
Ghostbuster: A Tool for Simplifying and Converting GADTs

Trevor L. McDonell1 Timothy A. K. Zakian2 Matteo Cimini1 Ryan R. Newton1

1Indiana University, USA

{mcdonelt,mcimini,rrnewton}@indiana.edu

2University of Oxford, UK

timothy.zakian@cs.ox.ac.uk

Abstract

Generalized Algebraic Dataypes, or simply GADTs, can encode
non-trivial properties in the types of the constructors. Once such
properties are encoded in a datatype, however, all code manipulating
that datatype must provide proof that it maintains these properties
in order to typecheck. In this paper, we take a step towards grad-
ualizing these obligations. We introduce a tool, Ghostbuster, that
produces simplified versions of GADTs which elide selected type
parameters, thereby weakening the guarantees of the simplified
datatype in exchange for reducing the obligations necessary to ma-
nipulate it. Like ornaments, these simplified datatypes preserve the
recursive structure of the original, but unlike ornaments we focus on
information-preserving bidirectional transformations. Ghostbuster
generates type-safe conversion functions between the original and
simplified datatypes, which we prove are the identity function when
composed. We evaluate a prototype tool for Haskell against thou-
sands of GADTs found on the Hackage package database, generating
simpler Haskell’98 datatypes and round-trip conversion functions
between the two.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

Keywords GADTs, Datatypes, Haskell

1. Introduction

Languages in the Haskell, OCaml, Agda, and Idris traditions can
encode complicated invariants in datatype definitions. This intro-
duces safety at the cost of complexity. For example, consider the
standard GADT (generalized algebraic datatype) formulation of
length-indexed lists:

data Vec a n where
VNil :: Vec a Zero
VCons :: a Ñ Vec a n Ñ Vec a (Succ n)

Although this datatype provides additional static guarantees—for
example, that we cannot take the head of an empty list—writing
functions against this type necessarily involves additional work to
manage the indexed length type n. In some situations however, such
as when prototyping a new algorithm, the user may prefer to delay

the effort required to fulfill these type obligations until they can
verify that the new algorithm is beneficial. In that case, we can
convert the length-indexed list into a regular list by erasing the
length index n and operating over a simplified representation:

data Vec' a where
Nil' :: Vec' a
Cons' :: a Ñ Vec' a Ñ Vec' a

before converting back to the original datatype in order to test the
changes within the larger code base.

However, this final step requires re-establishing the type-level
invariants that were encoded in the original datatype, which may
not be straightforward. Perhaps the user should stick to regular
ADTs for this project? Unfortunately, that too may not be an option.
In the 16,183,864 lines of public Haskell code we surveyed, we
found 11,213 existing GADTs. A person tasked with working in
an existing project is unlikely to be able to reimplement all of a
project’s datatypes and operations on them from scratch.

Inspired by the theory of ornaments [10, 15], we can think about
moving between families of related datatypes that have the same
recursive structure: rather than always working with a GADT, a user
could choose to (initially) write code against a simpler datatype,
while still having it seamlessly interoperate with code using the
fancier one. A practical tool to do this could enable a gradual
approach to discharging obligations of indexed datatypes. In this
paper, we present such a tool. We require that it (1) define canonical
simplified datatypes; and (2) create conversion functions between
the original and simplified representations.

Is it possible to define such a simplification strategy by merely
choosing which type indices to remove from a datatype? While such
a method would be convenient for the user, it is far from obvious
that there exists a class of datatypes for which such an erasure
selection yields a canonical simplified datatype and guarantees that
conversion functions can successfully round-trip all values of the
GADT through the simplified representation and back.

In this work, we show how to do exactly that. Using our tool—
named Ghostbuster—the user simply places the following pragma
above the definition of Vec:

{́ # Ghostbuster : syn thes i ze n #´}

and Ghostbuster will generate the definition Vec' as well as conver-
sion functions between the two representations:

upVec :: Typeable n ñ Vec a n Ñ Vec' a
downVec :: Typeable n ñ Vec' a Ñ Maybe (Vec a n)

Since downVec may fail at runtime if the actual size of the vector
does not match the expected size as specified (in the type n and
checked at runtime via Typeable) by the caller, we return the result
wrapped in Maybe, but we could also choose to throw an error

on failure or return a diagnostic message using Either. If we do
not know the specific type index that must be synthesized during

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ICFP’16, September 18–24, 2016, Nara, Japan
ACM. 978-1-4503-4219-3/16/09...
http://dx.doi.org/10.1145/2951913.2951914

338

the conversion process, we can keep it sealed under an existential
binding and still make use of it in contexts that operate over any
instance of the sealed type:

data SealedVec a where
SealedVec :: Typeable n ñ Vec a n Ñ SealedVec a

downVecS :: Vec' a Ñ SealedVec a
withVecS :: SealedVec a Ñ (@ n. Vec a n Ñ b) Ñ b

Assuming we had such functionality, would that truly make
our lives any easier, or have we just moved our type-checking
responsibilities elsewhere? We will show that manipulating these
simplified—or ghostbusted—datatypes is not at all burdensome, and
can indeed make life simpler. As an example, consider implementing
deserialization for our indexed list. With Haskell’98 datatypes
such as Vec', a Read instance can be derived automatically, but
an attempt to do so with the Vec GADT results in a cryptic error
message mentioning symbols and type variables only present in the
compiler-generated code. Disaster! On the other hand, by leveraging
Ghostbuster we can achieve this almost trivially:1

instance (Read a, Typeable n) ñ Read (Vec a n) where
readsPrec i s =

[(v,s) | (v',s) Ð readsPrec i s
, let Just v = downVec v']

In this paper we scale up the above type-index erasure approach
to handle a large number of datatypes automatically. We make the
following contributions.

• We introduce the first practical solution to incrementalize the
engineering costs associated with GADTs.

• We give an algorithm for deleting any type variable that meets a
set of non-ambiguity criteria. Our ambiguity criteria establish a
gradual erasure guarantee: if a multi-variable erasure is valid,
then any subset of these variables also forms a valid erasure
(Section 5).

• We formalize the algorithm in the context of a core language. We
show that up-conversion functions are total and up-then-down is
exactly the identity function on all values in the original GADT
(Section 6).

• We show how the encoding of dynamically typed values that
emerges from the algorithm can be asymptotically more efficient
than a traditional type Dynamic (Section 2.2).

• Viewed in the context of the literature on deriving type class in-
stances for datatypes, Ghostbuster increases the reach of deriving
capabilities beyond previous functional language implementa-
tions, by lifting derivations on simpler types to fancier ones, as
with Read above (Section 3).

• We describe the Ghostbuster tool, currently implemented as a
source-to-source translator for Haskell, but directly generalizable
to other languages. We evaluate the runtime performance of
Ghostbuster conversions compared to the ad-hoc approach to
constructing GADTs using a runtime eval, and apply it to
existing datatypes in all 9026 packages on the Hackage Haskell
package server (Section 8).

Although our approach does not handle all datatypes or Haskell
features, it clearly delineates the class of valid erasures and lays the
groundwork for future research.

1 Admittedly, this instance would be improved if the constructors of our
simplified datatype used the exact same names as the original, but we append
an apostrophe to constructor and type names as a convention to clearly
distinguish the generated, simplified datatypes.

2. Design Constraints

The central facility provided by Ghostbuster is a method to allow
users to select a subset of type variables of a given GADT, from
which we derive a new datatype that does not contain those type
variables—they have been erased from the datatype. Furthermore,
we generate an up-conversion function from the original datatype to
the newly generated one, as well as an down-conversion function
from the simplified type back to the original, re-establishing type-
level invariants as necessary.

Before jumping into the details of how this is implemented, we
first highlight some of the different problems that can occur when
attempting to erase a type variable from a GADT, which will give us
some intuition on the design constraints and behavior of Ghostbuster.
Section 3 explores a larger example in more detail.

