
Appendix A Runtime type representations
Ghostbuster’s generated code must choose an approach to dynamic
type checks. One method is that of the Haskell Typeable class,
which we saw in Section 2.1. However, this is only one of several
possible approaches, as described by the substantial literature on
dynamic type checking in statically typed languages [1, 2, 4, 13].

In this section, we detail for the interested reader some of the
trade-offs in runtime type representation, including the current non-
type-indexed Typeable library, as well as our interim method for
generating type-indexed TypeRep values.

A.1 Data.Typeable
As we saw in Section 2.1, Haskell’s current (GHC-7.10) Typeable
class uses the following representation for generating type represen-
tations at runtime:

class Typeable a where
typeRep :: proxy a Ñ TypeRep

Here, TypeRep is a simple (non-indexed) datatype which provides
a concrete representation of a monomorphic type, which is more
restrictive than other designs [2]. As mentioned previously, until the
Haskell Typeable library is upgraded to a type-indexed representa-
tion in GHC-8.2, we generate our own indexed type representations,
as we describe next.

A.2 Runtime Types in Ghostbuster
The Ghostbuster core language includes three extensions for work-
ing with runtime type representations: typerep, typecase, and »

⌧

.
By leaving them abstract, we retain some flexibility in how we
ultimately generate runtime type tests for these constructs, and
portability to target languages other than Haskell.

However, generating code against the current non-type-indexed
Typeable class is challenging, so we currently use a simple approach
for generating a closed-world of type-indexed TypeRep values for
all types mentioned in the datatypes passed to Ghostbuster. For
example, the following is the TypeRep for representing Boolean,
integer, and tuple types.

data TypeRep a where
IntType :: TypeRep Int
BoolType :: TypeRep Bool
Tup2Type :: TypeRep a Ñ TypeRep b Ñ TypeRep (a,b)

A.3 Lowering Type Representation Primitives
Including explicit type representation operations in our core lan-
guage allows us to defer commitment to a particular representation
of runtime type representations. Here we describe how to desugar
explicit type representation operations such as typecase into the
other operations of the core language as a core-to-core transforma-
tion. This allows us to lower those operations into operations more
directly expressible in the target language (e.g. Haskell).

First, the “Lower TypeRep” pass must introduce a new data
definition, TypeRep a, with one constructor for each T mentioned
anywhere in a typerep or typecase form, plus the built-in types:

data TypeRep a where
Type

T1 :: TypeRep a

n1 ÑTypeRep T1
Type

T2 :: TypeRep a

n2 ÑTypeRep T2
. . .

ArrowType :: TypeRep a Ñ TypeRep b
Ñ TypeRep (a Ñ b)

ExistentialType :: @ a . TypeRep a

This datatype, plus propositional type equality (:„:) that we saw
earlier, are used by the generated code for the desugared forms,
which appears as follows:

J typerep T K ñTypeRep
T

J typecase e1 of
((typerep T) a1 . . . a

n

) Ñ e2; _ Ñ e3 K ñ
case e1 of

Type
T1 a1 . . . a

n

ÑJ e2 K
Type

T2 _ . . . Ñ J e3 K
. . .

Here we encounter a tension with typecase desugaring. As
specified in our core language definition, we do not have “catch all”
pattern matches along with the case form. Thus the case expression
generated must match on every possible Type

⌧

constructor. If
generating these exhaustive cases, and e3 produces nontrivial code,
it is also important to let-bind it to avoid excessive code duplication,
which slightly complicates the translation above.

Finally, the third form, p»
⌧

q, desugars into a call to a type
representation equality testing function, eqTT:

J if e1 »
⌧

e2 then e3 else e4 K ñ
case eqTT J e1 K J e2 K of

Just Refl Ñ J e3 K
Nothing Ñ J e4 K

This eqTT value definition (vd) is also produced by the type
representation lowering pass and added to the output program. For
example, below is an excerpt of generated, pretty-printed code for
this function:

eqTT :: TypeRep t Ñ TypeRep u Ñ Maybe (t :„: u)
eqTT x y =

case x of
UnitType Ñ case y of

UnitType Ñ Just Refl
Tup2Type a2 b2 Ñ Nothing
. . .

. . .

The eqTT function performs a simple, recursive traversal of
both type representation values. Without catch-all clauses this
function will grow quadratically with the number of cases in the
type representation sum type.

Appendix B Formalism
B.1 Type System
The main judgement forms are the following:

Well-typed Expressions Well-typed Patterns
C,� $

e

e : ⌧ C,� $
p

p Ñ e : ⌧1 Ñ ⌧2

We also have judgment forms for how to extend � for data definitions
(� $

d

dd : �1), and value definitions (� $
v

vd : �1), and finally
for typechecking whole programs (� $

prog

prog : ⌧). We use the
following syntactic sugar for sequences.

