expressions and
is what we use to allow us to deal with function definitions and recursive functions in the
language, and D : TypeConstrÑDataConstr is an environment that maps type names and
type constructors to their corresponding runtime type representation—a data constructor
within the language. It is this latter environment that is of particular importance to us,
since it is through this mapping that we are able to reify our static assumptions in the type
system with dynamic (runtime) type checks.

How we build up the Σ environment is straightforward, and is given by both PROG

and VALDEF rules in Figure 9. However, in order to handle possibly mutually-recursive
functions it is important that the VALDEF rule does not inspect the body e of the value
definition in the process of building up our bindings. Building the type representations D
for our language on the other hand is quite a bit more nuanced in its realization and relies
on a minor yet important property of the language: if we encounter a typerep during
the evaluation of the program, that typerep must have occured as a subterm of the
larger program earlier on (i.e., we can’t synthesize typereps). This property is critical
to the correctness of our algorithm when using a closed-world type representation since
it ensures that we can syntactically determine after we have generated the program
which type representations need to be created, and then insert these into the generated
program. Thus there is an important phase distinction between program generation, type
representation creation, and actual evaluation of the program. This property about type
representations in our language is formalized in Theorem 2, and we go into detail on
precisely how we determine and generate the various type representations that need to
be formed in Section 6.4. But for now, it suffices to know that D contains runtime type
representations for all type names that we may encounter under a typerep form in the
generated program.

Using a closed-world type representation in order to test runtime type-equality means
that each type representation will simply be a GADT data constructor in the source
language. The operational semantics makes use of this fact and thus expresses both
typecase and »τ in terms of case statements and equality checks on data constructors
respectively in the TYPECASE and IFTYEQ rules. Note also, how in each of the
TYPECASE and IFTYEQ rules, we perform type equality erasure with the new type-level
information that is gained through the process of matching on the type representations, and
where D´1pKq represents the pre-image of the constructor K in D. Moreover, in order to
simplify data constructor application, we (implicitly) η-expand all data constructors in our

ZU064-05-FPR paper 31 October 2017 9:52

24 T. A. K. Zakian et al.

VALDEF

Σ$ x :: σ ;x = e Σ,x ÞÑ e

PROG

Σ$ vd1 Σ1
...

Σn´1 $ vdn Σn

Σn;D$ e ãÑ‹ v

Σ;D$ dd;vdi;eùñ v

Fig. 9: Environment creation and evaluation judgements for programs.

language, and thus all applications of data constructors are fully saturated with substitution
on the body of the enclosing lambda expressions substituting in the correct types for free
type variables, and the correct expressions for the variables that have been bound in the
η-expansion.

4.4 Metatheory

In this section we detail some of the metatheoretic properties of our language and show our
core language typesafe. Further, we show that we are able to syntactically determine the
required type representations during the conversion process in order to use closed-world
type representations for the generated program.

Syntactic Determination of Type Representations As we mentioned in the previous
section, in order to use a closed-world type representation in the generated program, it
is crucial that we are able to statically determine the various type representations that we
need to generate. The following theorem formalizes this ability:

Theorem 2 (Syntactic Determination of Type Representations)
Let prog = dd;vd;e1 and let $d dd : Γd . Let e be an expression such that ε,Γd $e e : τ .
Then if Σ;D$ e ãÑ‹ typerep T for some type name T then there exists a program context
C12 such that e = Crtyperep Ts.

Proof
By induction on e and the operational semantics.

Type Coercion Erasure As was mentioned in Section 4.3, type coercions represent
outstanding proof obligations of runtime type equality. Thus encountering a closed term
ε, ¨ $e e1 τ1B τ : τ where τ1 ı τ during the reduction process represents the obligation
to prove something from nothing: since we don’t have any other parts of the program to
build constraints that can prove the equality between τ1 and τ , we will have reached a final
unprovable expression if we encounter such a form. Thus while the following theorem
could be viewed as a corollary to progress for the language, in fact we cannot view it
as such since we need this invariant in the proof to show that we don’t encounter (non-
identity) type coercions during our reduction process.

12 Our program contexts are standard and elided for brevity.

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 25

VAR
Σpxq= e

Σ;D$ x ãÑ e

APP

Σ;D$ e1 ãÑ e11
Σ;D$ e1 e2 ãÑ e11 e2

TYPCOEQ
τ1 ” τ2

Σ;D$ e1 τ1B τ2 ãÑ e1

TYPEREP
DpTq= K tau

Σ;D$ typerep T ãÑ λx1 :: τ1Ñ λxn :: τn . K trτ{asu xi

BETA

Σ;D$ pλx :: τ.ebq e ãÑ ebre{xs

LET

Σ;D$ let x :: σ = e in eb ãÑ ebre{xs

CASEEVAL

Σ;D$ e ãÑ e1

Σ;D$ case e of pÑ e ãÑ case e1 of pÑ e

CASEMATCH
Ktau xi Ñ ei P pÑ e

Σ;D$ case Ktτu e of pÑ e ãÑ eire{xisrrτ{ass

TYPECASEEVAL

Σ;D$ e ãÑ e1

Σ;D$ typecase e of et pat Ñ e1 | Ñ e2 ãÑ typecase e1 of et pat Ñ e1 | Ñ e2

TYPECASEMATCH
Σ;D$ typerep T ãÑ λx1 :: τ1Ñ λxn :: τn . K trτi{asu xi

Σ;D$ typecase K tτu eτ of ptyperep Tq xÑ e1 | Ñ e2 ãÑ e1reτ{xsrrτ{ass

TYPECASEFALL

Σ;D$ typerep T ãÑ λx1 :: τ1Ñ λxn :: τn . K1trτi{bsu xi K1 ‰ K
Σ;D$ typecase K tτu eτ of ptyperep Tq xÑ e1 | Ñ e2 ãÑ e2

IFTYEQLEFT

Σ;D$ e1 ãÑ e11
Σ;D$ if e1 »τ e2 then e3 else e4 ãÑ if e11 »τ e2 then e3 else e4

IFTYEQRIGHT

Σ;D$ e2 ãÑ e12
Σ;D$ if e1 »τ e2 then e3 else e4 ãÑ if e1 »τ e12 then e3 else e4

IFTYEQTRUE

TypeRep τ1 = D´1pKq TypeRep τ2 = D´1pK1q K ” K1

Σ;D$ if K tau »τ K1 tau then e1 else e2 ãÑ e1rrτ1{τ2ss

IFTYEQFALSE

K ı K1

Σ;D$ if K tau »τ K1 tbu then e1 else e2 ãÑ e2

Fig. 10: Operational semantics for Expressions in Figure 4.

ZU064-05-FPR paper 31 October 2017 9:52

26 T. A. K. Zakian et al.

Theorem 3 (Type Coercion Erasure)
Suppose that ε, ¨ $e e : τ . Then there does not exist an e1 such that e” e1 τ1Bτ2 for τ1 ı τ2.

Proof
Assume for contradiction that such an e1 did exist. Then by inversion on the EQ rule, we
would have that ε |ù τ1 „ τ2 and therefore τ1 ” τ2. But τ1 was assumed to not be equal to
τ2 which is a contradiction. Therefore no such e1 can exist.

Progress & Preservation Proving progress and preservation for our language is largely
straightforward, however care must be taken with constraints, and in particular how we
introduce them in the type system, and handle them in the semantics. The following lemma
serves as a crucial link between the type-level constraint environment and the type-erasure
that we perform in our semantics.

Lemma 2 (Constraint Substitution)
Let C be a normalized constraint and C^τ1 „ τ2, ¨ $e e : τ . Then Crτ 11{τ

1
2s, ¨ $e errτ 11{τ

1
2ss :

τrτ 11{τ
1
2s. Where we choose the τ 1i according to the following rules:

τ2 P τ,τ1 R τ ñ τ 11 = τ2,τ
1
2 = τ1

otherwise ñ τ 11 = τ1,τ
1
2 = τ2

Proof
The proof follows by induction on the structure of e and by inversion of the typing rules.
The only interesting case arises from the explicit type coercions and the EQ rule—in
particular in showing that

C^ τ1 „ τ2 |ù τ
1 „ τ ùñ Crτ 11{τ

1
2s |ù τ

1rτ 11{τ
1
2s „ τrτ 11{τ

1
2s

This can be shown by proving a more general substitution lemma on constraints:

C |ù τ
1 „ τ

Crτ 11{τ
1
2s |ù τ

1rτ 11{τ
1
2s „ τrτ 11{τ

1
2s

which follows by induction on the proof derivation. We then note that
pC^ τ1 „ τ2q rτ

1
1{τ

1
2s = Crτ 11{τ

1
2s ^ τ 11 „ τ 11 and since τ 11 „ τ 11 holds by reflexivity,

we can then eliminate this constraint from our environment.