2.1 Prerequisite: Testing Types at Runtime

Ghostbuster blurs the line between having a statically-typed and
dynamically-checked program. With Ghostbuster, we can explic-
itly remove type-level information in one part of the program (up-
conversion), which we then re-establish at some later point (down-
conversion). To accomplish this, a central requirement for Ghost-
buster is the ability to examine types at runtime and to take action
based on those tests. Haskell has supported (open-world) type repre-
sentations for years via the Typeable class:

class Typeable a where ´́ GHC-7.10 (current)
typeRep :: proxy a Ñ TypeRep

However, this is insufficient for our purposes because examining a
TypeRep value gives us no type-level information about the type
that value represents. Instead, we require a type-indexed type
representation, which makes the connection between the two visible
to the type system:

class Typeable a where ´́ GHC-8.2
typeRep :: TypeRep a

This type-indexed representation is currently in development for
GHC and is scheduled for release as part of GHC-8.2.2 We assume
the presence of this new design throughout the paper, although until
this new Typeable design becomes available in GHC proper we
generate these type-indexed TypeRep values ourselves.3,4

We can then use the following functions to compare two types
and gain type-level information when those types are equal:

eqT :: (Typeable a, Typeable b) ñ Maybe (a :„: b)
eqTT :: TypeRep a Ñ TypeRep b Ñ Maybe (a :„: b)

data a :„: b where
Refl :: a :„: a

2.2 Erasure Method: Checked versus Synthesized

The basic operation that we provide to users is the ability to erase
type variables from a GADT. However, there are restrictions on
which type variables are valid erasure candidates. Consider the
standard list:

{́ # Ghostbuster : syn thes i ze a #´} ´́ invalid!
data List a where

Nil :: List a
Cons :: a Ñ List a Ñ List a

2 https://ghc.haskell.org/trac/ghc/wiki/Typeable
3 For simplicity our local TypeRep and Typeable definitions do make a
closed-world assumption, but since we require only the interface we have
shown here, and as will appear in GHC-8.2 for an open world of types, there
is no loss of generality.
4 Additionally, the use of embedded TypeRep values rather than embedded
Typeable class constraints simplifies our core language (Section 4).

339

https://ghc.haskell.org/trac/ghc/wiki/Typeable

If we remove the type parameter a and attempt to synthesize it when
converting back to the original datatype, we will find that it is not
possible to write this down-conversion function. In contrast to our
initial Vec example (Section 1), if we remove the information about
the type of the list elements, we cannot later infer that information
based solely on the recursive structure of the list.

For this reason, we allow a second, weaker form of type index
erasure. Given the declaration

{́ # Ghostbuster : check a #´}

Ghostbuster will generate the following simplified representation of
List together with its conversion functions:

data List' where
Nil' :: List'
Cons' :: @ a. TypeRep a Ñ a Ñ List' Ñ List'

upList :: Typeable a ñ List a Ñ List'
downList :: Typeable a ñ List' Ñ Maybe (List a)

In contrast to Vec', where the erased type was synthesized during
down-conversion, when erasing type variables in checked mode we
must embed a representation of the type directly into the constructor
Cons', otherwise this information will be lost. We refer to the type
parameter a as newly existential, as it was not existentially quantified
in the original datatype fed to Ghostbuster. It is only newly existential
type variables that require an explicit type representation to be
embedded within the simplified datatype. This is important, as we
surely do not want the user to have to create and manipulate TypeRep
values for all erased parameters.

During down-conversion, we check that each element of the list
does indeed have the same type the user expects:

downList :: @ a. Typeable a ñ List' Ñ Maybe (List a)
downList Nil' = Just Nil
downList (Cons' a' x xs') = do

Refl Ð eqTT a' (typeRep :: TypeRep a)
xs Ð downList xs'
return (Cons x xs)

Compare this to the definition of down-conversion for our origi-
nal Vec datatype, which erased its type-indexed length parameter in
synthesized mode:

downVecS :: Vec' a Ñ SealedVec a
downVecS VNil' = SealedVec VNil
downVecS (VCons' x xs') =

case downVecS xs' of
SealedVec xs Ñ SealedVec (VCons x xs)

downVec :: Typeable n ñ Vec' a Ñ Maybe (Vec a n)
downVec v' =

case downVecS v' of
SealedVec v Ñ gcast v

This highlights the key difference between erasures in checked
versus synthesized mode. In order to perform down-conversion on
List' we must examine the type of each element and compare it
to the type that we expect; thus, we can not create a SealedList

which hides the type of the elements, since we would not know
what type to compare against in order to perform the conversion. In
contrast, down-conversion for Vec' does not need to know a priori
what the type n should be; only if we wish to open the SealedVec

do we need to check (via Data.Typeable.gcast) that the type that
was synthesized is indeed the type we anticipate.

Connection to dynamic typing We note that this embedded type
representation essentially makes each list element a value of type
Dynamic. Why then do we use explicit, unbundled type representa-
tions when Dynamic has existed in Haskell for years? For the List

type above, we would perform the same Opnq number of runtime

type checks with either approach, but consider the following list-of-
lists datatype:

data LL a where
NilL :: LL a
ConsL :: [a] Ñ LL a Ñ LL a

These two competing approaches would each yield the following
simplified types for ConsL:

ConsL'_dyn :: [Dynamic] Ñ LL' Ñ LL'
ConsL'_rep :: TypeRep a Ñ [a] Ñ LL' Ñ LL'

Thus, during down-conversion the former would require a runtime
type check on every element of the inner list, whereas our unbundled
representation requires only a single check for each element of
the outer list—an improvement in asymptotic efficiency. This
is one reason that we design Ghostbuster to inject explicit type
representations using TypeRep.

Finally, this observation suggests an appealing connection to
gradual typing—when Ghostbusted, data structures that were refined
by type indexing become regular, parametrically polymorphic data
structures, which in turn become dynamic datatypes once all type
parameters are erased.

2.3 Unrecoverable Information

Consider the following definition of a strange binary tree:

{́ # Ghostbuster : syn thes i ze a #´} ´́ invalid!
data Bad a where

Leaf :: x Ñ Bad x
Node :: Bad y Ñ Bad z Ñ Bad z

Here, only the rightmost leaf of the tree is usable, since every
leftward branch is of some unknown, unusable type y. According to
our policy of embedding an explicit type representation for any
newly-existential types (Section 2.2) we will add a TypeRep to
the Leaf constructor to record the erased type x. However, what
type representation do we select for y? Since this type is already
unknowable in the original structure we cannot possibly construct
its type representation, so such erasures are not supported.

2.4 A Policy for Allowed Erasures

As we saw in Section 2.2, the defining characteristic of which mode
a type variable can be erased in is determined by whether the erased
information can be recovered from what other information remains.
As a more complex example (which we explore further in Section 3)
consider the application case for an expression language:

{́ # Ghostbuster : check env , syn thes i ze ans #´}
data Exp env ans where

App :: Exp e (a Ñ b) Ñ Exp e a Ñ Exp e b

Why does the type variable a, which is existentially quantified,
not cause a problem? It is because a is a pre-existing existential
type (not made existential by a Ghostbuster erasure). The type a can
be synthesized by recursively processing fields of the constructor,
unlike the Bad example above. Thus, we will not need to embed a
type representation so long as we can similarly rediscover in the
simplified datatype the erased type information at runtime. This is
an information-flow criterion that has to do with how the types of
the fields in the data constructor constrain each other.

Checked mode: right to left In the App constructor, because the
env type variable is erased in checked mode, its type representation
forms an input to the downExp down-conversion function. This
means that since we know the type e of the result Exp e b (on
the right), we must be able to determine the e in the fields to the left,
namely in Exp e a and Exp e (a Ñ b). Operationally, this makes
sense if we think how the downExp function must call itself on each
of the fields of the constructor, passing the (same) representation for
the type e to each recursive call.

340

Synthesized mode: left to right Conversely, the type ans forms
part of the output of the down-conversion process, since this type
is synthesized by downExp, and we only check after the conversion
that the generated type is the type that we anticipate. This means
that the recursive calls on the fields of the constructor will generate
the types (a Ñ b) and a from the left, which in turn are used to
determine the output type b on the right.

Fortunately, whether or not type variables a and b can be
determined by examining the other types in the constructor is a
purely local check that can be determined in isolation on a per-
constructor/per-datatype basis.5 The same local reasoning holds
for the requirements on checked types as well as synthesized. We
formalize these information flow checks in Section 5.

Erased types that escape Ghostbuster performs one final check
before declaring an erasure is valid: datatypes undergoing erasure
can only be used directly in the fields of a constructor, not as
arguments to other type constructors. For example, what should
the behavior be if we attempt to erase the type variable a in the
following:

data T a where
MkT :: [T a] Ñ T a

We might expect a sufficiently clever implementation to notice that
it can utilize the Functor instance to apply up- and down-conversion
to each element of the list. But what if the type constructor does
not have a Functor instance, or is only exported abstractly, thereby
prohibiting further analysis? This appears to be a tricky design
space, so our current implementation simply rules out these erasures
altogether.

3. Life with Ghostbuster

In this section, we describe several scenarios in which Ghostbuster
can make life easier, taking as a running example the simple
expression language which we define below.