⌧n ” ⌧1, . . . , ⌧n

⌧n Ñ ⌧ ” ⌧1 Ñ . . . Ñ ⌧
n

Ñ ⌧

B.2 GenUp/GenDown
This section gives the formal description of the algorithm and code-
generation process performed by Ghostbuster. In order to make
the description more concise, we have adopted certain notational
conventions which are detailed here:

1. Instead of using ellipsis to represent repeated iteration of an
expression parametrized over a set (e.g., constructors or environ-
ments) we instead use L´´M

2. Many times we will have to convert from a non-relational
substitution � to a relational substitution . This translation
is largely trivial and so we represent a ‘cast’ from � to via the
operator L´M;

3. Code that is generated is distinguished from code that is run
in the generation process by the use of a grey background.

4. For a given type-constructor T , we denote the corresponding
up-conversion and down-conversion functions by pT and qT
respectively.

5. To each type ⌧ there is an associated type representation which
we write as ⌧

typerep

. Thus in the code, when we see a
typerep

this
is the type representation for the type-variable a that is in scope.
Finding these type representations is not hard, but is tedious, and
thus we elide the code for this and simply remark that we have a
function findPathp , aq which, given a relational substitution
 and a type variable a generates code that will access the
correct substitution in .

6. For a given data type definition d with type constructor T we
denote the type-constructor for the sealed data type of d by T
and overload this symbol to also represent the data constructor
for the sealed data type definition.

7. We denote continuations by the Greek letter .

Beyond these notational conventions, the definition of unification
is standard but is included here for completeness. All definitions can
be found in Figures 10 to 12.

Appendix C Full proof for round-trip theorem
In the following section, note that the function getTyReps re-
turns the TypeReps in a canonical order. Thus, when we call
getTyReps in multiple places, we are guaranteed that getTyReps
will always return the type representations in the same order when-
ever it is fed the same arguments.

Furthermore, throughout the proof we denote the set of type
representations for checked types by D

c

and the set of type repre-
sentations for synthesized types by D

s

. These sets may intersect.

Definition 1. Lower Types Let prog be a program with a to-be
busted type constructor T . Let

defpprog, T q “ data T k c s where

K :: @ k, c, s, b.
⌧1 Ñ ¨ ¨ ¨ Ñ ⌧

p

Ñ T ⌧
k

⌧
c

⌧
s

We then denote the Lower Type (LT) of T by T 1 and define T 1 to
be the following data definition:

data T 1 k where

K

1 :: @ k. tgetTyRepspKqu Ñ ⌧ 1
1 Ñ ¨ ¨ ¨ Ñ ⌧ 1

p

Ñ T 1 ⌧
k

Where each ⌧ 1
i

is computed via the following rule:
• ⌧

i

“ pS ⌧
ki ⌧ci ⌧siqtS has erased variablesu: We compute the

lower type S1 for S and return ⌧ 1
i

“ S1 ⌧
ki

• ⌧
i

“ TypeRep ⌧ 1 Then we return ⌧
i

unchanged
• ⌧

i

“ pT ⌧q tT has no erased variablesu: Then we return ⌧
i

un-
changed

• pArrowTy ⌧ 1⌧2q: Then we return ⌧
i

unchanged
• ⌧

i

“ a is a type variable: Then we return ⌧
i

unchanged

and getTyRepspKq is computed as in Figure 10

Lemma 1. map p� ⌧ Ñ bindp , r⌧ s, buildTyRepp⌧qqq over the
result of getTyRepspKq returns all needed type representations
for K 1 and is well-typed.

Proof. We have by the definition of T 1/K 1 in Definition 1 that
the extra type representation fields for K 1 are exactly those
found in getTyRepspKq. All that remains to show is that, if
getTyRepspKq “ tTypeRep a1 . . . , T ypeRep a

n

u then for each

a
i

we can find a path in such that we can extract the necessary
type representation information for each type variable a

i

. Now, since
we are mapping over getTyReps all we need to show is for each
TypeRep a

i

P getTyReps that bindp , ra
i

s, buildTyReppa
i

qq
will succeed. Note that if getTyRepspKq “ tu then we return
nothing, which is what the LT expects by Definition 1. So now we
consider the case in which getTyRepspKq is non-empty.

We proceed by case-analysis on the definition of bind in Fig-
ure 10 specialized to ra

i

s.
1. Case: a

i

P Then we execute the following code:

let ⌧ 1 “ lookup a
i

 in

let a
ityperep “ buildTyRepp⌧ 1q in a

ityperep

Then we know that the lookup will succeed by the assumption
that a

i

P . To see that the call to buildTyRep will indeed
return a type representation for ⌧ 1 we proceed by induction on
⌧ 1 and case-analysis on buildTyRep:

• Case: ⌧ 1 “ a In this case we simply return the type repre-
sentation a

typerep

for that type variable, which must be in
scope due to the fact that we can find a P (the only way it
could be in is if we already have a witness for it)

• Case: ⌧ 1 “ T ⌧2m For each ⌧ 1
j

P ⌧2m we call buildTyRepp⌧ 1
j

q
which by the inductive hypothesis will give us a type repre-
sentation for ⌧ 1

j

. We then have by our definition of typerep
that since we can construct the type representation for each
⌧ 1
j