The fact that the constraint substitution in Lemma 2 does not necessarily lead to the
same type (syntactically) presents a challenge to proving type safety, but it makes sense: a
constraint τ1 „ τ2 in C represents the ability to coerce a value of type τ1 to a value of type
τ2 (and vice versa), however a substitution rτ1{τ2s represents the obligation to change all
types τ2 to τ1. Furthermore Lemma 2 can be seen as a way to transform propositional into
syntactic equality, so it makes sense that while it should preserve propositional equality
between τ and τrτ1{τ2s it does not necessarily preserve syntactic equality between these
two types.

Since Lemma 2 is central to our proof of preservation, this lack of syntactic equality
presents an issue to the normal formulation of preservation. We will therefore need to
change the statement slightly to take into account that even though the types may change
syntactically during reduction, they do not change semantically. This leads to the following
definition of a propositional equality between types where we say that once we have proved

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 27

two types to be equal at runtime then we can syntactically change our types to get rid of
one of the (now known to be equal) types.

Definition 2
We say that pe,τq « pe1,τ 1q if e ãÑ e1 results in type erasures rrτ1{τ

1
1ss, . . ., and τ1 „ τ 11^

. . . |ù τ „ τ 1. If the reduction does not result in an erasure, then τ ” τ 1.

Theorem 4 (Preservation)
Suppose that ε, ¨ $e e : τ and that Σ;D $ e ãÑ e1. Then ε, ¨ $e e1 : τ 1, and pe,τq « pe1,τ 1q.
Where Σ is built-up as in the premises of the PROG rule.

Proof
The majority of the proof is straightforward, and based on induction over the derivation of
ε, ¨ $e e : τ and a standard preservation proof. The only interesting part is in the handling
of constraints. In particular, in showing that whenever type constraints are introduced in
our typing rules, these correspond to type erasures in the semantics. This correspondence
is shown through a straightforward (and tedious) case analysis on our pattern matching and
type equality testing rules in both the type system and semantics and in each case showing
that the type erasures that are performed in the semantics match with the constraints
introduced in the typing rules, and then using Lemma 2 repeatedly on the normalized
constraint (Definition 1, Theorem 1) to show that the resulting types are « to each other
after each type erasure.

We will need the following (standard) lemma for the proof of progress.

Lemma 3 (Canonical Forms)
1. If v is a value of type T τ , then v is a data constructor for T (i.e., K e).
2. If v is a value of type τ1 Ñ τ2 then v is a lambda expression.

Proof
By inspection of the definition of values in Figure 4, and the typing rules in Figure 6.

Now that we have the Canonical Forms lemma, we have all the tools we will need in
order to prove progress and preservation for our language.

Theorem 5 (Progress)
Suppose that ε, ¨ $e e : τ . Then if e is not a value, then there exists an e1 such that Σ;D $
e ãÑ e1. Where Σ is built-up as in the premises for the PROG rule.

Proof
Straightforward induction on the derivation of ε, ¨ $e e : τ , using Theorem 3 to ensure
that we do not encounter a type coercion when we perform the reduction step, and by use
of Lemma 3.

5 Preconditions and Ambiguity Checking

Before Ghostbuster can generate up- and down-conversion functions, it first performs
a sanity check that the datatypes, together with requested parameter erasures, meet all
preconditions necessary for the tool to generate well-typed conversion functions. Indeed,
as we discussed in Section 2 not every erasure setting is valid. We therefore want to

ZU064-05-FPR paper 31 October 2017 9:52

28 T. A. K. Zakian et al.

create sufficient preconditions such that if these preconditions are met, the Ghostbuster
tool is guaranteed to generate a pair of well-typed functions pup,downq, such that up-
conversion followed by down-conversion is a total identity function. This section details
these preconditions and ambiguity criteria.

5.1 Ambiguity Test

While it would be possible to issue errors at the point Ghostbuster is generating conversion
functions (i.e. in a later pass of the “compiler”), our goal in the ambiguity criteria are
a concise specification of the class of programs handled by Ghostbuster. These non-
ambiguity prerequisites apply per-data-constructor, Ki, and for each datatype that requests
a type erasure (nonempty c or s variables). If all of the constructors for a datatype that is
marked for erasure each individually pass the ambiguity check, then the datatype is marked
as valid. And if all of the datatypes that have been marked for erasure individually pass the
ambiguity check, then the program as a whole is valid. We’ll also need some terminology
for our data constructors as we go forward in order to avoid ambiguity in our ambiguity
criteria. Thus, given a data constructor:

Ki :: @k,c,s,b.τ1 Ñ ¨¨ ¨ Ñ τp Ñ T τk τc τs

We refer to the types τi through τp as the fields of the constructor, and the T τk τc τs

expression as the right-hand side (RHS). Types which occur in a checked or synthesized
context means that they occur within the arguments of some type constructor T in positions
corresponding to its c or s type parameters. Likewise, kept (or non-erased) context k refers
to all types τ that are not in checked or synthesized context.

The primary prerequisite-checks for Ghostbuster are for verifying computability of
checked and synthesized type variables, and the ambiguity check is concerned with the
information flow between the type variables in kept, checked, and synthesized contexts.
That is, whether the type information erased from the simpler up-converted datatype can
be recovered during down-conversion based on the properties and type information of
the simpler datatype. If not, these type variables would not be recoverable upon down-
conversion — and since we are only concerned with datatypes where we can generate both
up- and down-conversion functions for datatypes Ghostbuster rejects the program.

5.2 Type Variables Synthesized on the RHS

In order to synthesize the types τs, we require that for each synthesized type τ 1 P τs on the
RHS, type variables occurring in that type, a P FvJτ 1K, must be computable based on:

1). occurrences of a in any of the fields τ
p. That is, Di P r1, ps . a P FvsJτiK, using the

FvsJK function from Figure 12; or
2). a P FvJτkK. That is, kept RHS types; or
3). a P FvJτcK. That is, a occurs in the checked (input) type.

Note that the occurrences of a in fields of the constructor can be in either kept
or synthesized contexts, but not checked. For example, consider our Exp example
(Section 3.1), where the a variable in the type of an expression Exp e a is determined by

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 29

Abs Abs Var

Int Int Zro

a ⌘ Int b ⌘ Int

ans ⌘ Int ! Int

b ⌘ Int

e := ()

e := ()

b ⌘ Int

a ⌘ Int

(e, a) ⌘ ((), Int)

Fig. 11: Information flow for type variables in checked and synthesized contexts for the program
Abs Int (Abs Int (Var Zro)). Vertical edges are processed before horizontal edges.

the synthesized a component of its sub-expressions, bottoming out at leaf expressions such
as constants and variables. In contrast, checked variables in the fields must be created by
the down-conversion function as inputs to recursive down-conversion calls on the value’s
fields. Thus in (1). they cannot be a source of new information to determine synthesized
outputs, and we have to use the FvsJK rather than the FvJK metafunction above in order to
determine the types available to us during the synthesization process. Conversely, notice
that we do not worry about applying the above prerequisites to synthesized variables inside
fields—these are the outputs of recursive down-conversion calls. Their computability is
left to an inductive argument (bottoming out at “leaf” constructors such as Exp’s Con). An
example of valid type-information flow for a small program in the language of Section 3.1
is given in Figure 11 where the grey arrows represent synthesized type-information being
returned back out by the recursion, the black dashed arrows represent checked type-
information being pushed down into the recursive calls on the datatype, and the grey dashed
arrows represent synthesized type information that has been discovered at a previous step
being pushed down into the recursive calls on the datatype.

5.3 Type Variables in Checked Context

All types in checked context in τ1 . . .τp are implicit arguments to the down-conversion
function that will process that field. Thus for all τi in checked context, all a P FvJτiK must
be computable based on information available at that point, which includes:

1). kept or checked variables in the RHS, a P FvJτcKYFvJτkK
2). occurrences of a in a non-erased context within any field
3). occurrences of a in FvJτ jK, for other fields τ j that have already been processed

before the field containing τi.

