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ABSTRACT
Vertex-centric computations by their very definition are commu-
nication intensive. Because of this, a large portion of the total
computational time of a vertex-centric program is spent in communi-
cation, and reducing the number ofmessages sent in order to peform
a given computation is a critical aspect of any optimization efforts.
While previous work has focused on reducing communication
overhead by directly changing the communication patterns by
altering the way the graph is partitioned and distributed, or by
altering the graph topology itself, in this paperwe present a different
optimization strategy based on a family of complementary compile-
time program transformations tominimize communication overhead.
In particular, we show how through a series of compile-time trans-
formations of the programwe can automatically incrementalize the
vertex-centric algorithm as a whole. We formalize and empirically
evaluate these transformations and show that they can result in
up-to 4.4X speedup on certain programs. Furthermore, due to
the fact that these are program transformations alone, other prior
optimization strategies can work with the resulting vertex-centric
program just as they would a non-incrementalized program.

CCS CONCEPTS
• Software and its engineering → Distributed program-
ming languages; Compilers; Domain specific languages; •
Hardware→Emerging languages and compilers;
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Pregel, big graph processing, domain specific languages, incremen-
talization.
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1 INTRODUCTION
As the scale of real-world graphs that need to be computed over
rapidly grows, with graphs many times being made of billions of
nodes and edges, the need for highly-parallel, and scalable graph
processing solutions has grown ever greater. One such model for
computing over large-scale graphs is the vertex-centricmodel [13].
The vertex-centric model of graph computations has been the center
of an intense amount of recent research and development efforts, and
has lead to popular vertex-centric frameworks such as Pregel [12],
Pregel+ [19], GraphLab [11], Apache Giraph [6] and many more [2,
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9, 16]. These vertex-centric programming systems have allowed pro-
grammers to easily express computations over graphs at the largest
scales [3, 12], and have become not just a useful, but crucial part of
a programmer’s arsenal when working with graphical data at scale.

Each of these modern vertex-centric frameworks are based on
the Bulk Synchronous Parallel (BSP) model of computation [18],
and the computation is performed as a series of iterative supersteps.
Each superstep is comprised of a parallel execution of a user-defined
program—which takes in messages from other vertices along in-
coming edges and sends messages along outgoing edges— over the
vertices of the graph as they are distributed among computation
nodes orworkers, followed by communication between vertices, and
finallyaglobal barrier synchronization isperformed toensure that all
messages have been delivered before the start of the next superstep.

The vertex-centric model of computation sacrifices memory
and computational locality for scalability, thus while the model is
incredibly scalable it is by its very nature incredibly communication
intensive. Due to this inherent communication overhead, since
the original Pregel paper [12] popularized the computational
model there has been an explosion of research in trying to speedup
computations in this setting by hybridizing the model to be a
subgraph-centric computational model [7, 17], and determine better
partitioning of the graph amongst the computational nodes [4, 19].
All with the eventual goal of minimizing the number of messages
sent in the computation as a whole, and minimizing communication
bottlenecks. This is with good reason: the vertex-centric model is so
communication heavy that many times the majority of time taken
by the computations is spent performing communication.

The techniques that we present in this paper to incrementalize
and ensure “meaningful-only” messages can be seen as being
motivated by this same view towards optimizing vertex-centric
programs by minimizing communication. However, while previous
research has sought to minimize communication by changing the
computational model visible to the programmer, or by changing
the graphical structure of the program, we take a different view.
Particularly, we guide our research quest by the following question:

How do wemake sure that every message that is sent
during the computation ismeaningful?

Where we intuitively call a message sent from a vertex meaningful
if it differs from the most recently sent message from that vertex.