P ⌧2m that we can construct

ptyperep Tq pTypeRep ⌧ 1
1q . . . pTypeRep ⌧ 1

m

q
which is the type representation for ⌧ 1 “ T ⌧2m

• Case: ⌧ 1 “ ArrowTy ⌧1 ⌧2 This is simply a special case of
the type constructor case; by the inductive hypothesis, we
have that buildTyRep returns type representation for both
⌧1 and ⌧2 and therefore that we can construct

ptyperep ArrowTyq pTypeRep ⌧1q pTypeRep ⌧2q
which is the type representation for ⌧ 1 “ ArrowTy ⌧1 ⌧2.

We therefore have that buildTyRepp⌧ 1q will return the correct
type representation for ⌧ 1. We then have that we simply create an
alias a

ityperep for ⌧ 1s type representation and then return this.
2. Case: a

i

R This case happens when we may have a witness for
a type representation a

typerep

buried inside some other type rep-
resentation that is inside e.g., a

typerep

could be found inside
pptyperep ArrowTyq a

typerep

b
typerep

q but we must “dig out”
the witness for it from the larger type representation. This is
what findPath does. Now, moving on from this digression, in
this case, we execute the following code:

let a
ityperep “ findPathp , a

i

q in a
ityperep

We then have by Theorem 2 that findPath will find the
corresponding type representation for a

i

in by looking through
the type representations contained in . We then return this new
type representation a

ityperep .

We therefore have that

map p� ⌧ Ñ bindp , r⌧ s, buildTyRepp⌧qqqgetTyRepspKq
returns all needed type representations for K 1.

To see that this mapping is well-typed, simply note that the only
things that bind can generate are those things of type pTypeRep aq,
and therefore it generates the types expected by K 1. What’s more,
due to the canonicity of ordering for getTyReps (and since map

doesn’t permute its arguments), we have that the type representations
expected by K 1 will be in the same order as the ones provided by
bind.

unifyp´,´q

unifypTypeRep ⌧1, TypeRep⌧2q “ H
unifypv, tq “ varBind v t
unifypt, vq “ varBind v t

unifypConTy name typs1, ConTy name typs2q “ let substs “ zip unifyp´,´q typs1 typs2 in fold ˝ H substs
unifypl1 Ñ r1, l2 Ñ r2q “ let s1 “ unifypl1, l2q in let s2 “ unifypps1r1q, ps2r2qq in s1 ˝ s2

varBindp´,´q

varBindp⌧, ⌧q “ H
varBindpu, ⌧q “ tu :“ ⌧u, u R FV p⌧q

getTyRepsp´q

getTyRepsppK
i

: @k, c, s, b.⌧1 Ñ ¨ ¨ ¨ Ñ ⌧
p

Ñ T ⌧
k

⌧
c

⌧
s

qq “ tTypeRep a | a P pFv
k

J⌧1 . . . ⌧pK ´ FvJ⌧
k

Kq ´ bu

buildTyRepp´q

buildTyReppaq “ a
typerep

buildTyReppT ⌧q “ let pts : t : rsq “ map buildTyRepp´q ⌧ in ptyperep Tq ts t
buildTyReppArrowTy ⌧1 ⌧2q “ ptyperep ArrowTyq buildTyRepp⌧1q buildTyRepp⌧2q

bindp´,´,´q

bindp , pa : asq, e q “ let a
typerep

“ findPathp , aq in bindp , asq, a R
bindp , pa : asq, e q “ let ⌧ “ lookup a in let a

typerep

“ buildTyRepp⌧q in bindp , asq, a P
bindp , rs, e q “ e

dispatchÒp´,´q

dispatchÒp�, x, pT ⌧qq “ let v “ map p� ⌧.bindpL�M, FV p⌧q, buildTyRepp⌧qqq getTyRepspKq
in

pT v x , T has erased variables and x “ K x1 . . . xn

dispatchÒp�, x, pT ⌧qq “ x , T doesn’t have erased variables
dispatchÒp�, x, aq “ x