ZU064-05-FPR paper 31 October 2017 9:52

30 T. A. K. Zakian et al.

This last case—inter-field dependencies—can be found in the Abs case of our expression
language (Section 3.1):

1 Abs :: Typ a Ñ Exp (e, a) b Ñ Exp e (a Ñ b)

Recall that in our example, given Exp e a, we erase e in checked mode and a in
synthesized mode. Thus the type (e, a) is in checked context, so how is it determined?
It cannot be resolved using (a Ñ b) on the RHS, as this is a synthesized type (meaning
it is an output of the down-conversion function); it must be determinable from the other
fields of the constructor, in this case Typ a. An example of what this information flow for
inter-field type dependencies looks like is given by the grey dashed line in Figure 11.

For a type in checked context, we must be able to determine which fields to examine
in order to determine what the checked type should be. This requires that any possible
inter-field dependencies do not form a cycle. As an example, take the following piece of
code:

1 {-# Ghostbuster: synthesize t #-} -- invalid!

2 data Loop t where

3 MkLoop :: T a b Ñ T b a Ñ Loop (a, b)

4
5 {-# Ghostbuster: check a, synthesize b #-}

6 data T a b where

7 MkT :: a Ñ b Ñ T a b

Since the types a and b in the fields of the constructor both appear in checked mode,
determining the type of a could depend on the determination of the type of b and vice
versa. Thus, the inter-field dependency graph between a and b could form a cycle—so this
constructor fails the ambiguity criteria and we cannot erase the type t from Loop.

For simplicity our formal language assumes that fields are already topologically sorted
so that dependencies are ordered left to right. That is, a field τi+k can depend on field τi.
In the case of Abs, a P FvsJTyp aK and τ1 = Typ a occurs before τ2 = Exp (e,a) b,
therefore Ghostbuster accepts the definition.

Discussion: design choice Finally, note that we could seek to loosen the inter-field
dependency restriction to allow intra-field dependencies. For example, currently an
uncurried version of the Abs constructor would be rejected by Ghostbuster:

1 Abs' :: (Typ a, Exp (e, a) b) Ñ Exp e (a Ñ b)

Here a in (e,a) must be determined by a synthesized portion of the same field’s type,
τ1. In this particular case, we know that tuple values of type (x,y) can be broken into a
value of type x and y, so we can recursively process one part of the tuple before the other.
However, for arbitrary type constructors, this property does not hold: synthesization of
type variables can be viewed as a type of effect and the order in which we synthesize type
variables is important, so unless we know that a given type constructor has a Traversable
instance (or some other canonical traversal ordering is imparted to it) we are unable
to determine where we should start resolving intra-field dependencies. Furthermore, as
discussed in Section 2.4 this would require us to also trust in the Functor instance

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 31

Fvs: extracting dependencies for synthesized type variables

FvsJaK = tau

FvsJτ1 . . .τnK =
n
Ť

i=1
FvsJτiK

FvsJτ1 Ñ τ2K = FvsJτ1KYFvsJτ2K
FvsJT τk τc τsK = FvsJτkKYFvsJτsK

Fvk: extracting free vars in non-erased context

FvkJaK = tau

FvkJτ1 . . .τnK =
n
Ť

i=1
FvkJτiK

FvkJτ1 Ñ τ2K = FvkJτ1KYFvkJτ2K

FvkJT τk τc τsK = FvkJτkK

Fig. 12: Extracting free type variables in different contexts.

provided to us for the type constructor, which in and of itself presents many challenging
issues. For these reasons we keep the allowed dependencies simple (inter-field), and types
must be refactored to meet this requirement.

5.4 Gradual Erasure Guarantee

One interesting property of the class of valid inputs described by the above ambiguity
check is that it is always valid to erase fewer type variables—to change an arbitrary subset
of erased variables (either c or s) to kept (k). That is:

Theorem 6 (Gradual erasure guarantee)
For a given datatype with erasure settings k, c = c1 c2 and s = s1 s2, then erasure settings
k
1
= pk c2 s2q, c1 = c1, s1 = s1 will also be valid.

Proof
The requirements above are specified as a conjunction of constraints over each type
variable in synthesized or checked position. Removing erased variables removes terms
from this conjunction. For the remaining erased type variables, their dependence check
may have depended on formerly erased, now kept, variables. However, both the synthesized
and checked dependency prerequisites include all variables in kept context. Thus, moving
variables from erased to kept context never breaks any dependency.

6 Core Translation Algorithms

We now describe the core translation algorithms used in Ghostbuster using the language
defined in Section 4. The resulting pipeline of translation passes is shown in Figure 3.

ZU064-05-FPR paper 31 October 2017 9:52

32 T. A. K. Zakian et al.

6.1 Simplified Datatype Generation

Creating simplified data definitions is straightforward. Fields τi are replaced with updated
versions, τ 1i , that replace all type applications T τk τc τs with T 1 τk:

Ki : @k,c,s,b.τ1 Ñ ¨¨ ¨ Ñ τp Ñ T τk τc τs

ñ

K1i : @k,b. getTyRepspKiq Ñ τ 11 Ñ . . .Ñ τ 1p Ñ T τk
1

where getTyReps returns any newly existential variables for a constructor (Section 2.2):

getTyRepspKi : @k,c,s,b.τ1 Ñ ¨¨ ¨ Ñ τp Ñ T τk τc τsq=

tTypeRep a | a P pFvkJτ1 . . .τpK´FvJτkKq´bu

Recall here that b are the preexisting existential type variables that do not occur in τk τc τs.

6.2 Up-conversion Generation

In order to generate the up-conversion function for a type T , we instantiate the following
template:

1 upTi :: TypeRep c Ñ TypeRep s Ñ Ti k c s Ñ T 1i k
2 upTi c1_typerep . . . sn_typerep orig =

3 case orig of

4 K j x1 . . . xp Ñ

5 let φ = unify(T k c s, T τk τc τs)

6 KtyRep j = map (λτ Ñbind(φ, [τ], buildTyRep(τ)))

7 getTyReps(K)

8 in

9 K j' KtyRep j

10 dispatchÒ(φ, x1, φpτ1q) . . . dispatchÒ(φ, xp, φpτpq)

While the procedure is largely straightforward — pattern match on each K j and apply the
K1j constructor — there is significant complexity in the type representation management of
the bind and dispatchÒ operations. Here we follow a naming convention where a type
variable k is witnessed by a type representation bound to a term variable k typerep.
Ghostbuster performs a renaming of type variables in data definitions to ensure there is
no collision between the variables used at the declaration head T k c s, and those used
within each constructor K j. For example, this already holds in Exp where we used env/ans
interchangably with e/a.

In the let-binding of φ above, we unify the type of orig with the expected result type of
K j. This uses a unification function that is part of a type checking algorithm based on the
type system of Figures 5 to 8. Because we use the k c s variables to refer to the type of the
input, orig, this gives us a substitution binding these type variables. For example, in the
Abs case of our expression language (Section 3.1):

1 Abs :: Typ r Ñ Exp (e, r) s Ñ Exp e (r Ñ s)

unification yields:

φ = tenv := e,ans := prÑ sq u

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 33

It is the job of bind to navigate this substitution in order to create type representations
for type variables mentioned in φ , such as r. Here, getting to r requires digging inside the
type representation for ans using a typecase expression. Because the type representation
added to K1j will always be of the form TypeRep a (for type variable a), this is all the call
to bind must do to create the type representations that decorate K1j. Note that there may
be multiple occurrences of r P φ , and thus multiple paths that bind might navigate; which
path it chooses is immaterial.

Type representation construction in dispatch The dispatchÒ function is charged with
recursively processing each field f of K j. Based on the type of f this will take one of two
actions:

‚ Opaque object: return it unmodified.
‚ Ghostbusted type T : call upT .

In the latter case, it is necessary to build type representation arguments for the recursive
calls. This requires not just accessing variables found in φ , but also building compound
representations such as for the pair type (e, r) found in the Abs case of Exp.

Both of these behaviors can be seen in the snippet of actual Ghostbuster-generated code
below:

1 upExp :: @ env ans . TypeRep env Ñ TypeRep ans

2 Ñ Exp env ans Ñ Exp'
3 upExp env_typerep ans_typerep orig

4 = case orig of

5 Abs a b Ñ Abs'
6 (upTyp

7 (let r_typerep = typecase ans_typerep of

8 (typerep ArrowTy) left right Ñ left

9 in r_typerep)

10 a)

11 (upExp

12 (let e_typerep = env_typerep in

13 let r_typerep = typecase ans_typerep of

14 (typerep ArrowTy) left right Ñ left

15 in (typerep Tup) e_typerep r_typerep)

16 . . .)