3.1 A Type-safe Expression Language

Implementing type-safe abstract syntax trees (ASTs) is perhaps
the most common application of GADTs. Consider the following
language representation:6

data Exp env ans where
Con :: Int Ñ Exp e Int
Add :: Exp e Int Ñ Exp e Int Ñ Exp e Int
Var :: Idx e a Ñ Exp e a
Abs :: Typ a Ñ Exp (e, a) b Ñ Exp e (a Ñ b)
App :: Exp e (a Ñ b) Ñ Exp e a Ñ Exp e b

Each constructor of the GADT corresponds to a term in our language,
and the types of the constructors encode both the type that that
term evaluates to (ans) as well as the type and scope of variables
in the environment (env). This language representation enables
the developer to implement an interpreter or compiler which will
statically rule out any ill-typed programs and evaluations. For
example, it is impossible to express a program in this language
which attempts to Add two functions.

Handling variable references is an especially tricky aspect for
this style of encoding. We use typed de Bruijn indices (Idx) to
project a type t out of a type level environment env, which ensures
that bound variables are used at the correct type [3].

5 This is more local than other (tangentially related) features such as the “.”
notation in Idris [5] and Agda, which signifies a type is runtime-irrelevant and
should be erased during compilation. Irrelevance requires a whole-program
check to verify whether the annotation can be fulfilled.
6 https://github.com/shayan-najd/MiniFeldspar

Pass 1 Pass 3

Pass 2up
conversion

down
conversion

GADT
AST

GADT
AST

ADT AST

Figure 1. In this scenario, we wish to add a prototype transfor-
mation into a compiler that uses sophisticated types, but against a
simpler representation. For example, we may want to verify that an
optimization does indeed improve performance, before tackling the
type-preservation requirements of the GADT representation.

data Idx env t where
ZeroIdx :: Idx (env, t) t
SuccIdx :: Idx env t Ñ Idx (env, s) t

Finally, our tiny language has a simple closed world of types Typ,
containing Int and (Ñ).

Using GADTs to encode invariants of our language (above)
into the type system of the host language it is written in (Haskell)
amounts to the static verification of these invariants every time
we run the Haskell type checker. Furthermore, researchers have
shown that this representation does indeed scale to realistically
sized compilers: Accelerate [8, 16, 17] is an embedded language in
Haskell for array programming which includes optimizations and
code generation all written against a GADT AST, maintaining these
well-typed invariants through the entire compiler pipeline.

Where then does the approach run into trouble? The problem
is that manipulating this representation requires the developer to
discharge a (potentially non-trivial) proof to the type system that
all of these invariants are maintained. As such, the programmer’s
time may be spent searching for a type-preserving formulation of
their algorithm, rather than working on the algorithm itself. While
ultimately such effort is justified in that it rules out entire classes
of bugs from the compiler, we question whether or not this effort
should be required up front, and wonder if, without this extra initial
burden, other optimizations or language features might have been
implemented by the Accelerate authors and external contributors
over the life of the project so far.

In the next section, we discuss how Ghostbuster can be used to
realize the situation shown in Figure 1, where we wish to implement
a prototype transformation over our expression language, without
needing to discharge all of the typing obligations up front. Of course,
other alternatives exist:

Competing approach #1: hand-written conversions Rather than
using a tool such as Ghostbuster, a user could just as well build the
same conversion functions to and from a less strictly typed AST
representation themselves. Indeed, Ghostbuster itself is written en-
tirely in Haskell, and no modifications to the GHC compiler were
required to support it. However, this introduces a maintenance bur-
den. Moreover, these conversion functions are tricky to implement,
and since the Haskell type checker cannot stop us from writing
ill-typed conversions to or from our untyped representation, these
errors will only be caught when the runtime type tests fail.

Competing approach #2: runtime eval Another approach is to
avoid the fine-grained runtime type checks necessary for down-
conversion entirely, by generating the GADT term we require as
a string, and using GHC embedded as a library in our program
to typecheck (eval) the string at runtime. Implementing a pretty-
printer is arguably less complex than the method we advocate in this
work, but there are several significant disadvantages to this approach
which we will demonstrate in Section 8.

341

https://github.com/shayan-najd/MiniFeldspar

class Syntactic f where
varIn :: Idx env t Ñ f env t
expOut :: f env t Ñ f env t
weaken :: f env t Ñ f (env, s) t

instance Syntactic Idx
instance Syntactic Exp

shift :: Syntactic f
ñ (@ t'. Idx env t' Ñ f env' t')
Ñ Idx (env, s) t
Ñ f (env', s) t

shift _ ZeroIdx = varIn ZeroIdx
shift v (SuccIdx ix) = weaken (v ix)

rebuild :: Syntactic f
ñ (@ t'. Idx env t' Ñ f env' t')
Ñ Exp env t
Ñ Exp env' t

rebuild v exp =
case exp of

Var ix Ñ expOut (v ix)
Abs t e Ñ Abs t (rebuild (shift v) e)
. . .

substitute :: Exp (env, s) t Ñ Exp env s Ñ Exp env t
substitute old new = rebuild (subTop new) old

where
subTop :: Exp env s Ñ Idx (env, s) t Ñ Exp env t
subTop = . . .

Listing 1. Substitution algorithm for richly-typed terms

3.2 Example #1: Substitution

Consider the task of inlining a term into all use sites of a free
variable. For our richly-typed expression language, where the types
of terms track both the type of the result as well as the type
and scope of free variables, this requires a type-preserving but
environment changing value-level substitution algorithm. Luckily,
the simultaneous substitution method of McBride [14] provides
exactly that, where renaming and substitution are instances of a
single traversal, propagating operations on variables structurally
through terms. Listing 1 outlines the method.

Although the simultaneous substitution algorithm is very elegant,
we suspect that significant creativity was required to come up with
it. Compare this to the implementation shown in Listing 2, which
is just a simple structural recursion on terms. In particular, this
is implemented against the simplified representation generated by
Ghostbuster using the erasure pragma:7,8

{́ # Ghostbuster : check env , syn thes i ze ans #´}

which yields the following expression datatype:

data Exp' where
Con' :: Int Ñ Exp'
Add' :: Exp' Ñ Exp' Ñ Exp'
Mul' :: Exp' Ñ Exp' Ñ Exp'
Var' :: Idx' Ñ Exp'
Abs' :: Typ' Ñ Exp' Ñ Exp'
App' :: Exp' Ñ Exp' Ñ Exp'

and conversion functions:

7 The environment type env needs to be provided by the client (checked
mode) because otherwise it is ambiguous. For example, the constant term
Con 42 can be typed in any environment.
8 We simultaneously request erased versions of Idx and Typ using the same
settings, but elide those for brevity.

shift :: Idx' Ñ Exp' Ñ Exp'
shift j exp =

case exp of
Var' ix | ix < j Ñ Var' ix

| otherwise Ñ Var' (SuccIdx' ix)
Abs' t e Ñ Abs' t (shift (SuccIdx' j) e)
. . .

substitute :: Exp' Ñ Exp' Ñ Exp'
substitute = go ZeroIdx'

where
go j old new =

case old of
Var' ix | ix == j Ñ new

| ix > j, SuccIdx' i Ð ix Ñ Var' i
| ix < j Ñ old

Abs' t e Ñ Abs' t (go (SuccIdx' j) e
(shift ZeroIdx' new))

. . .

Listing 2. Substitution algorithm implemented against the simpli-
fied datatype generated by Ghostbuster

upExp :: (Typeable env, Typeable t)
ñ Exp env t Ñ Exp'

downExp :: (Typeable env, Typeable t)
ñ Exp' Ñ Maybe (Exp env t)

Referring to the implementation of Listing 2, note that although
the Var' and Abs' cases constitute environment changing operations,
we do not need to manipulate any embedded TypeRep env values;
needing to do so would seriously compromise usability, and Ghost-
buster is instead able to recover this information automatically (see
Sections 2.2 and 2.4).

3.3 Example #2: Template Haskell and Typeclass Deriving

One great feature of Haskell is its ability to automatically derive
certain standard typeclass instances such as Show and Read for
Haskell’98 datatypes. Unfortunately, attempting to do the same for
GADTs results only in disappointment and cryptic error messages
from compiler-generated code. However, as we saw in Section 1,
we can regain this capability by using Ghostbuster and leveraging
derived instances for the simplified datatypes instead.

Similarly, some libraries include Template Haskell [22] rou-
tines that can be used to automatically generate instances for the
typeclasses of that library. Although these run into problems when
applied to GADTs, once more we can use Ghostbuster to circum-
vent this limitation. As an example, we can easily generate JSON
(de)serialization instances for the aeson package9 applied to our
richly-typed terms:

$(deriveJSON defaultOptions ''Exp')

instance (. . .) ñ ToJSON (Exp env t) where
toJSON = toJSON . upExp

instance (. . .) ñ FromJSON (Exp env t) where
parseJSON v = do

v' Ð parseJSON v :: Parser Exp'
return $ fromMaybe (error ". . . ") (downExp v')

These examples demonstrate that Ghostbuster enables a synergy
with existing Haskell libraries and deriving mechanisms, providing
a convenient method to lift these operations to GADTs.