dispatchÒp�, x, ArrowTy ⌧1 ⌧2q “ x
dispatchÒp�, x, TypeRep ⌧q “ x

p´,´qò

pppK
j

⌧ Ñ T ⌧
k

⌧
c

⌧
s

q : ksq, T k c sqò “ pT dd “ case dd of

L K
j

a Ñ
let � “ unifypT k c s, T ⌧

k

⌧
c

⌧
s

q in
let b1 “ map p�⌧. bindpL�M, r⌧ s, buildTyRepp⌧qqqgetTyRepspK

j

q in
let a1 “ zipWith dispatchÒp�,´,´q a ⌧ in K 1

j

b1 a1 Ñ T 1
i

⌧
k

M

Figure 10. Up-conversion and helper functions

openConstraintsp´,´,´,´q

openConstraintsp�, rs,q “ �
openConstraintsp�, p⌧

typerep

, ⌧q : �2,q “ let �1 “ t⌧ :“ ⌧
typerep

,�u in
case ⌧ of

⌫ Ñ if ⌧ P �
then if ⌧

typerep

»
⌧

�
typerep

twhere �
typerep

“ lookup ⌧ �u
then openConstraintsp�1,�2,q
else K

else let ⌫
typerep

“ a

in openConstraintsp�1,�2,q
pT ⌧1 . . . ⌧nq Ñ typecase ⌧

typerep

of

ptyperep T q a1typerep . . . antyperep Ñ
popenConstraintsp

t⌧1 :“ a1typerep , . . . , ⌧n :“ a
ntyperep ,�

1u,�2,qq

openF ieldsp´,´,´,´q

openF ieldsprs,�, vars, rs,q “ � vars
openF ieldsppf : fsq,�, vars, p⌧ : ⌧

rest

q,q “ let a “ freshvar in

let a “ f in

openF ieldp�, a, ⌧, p� �1v. openF ieldspfs,�1, pvars, vq, ⌧
rest

,qqq

openF ieldp´,´,´,´q

openF ieldp�, a, pT ⌧
k

⌧
c

⌧
s

q,q “ openRecursionp�, pT, ⌧
c

q, a,
p� �1 rec. unsealpT ⌧

k

⌧
c

⌧
s

,�1, rec,
p� �2 D

s

a. openConstraintsp�2, rps
typerep

, ⌧
s

qs, where s
typerep

P D
s

and ⌧
s

P ⌧
s

p� �3. p �3 aqqqqqqq
openF ieldp�, a, ⌧,q “ � a

openRecursionp´,´,´,´q

openRecursionp�, pT, p⌧1, . . . , ⌧nqq, v,q “
 � p qT ÉbuildTyRepp�, ⌧1q . . . ÉbuildTyRepp�, ⌧

n

q, vq

ÉbuildTyRepp´,´q

ÉbuildTyRepp�, ⌧q “ bindpL�M, FV p⌧q, buildTyRepp⌧qq

Figure 11. Down-conversion and helper functions

unsealp´,´,´,´,´q

unsealpT ⌧
k

⌧
c

⌧
s

,�, rec,q “ � rs rec when ⌧
s

“ H
unsealpT ⌧

k

⌧
c

⌧
s

,�, rec,q “ let f 1 “ freshvar in

case rec of

T D
s

f 1 Ñ p � D
s

f 1q

p´,´qó

p�, T qó “ qT D
c

lower “ where K :: ⌧n Ñ T ⌧
k

⌧
c

⌧
s

case lower of

L K 1 K 1
typerep

p Ñ let typeEnv “ K 1
typerep

Y D
c

in

openConstraintsptypeEnv, rpc
typerep

, ⌧
c

qs,
p� �1 . openF ieldspp,�1, rs, ⌧n,

p� �2 an .

bindpL�2 Y unifyps, ⌧
s

qM, s, T buildTyReppsq pK anq qqqqq M

Figure 12. Down-conversion and unsealing functions, continued

Lemma 2. If D
c

is well formed and consistent, and if � Ö D
c

is a
well-formed and consistent extension of D

c

, then openConstraintsp�, D,q
will, for each type representation and corresponding to-be-checked
type pc

typerep

, ⌧
c

q P D create a substitution to it’s corresponding
TypeRep t⌧

c

:“ c
typerep

u, and will ensure that these constraints
are checked before passing control with these new constraints to .

Proof. We proceed by case analysis and induction on the type ⌧ in
the binding, and on the number of substitutions in D for our checked
type-variables.

D empty: In this case we simply have no (more) types in checked
context to unify with their corresponding TypeReps, and thus we
have no constraints to check, and no substitutions to make, so
we may simply pass control to .
D “ t⌧

typerep

:: ⌧, D1u: In this case, we have two cases to ana-
lyze (the ArrowTy is exactly the same as the type constructor
case).

Case: ⌧ “ a: Then, if ⌧ P � we execute the following code:
if ⌧

typerep

»
⌧

�
typerep

twhere �
typerep

“ lookup ⌧ �u
then openConstraintsp�1, D1,q
else K

Where »
⌧

is a runtime witness of type equality between the
two type representations.
To see that we never reach the undefined case, assume
for contradiction that ⌧

typerep

�»
⌧

�
typerep

. Then we
have by the definitions of openConstraints, that t⌧ :“
⌧
typerep

,�1u “ �, that ⌧ P � and that plookup ⌧ �q “
�
typerep

, this implies that we also have the substitution of
t⌧ :“ �

typerep

u in �. However, since ⌧
typerep

�»
⌧

�
typerep

we must have that ⌧ ‰ � which implies that � is inconsistent
which violates our hypothesis that � was consistent. So we
never reach the undefined case.
Therefore, since we cannot reach the undefined case with a
well-formed and consistent starting �, we will recur under
the additional constraint that ⌧