Finally, when building type representations inside the dispatchÒ routine, there is one
more scenario that must be handled: representations for pre-existing existential variables,
such as the type variable a in App:

1 App :: Exp e (a Ñ b) Ñ Exp e a Ñ Exp e b

In recursive calls to upExp, what representation should be passed in for a? We introduce
an explicit ExistentialType in the output language of the generator which appears as
an implicitly defined datatype such that (typerep Existential) is valid and has type
@ a. TypeRep a.

ZU064-05-FPR paper 31 October 2017 9:52

34 T. A. K. Zakian et al.

Lemma 4 (Reachability of type representations)
All searches by bind for a path to v in φ succeed.

Proof
By contradiction. Assume that v R φ . But then v must not be mentioned in the Ti τk τc τs

return type of K j. This would mean that v is a preexisting existential variable, whereas only
newly existential variables are returned by getTyReps.

6.3 Down-conversion Generation

Down-conversion is more challenging. In addition to the type representation binding tasks
described above, it must also perform runtime type tests (»τ) to ensure that constraints
hold for formerly erased (now restored) type variables. The type signature of a down-
converter takes type representation arguments only for checked type variables; synthesized
types must be computed:

1 downTi :: TypeRep c Ñ T 1i k Ñ SealedTi k c

where the SealedTi seals over any newly-existential type variables for Ti that may be
introduced during the down-conversion process just as SealedVec did for Vec in Section 1.

If the set of synthesized variables is empty, then we can elide the Sealed return type
and return Ti k c directly. This is our strategy in the Ghostbuster implementation, because
it reduces clutter that the user must deal with. However, it would also be valid to create
sealed types which capture no runtime type representations, and we present that approach
here to simplify the presentation.

To invert the up function, down has the opposite relationship to the substitution φ . Rather
than being granted the constraints φ by virtue of a GADT pattern match, it must test and
witness those same constraints using p»τq. Here the initial substitution φ0 is computed by
unification just as in the up-conversion case above.

1 downTi :: TypeRep c Ñ T 1i k Ñ SealedTi k c
2 downTi c1_typerep . . . cm_typerep lower =

3 case lower of

4 K1j ex_typerep . . . f1 . . . fp Ñ

5 let φ0 = . . . in

6 openConstraintspφ0,openFieldspf1...fpqq

7 where

8 openConstraintspH,bodq = bod

9
10 openConstraintspa := b : φ ,bodq =

11 if a_typerep »τ b_typerep
12 then openConstraintspφ ,bodq
13 else genRuntimeTypeError
14
15 openConstraintspa := T τ1 . . .τn : φ ,bodq =

16 typecase a_typerep of

17 (typerep T) a1_typerep . . . an_typerep Ñ

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 35

18 openConstraintspa1 := τ1, . . . ,an := τn : φ ,bodq
19 _ Ñ genRuntimeTypeError

Above we see that openConstraints has two distinct behaviors. When equating two type
variables, it can directly issue a runtime test. When equating an existing type variable (and
corresponding _typerep term variable) to a compound type T τ

n, it must break down the
compound type with a different kind of runtime test (typecase), which in turn brings more
_typerep variables into scope. We elide the pÑq case, which is isomorphic to the type
constructor one. Note that (»τ) works on any type of representation, but this algorithm
follows the convention of only ever introducing variable references (e.g. a_typerep) to
“simple” representations of the form TypeRep a.

Following openConstraints, openFields recursively processes the field arguments
f1 . . .fp from left to right:

1 openFieldspf::T τk τc τs : rstq =

2 case openRecursionpφ0,fq of

3 SealedTq s’ typerep f' Ñ
4 openConstraintspuni f yps1 typerep,τsq,openFieldsprstqq
5
6 openFieldspf::τ : rstq = let f' = f in openFieldsprstq

Here we show only the type constructor (T τk τc τs) case and the “opaque” case. We
again omit the arrow case, which is identical to the type constructor one.

As before with dispatchÒ, the openRecursion routine must construct type
representations to make the recursive calls. Unsealing the result of a recursive call reveals
more constraints that must be checked. For example, in the Add case of Exp, both recursions
must synthesize a return type of Int and thus a type representation inside the Sealed

type of (typerep Int). Likewise, in the App case the function input and the argument
types must match. openConstraints ensures these synthesized values are as expected before
returning control to openFields to process the rest of the arguments.

Finally, in its terminating case, openFields now has all the necessary type
representations in place that it can build the type representation for SealedTi. Likewise, all
the necessary constraints are present in the typing environment—from previous typecase
and (»τ) operations—enabling a direct call to the more strongly typed K j constructor.

1 openFieldspHq = SealedTi buildTyRepps typerepq (K j f11 ¨ ¨ ¨ f
1
p)

Fresh variables and naming conventions Naming conventions are subtle when
implementing the above code generation algorithm. By processing from left to right
we ensure that earlier synthesized dictionaries are available for creating later checked
dictionaries to pass to recursive calls. However, in the above presentation we did not keep
an explicit naming environment. This works because the structure of the types is static
and available at all points in the code—it is possible to construct a unique name for the
values and dictionaries returned by each recursive call, and to agree on this by convention.
Alternatively, we could also pass a Γ as an argument to openFields which would keep
track of all available term variables with dictionary type.

ZU064-05-FPR paper 31 October 2017 9:52

36 T. A. K. Zakian et al.

The result of code generation is that Ghostbuster has augmented the prog with up- and
down-conversion functions in the language of Figure 4, including the typecase and (»τ)
constructs. What remains is to eliminate these constructs and emit the resulting program in
the target language, which, in our prototype, is Haskell.

6.4 Runtime Type Representations

Before we can get rid of the typecase and»τ constructs in Ghostbuster’s generated code,
we must first choose an approach to dynamic type checks. Since we are generating Haskell
code, one method is to use Haskell’s type-indexed Typeable class introduced in GHC-8.2,
which we saw in Section 2.1. However, this is only one of several possible approaches,
as described by the substantial literature on dynamic type checking in statically typed
languages (Abadi etal., 1989; Leroy & Mauny, 1991; Abadi etal., 1995; Baars & Swierstra,
2002a).

6.4.1 Runtime Types in Ghostbuster

Since generating code against the new Typeable class in Haskell restricts the portability
of the generated code13 we instead use the simple approach of generating a closed-
world of type-indexed TypeRep values for all types mentioned in the datatypes passed to
Ghostbuster: since the Ghostbuster tool can observe all the types mentioned in a set of data-
types (Theorem 2) it creates an application-specific notion of a runtime type representation,
which itself is a GADT. Since for a closed set of types, creating a GADT for runtime
type representation is trivial (PeytonJones etal., 2016)— For example, the following is the
TypeRep for representing Boolean, integer, and tuple types.

1 data TypeRep a where

2 TypeInt :: TypeRep Int

3 TypeBool :: TypeRep Bool

4 TypeTup2 :: TypeRep a Ñ TypeRep b Ñ TypeRep (a,b)

What’s more, using an explicit dictionary type makes it
trivial to construct a type equality check function of type
TypeRep a Ñ TypeRep b Ñ Either TypeError (a :„: b)

6.4.2 Lowering Type Representation Primitives

Including explicit type representation operations in our core language allows us to defer
commitment to a particular representation of runtime type representations in our algorithm,
and provides a simple solution to enabling an open union of dictionary types without using
typeclasses or any more complex mechanisms in the formal language to achieve this. Now
that we have chosen a representation for our types, we can describe how to desugar explicit
type representation operations such as typecase into the other operations of the core

13 Not just to other languages – but also to Haskell before the new Data.Typeable introduced in
GHC-8.2.

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 37

language as a core-to-core transformation. This allows us to lower those operations into
operations more directly expressible in the target language (e.g. Haskell).

First, the “Lower TypeRep” pass must introduce a new data definition, TypeRep a,
with one constructor for each type constructor T mentioned anywhere in a typerep or
typecase form, plus the built-in types:

1 data TypeRep a where

2 TypeT1 :: TypeRep an1 Ñ TypeRep pT1 an1q

3 TypeT2 :: TypeRep an2 Ñ TypeRep pT2 an2q

4 . . .