9 https://hackage.haskell.org/package/aeson

342

https://hackage.haskell.org/package/aeson

data defs

haskell-
src-exts

Generate
simplified

.hs file Ghostbuster
Pipeline

Ambiguity
check

haskell-
src-exts

Lower
TypeRep

.hs file

Typecheck

Haskell
codegen

pretty-printing

Figure 2. The architecture of the Ghostbuster tool, which processes
data definitions in several passes, resulting in pretty-printed Haskell
source on disk. Note that only the ingestion and code generation
phases are Haskell specific: the ambiguity check through lowering
phases are implemented in terms of our core language.

4. Core Language Definition

Before covering host-language-specific aspects of our Ghostbuster
implementation, we first formalize a core language to facilitate
the precise description of the transformations performed by the
Ghostbuster tool. This core language also serves as the intermediate
representation of the Ghostbuster implementation. Although we
implement our prototype in Haskell, it is easily extended to generate
code for any language that supports GADTs.

The core language definition is given in Figure 3. The input to
Ghostbuster is a set of datatype definitions, dd1 . . . ddn. The term
language is used only as an output language for generating up-
and down-conversion functions. As such, we are not interested in
the problem of type inference for GADTs, rather we assume type
annotations that allow us to use the permissive, natural type system
for GADTs [21], which supports decidable checking [9, 24] (but not
inference). Our implementation runs a checker for this type system,
and, to support checking, case and typecase forms are labelled
with their return types as well, though we will elide these in the code
through the rest of the paper.

4.1 Syntax

The syntax of terms and types in Figure 3 resembles Haskell
syntax with extensions for type representation handling and extra
conventions related to type arguments (k c s) to indicate the erasure
level (respectively, type variables which are kept unchanged in the
output, and those which are erased in checked and synthesized mode,
as discussed in Section 2.2). Without loss of generality, we assume
that type constructor arguments are sorted into these kept, checked,
and synthesized categories. This simplifies the discussion of which
type arguments occur in which contexts, based on position. The
implemented Ghostbuster tool does not have this restriction and the
status of type arguments are specified in pragmas, as we saw earlier.

A program consists of a number of datatype declarations fol-
lowed by mutually-recursive value definitions (vd) and a “main”
term e. The generated up- and down-conversions will form a series
of vds. Terms in our language consist of the lambda calculus, a non-
recursive let with explicit type signatures, simple case expressions
and ways of creating, casing on, and querying equality of runtime
type representations, which we call (typerep, typecase, and »τ).
The »τ operator must work over arbitrary monotype representations,
comparing them for equality at runtime. typecase also performs run-
time tests on type representations, and enables deconstructing type
representations into their component parts—for example, splitting a
function type into a input type and output type.

We deviate from the standard presentation of GADTs. Typically,
the return type of each constructor is normalized to the form T a,

Programs and datatype declarations

prog ::“ dd1 . . . ddn; vd1 . . . vdm; e

dd ::“ data T k c s where

K :: @ k, c, s, b.
τ1 Ñ ¨ ¨ ¨ Ñ τp Ñ T τk τc τs

vd ::“ x :: σ; x “ e

Data constructors K
Type constructors T, S
Type variables a, b, k, c, s
Monotypes τ ::“ a | τ Ñ τ | T τ

| TypeRep τ
Type Schemes σ ::“ τ | @a.τ

Term variables x, y, z
Constraints C,D ::“ ϵ | τ „ τ | C ^ C
Substitutions φ ::“ H | φ, ta :“ τu

Terms e ::“ K | x | λx :: τ.e | e e
| let x :: σ “ e in e
| caserτ s e of rpi Ñ eisiPI

| typerep T

| typecaserτ s e of
| ptyperep Tq x1 . . . xn Ñ e | _ Ñ e
| if e »τ e then e else e

Patterns p ::“ K x1 . . . xn

Type names T ::“ T | ArrowTy | Existential

Figure 3. The core language manipulated by Ghostbuster

with any constraints on the output type pushed into a per-data-
constructor constraint store (C):

Ki :: @a, b.C ñ τ1 Ñ ¨ ¨ ¨ Ñ τp Ñ T a

We avoid this normalization. Because we lack type class constraints
in the language (and equality constraints over existentially-bound
variables can easily be normalized away), we simply omit per-
data-constructor constraints. This means that when scrutinizing
a GADT with case, we must synthesize constraints equating the
scrutinee’s type T τ with T τk τc τs in each Ki clause and then
add this into a constraint store C, which we will use during type-
checking (Figure 5). The advantage is that avoiding per-constructor
constraints greatly simplifies our definition of the allowable space
of input datatypes for Ghostbuster (Section 5). The absence of per-
constructor type-class constraints from our core language is also
why we require type-indexed TypeRep values (rather than equivalent
Typeable constraints) to observe the type of newly existential type
variables (Sections 2.1 and 2.2).

4.2 Type System

The typing rules for our language are syntax-directed and are given
in Figures 4 to 7. Many of the typing rules are standard, but a few—
in particular Pat, TypeRep, TypeCase, and IfTyEq—are unique
to our language and separated into Figure 4. Here the TypeRep and
TypeCase rules only cover the type constructor T cases, the elided
rules for the built-in type representations T “ Existential and
T “ ArrowTy are nearly identical.

We lack a full kind system, but we do track the arity of construc-
tors, with T : ‹n P Γ as a shorthand for the T being an arity-n type
constructor. We require that all type constructors be fully applied
except when referenced by name through the (typerep T) form.

5. Preconditions and Ambiguity Checking

Before Ghostbuster can generate up- and down-conversion functions,
it first performs a sanity check that the datatypes, together with
requested parameter erasures, meet all preconditions necessary

343

C,Γ $e typerep T : TypeRep a
n

Ñ TypeRep pT anq C,Γ $e e : TypeRep a0

C ^ pa0 „ T anq,Γ Y tx1 : TypeRep a1, . . . , xn : TypeRep anu $e e1 : τ C,Γ $e e2 : τ

C,Γ $e typecaserτ s e of pptyperep T q x1 . . . xnq Ñ e1 | _ Ñ e2 : τ
TypeCase

T : ‹n P Γ

C,Γ $e typerep T : TypeRep a
n

Ñ TypeRep pT anq
TypeRep

C,Γ $e e1 : TypeRep τ1 C,Γ $e e2 : TypeRep τ2
C ^ pτ1 „ τ2q,Γ $e e1 : τ C,Γ $e e2 : τ