typerep

»
⌧

�
typerep

and we
add the substitution that ⌧ unifies with ⌧

typerep

to �. We
now apply the inductive hypothesis, to get that before we

pass control to that we have created TypeRep witnesses
for each new substitution ⌧ :“ ⌧

typerep

in �, where each ⌧
corresponds to a monotype.
Now, if ⌧ R � then we execute the following code:

let a
typerep

“ ⌧
typerep

in openConstraintsp�1, D1,q
In this case, since ⌧ is a type variable, we simply need to
create an alias from the type-variable representation a

typerep

and the type representation that we already have in hand
from �. We then recur under the additional constraint that
⌧ :“ ⌧

typerep

and that the type variable that is ⌧ – namely
a – can be found as a

typerep

and corresponds to the type
representation for ⌧ that we’ve already been given. This
way we can later on use the type representation for the type
variable a and get back the correct type representation. We
now apply the inductive hypothesis, to get that before we
pass control to that we have created TypeRep witnesses
for each new substitution ⌧ :“ ⌧

typerep

in �, where each ⌧
corresponds to a monotype.
Case: ⌧ “ T ⌧ 1 In this case, we execute the following code:

typecase ⌧
typerep

of

ptyperep T q a1typerep . . . antyperep Ñ
popenConstraintsp

t⌧ 1
1 :“ a1typerep , . . . , ⌧

1
n

:“ a
ntyperep ,�

1u, D1,qq
We then have by a similar argument as in the if case, that
this typecase must succeed otherwise it would contradict our
hypothesis on �.
Now, by the definition of typecase, we have that this pattern
match on ptyperep T q and the various type representations that
it’s applied to will ensure (runtime) unification between ⌧ 1

i

and
a
ityperep – i.e. point wise type equality (»

⌧

) between ⌧
typerep

and a
ityperep as well as unification of type constructors – and

thus, we do not need to add these constraints into D1, and instead
can add them into our done-constraints �1. We then continue
under the additional substitutions.

t⌧ 1
1 :“ a1typerep , . . . , ⌧

1
n

:“ a
ntyperepu

We thus open up all the needed constraints for T ⌧ 1 since we have
opened up all the constraints on ⌧ 1 and in the process created the
needed TypeRep witnesses for the substitution ⌧ :“ ⌧

typerep

.
We now apply the inductive hypothesis, to get that before we
pass control to that we have created TypeRep witnesses for each
new substitution ⌧ :“ ⌧

typerep

in �, where each ⌧ corresponds
to a monotype.

Notation: We make use of meta-functions busted which given a
program returns all the datatypes that are marked as ghostbusted. We
define a meta-function def which given a type constructor returns
the data-definition that corresponds to the type constructor. We also
make use of the meta-function ghostbust which given a program
returns:
ghostbustpprogq “ pdefpS, progqqò Y pD, defpS, progqqóYdefpS1, progq, S P bustedpprogq

We also define amb-test to be a meta-function that ensures that
given a program p that all data definitions dd P prog marked as
ghostbusted pass the ambiguity check.

We also define a meta-function canonicalDict such that

canonicalDictpT, progq “ pD
s

,D
c

q
where D

s

and D
c

are the dictionaries for the synthesized and
checked types of T respectively.

Throughout we use pT to represent the up-conversion function
for the datatype with type constructor T and likewise we use qT to
represent the down-conversion function for the datatype with type
constructor T .

Theorem 4. For all programs prog, type constructors T P prog,
ground types k, c, s, values e, and type representation D, it holds
that if

• T P bustedpprogq
• prog1 = ghostbust(prog)
•
amb-test(def(prog, S)) for all S P bustedpprogq

•
canonicalTyReppT, progq “ pD

s

,D
c

q and D
s

Y D
c

Ñ D
• prog $ e :: T k c s

then

1. prog1 $ pT D e ” e1 and prog1 $ e1 :: T 1 k
2. prog1 $ qT D

c

p pT D eq ” pT D
s

e :: T k cq
Proof. Assume the proviso of the theorem. Since prog $ e ::
T k c s then there exists a clause

K :: ⌧1 Ñ ⌧2 Ñ . . . Ñ ⌧
n

Ñ T ⌧
k

⌧
c

⌧
s

P defpprog, T q
and a unification � such that �pT ⌧

k

⌧
c

⌧
s

q “ T k c s, e “
pK e1 . . . enq and also such that prog $ e

i

: �p⌧
i

q.
Since we have T P prog and T is annotated as a ghostbusted

data definition, then prog1 contains a function definition pT ::
TypeRep a1 Ñ TypeRep a2 Ñ . . . T ypeRep a

m

where m is
the length of c.