5 ArrowType :: TypeRep a Ñ TypeRep b Ñ TypeRep (a Ñ b)

6 ExistentialType :: @ a . TypeRep a

This datatype, plus propositional type equality (:„:) that we saw earlier, are used by the
generated code for the desugared forms, which appears as follows:

Drrtyperep T ss ùñ TypeRepT
Drrtypecase e1 of pptyperep T q a1 . . .anq Ñ e2; Ñ e3ss ùñ

case Drre1ss of

TypeT a1 . . . an ÑDrre2ss

TypeT1
. . . ÑDrre3ss
...

Here we encounter a tension with typecase desugaring. As specified in our core
language definition, we do not have “catch all” pattern matches along with the case form.
Thus the case expression generated must match on every possible Typeτ constructor. If
generating these exhaustive cases, and e3 produces nontrivial code, it is also important to
let-bind it to avoid excessive code duplication, which slightly complicates the translation
above.

Finally, the third form, p»τq, desugars into a call to a type representation equality testing
function, eqTT:

1 DJif e1 »τ e2 then e3 else e4K ùñ
2 case eqTT Drre1ss Drre2ss of

3 Just Refl Ñ Drre3ss

4 Nothing Ñ Drre4ss

This eqTT value definition is also produced by the type representation lowering pass and
added to the output program. For example, below is an excerpt of generated, pretty-printed
code for this function:

1 eqTT :: TypeRep t Ñ TypeRep u Ñ Maybe (t :„: u)

2 eqTT x y =

3 case x of

4 UnitType Ñ case y of

5 UnitType Ñ Just Refl

6 Tup2Type a2 b2 Ñ Nothing

7 . . .

ZU064-05-FPR paper 31 October 2017 9:52

38 T. A. K. Zakian et al.

8 . . .

The eqTT function performs a simple, recursive traversal of both type representation
values. Without catch-all clauses this function will grow quadratically with the number of
cases in the type representation sum type.

6.5 Validating Ghostbuster

We are now ready to state the main theorem about Ghostbuster: if all the datatypes in a
program pass our ambiguity criteria, then up-conversion followed by down-conversion is
the identity after unsealing synthesized type variables.

Theorem 7 (Round-trip)
Let prog be a program, and let T = tpT1,k1,c1,s1q, . . . ,pTn,kn,cn,snqu be the set of all
datatypes in prog that have variable erasures. Let D = tD1, . . . ,Dnu be a set of dictionaries
such that Di = pDis,Dicq contains all needed typeReps for the synthesized and checked
types of Ti. We then have that if for each pTi,ki,ci,siq P T that Ti passes the ambiguity
criteria, then Ghostbuster will generate a new program prog1 with converted datatypes
T1 = tpT 11 ,k1q, . . . ,pT 1n ,knqu, and functions upTi and downTi such that

@e P prog. prog$ e :: Ti ki ci si^pTi,ki,ci,siq P T
ùñ prog1 $ pupTi Di eq :: T 1i ki, where pT 1i ,kiq P T1

(3)

and
@e P prog. prog$ e :: Ti ki ci si^pTi,ki,ci,siq P T
ùñ prog1 $ pdownTi Dic pupTi Di eqq
” pSealedTi Dis e :: SealedTi ki ciq

(4)

The full proof, while being fairly lengthy and tedious—is not terribly interesting or
enlightening. We thus provide a proof-sketch here.

Proof Sketch
We first show by the definition of up-conversion that given any data constructor K of the
correct type, that the constructor will be matched. Proceeding by induction on the type of
the data constructor and case analysis on bind and dispatchÒ we then show that the map of
bind over the types found in the constructor K succeeds in building the correct typeReps
needed for the checked fields of K. After showing that every individual type-field is up-
converted successfully and that this up-conversion preserves values, we are then able to
conclude that since we have managed to construct the correct type representations needed
for the up-converted data constructor K1, and since we can successfully up-convert each
field of K, that the application of K1 to the typeReps for the newly-existential types and the
up-converted fields is well-typed and that the values that we wish to have preserved have
been kept.

To show that down-conversion succeeds, we first show that given any data constructor
K1 of the correct type that the down-conversion function will match it. We then proceed
by case analysis on the code-path executed on the right-hand-side of the case clause that
matched the data constructor: we show that openConstraints succeeds in deriving suitable
type representations for the call to openRecursion to succeed in constructing the correct

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 39

down-converted datatypes for each of the busted recursive datatypes in the fields of K1.
We then use this to show that openFields will succeed in down-converting the busted
types that it encounters. We then use the fact that openFields has successfully down-
converted the types it has encountered, coupled with the success of constructing suitable
type representations to show that we are finally able to successfully construct the down-
converted sealed type.

7 Implementing Ghostbuster for Haskell

The Ghostbuster prototype tool is a source-to-source translator, which currently supports
Haskell but could be easily extended to other languages that incorporate GADTs. To
build a practical tool implementing Ghostbuster, we need to import data definitions from,
and generate code to, a target host language. Because our prototype targets Haskell, we
extended our core language slightly to accommodate certain Haskell features of data
definitions such as bang patterns. For the most part, code generation is a straightforward
translation from our core-language into Haskell using the haskell-src-exts package,14

which we subsequently pretty-print to file. If erasure results in Haskell’98 datatypes, we
add deriving clauses to the simplified datatypes for the standard typeclasses such as
Show.

There is one important impedance mismatch between our core language’s (more
permissive) type system and Haskell’s. In particular, we allow locally conflicting
constraints in case statements, like Typed Racket (Tobin-Hochstadt & Felleisen, 2010b),
but unlike GHC Haskell.15 In these cases, GHC issues “inaccessible code” errors, which
we would prefer could be turned into configurable warnings.

Of course, because these branches are inaccessible, they cannot cause a problem at
runtime. Unless GHC makes a change, our recourse is to (1) predict which branches
GHC will object to and omit those in code generation; or (2) turn on deferred type errors
locally for the generated conversion functions which have this problem. We currently do
the former—avoiding the issue for Ghostbuster-generated conversion functions.

7.1 Preprocessing options

There are several potential ways to connect the tool to a build environment, as well as
several design decisions that we must address in constructing simplified types. As in the
code snippets we’ve seen, the user of Ghostbuster writes the original type by hand, and uses
a separate specification (pragma) to indicate which type variables should be erased. One
option would be to generate the Ghostbusted code implicitly, e.g.by macro expansion16, but

14 http://hackage.haskell.org/package/haskell-src-exts
15 See the consistent requirement in Section 3.2 of Schrijvers etal. (2009b).
16 For example, we could use Template Haskell (Sheard & PeytonJones, 2002) with a top-

level $(ghostbuster . . .) splice, which inserts the generated code and conversion function
declarations. This approach would be sufficient, but it suffers from a drawback. While it is possible
to dump Template Haskell splices during compilation, this is not an ideal solution for examining
the generated code.

http://hackage.haskell.org/package/haskell-src-exts

ZU064-05-FPR paper 31 October 2017 9:52

40 T. A. K. Zakian et al.

our intent is for the user to read the generated code and write functions consuming values of
that type. Thus we run Ghostbuster as a preprocessor that generates pretty-printed Haskell
code in a stand-alone file.17

7.2 Current Limitations & Possible Extensions

Our current prototype comes with some limitations. Yet, as we will see in Section 8.2, a
great many of the datatypes found in the wild are supported.

Runtime type representation As mentioned in Section 2.1, we require type-indexed
TypeRep values, which just appeared in GHC-8.2. However, in order to make the theory
and tool more easily generalizeable to other languages without this feature, we use our own
(closed-world) representation of runtime types synthesized on demand by the Ghostbuster
tool and described in Section 6.4.2.

Advanced type system features There are some features we support indirectly by
allowing them in the “opaque” regions of the datatype which Ghostbuster-generated
code need not traverse, but we do not model explicitly in our core language. This
currently includes type families (Schrijvers etal., 2008; Chakravarty etal., 2005) and
typeclasses (Hall etal., 1996; Peterson & Jones, 1993).

Erased datatypes as type parameters As we saw in Section 2.4, Ghostbuster does not
allow datatypes undergoing erasure to be used as arguments to other type constructors,
for example []. If available, we could lean on a Functor instance for that type, but in
general there is not a single, clearly defined behaviour. Future work may allow a user to
specify how Ghostbuster should traverse under type constructors to continue the erasure
and conversion processes.