C,Γ $e if e1 »τ e2 then e1 else e2 : τ
IfTyEq

Figure 4. Typing rules for type representations and operations on them

C,Γ $p p Ñ e : τ1 Ñ τ2

pK : @k c s, b. τx
p Ñ T τ 1mq P Γ fvpC,Γ, τm, τrq X b “ H

D “

˜
ľ

i“1...m

τ 1
i „ τi

¸

C ^ D,Γ Y tx : τx
pu $e e : τr

C,Γ $p K xp Ñ e : T τm Ñ τr
Pat

C,Γ $e e : τ

px : @a.τ 1q P Γ φ “ ta :“ τu

C,Γ $e x : φpτ 1q
Var

C,Γ Y tx : τxu $e e : τ

C,Γ $e λx :: τx.e : τx Ñ τ
Lam

C,Γ $e e1 : τ1 Ñ τ2 C,Γ $e e2 : τ1

C,Γ $e e1 e2 : τ2
App

C,Γ $e e : τ @i P I. C,Γ $p pi Ñ ei : τ Ñ τ 1

C,Γ $e case rτ 1s e of rpi Ñ eisiPI : τ 1
Case

C,Γ $e e1 : τ1
C,Γ Y tx : @a.τ1u $e e2 : τ2

C,Γ $e let x :: @a.τ1 “ e1 in e2 : τ2
Let

C,Γ $ e : τ1
C |ù τ1 „ τ2

C,Γ $ e : τ2
Eq

pK : @a.τ 1q P Γ φ “ ta :“ τu

C,Γ $e K : φpτ 1q
Con

Figure 5. Typing rules for the core language

C |ù ϵ
True

C |ù τ „ τ
Refl

C |ù τ2 „ τ1

C |ù τ1 „ τ2
Sym

C1 ^ C2 |ù C2

GivenR
C1 ^ C2 |ù C1

GivenL

C |ù τ1 „ τ2 C |ù τ2 „ τ3

C |ù τ1 „ τ3
Trans

C |ù C1 C |ù C2

C |ù C1 ^ C2

Conj
C |ù τi „ τ 1

i

C |ù T τ i „ T τ 1
i

TStruct

C |ù T τ i „ T τ 1
i

C |ù τi „ τ 1
i

TCon
C |ù τi „ τ 1

i

C |ù τ1 Ñ τ2 „ τ 1
1 Ñ τ 1

2

ArrStruct
C |ù τ1 Ñ τ2 „ τ 1

1 Ñ τ 1
2

C |ù τi „ τ 1
i

ArrCon

C |ù τ1 „ τ2

C |ù typerep τ1 „ typerep τ2
TyRepStruct

C |ù typerep τ1 „ typerep τ2

C |ù τ1 „ τ2
TyRepCon

Figure 6. Equality Theory for the Ghostbuster Type System

344

Γ $v vd : Γ1

ϵ,Γ1 $e e : τ Γ1 “ Γ Y tx : @a.τu

Γ $v x::@a.τ ;x “ e : Γ1
VDef

$d dd : Γ1

$d data T an whereK :: σ : Γ Y tT : ‹n,K : σu
Data

$prog prog : τ

$d dd : Γd Γd $v vd : Γv ϵ,Γv $e e : τ

$prog dd; vd; e : τ
Prog

Figure 7. Environment and program typing rules

for the tool to generate well-typed conversion functions. Indeed,
as we discussed in Section 2 not every erasure setting is valid.
We therefore want to create sufficient preconditions such that if
these preconditions are met, the Ghostbuster tool is guaranteed to
generate a pair of well-typed functions pup, downq, such that up-
conversion followed by down-conversion is a total identity function.
This section details these preconditions and ambiguity criteria.

5.1 Ambiguity Test

The goal of the ambiguity criteria are a concise specification
of the class of programs handled by Ghostbuster. These non-
ambiguity prerequisites apply per-data-constructor, Ki, per-datatype
that requests a type erasure (nonempty c or s variables). If all
constructors of the datatypes undergoing erasure individually pass
the ambiguity check, then the input program as a whole is valid. For
a given data constructor:

Ki :: @k, c, s, b.τ1 Ñ ¨ ¨ ¨ Ñ τp Ñ T τk τc τs

We refer to the types τi through τp as the fields of the constructor,
and the T τk τc τs expression as the right-hand side (RHS). Types
which occur in a checked or synthesized context means that they
occur within the arguments of some type constructor T in positions
corresponding to its c or s type parameters. Likewise, kept (or non-
erased) context k refers to all types τ that are not in checked or
synthesized context.

The ambiguity check is concerned with information flow. That is,
whether the erased information can be recovered based on properties
of the simpler datatype. If not, then these type variables would not
be recoverable upon down-conversion and Ghostbuster rejects the
program.

5.2 Type Variables Synthesized on the RHS

For each synthesized type τ 1 P τs on the RHS, type variables
occurring in that type, a P Fv!τ 1", must be computable based on:

• occurrences of a in any of the fields τp. That is, Di P r1, ps . a P
Fvs!τi", using the Fvs!" function from Figure 8; or

• a P Fv!τk". That is, kept RHS types; or

• a P Fv!τc". That is, a occurs in the checked (input) type.

Note that the occurrences of a in fields can be in kept or in
synthesized contexts, but not checked. For example, consider our
Exp example (Section 3.1), where the a variable in the type of an
expression Exp e a is determined by the synthesized a component

of its sub-expressions, bottoming out at leaf expressions such as
constants and variables. In contrast, checked variables in the fields
must be created by the down-conversion function as inputs to
recursive down-conversion calls on the value’s fields. Thus they
cannot be a source of new information to determine synthesized
outputs, and we use the Fvs!" rather than the Fv!" metafunction
above. Conversely, notice that we do not worry about applying the
above prerequisites to synthesized variables inside fields—these are
the outputs of recursive down-conversion calls. Their computability
is left to an inductive argument (bottoming out at “leaf” constructors
such as Exp’s Con).

5.3 Type Variables in Checked Context

All types in checked context in τ1 . . . τp are implicit arguments to
the down-conversion function that will process that field. Thus for
all τi in checked context, all a P Fv!τi" must be computable based
on information available at that point, which includes:

• kept or checked variables in the RHS, a P Fv!τc" Y Fv!τk"

• occurrences of a in non-erased context within any field

• occurrences of a in Fv!τj", for other fields τj that have already
been processed before the field containing τi.

This last case—inter-field dependencies—can be found in the Abs

case of our expression language (Section 3.1):

Abs :: Typ a Ñ Exp (e, a) b Ñ Exp e (a Ñ b)

Recall that in our example, given Exp e a, we erase e in checked
mode and a in synthesized mode. Thus the type (e, a) is in checked
context, so how is it determined? It cannot be resolved using
(a Ñ b) on the RHS, as this is a synthesized type (meaning it is an
output of the down-conversion function); it must be determinable
from the other fields of the constructor, in this case Typ a.

For a type in checked context, we must be able to determine
which fields to examine in order to determine what the checked
type should be. This requires that any inter-field dependencies do
not form a cycle. As an example, we cannot erase the type t from
Loop, because the types a and b in the fields of the constructor are
in checked mode but depend on each other:

{́ # Ghostbuster : syn thes i ze t #´} ´́ invalid!
data Loop t where

MkLoop :: T a b Ñ T b a Ñ Loop (a, b)

{́ # Ghostbuster : check a , syn thes i ze b #´}
data T a b where

MkT :: a Ñ b Ñ T a b

For simplicity our formal language assumes that fields are
already topologically sorted so that dependencies are ordered left to
right. That is, a field τi`k can depend on field τi. In the case of Abs,
a P Fvs!Typ a" and τ1 “ Typ a occurs before τ2 “ Exp (e,a) b,
therefore Ghostbuster accepts the definition.

5.4 Gradual Erasure Guarantee

One interesting property of the class of valid inputs described by the
above ambiguity check is that it is always valid to erase fewer type
variables—to change an arbitrary subset of erased variables (either
c or s) to kept (k). That is:

Theorem 1 (Gradual erasure guarantee). For a given datatype with
erasure settings k, c “ c1 c2 and s “ s1 s2, then erasure settings

k
1

“ pk c2 s2q, c1 “ c1, s1 “ s1 will also be valid.

Proof. The requirements above are specified as a conjunction of con-
straints over each type variable in synthesized or checked position.
Removing erased variables removes terms from this conjunction.

345

Fvs: extracting dependencies for synthesized type variables

Fvs!a" “ tau

Fvs!τ1 . . . τn" “
nŤ

i“1

Fvs!τi"

Fvs!τ1 Ñ τ2" “ Fvs!τ1" Y Fvs!τ2"
Fvs!T τk τc τs" “ Fvs!τk" Y Fvs!τs"

Fvk: extracting free vars in non-erased context

Fvk!a" “ tau

Fvk!τ1 . . . τn" “
nŤ

i“1

Fvk!τi"

Fvk!τ1 Ñ τ2" “ Fvk!τ1" Y Fvk!τ2"

Fvk!T τk τc τs" “ Fvk!τk"

Figure 8. Extracting free type variables in different contexts.

For the remaining erased type variables, their dependence check may
have depended on formerly erased, now kept, variables. However,
both the synthesized and checked dependency prerequisites include
all variables in kept context. Thus, moving variables from erased to
kept context never breaks any dependency.

6. Core Translation Algorithms

We now describe the core translation algorithms used in Ghostbuster
using the language defined in Section 4. The resulting pipeline of
translation passes is shown in Figure 2.

6.1 Simplified Datatype Generation

Creating simplified data definitions is straightforward. Fields τi are
replaced with updated versions, τ 1

i , that replace all type applications
T τk τc τs with T 1 τk:

Ki : @k, c, s, b.τ1 Ñ ¨ ¨ ¨ Ñ τp Ñ T τk τc τs
ñ

K1
i : @k, b. getTyRepspKiq Ñ τ 1

1 Ñ ¨ ¨ ¨ Ñ τ 1
p Ñ T τk

1

Where getTyReps returns any newly existential variables for a
constructor (Section 2.2):

getTyRepspKi : @k, c, s, b.τ1 Ñ ¨ ¨ ¨ Ñ τp Ñ T τk τc τsq “
tTypeRep a | a P pFvk!τ1 . . . τp" ´ Fv!τk"q ´ bu

Recall here that b are the preexisting existential type variables that
do not occur in τk τc τs.