We then have by the definition of pT , that pT must contain a unique
pattern that matches this constructor. What’s more we have that this
pattern-match will be of the following form:

K x1 . . . x

n

Ñ
let � = unify(T k c s, T ⌧

k

⌧

c

⌧

s

)
K'

typereps

= map (� ⌧ Ñbind(L�M, [⌧], buildTyRep(⌧)))
getTyReps(K)

in K' K'
typereps

dispatchÒ(�, x1, �p⌧1q)
. . .

dispatchÒ(�, x

n

, �p⌧
n

q)
When calling pT d e, with e “ K e1 . . . e

n

such pattern-
matching clause be instantiated with x

i

“ e
i

.
Recalling that the clause is of the form K :: ⌧1 Ñ . . . Ñ ⌧

n

Ñ
T ⌧

k

⌧
c

⌧
s

, we proceed by case analysis on the type ⌧
i

of x
i

and of
the function dispatchÒ:

• case ⌧
i

“ pS ⌧
ki ⌧ci ⌧siqtS has erased variablesu: Now recall

that since S is a busted data definition, then amb-testpprog, Sq
holds, and likewise by the proviso of the theorem that there
exists a �1 such that prog1 $ e

i

: �1p⌧
i

q and since ⌧
i

“
S ⌧

ki ⌧ci ⌧si we have that prog1 $ x
i

: �1pS ⌧
ki ⌧ci ⌧siq

which implies that x
i

“ K
S

y1 . . . ym for some data constructor
K

S

P defpprog, Sq
We then have by the definition of dispatchÒ that
dispatchÒp�, x

i

,�p⌧
i

qq will result in the following code being
executed:

let v “ map p� ⌧.bindpL�M, FV p⌧q, buildTyRepp⌧qqq
getTyRepspK

S

q
in

pS v x
i

,

Since we execute the code with the instantiation x
i

“ e
i

, we
now apply the inductive hypothesis, to get that

prog1 $ pS v e
i

” e1
i

and that

prog1 $ x1
i

:: S1⌧
ki and x1

i

“ K 1
S

K
S

1
typereps

y1
1 . . . y

1
n

• case ⌧ “ TypeRep ⌧ 1 By the definition of dispatchÒ, we have
that it will simply return x

i

which has type ⌧
i

. Therefore this
case is satisfied.

• case pT ⌧q tT has no erased variablesu: By the definition of
dispatchÒ, we have that it will simply return x

i

which has type
⌧
i

. Therefore this case is satisfied.
• case pArrowTy ⌧1⌧2q: By the definition of dispatchÒ, we have

that it will simply return x
i

which has type ⌧
i

. Therefore this
case is satisfied.

• case ⌧ “ a is a type variable: By the definition of dispatchÒ,
we have that it will simply return x

i

which has type ⌧
i

. Therefore
this case is satisfied.

We then have by the definition of LT K 1 in Definition 1 that for
each x

i

:: ⌧
i

that x1
i

:: ⌧ 1
i

where this ⌧ 1
i

comes from the fields of K 1;

K 1 :: K 1
typereps

Ñ ⌧ 1
1 Ñ . . . Ñ ⌧ 1

n

Ñ T 1⌧
k

So all that’s left in order to show that the constructor application is
well-typed and produces the right value, is to show that

K'
typereps

= map (� ⌧ Ñbind(L�M, [⌧], buildTyRep(⌧)))
getTyReps(K)

produces the correct type representations of the right type. This is
proven in Lemma 1.

We therefore have by the above, and by Lemma 1 that the
constructor application of K 1 to K 1

typereps

will apply K 1 to all
needed type representation fields of K 1 and that each of these fields
will be of the appropriate type and be the correct type representation
for the given newly-existential variable(s) in K 1. In the case of
zero new existential variables, this map of bind will simply return
nothing, since getTyRepspKq “ tu which agrees with what our
LT constructor expects.

We also have by the above that each of the applications of K 1 to
dispatchÒp�, a

i

q will be well typed, that each of the values will be
preserved modulo ghostbusted data types, and that the application
of K 1 to K 1

typereps

and x1
1 . . . x

1
n

will result in a total (non-partial)

application of K 1. From this, since K 1 is a data-constructor for T 1 k
we get that e1 has type T 1 k. Furthermore, since the pattern matching
on e is unique, e1 must be of the form K 1 K 1

typereps

e1
1 . . . e1

n

.
Where K 1 is the corresponding LT data constructor for K. Thus (1.)
is proved.

In order to prove down-conversion, note that since T P prog,
that qT P prog1 by our hypothesis. What’s more this function qT takes
D

check

which serves as our type representation for each checked
type variable.

Now, assume that e1 is of the form K 1K 1
typereps

e1
1 . . . e

1
n

. Then
we have by the definition of LT, and by the definition of qT that qT
will have a pattern clause of the form

K' K'
typereps

x

1
1 . . . x

1
n

Ñ
. . .

We claim that, the output form of this branch will be of the form
T D

synth

pK x1 . . . xn

q. To see this, we proceed by case-analysis
of code-path on the RHS of this pattern match in Figure 11:

• We call openConstraintsptypeEnv, rpc
typerep

, ⌧
c

qs,1q,
where

typeEnv “ D
check

Y K 1
typereps

we then have by Lemma 2 that before openConstraints
relinquishes control to 1, that for each checked variable ⌧

c

P ⌧
c

we have a checked substitution with its corresponding type
representation ⌧

ctyperep ; t⌧
c

:“ ⌧
ctyperepu in �1 before p1 �

1q
is called.