Typeclass constraints As we saw in Section 4.1 we do not handle typeclass constraints in
the datatypes that are passed to or generated by Ghostbuster. While we have decided against
implementing this feature for the Haskell version of the tool, there is nothing that prevents
this. However, doing so in a formal and well-founded manner would complicate the formal
language, type system, and operational semantics considerably, and would require updating
the ambiguity criteria. Further, doing so would break the source-to-source nature of our
tool since the generated code would need to access internal features of GHC (and Core) in
order to prove typeclass constraints in the generated code.

Ghostbuster for other languages As long as a given source/target language is parsable
into our core language, updating the tool to handle other languages simply involves
changing the parsing and code generation phases, and turning off the various Haskell-
specific features that we have added (e.g., bang patterns). However, this leads to questions
on how to handle other features that these languages have that can interact with GADTs
e.g., how should polymorphic variants be handled in OCaml when they appear as (or

17 Both GHC and the build tool cabal have good support for invoking custom preprocessors.

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 41

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 1 10 100 1000 10000 100000

Ti
m

e
(s

)

Terms

Up conversion

Ghostbuster
Data.Typeable

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

 1 10 100 1000 10000 100000

Ti
m

e
(s

)

Terms

Down conversion

Ghostbuster
Data.Typeable

Hint

Fig. 13: Time to convert a program in our richly-typed expression language (Section 3.1) with
the given number of terms (i.e. nodes in the AST), from original GADT to simplified ADT (left)
and vice-versa (right). Note the log-log scale.

interact with) to-be-erased type indicies? Handling these language-specific features would
present similar implementation challenges to those that would be faced in implementing
typeclass constraints for Haskell, and could—depending on the feature—require non-
trivial additions to both the ambiguity criteria, core language, and algorithm.

8 Evaluation

8.1 Runtime Performance

This section analyzes the performance of the conversion routines generated by Ghostbuster.
Benchmarks were conducted on a machine with a 4-core Intel i7-4850HQ CPU (64-bit,
2.3GHz, 16GB RAM) running Mac OSX 10.12 and using GHC version 8.0.2 at -O2
optimization level. Each data point is generated via linear regression using the criterion
package.18

18 http://hackage.haskell.org/package/criterion

http://hackage.haskell.org/package/criterion

ZU064-05-FPR paper 31 October 2017 9:52

42 T. A. K. Zakian et al.

Figure 13 compares the performance of the Ghostbuster generated conversion routines
for our simple expression language (Section 3.1). We generated large random programs
that included all of the important cases of up- and down- conversion (Abs, App, etc.), and
report the time to convert programs containing that number of terms.

Ghostbuster achieves comparable performance to a manually written up-conversion
routine. The hand-written written down-conversion routine, however, which uses
embedded Typeable class constraints and is based on runtime type checks provided by
the Data.Typeable library, is significantly slower than the Ghostbuster generated version
with embedded TypeRep values. Profiling reveals that our generated TypeRep encodings
were more efficient than dictionary passing with Data.Typeable. However, this may be
an artifact of the closed-world simplification we used to generate our TypeRep values, so
this performance advantage may disappear if we used the new open-world, type-indexed
Typeable in GHC-8.2.

Even so, the size of the Ghostbuster generated up- and down-conversion functions are
comparable to the Data.Typeable based implementation:

Contender SLOC Tokens Binary size

Ghostbuster 198 1426 1MB
Data.Typeable 122 1011 1MB
Hint 78 451 45MB

For the down-conversion process, we also compare against using GHC’s interpreter as
a library via the Hint package.19 Due to the difficulty of writing the down-conversion
process manually, it is appealing to be able to re-use the GHC Haskell type-checker itself
in order to generate expressions in the original GADT. In this method, a code generator
converts expressions in the simplified type into an equivalent Haskell expression using
constructors of the original GADT, which is then passed to Hint as a string and interpreted,
with the value returned to the running program. Unfortunately: (1) as shown in Figure 13,
this approach is significantly slower than the alternatives; (2) the conversion must live in
the IO monad; (3) generating strings of Haskell code is error-prone; and (4) embedding
the entire Haskell compiler and runtime system into the program increases the size of the
executable significantly.

Nevertheless, before Ghostbuster, this runtime interpretation approach was the only
reasonable way for a language implemented in Haskell with sophisticated AST
representations to read programs from disk. One DSL that took this approach is Hakaru.20

8.2 Package Survey

We conclude our experimental evaluation by testing our prototype implementation against
9026 packages currently available on hackage.haskell.org, the central open source
package archive of the Haskell community. We seek to gather some insight into how

19 http://hackage.haskell.org/package/hint
20 https://hackage.haskell.org/package/hakaru

hackage.haskell.org
http://hackage.haskell.org/package/hint
https://hackage.haskell.org/package/hakaru

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 43

Table 1: Summary of package survey

Metric

Total # packages 9026
Total # source files 94,611
Total # SLOC 16,183,864
Total # datatypes using ADT syntax 9261
Total # datatypes using GADT syntax 18,004
Total # connected components 15,409
ADTs with type variable(s) 1341
GADTs with type variable(s) 11,213
GADTs with type indexed variable(s) 8773
Actual search space 185,056,322,576,712
Explored search space 9,589,356
Ghostbuster succeeded 2,582,572
GADTs turned into ADTs 5525

Ambiguity check failure 5,374,628
Unimplemented feature in Ghostbuster 1,632,156

many GADTs exist “in the wild” which might benefit from the automated up- and down-
conversions explored in this work.

In this survey, we extract all of the ADT and GADT datatype declarations of a package,
and group these data declarations into connected components. We elide any connected
components where none of the data declarations are parameterised by a type variable, or
do not contain at least one GADT. For each connected component, we then vary which
type variables are kept, checked, or synthesized, and attempt to run ghostbuster on each
configuration. For connected components containing many datatypes and/or type variables
this can yield a huge search space, so we explore at most ten thousand erasure variants for
each connected component. A summary of the results are shown in Table 1.

As discussed in Section 5, our current design has some restrictions on what datatypes
and erasure settings it will accept. However, out of the variants explored, ghostbuster was
successfully able to erase at least one type variable in 2,582,572 cases. Moreover, out of
the 8773 “real” GADTs surveyed21, we were able to successfully ghostbust 5525 (63%) of
these down to regular ADTs.

9 Related Work

Ornaments (McBride, to appear; Ko & Gibbons, 2013; Dagand & McBride, 2012), from
the world of dependent type theory, provides an interesting theoretical substrate for moving
between inductive data structures that share the same recursive structure, where one type
is refined, or ornamented, by adding and removing information. Unlike ornaments, we
focus on bidirectional conversions from a richer to simpler type. Recent progress has been

21 Some types were written in GADT syntax that didn’t need to be.

ZU064-05-FPR paper 31 October 2017 9:52

44 T. A. K. Zakian et al.

made in bringing ornaments from a theoretical topic to a practical language (Williams
etal., 2014). This prototype is semi-automated and leaves holes in the generated code for
the user to fill in, rather than being an entirely in language and fully-automatic abstraction
like Ghostbuster.

The eqT of Haskell’s Typeable class and the (typecase/»τ) and TypeRep of our
core language, are both similar to typecase and Dynamic in Abadi etal. (1989; 1995).
However, while typecase (from dynamic) allows querying the type of expressions, it
does not inject type-level evidence about the scrutinee into the local constraints the way
that GADT pattern matching (and our typecase) do.

Another closely related work is on staged inference (Shields etal., 1998), which
formulates dynamic typing as staged checking of a single unified type system. While the
mechanism is different, functions over Ghostbusted types defer type-checking obligations
until down-conversion. Likewise, Haskell’s deferred type errors (Vytiniotis etal., 2012)
are related, but are a coarse-grained setting at the module level and hence not practical for
writing code against GADTs while deferring type-checking obligations.

The Yoneda lemma applied to Haskell provides a method of encoding GADTs as regular
ADTs.22 However, this encoding does not offer the benefits of Ghostbuster simplified types
because: (1) the encodings include function types, which preclude Show/Read deriving,
and (2) the encoding cannot actually enforce its guarantees in Haskell due to laziness (lack
of an initial object).