6.2 Up-conversion Generation

In order to generate the up-conversion function for a type T , we
instantiate the following template:

upTi :: TypeRep c Ñ TypeRep s Ñ Ti k c s Ñ T 1
i k

upTi c1_typerep . . . sn_typerep orig =
case orig of
Kj x1 . . . xp Ñ
let φ = unify(T k c s, T τk τc τs)

KtyRepj = map (λτ Ñbind(φ, [τ], buildTyRep(τ)))
getTyReps(K)

in
Kj' KtyRepj

dispatchÒ(φ, x1, φpτ1q). . . dispatchÒ(φ, xp, φpτpq)

The Supplemental Material (Section B) includes the full, formal
specification of up/down generation, but the procedure is straight-
forward: pattern match on each Kj and apply the K1

j constructor. The

complexity is in the type representation management of the bind
and dispatchÒ operations. Here we follow a naming convention
where a type variable k is witnessed by a type representation bound
to a term variable k_typerep. Ghostbuster performs a renaming
of type variables in data definitions to ensure there is no collision
between the variables used at the declaration head T k c s, and those
used within each constructor Kj . For example, this already holds in
Exp where we used env/ans interchangably with e/a.

In the let-binding of φ above, we unify the type of orig with
the expected result type of Kj . This uses a unification function that
is part of a type checking algorithm based on the type system of
Figures 4 to 7. Because we use the k c s variables to refer to the type
of the input, orig, this gives us a substitution binding these type
variables. For example, in the Abs case of our expression language
(Section 3.1):

Abs :: Typ r Ñ Exp (e, r) s Ñ Exp e (r Ñ s)

unification yields:

φ “ tenv :“ e, ans :“ pr Ñ sq u

It is the job of bind to navigate this substitution in order to create
type representations for type variables mentioned in φ, such as r.
Here, getting to r requires digging inside the type representation for
ans using a typecase expression. Because the type representation
added to K 1

j will always be of the form TypeRep a (for type
variable a), this is all the call to bind must do to create the type
representations that decorate K 1

j . Note that there may be multiple
occurrences of r P φ, and thus multiple paths that bind might
navigate; which path it chooses is immaterial.

Type representation construction in dispatch The dispatchÒ

function is charged with recursively processing each field f of Kj .
Based on the type of f this will take one of two actions:

• Opaque object: return it unmodified.

• Ghostbusted type T : call upT .

In the latter case, it is necessary to build type representation
arguments for the recursive calls. This requires not just accessing
variables found in φ, but also building compound representations
such as for the pair type (e, r) found in the Abs case of Exp.

Finally, when building type representations inside the dispatchÒ

routine, there is one more scenario that must be handled: representa-
tions for pre-existing existential variables, such as the type variable
a in App:

App :: Exp e (a Ñ b) Ñ Exp e a Ñ Exp e b

In recursive calls to upExp, what representation should be passed
in for a? We introduce an explicit ExistentialType in the output
language of the generator which appears as an implicitly defined
datatype such that (typerep Existential) is valid and has type
@ a. TypeRep a.

Theorem 2 (Reachability of type representations). All searches by
bind for a path to v in φ succeed.

Proof. By contradiction. Assume that v R φ. But then v must not
be mentioned in the Ti τk τc τs return type of Kj . This would
mean that v is a preexisting existential variable, whereas only newly
existential variables are returned by getTyReps.

6.3 Down-conversion Generation

Down-conversion is more challenging. In addition to the type
representation binding tasks described above, it must also perform
runtime type tests (»τ) to ensure that constraints hold for formerly

346

erased (now restored) type variables. The type signature of a down-
converter takes type representation arguments only for checked type
variables; synthesized types must be computed:

downTi :: TypeRep c Ñ T 1
i k Ñ SealedT 1

i k c

If the set of synthesized variables is empty, then we can elide the
Sealed return type and return T 1

i k c directly. This is our strategy
in the Ghostbuster implementation, because it reduces clutter that
the user must deal with. However, it would also be valid to create
sealed types which capture no runtime type representations, and we
present that approach here to simplify the presentation.

To invert the up function, down has the opposite relationship to
the substitution φ. Rather than being granted the constraints φ by
virtue of a GADT pattern match, it must test and witness those same
constraints using p»τ q. Here the initial substitution φ0 is computed
by unification just as in the up-conversion case above.

downTi c1_typerep . . . cm_typerep lower =
case lower of

K1
j ex_typerep . . . f1 . . . fp Ñ

let φ0 = . . . in
openConstraintspφ0, openF ieldspf1...fpqq

where
openConstraintspH, bodq = bod

openConstraintspa :“ b : φ, bodq =
if a_typerep »τ b_typerep
then openConstraintspφ, bodq
else genRuntimeTypeError

openConstraintspa :“ T τ1 . . . τn : φ, bodq =
typecase a_typerep of

(typerep T) a1_typerep . . . an_typerep Ñ
openConstraintspa1 :“ τ1, . . . ,an :“ τn : φ, bodq

_ Ñ genRuntimeTypeError

Again, a more formal and elaborated treatment can be found
in the Supplemental Material (Section B). Above we see that
openConstraints has two distinct behaviors. When equating two
type variables, it can directly issue a runtime test. When equating an
existing type variable (and corresponding _typerep term variable)
to a compound type T τn, it must break down the compound type
with a different kind of runtime test (typecase), which in turn brings
more _typerep variables into scope. We elide the pÑq case, which
is isomorphic to the type constructor one. Note that (»τ) works on
any type of representation, but this algorithm follows the convention
of only ever introducing variable references (e.g. a_typerep) to
“simple” representations of the form TypeRep a.

Following openConstraints, openF ields recursively pro-
cesses the field arguments f1 . . . fp from left to right:

openF ieldspf::T τk τc τs : rstq =
case openRecursionpφ0,fq of

SealedTq s’_typerep f' Ñ

openConstraintspunifyps1_typerep, τsq
, openF ieldsprstqq

openF ieldspf::τ : rstq =
let f' = f in openF ieldsprstq

Here we show only the type constructor (T τk τc τs) case and
the “opaque” case. We again omit the arrow case, which is identical
to the type constructor one.

As before with dispatchÒ, the openRecursion routine must
construct type representations to make the recursive calls. Unseal-
ing the result of a recursive call reveals more constraints that must
be checked. For example, in the Add case of Exp, both recursions
must synthesize a return type of Int and thus a type representa-
tion inside the Sealed type of (typerep Int). Likewise, in the

App case the function input and the argument types must match.
openConstraints ensures these synthesized values are as expected
before returning control to openF ields to process the rest of the
arguments.

Finally, in its terminating case, openF ields now has all the
necessary type representations in place that it can build the type
representation for SealedTi. Likewise, all the necessary constraints
are present in the typing environment—from previous typecase and
(»τ) operations—enabling a direct call to the more strongly typed
Kj constructor.

openF ieldspHq =

SealedTi buildTyRepps_typerepq (Kj f1
1

¨ ¨ ¨ f1
p)

The result of code generation is that Ghostbuster has augmented
the prog with up- and down-conversion functions in the language of
Figure 3, including the typecase and (»τ) constructs. What remains
is to eliminate these constructs and emit the resulting program in
the target language, which, in our prototype, is Haskell.

6.4 Validating Ghostbuster

We are now ready to state the main Ghostbuster theorem: up-
conversion followed by down-conversion is the identity after unseal-
ing synthesized type variables.

Theorem 3. Round-trip Let prog be a program, and let T “
tpT1, k1, c1, s1q, . . . , pTn, kn, cn, snqu be the set of all datatypes
in prog that have variable erasures. Let D “ tD1, . . . , Dnu be a
set of dictionaries such that Di “ pDis,Dicq contains all needed
typeReps for the synthesized and checked types of Ti. We then have
that if for each pTi, ki, ci, siq P T that Ti passes the ambiguity
criteria, then Ghostbuster will generate a new program prog1 with
busted datatypes T

1 “ tpT 1
1, k1q, . . . , pT 1

n, knqu, and functions
upTi and downTi such that

@e P prog. prog $ e :: Ti ki ci si ^ pTi, ki, ci, siq P T

ùñ prog1 $ pupTi Di eq :: T 1
i ki, where pT 1

i , kiq P T
1 (1)

and

@e P prog. prog $ e :: Ti ki ci si ^ pTi, ki, ci, siq P T

ùñ prog1 $ pdownTi Dic pupTi Di eqq
” pSealedTi Dis e :: SealedTi ki ciq

(2)

The full proof including supporting lemmas can be found in the
Supplemental Material (Section C). We provide a brief proof-sketch
here.

Proof Sketch. We first show by the definition of up-conversion that
given any data constructor K of the correct type, that the constructor
will be matched. Proceeding by induction on the type of the data
constructor and case analysis on bind and dispatchÒ we then show
that the map of bind over the types found in the constructor K
succeeds in building the correct typeReps needed for the checked
fields of K. After showing that every individual type-field is up-
converted successfully and that this up-conversion preserves values,
we are able to conclude that since we have managed to construct
the correct type representations needed for the up-converted data
constructor K 1, and since we can successfully up-convert each field
of K, that the application of K 1 to the typeReps for the newly-
existential types and the up-converted fields is well-typed and that
the values that we wish to have preserved have been kept.