• In the above case, we have that
1 “ p� �1 . openF ieldsppx1

1, . . . , x
1
n

q,�1, rs,
p⌧ 1

1, . . . , ⌧
1
n

q,2qq
where each x1

i

has type ⌧ 1
i

. We now make the following claims:

Claim 1. Given a type representation � from openConstraints,
openRecursionp�, pS, p⌧1, . . . , ⌧nqq, pJ 1J 1

typereps

e1
1 . . . e

1
m

q,q
will succeed in building the needed type representations for
down-conversion of S – where S ⌧

k

⌧
c

⌧
s

is a type field for a
constructor K in defpprog, T q – and hence that the call to qS
will succeed and return pS D

S

pJ e1 . . . emqq – where D
S

is
the set of type representations for the synthesized variables in
pJ e1 . . . emq – before passing control to .

Proof. This proof hinges on whether or not, for each ⌧
i

we can
construct a type representation for ⌧

i

—i.e., that ÉbuildTyRepp�, ⌧
i

q
succeeds. Now, we presupposed the ambiguity criteria was ful-
filled on T and hence fulfilled on K. Since pS ⌧

k

⌧
c

⌧
s

q appears
in a field of K, we have that the checked fields ⌧

c

of pS ⌧
k

⌧
c

⌧
s

q
must be computable from � by our ambiguity criteria—i.e., that

ÉbuildTyRepp�, ⌧
i

q succeeds for each ⌧
i

since these ⌧
i

corre-
spond to the ⌧

c

for S.
Now, since we can construct type representations for each
⌧
i

we have by our inductive hypothesis, that since S satis-
fies our ambiguity criteria, we have been able to compute
the canonical type representations for S, and since this field
pJ 1 J 1

typereps

e1
1 . . . e

1
m

q has come from an up-conversion, we
have by our inductive hypothesis, that the call

qS t ÉbuildTyRepp�, ⌧1q, . . . ÉbuildTyRepp�, ⌧
n

qu
pJ 1 J 1

typereps

e1
1 . . . e

1
m

q
will succeed, and will return pS D

S

pe1 . . . emqq
Claim 2. Given a � such that � Ö r� where r� comes from
openConstraints, openF ieldspvarList,�, vars, tyList,q
will succeed in down-converting all variables in varList of
a busted type to their non-busted types. What’s more, for any

newly discovered synthesized types in the fields of varList (e.g.,
within a field whose type is a busted type constructor) it is able
to add their corresponding type representations to � before
passing control to .

Proof. We proceed by induction on varList.
In the case that varList “ rs we have no variables to down-
convert, and thus can simply pass control on to .
In the case that varList “ pf : fsq and tyList “ p⌧ 1 : ⌧

rest

q,
we create a fresh variable (which we assume we can do) and then
call openF ield. Thus, if we show that openF ieldp�, a, ⌧,1q
where
1 “ p� �1 v. openFieldspfs,�1, pvars, vq, ⌧

rest

,qq suc-
ceeds in down-converting the field represented by f , and adds all
newly discovered type-information for synthesized variables to
�1, then the recursive call to openF ields within 1 will succeed
by the inductive hypothesis.
We thus proceed by case-analysis of openF ield :

Case: ⌧ 1 “ ⌧ : {where ⌧ is not a busted type} In this case,
since ⌧ 1 was not busted, we have by the definition of up-
conversion that ⌧ 1 in the LT will be the same as in the original
type. Thus, we simply just bind the new value to the old value
and return this new fresh variable. We then pass control to
1.
Case: ⌧ 1 “ pS ⌧

k

⌧
c

⌧
s

q: {where S is a busted type construc-
tor} In this case, we have by Claim 1 that before we pass
control to

p� �1 rec. unsealpT ⌧
k

⌧
c

⌧
s

,�1, rec,
p� �2 D

s

a. openConstraintsp�2, rps
typerep

, ⌧
s

qs
p� �3. p1 �3 aqqqqqq

that we will be able to open up any new constraints, and that
rec will be of the form pS D

s

pe1 . . . emqq and that

�1 Ö � Å r� ùñ �1 Ö r�
by the definition of openRecursion. We then have pro-
ceeding by case-analysis on unseal that since S is a type
constructor (i.e., datatype) that is busted, that we will call
the following code

p� �2 D
S

a. openConstraintsp�2, rps
typerep

, ⌧
s

qs,
p� �3. p1 �3 aqqqq

where
�2 “ �1 Ö � Ö r� ùñ �2 Ö r�

We now have by Lemma 2 that the call to openConstraints
will create new substitutions t⌧

s

:“ s
typerep

u (and witness
them) for each ⌧

s

P ⌧
s

and s
typerep

P D
S

. What’s more, we
have by this same lemma that openConstraints will then
pass these new substitutions on to

p� �3. p1 �3 aqq
But this 1 is just

p� �1 v. openF ieldspfs,�1, pvars, vq, ⌧
rest

,qq
and we can now apply the inductive hypothesis to the inner
call of openF ields after �-reduction.