F# type providers (Syme etal., 2013) are related to Ghostbuster in that both automatically
generate datatype definitions against which developers are expected to write code. Type
providers do not include GADTs, but deal with type schemas that are too large (e.g.
all of Wikipedia) or externally maintained (e.g. in a database) and must be populated
dynamically, whereas Ghostbuster deals with maintaining simplified types for existing
GADTs.

Checking whether input-output modes are consistent in a logic program is often
approximated in practice based on a dependency graph of the variables. For example,
the Mercury programming language (Somogyi etal., 1995) has modes: input, output,
deterministic. Our ambiguity checking process is similar.

The rules in our ambiguity criteria for types in checked and synthesized mode are very
similar to those for synthesized and inherited attributes in attribute grammars (Knuth,
1968): information for synthesized types must be determinable from the children of that
type just as synthesized attributes for a production are determined from the attributes of
its children; and checked types receive information from their parents just as inherited
attributes for a production are determined from the attributes of its parents. Moreover, the
ambiguity criteria—and in particular the restriction that checked types can only gather
synthesized type information from their left-hand-side is similar to what one would see
in an L-attribute grammar. However, while our ambiguity criteria is very similar to that in
an L-attribute grammar, we differ slightly due to the presence of kept type variables. In
particular, we allow non-erased type variables anywhere to be used in the determination

22 The Yoneda lemma in Haskell is currently best explained in blog posts:
http://www.haskellforall.com/2012/06/gadts.html and
http://bartoszmilewski.com/2013/10/08/lenses-stores-and-yoneda/.

http://www.haskellforall.com/2012/06/gadts.html
http://bartoszmilewski.com/2013/10/08/lenses-stores-and-yoneda/

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 45

of checked typed variables—and in this sense our checked types do not fully align with
inherited attributes.

Ou etal. (2004) define a language that provides interoperability between simply-typed
and dependently-typed regions of code. Both regions are encoded in a common internal
language (also dependently-typed), with runtime checks when transitioning between
regions. Similarly, the Trellys project (Casinghino etal., 2014) includes a two-level
language design where each definition is labelled logical or programmatic. Because of the
shared syntax, one can migrate code from programmatic to logical when ready to prove
non-termination.

Recent work by Dagand etal. (2016) defines a system based on partial type equivalences
and runtime checks that provides interoperability between simply- and dependently-typed
regions of code in a similar manner to us. However, while they are interested in partial type
equivalences in general (and user-specified equivalences in particular) and how this can
be used to allow cross-world usage—by lifting and lowering functions over the more- and
less-specified datatypes—we are interested in a very specific partial equivalence between
the more and less specified datatypes that permits us to round-trip them.

Gradual typing is an approach to integrating static and dynamic typing within a single
language (Siek & Taha, 2006). The gradual typing approach is characterized by implicit
conversions in the source language, while our work makes use of explicit conversions.
Our work is therefore more closely related to calculi with explicit conversions (Abadi
etal., 1989; Henglein, 1994), including blame calculi (Findler & Felleisen, 2002; Tobin-
Hochstadt & Felleisen, 2006; Wadler & Findler, 2009). However, our work involves
inhabiting expressions at a more or less detailed version of the same datatype, rather
than integrating dynamically typed code. Blame calculi allocate blame to the origin of the
conversion error in the source language, which is essential when running code in which
implicit conversions have been compiled into explicit conversions. Due to the coarse-
grained nature of our usage scenario implicit casting is not needed, and while blame
tracking would be a nice feature we see this as only complicating the theory with little
real-world benefit.

It is folklore in dependently typed programming communities (Idris, Agda, etc.) that if
you need to write a parser for a compiler, you would parse to a raw, untyped term and write
a type-checking function (i.e. down-conversion) manually. To our knowledge there are not
currently any tools that automate this process. However, most fully dependent languages
make these type checkers easier to write than they are in Haskell.

10 Conclusions & Future Work

We’ve shown how Ghostbuster enables the automatic maintenance of simplified datatypes
that are easier to prototype code against. This resulted in some performance advantages in
addition to software engineering benefits. Because of these advantages, we believe that in
the coming years gradualization of type checking obligations for advanced type systems
will become an active area of work and widely-used language implementations may better
support gradualization of type-checking obligations directly.

ZU064-05-FPR paper 31 October 2017 9:52

46 T. A. K. Zakian et al.

Future work While the theory presented here can handle a number of different GADT
features, the class of GADTs that we can handle is still restricted. An interesting avenue
of future work is to not treat GADTs as a primitive in the language, and instead explore
re-phrasing the theory and implementation presented here in terms of existential types,
types witnesses, and Guarded Recursive Datatypes (GRDTs) (Baars & Swierstra, 2002b;
Sulzmann & Wang, 2004; Cheney & Hinze, 2002; Weirich, 2000), and then see if, and
how, this might change the class of datatypes that can be handled.

Another interesting aspect to be explored is how the conversion process interacts with
GADTs (and ADTs) that use linear types (Bernardy etal., 2017). In particular, we feel
as though it should be possible to show that while the down-conversion process might
use type-level information in a non-linear way, the actual converted datatypes retain the
original linearity properties.

At the moment we do not support multiple erasure variants and furthermore, we do
not support transforming one erasure variant into the other. It would be interesting to see
whether the round-trip property could be shown for a set of erasure variants, ensuring
that given an up-converted datatype of any variance, we could transform from one erasure
datatype variant to another while still allowing down-conversion to happen at any point.
This would be interesting, however we feel that it may be quite tricky and difficult to show
the round-trip property for a set of erasures; since any up-converted datatype for a given
erasure variant would have to retain enough information for all the other erasure variants
and their corresponding down-conversion functions to succeed.23

11 Acknowledgments

This work was supported by NSF awards 1453508 and 1337242. Timothy Zakian was
funded by the Clarendon Fund. This work has benefited greatly from several conversations
with Chung-chieh Shan and Jeremy Siek. We would also like to thank the anonymous
reviewers of ICFP 2016 for their helpful and insightful feedback.

References

Abadi, M., Cardelli, L., Pierce, B., & Rémy, D. (1995). Dynamic typing in polymorphic languages.
Journal of functional programming, 5, 111–130.

Abadi, Martı́n, Cardelli, Luca, Pierce, Benjamin, & Plotkin, Gordon. (1989). Dynamic typing in a
statically-typed language. Popl’98: Principles of programming languages, 237–268.

Altenkirch, Thorsten, & Reus, Bernhard. (1999). Monadic Presentation of Lambda Terms Using
Generalised Inductive Types. Pages 453–468 of: Flum, Jörg, & Rodriguez-Artalejo, Mario (eds),
Csl’99: Computer science logic.

Appel, Andrew W. (2007). Compiling with continuations. New York, NY, USA: Cambridge
University Press.

Appel, Andrew W., & Jim, Trevor. (1997). Shrinking lambda expressions in linear time. J. funct.
program., 7(5), 515–540.

23 Although one could possibly prove this by first down-converting and then up-converting using the
specific up-conversion function.

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 47

Baars, Arthur I., & Swierstra, S. Doaitse. (2002a). Typing dynamic typing. Icfp’02: International
conference on functional programming, 157–166.

Baars, Arthur I., & Swierstra, S. Doaitse. (2002b). Typing dynamic typing. Pages 157–166 of:
Proceedings of the seventh acm sigplan international conference on functional programming.
ICFP ’02. New York, NY, USA: ACM.

Benton, Nick, Kennedy, Andrew, Lindley, Sam, & Russo, Claudio. (2005). Shrinking reductions in
sml.net. Berlin, Heidelberg: Springer Berlin Heidelberg. Pages 142–159.

Bernardy, Jean-Philippe, Boespflug, Mathieu, Newton, Ryan R, Jones, Simon Peyton, & Spiwack,
Arnaud. (2017). Retrofiting linear types.

Brady, Edwin, McBride, Conor, & McKinna, James. (2004). Inductive families need not store their
indices. Pages 115–129 of: Types’03: Types for proofs and programs. Springer.

Casinghino, Chris, Sjöberg, Vilhelm, & Weirich, Stephanie. (2014). Combining proofs and programs
in a dependently typed language. Pages 33–45 of: Popl’14: Principles of programming languages.

Chakravarty, Manuel M T, Keller, Gabriele, & Peyton Jones, Simon. (2005). Associated type
synonyms. Pages 241–253 of: Popl’05: Principles of programming languages.