To show that down-conversion succeeds, we first show that given
any data constructor K 1 of the correct type that the down-conversion
function will match it. We then proceed by case analysis on the
code-path executed on the right-hand-side of the case clause that
matched the data constructor: we show that openConstraints
succeeds in deriving suitable type representations for the call

347

to openRecursion to succeed in constructing the correct down-
converted datatypes for each of the busted recursive datatypes in the
fields of K 1. We then use this to show that openF ields will succeed
in down-converting the busted types that it encounters. We then use
the fact that openF ields has successfully down-converted the types
it has encountered, coupled with the success of constructing suitable
type representations to show that we are finally able to successfully
construct the down-converted sealed type.

7. Implementing Ghostbuster for Haskell

The Ghostbuster prototype tool is a source-to-source translator,
which currently supports Haskell but could be extended to other
languages that incorporate GADTs. To build a practical tool im-
plementing Ghostbuster, we need to import data definitions from,
and generate code to, a target host language. Because our prototype
targets Haskell, we extended our core language slightly to accommo-
date certain Haskell features of data definitions such as bang patterns.
For the most part, code generation is a straightforward translation
from our core-language into Haskell using the haskell-src-exts

package,10 which we subsequently pretty-print to file. If erasure
results in Haskell’98 datatypes, we add deriving clauses to the
simplified datatypes for the standard typeclasses such as Show.

7.1 Current Limitations

Our current prototype comes with some limitations. Yet, as we will
see in Section 8.2, a great many of the datatypes found in the wild
are supported.

Runtime type representation As mentioned in Section 2.1, we
require type-indexed TypeRep values, which are scheduled to appear
in GHC-8.2. In the meantime, we use our own representation of
runtime types synthesized on demand by the Ghostbuster tool and
described in the Supplemental Material (Section A.3).

Advanced type system features There are some features we sup-
port indirectly by allowing them in the “opaque” regions of the
datatype which Ghostbuster-generated code need not traverse, but
we do not model explicitly in our core language. This currently
includes type families [7, 20] and type classes [11, 19].

Erased datatypes as type parameters As we saw in Section 2.4,
Ghostbuster does not allow datatypes undergoing erasure to be used
as arguments to other type constructors, for example []. If available,
we could lean on a Functor instance for that type, but in general
there is not a single, clearly defined behaviour. Future work may
allow a user to specify how Ghostbuster should traverse under type
constructors to continue the erasure and conversion processes.

8. Evaluation

8.1 Runtime Performance

This section analyzes the performance of the conversion routines
generated by Ghostbuster. Benchmarks were conducted on a
machine with two 12-core Xeon E5-2670 CPUs (64-bit, 2.3GHz,
32GB RAM) running GNU/Linux (Ubuntu 14.04 LTS), using GHC
version 7.10.1 at -O2 optimization level. Each data point is generated
via linear regression using the criterion package.11

Figure 9 compares the performance of the Ghostbuster generated
conversion routines for our simple expression language (Section 3.1).
We generated large random programs that included all of the
important cases of up- and down- conversion (Abs, App, etc.), and
report the time to convert programs containing that number of terms.

10 http://hackage.haskell.org/package/haskell-src-exts
11 http://hackage.haskell.org/package/criterion

Ghostbuster achieves comparable performance to a manually
written up-conversion routine. The hand-written written down-
conversion routine, however, which uses embedded Typeable class
constraints is significantly slower than the Ghostbuster generated
version with embedded TypeRep values. Profiling reveals that our
generated TypeRep encodings were more efficient than dictionary
passing with Data.Typeable. However, this may be an artifact of the
closed-world simplification we used to generate our TypeRep values,
so this performance advantage may disappear once we transition to
open-world, type-indexed Typeable arriving in GHC-8.2.

Even so, the size of the Ghostbuster generated up- and down-
conversion functions are comparable to the Data.Typeable based
implementation:

Contender SLOC Tokens Binary size

Ghostbuster 198 1426 1MB
Data.Typeable 122 1011 1MB
Hint 78 451 45MB

For the down-conversion process, we also compare against using
GHC’s interpreter as a library via the Hint package.12 Due to the
difficulty of writing the down-conversion process manually, it is
appealing to be able to re-use the GHC Haskell type-checker itself in
order to generate expressions in the original GADT. In this method,
a code generator converts expressions in the simplified type into
an equivalent Haskell expression using constructors of the original
GADT, which is then passed to Hint as a string and interpreted,
with the value returned to the running program. Unfortunately: (1)
as shown in Figure 9, this approach is significantly slower than
the alternatives; (2) the conversion must live in the IO monad; (3)
generating strings of Haskell code is error-prone; and (4) embedding
the entire Haskell compiler and runtime system into the program
increases the size of the executable significantly.

Nevertheless, before Ghostbuster, this runtime interpretation
approach was the only reasonable way for a language implemented
in Haskell with sophisticated AST representations to read programs
from disk. One DSL that takes this approach is Hakaru.13

8.2 Package Survey

We conclude our experimental evaluation by testing our prototype
implementation against all 9026 packages currently available on
hackage.haskell.org, the central open source package archive of
the Haskell community. We seek to gather some insight into how
many GADTs exist “in the wild” which might benefit from the
automated up- and down-conversions explored in this work.

In this survey, we extract all of the ADT and GADT datatype
declarations of a package, and group these data declarations into
connected components. We elide any connected components where
none of the data declarations are parameterised by a type variable, or
do not contain at least one GADT. For each connected component,
we then vary which type variables are kept, checked, or synthesized,
and attempt to run ghostbuster on each configuration. For connected
components containing many data types and/or type variables this
can yield a huge search space, so we explore at most ten thousand
erasure variants for each connected component. A summary of the
results are shown in Table 1.

As discussed in Section 5, our current design has some restric-
tions on what datatypes and erasure settings it will accept. However,
out of the variants explored, ghostbuster was successfully able to
erase at least one type variable in 2,582,572 cases. Moreover, out

12 http://hackage.haskell.org/package/hint
13 https://hackage.haskell.org/package/hakaru

348

http://hackage.haskell.org/package/haskell-src-exts
http://hackage.haskell.org/package/criterion
hackage.haskell.org
http://hackage.haskell.org/package/hint
https://hackage.haskell.org/package/hakaru

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 1 10 100 1000 10000 100000

T
im

e
 (

s)

Terms

Up conversion

Ghostbuster
Data.Typeable

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

 1 10 100 1000 10000 100000

T
im

e
 (

s)

Terms

Down conversion

Ghostbuster
Data.Typeable

Hint

Figure 9. Time to convert a program in our richly-typed expression language (Section 3.1) with the given number of terms (i.e. nodes in the
AST), from original GADT to simplified ADT (left) and vice-versa (right). Note the log-log scale.

Metric

Total # packages 9026
Total # source files 94,611
Total # SLOC 16,183,864
Total # datatypes using ADT syntax 9261
Total # datatypes using GADT syntax 18,004
Total # connected components 15,409
ADTs with type variable(s) 1341
GADTs with type variable(s) 11,213
GADTs with type indexed variable(s) 8773
Actual search space 185,056,322,576,712
Explored search space 9,589,356
Ghostbuster succeeded 2,582,572
GADTs turned into ADTs 5525

Ambiguity check failure 5,374,628
Unimplemented feature in Ghostbuster 1,632,156

Table 1. Summary of package survey

of the 8773 “real” GADTs surveyed14, we were able to successfully
ghostbust 5525 (63%) of these down to regular ADTs.

9. Related Work

Ornaments [10, 12, 15], from the world of dependent type theory,
provides an interesting theoretical substrate for moving between in-
ductive data structures that share the same recursive structure, where
one type is refined, or ornamented, by adding and removing informa-
tion. Unlike ornaments, we focus on bidirectional conversions from
a richer to simpler type. Recent progress has been made in bringing
ornaments from a theoretical topic to a practical language [28]. This
prototype is semi-automated and leaves holes in the generated code
for the user to fill in, rather than being an entirely in language and
fully-automatic abstraction like Ghostbuster.

The eqT of Haskell’s Typeable class and the (typecase/»τ) and
TypeRep of our core language, are both similar to typecase and
Dynamic from Abadi et al. [1, 2]. However, while typecase (from
dynamic) allows querying the type of expressions, it does not inject
type-level evidence about the scrutinee into the local constraints the
way that GADT pattern matching (and our typecase) do.

Another closely related work is on staged inference [23], which
formulates dynamic typing as staged checking of a single unified

14 Some types were written in GADT syntax that didn’t need to be.

type system. While the mechanism is different, functions over
Ghostbusted types defer type-checking obligations until down-
conversion. Likewise, Haskell’s deferred type errors [27] are related,
but are a coarse-grained setting at the module level and hence not
practical for writing code against GADTs while deferring type-
checking obligations.