We have thus shown that openF ield succeeds in down-
converting the type field represented for f – renaming it a
fresh name v – and also adds all newly-discovered (synthesized)
type information from ⌧ 1 to �3 and therefore by the induc-
tive hypothesis, that openF ieldspfs,�3, pvars, vq, ⌧

rest

,q
succeeds within 1.
Therefore openF ields will succeed in down-converting all
fields in varList and, for all newly-discovered synthesized
type-variables in these fields, will witness and add a substitution

between the synthesized type-variable and it’s corresponding
type representations to � before passing control to .

We then have by Claim 2 that each individual field x1
i

:: ⌧ 1
i

will be converted to a field x
i

of type ⌧
i

where ⌧
i

is either ⌧ 1
i

in
the case that ⌧ 1

i

wasn’t a busted type, or T ⌧
k

⌧
c

⌧
s

in the case
that ⌧ 1

i

“ T 1 ⌧
k

. We also have by the lemma, that for all newly
discovered synthesized type variables ⌧

is for ⌧
i

, that we will
be able to create a type representation for them and that these
substitutions t⌧

is :“ ⌧
is´typerepu will be added to �2 before

being passed to 2; p2 �
2 px1, . . . , xn

qq.
• In the above case, we have that

2 “ p� �2 an.
bindpL�2 Y unifyps, ⌧

s

qM, s,
T buildTyReppsq pK anqqq

We now have by the ambiguity criteria—and in particular that
synthesized types are computable from the fields of ⌧ 1

i

—and
since we have taken “ L�2 Y unifyps, ⌧

s

qM in our call to
bind, that we will only have the following two cases to consider.
We proceed by induction on the size of s

s1 “ px : xsq: We have by the way we have constructed
that x P . We therefore have that we execute the following
code:

let ⌧ “ lookup x in

let x
typerep

“ buildTyRepp⌧q
in bindp , xsq

The ⌧ that is returned from the lookup will be either a kept,
checked, or synthesized type. If ⌧ is kept or checked, then we
have by the above parts (specifically, bullet one and two of
this part of the proof) that we will have a type representation
witness for ⌧ . Likewise if ⌧ is a synthesized type, then we
have that the ambiguity criteria will ensure that we are able to
construct a type representation witness for ⌧ as well. We thus

have that we can always construct the type representation
needed, and that we have the appropriate substitutions and
constraints within scope to ensure that these type representa-
tions are closed. We then have by the inductive hypothesis
that we can construct type representations for xs.
s1 “ rs: In this case we have no more synthesized variables
to find type representations for, we return

T buildTyReppsq pK anq
and at this point either s was initially empty and we don’t
do anything, or it has some synthesized variables in it. In the
latter case we have by the ambiguity criteria, by the definition
of bind, and the way we constructed the that we called
bind with that for each s P s that s’s type representations
will be in scope. (i.e., we will have created a binding from
s
typerep

to its corresponding type representation in a let

above this whose scope extends over this expression.)
Thus, we see that when we construct

T buildTyReppsq pK anq
that for each s P s that s

typerep

is in scope, and that each
of these is computable from �2 by our ambiguity criteria. We
therefore have that the call to

T buildTyReppsq pK anq
will succeed. Now recall that D

s

is just notational short-hand
for buildTyReppsq.

Thus we see that
qT D

c

e1 “ qT D
c

pK 1 K 1
typereps

x1
1 . . . x

1
n

q
“ T D

s

pK x1 . . . xn

q
This proves (2.)

	Introduction
	Design Constraints
	Prerequisite: Testing Types at Runtime
	Erasure Method: Checked versus Synthesized
	Unrecoverable Information
	A Policy for Allowed Erasures

	Life with Ghostbuster
	A Type-safe Expression Language
	Example #1: Substitution
	Example #2: Template Haskell and Typeclass Deriving

	Core Language Definition
	Syntax
	Type System

	Preconditions and Ambiguity Checking
	Ambiguity Test
	Type Variables Synthesized on the RHS
	Type Variables in Checked Context
	Gradual Erasure Guarantee

	Core Translation Algorithms
	Simplified Datatype Generation
	Up-conversion Generation
	Down-conversion Generation
	Validating Ghostbuster

	Implementing Ghostbuster for Haskell
	Current Limitations

	Evaluation
	Runtime Performance
	Package Survey

	Related Work
	Conclusion
	Appendix Runtime type representations
	Data.Typeable
	Runtime Types in Ghostbuster
	Lowering Type Representation Primitives

	Appendix Formalism
	Type System
	GenUp/GenDown

	Appendix Full proof for round-trip theorem