Chakravarty, Manuel M T, Keller, Gabriele, Lee, Sean, McDonell, Trevor L., & Grover, Vinod.
(2011). Accelerating Haskell array codes with multicore GPUs. Pages 3–14 of: Damp’11:
Declarative aspects of multicore programming.

Cheney, James, & Hinze, Ralf. (2002). A lightweight implementation of generics and dynamics.
Pages 90–104 of: Proceedings of the 2002 acm sigplan workshop on haskell. Haskell ’02. New
York, NY, USA: ACM.

Cheney, James, & Hinze, Ralf. (2003). First-class phantom types. Tech. rept. Cornell University.

Dagand, Pierre-Evariste, & McBride, Conor. (2012). Transporting functions across ornaments. Pages
103–114 of: Icfp’12: International conference on functional programming.

Dagand, Pierre-Evariste, Tabareau, Nicolas, & Tanter, Éric. (2016). Partial type equivalences for
verified dependent interoperability. Pages 298–310 of: Proceedings of the 21st acm sigplan
international conference on functional programming. ICFP 2016. New York, NY, USA: ACM.

Findler, R. B., & Felleisen, M. 2002 (October). Contracts for higher-order functions. Pages 48–59
of: International conference on functional programming. ICFP.

Hall, Cordelia V, Hammond, Kevin, Peyton Jones, Simon, & Wadler, Philip L. (1996). Type classes
in Haskell. Toplas’96: Transactions on programming languages and systems, 18(2), 109–138.

Henglein, Fritz. (1994). Dynamic typing: syntax and proof theory. Science of computer
programming, 22(3), 197–230.

Knuth, Donald E. (1968). Semantics of context-free languages. Pages 127–145 of: In mathematical
systems theory.

Ko, Hsiang-Shang, & Gibbons, Jeremy. (2013). Relational algebraic ornaments. Pages 37–48 of:
Dtp’13: Dependently-typed programming.

Leroy, Xavier, & Mauny, Michel. (1991). Dynamics in ML. Pages 406–426 of: Functional
programming languages and computer architecture.

McBride, Conor. (2006). Type-Preserving Renaming and Substitution. Journal of functional
programming.

McBride, Conor. (to appear). Ornamental algebras, algebraic ornaments. Journal of functional
programming.

McDonell, Trevor L., Chakravarty, Manuel M T, Keller, Gabriele, & Lippmeier, Ben. (2013).
Optimising purely functional GPU programs. Pages 49–60 of: Icfp’13: International conference
on functional programming.

McDonell, Trevor L., Chakravarty, Manuel M. T., Grover, Vinod, & Newton, Ryan R. (2015). Type-
safe Runtime Code Generation: Accelerate to LLVM. Pages 201–212 of: Haskell symposium.

ZU064-05-FPR paper 31 October 2017 9:52

48 T. A. K. Zakian et al.

McDonell, Trevor L., Zakian, Timothy A. K., Cimini, Matteo, & Newton, Ryan R. (2016).
Ghostbuster: A tool for simplifying and converting gadts. Pages 338–350 of: Proceedings of the
21st acm sigplan international conference on functional programming. ICFP 2016. New York,
NY, USA: ACM.

Ou, Xinming, Tan, Gang, Mandelbaum, Yitzhak, & Walker, David. 2004 (August). Dynamic typing
with dependent types (extended abstract). Pages 437–450 of: Tcs’04: International conference on
theoretical computer science.

Peterson, John, & Jones, Mark. 1993 (June). Implementing type classes. Pages 227–236 of: Pldi’93:
Programming language design and implementation.

Peyton Jones, Simon, Weirich, Stephanie, Eisenberg, Richard A., & Vytiniotis, Dimitrios. (2016). A
reflection on types. Cham: Springer International Publishing. Pages 292–317.

Schrijvers, Tom, Peyton Jones, Simon, Chakravarty, Manuel M T, & Sulzmann, Martin. (2008).
Type checking with open type functions. Pages 51–62 of: Icfp’08: International conference on
functional programming.

Schrijvers, Tom, Peyton Jones, Simon, Sulzmann, Martin, & Vytiniotis, Dimitrios. (2009a).
Complete and decidable type inference for GADTs. Pages 341–352 of: Icfp’09: International
conference on functional programming.

Schrijvers, Tom, Peyton Jones, Simon, Sulzmann, Martin, & Vytiniotis, Dimitrios. (2009b).
Complete and decidable type inference for gadts. Pages 341–352 of: Proceedings of the 14th
acm sigplan international conference on functional programming. ICFP ’09. New York, NY,
USA: ACM.

Sheard, Tim, & Peyton Jones, Simon. (2002). Template meta-programming for Haskell. Pages 1–16
of: Haskell workshop.

Shields, Mark, Sheard, Tim, & Peyton Jones, Simon. (1998). Dynamic typing as staged type
inference. Pages 289–302 of: Popl’98: Principles of programming languages.

Siek, Jeremy G, & Taha, Walid. (2006). Gradual typing for functional languages. Pages 81–92 of:
Scheme and functional programming workshop, vol. 6.

Simonet, Vincent, & Pottier, François. (2007). A constraint-based approach to guarded algebraic
data types. Toplas’07: Transactions on programming languages and systems, 29(1), 1.

Somogyi, Zoltan, Henderson, Fergus J, & Conway, Thomas Charles. (1995). Mercury, an efficient
purely declarative logic programming language. Australian computer science communications,
17, 499–512.

Sulzmann, Martin, & Wang, Meng. (2004). A systematic translation of guarded recursive data types
to existential types.

Syme, Donald, Battocchi, Keith, Takeda, Kenji, Malayeri, Donna, & Petricek, Tomas. (2013).
Themes in information-rich functional programming for internet-scale data sources. Pages 1–4
of: Ddfp’13: Data driven functional programming.

Tobin-Hochstadt, Sam, & Felleisen, Matthias. (2006). Interlanguage migration: From scripts to
programs. Dynamic languages symposium.

Tobin-Hochstadt, Sam, & Felleisen, Matthias. (2010a). Logical types for untyped languages.
Pages 117–128 of: Proceedings of the 15th acm sigplan international conference on functional
programming. ICFP ’10. New York, NY, USA: ACM.

Tobin-Hochstadt, Sam, & Felleisen, Matthias. (2010b). Logical types for untyped languages.
Pages 117–128 of: Proceedings of the 15th acm sigplan international conference on functional
programming. ICFP ’10. New York, NY, USA: ACM.

Vytiniotis, Dimitrios, Peyton Jones, Simon, & Magalhães, José Pedro. (2012). Equality Proofs and
Deferred Type Errors: A Compiler Pearl. Pages 341–352 of: Icfp’12: International conference on
functional programming.

ZU064-05-FPR paper 31 October 2017 9:52

Ghostbuster: A Tool for Simplifying and Converting GADTs 49

Wadler, Philip, & Findler, Robert Bruce. 2009 (March). Well-typed programs can’t be blamed. Pages
1–16 of: European Symposium on Programming. ESOP.

Weirich, Stephanie. (2000). Type-safe cast: (functional pearl). Pages 58–67 of: Proceedings of the
fifth acm sigplan international conference on functional programming. ICFP ’00. New York, NY,
USA: ACM.

Williams, Thomas, Dagand, Pierre-Évariste, & Rémy, Didier. (2014). Ornaments in practice. Pages
15–24 of: Wgp’14: Workshop on generic programming.

	Introduction
	Design Constraints
	Prerequisite: Testing Types at Runtime
	Erasure Method: Checked versus Synthesized
	Unrecoverable Information
	A Policy for Allowed Erasures

	Life with Ghostbuster
	A Type-safe Expression Language
	Example #1: Substitution
	Example #2: Template Haskell and Typeclass Deriving

	Core Language Definition
	Syntax
	Type System
	Semantics
	Metatheory

	Preconditions and Ambiguity Checking
	Ambiguity Test
	Type Variables Synthesized on the RHS
	Type Variables in Checked Context
	Gradual Erasure Guarantee

	Core Translation Algorithms
	Simplified Datatype Generation
	Up-conversion Generation
	Down-conversion Generation
	Runtime Type Representations
	Validating Ghostbuster

	Implementing Ghostbuster for Haskell
	Preprocessing options
	Current Limitations & Possible Extensions

	Evaluation
	Runtime Performance
	Package Survey

	Related Work
	Conclusions & Future Work
	Acknowledgments
	References