The Yoneda lemma applied to Haskell provides a method of
encoding GADTs as regular ADTs.15 However, this encoding does
not offer the benefits of Ghostbuster simplified types because: (1)
the encodings include function types, which preclude Show/Read

deriving, and (2) the encoding cannot actually enforce its guarantees
in Haskell due to laziness (lack of an initial object).

F# type providers [26] are related to Ghostbuster in that both
automatically generate datatype definitions against which developers
are expected to write code. Type providers do not include GADTs,
but deal with type schemas that are too large (e.g. all of Wikipedia)
or externally maintained (e.g. in a database) and must be populated
dynamically, whereas Ghostbuster deals with maintaining simplified
types for existing GADTs.

Checking whether input-output tags are consistent in a logic
program is often approximated in practice based on a dependency
graph of the variables. For example, the Mercury programming
language [25] has tags: input, output, deterministic. Our ambiguity
checking process is similar.

Ou et al. [18] define a language that provides interoperability be-
tween simply-typed and dependently-typed regions of code. Both re-
gions are encoded in a common internal language (also dependently-
typed), with runtime checks when transitioning between regions.
Similarly, the Trellys project [6] includes a two-level language de-
sign where each definition is labelled logical or programmatic. Be-
cause of the shared syntax, one can migrate code from programmatic
to logical when ready to prove non-termination.

It is folklore in dependently typed programming communities
(Idris, Agda, etc.) that if you need to write a parser for a compiler,
you would parse to a raw, untyped term and write a type-checking
function (i.e. down-conversion) manually. To our knowledge there
are not currently any tools that automate this process. However,
most fully dependent languages make these type checkers easier to
write than they are in Haskell.

15 The Yoneda lemma in Haskell is currently best explained in blog posts:
http://www.haskellforall.com/2012/06/gadts.html and
http://bartoszmilewski.com/2013/10/08/
lenses-stores-and-yoneda/.

349

http://www.haskellforall.com/2012/06/gadts.html
http://bartoszmilewski.com/2013/10/08/lenses-stores-and-yoneda/
http://bartoszmilewski.com/2013/10/08/lenses-stores-and-yoneda/

10. Conclusion

We’ve shown how Ghostbuster enables the automatic maintenance
of simplified datatypes that are easier to prototype code against. This
resulted in some performance advantages in addition to software
engineering benefits. Because of these advantages, we believe that
in the coming years gradualization of type checking obligations
for advanced type systems will become an active area of work
and widely-used language implementations may better support
gradualization of type-checking obligations directly.

Acknowledgments

This work was supported by NSF awards 1453508 and 1337242.
Timothy Zakian was funded by the Clarendon Fund. This work
has benefited greatly from several conversations with Chung-chieh
Shan and Jeremy Siek. We would also like to thank the anonymous
reviewers for their helpful and insightful feedback.

References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in

a statically-typed language. POPL’98: Principles of Programming
Languages, pages 237–268, 1989.

[2] M. Abadi, L. Cardelli, B. Pierce, and D. Rémy. Dynamic typing in
polymorphic languages. Journal of Functional Programming, 5:111–
130, 1995.

[3] T. Altenkirch and B. Reus. Monadic Presentation of Lambda Terms
Using Generalised Inductive Types. In J. Flum and M. Rodriguez-
Artalejo, editors, CSL’99: Computer Science Logic, pages 453–468,
1999.

[4] A. I. Baars and S. D. Swierstra. Typing dynamic typing. ICFP’02:
International Conference on Functional Programming, pages 157–166,
2002.

[5] E. Brady, C. McBride, and J. McKinna. Inductive families need not
store their indices. In TYPES’03: Types for Proofs and Programs, pages
115–129. Springer, 2004.

[6] C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and
programs in a dependently typed language. In POPL’14: Principles of
Programming Languages, pages 33–45, 2014.

[7] M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type
synonyms. In POPL’05: Principles of Programming Languages, pages
241–253, 2005.

[8] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating Haskell array codes with multicore GPUs. In DAMP’11:
Declarative Aspects of Multicore Programming, pages 3–14, 2011.

[9] J. Cheney and R. Hinze. First-class phantom types. Technical report,
Cornell University, 2003.

[10] P.-E. Dagand and C. McBride. Transporting functions across ornaments.
In ICFP’12: International Conference on Functional Programming,
pages 103–114, 2012.

[11] C. V. Hall, K. Hammond, S. Peyton Jones, and P. L. Wadler. Type
classes in Haskell. TOPLAS’96: Transactions on Programming Lan-
guages and Systems, 18(2):109–138, Mar. 1996.

[12] H.-S. Ko and J. Gibbons. Relational algebraic ornaments. In DTP’13:
Dependently-Typed Programming, pages 37–48, 2013.

[13] X. Leroy and M. Mauny. Dynamics in ML. In Functional Programming
Languages and Computer Architecture, pages 406–426, 1991.

[14] C. McBride. Type-Preserving Renaming and Substitution. Journal of
Functional Programming, 2006.

[15] C. McBride. Ornamental algebras, algebraic ornaments. Journal of
Functional Programming, to appear.

[16] T. L. McDonell, M. M. T. Chakravarty, G. Keller, and B. Lippmeier. Op-
timising purely functional GPU programs. In ICFP’13: International
Conference on Functional Programming, pages 49–60, 2013.

[17] T. L. McDonell, M. M. T. Chakravarty, V. Grover, and R. R. Newton.
Type-safe Runtime Code Generation: Accelerate to LLVM. In Haskell
Symposium, pages 201–212, 2015.

[18] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing
with dependent types (extended abstract). In TCS’04: International
Conference on Theoretical Computer Science, pages 437–450, August
2004.

[19] J. Peterson and M. Jones. Implementing type classes. In PLDI’93:
Programming Language Design and Implementation, pages 227–236,
June 1993.

[20] T. Schrijvers, S. Peyton Jones, M. M. T. Chakravarty, and M. Sulzmann.
Type checking with open type functions. In ICFP’08: International
Conference on Functional Programming, pages 51–62, 2008.

[21] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Com-
plete and decidable type inference for GADTs. In ICFP’09: Interna-
tional Conference on Functional Programming, pages 341–352, 2009.

[22] T. Sheard and S. Peyton Jones. Template meta-programming for
Haskell. In Haskell Workshop, pages 1–16, 2002.

[23] M. Shields, T. Sheard, and S. Peyton Jones. Dynamic typing as staged
type inference. In POPL’98: Principles of Programming Languages,
pages 289–302, 1998.

[24] V. Simonet and F. Pottier. A constraint-based approach to guarded
algebraic data types. TOPLAS’07: Transactions on Programming
Languages and Systems, 29(1):1, 2007.

[25] Z. Somogyi, F. J. Henderson, and T. C. Conway. Mercury, an efficient
purely declarative logic programming language. Australian Computer
Science Communications, 17:499–512, 1995.

[26] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Petricek.
Themes in information-rich functional programming for internet-scale
data sources. In DDFP’13: Data Driven Functional Programming,
pages 1–4, 2013.

[27] D. Vytiniotis, S. Peyton Jones, and J. P. Magalhães. Equality Proofs and
Deferred Type Errors: A Compiler Pearl. In ICFP’12: International
Conference on Functional Programming, pages 341–352, 2012.

[28] T. Williams, P.-E. Dagand, and D. Rémy. Ornaments in practice. In
WGP’14: Workshop on Generic Programming, pages 15–24, 2014.

350

	Introduction
	Design Constraints
	Prerequisite: Testing Types at Runtime
	Erasure Method: Checked versus Synthesized
	Unrecoverable Information
	A Policy for Allowed Erasures

	Life with Ghostbuster
	A Type-safe Expression Language
	Example #1: Substitution
	Example #2: Template Haskell and Typeclass Deriving

	Core Language Definition
	Syntax
	Type System

	Preconditions and Ambiguity Checking
	Ambiguity Test
	Type Variables Synthesized on the RHS
	Type Variables in Checked Context
	Gradual Erasure Guarantee

	Core Translation Algorithms
	Simplified Datatype Generation
	Up-conversion Generation
	Down-conversion Generation
	Validating Ghostbuster

	Implementing Ghostbuster for Haskell
	Current Limitations

	Evaluation
	Runtime Performance
	Package Survey

	Related Work
	Conclusion
	Appendix Runtime type representations
	Data.Typeable
	Runtime Types in Ghostbuster
	Lowering Type Representation Primitives

	Appendix Formalism
	Type System
	GenUp/GenDown

	Appendix Full proof for round-trip theorem