Once our program has this property where every message sent
by a vertex is meaningful, we can incrementalize the computation
as a whole: since messages are only sent when a message value has
changed, each “whole message” can be converted to a “∆-message”,
where instead of sending the value for a message, the delta from the
previous message is sent instead. In this setting a lack of a message
from a vertexu represents an affirmation of cache coherency withu,
and a ∆-message from u represents a “patch” to be applied to the
cache on the receiving vertex in order to keep it coherent with the
updated message value fromu.
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However, incrementalizing the computation in this manner
requires that we change theway the computationwithin each vertex
interacts with the messages it receives. We therefore need to specify
a number of transformations that need to be performed in order to al-
lownot just sendingmeaningful-onlymessages, but also sendingand
interactingwith∆-messages. Because of this, we need to depart from
the majority of previous work which has taken a library-oriented
or shallow embedding view towards vertex-centric computing and
instead move to a deeply-embedded setting where we have access
to the program AST and can easily analyze and manipulate it.

Changing the world in which vertex-centric computations are
expressed from the shallowly-embedded computational-model-
as-library realm into one in which users write programs that are
compiled down to a vertex-centric framework such as Pregel+
means that our guiding question has now changed somewhat:

What compile-time transformations can be performed
in order to ensure that every message sent by the
compiled program is meaningful?

Since we are compiling to a vertex-centric framework—Pregel+—the
optimizations and transformations that we perform in order to
ensure the above property could be obtained by-hand by anyone
in any of the library-based frameworks we have mentioned thus
far. However, taking the language-based approach presented in
this paper, the programmer does not have to think about any of
these optimizations themselves when writing their program and
instead writes a normal vertex-centric algorithm, which is both
shorter, easier to understand, boiler-plate free, and faster than the
equivalent non-“ninja”’d algorithm in Pregel+.

Wemake the following contributions.

• We present a novel message passing policy for vertex-centric
computations that ensures that only new (“meaningful”)
results are communicated, and where the default state for
a vertex is to be halted.
• We present the first vertex-centric language with automatic
incrementalization of messages and vertex-computations.
• We evaluate the suite of transformations that we present, and
show that they can reduce execution time by up-to 4.4X and
messages up-to 5.8X.
• We evaluate programs in which incrementalization is not
useful, and show that our transformations have not slowed
down compiled programs; thus these transformations can
always be performed without penalty.

2 VERTEX-CENTRIC COMPUTATION
As mentioned in Section 1 Pregel-like vertex-centric computational
frameworks are designed around the BSP model of computation,
where different vertices of the graph are distributed or associated to
differentmachines in the cluster, andwhere eachvertexu keeps track
of its adjacency list (i.e., the neighbors ofu) along with a vertex state
whichcancontain anynumberofuser-definedfields that theuser can
access, and whose values persist from one superstep to another. In
order todefineacomputationoveragraph in thismodel, theprogram-
mer implements a compute() function,which runs on each vertex in
the graph and proceeds in iterations called supersteps. In each super-
step the compute() function is called on each currently active vertex

u in thegraph.1 Thecompute() function thenperforms the task spec-
ified by the user for each active vertexu. Each compute() function
has access to the messages from incoming edges at the previous su-
perstep, can read andwrite to its ownvertex state, can sendmessages
which are to be received in the next superstep to the vertex’s neigh-
bors, and canmake the vertex inactive by calling a vote_to_halt()
function. Once a vertex is halted, it is no longer considered for com-
putation unless it is “reactivated” by receiving an incomingmessage.
Once all vertices in a computation have halted, and there are nomore
messages pending, the computation as a whole terminates.

Since the computation is distributed amongst many different
machines mi with often-times multiple workers per-machine,
Pregel(+) allows users to implement message combiners which
combine messages from (all the vertices on) one machine mj to
another vertex u on a different machinemi . These combiners are
crucial to reducing inter-worker communication; by using them
instead of sendingnmessages from a one machine to a single vertex,
we can instead combine all of the n local messages on the machine
into a single message before sending that single message to the
destination vertex. However, since there is no guarantee about the
order in which messages are combined, the combiner operation is
restricted to be both commutative and associative.

For a more detailed and comprehensive description of the
programming model and the various aspects and features of it, we
refer the reader to Malewicz et al. [12].

3 BUILDING SOME INTUITION
Many times during a vertex-centric program, a given vertex
may compute the same value to send as a message from one
superstep to the next. We’ll call such messages “meaningless”: a
repeated message with the same value does not provide any new
information to the computation that could not be remembered
from previous (vertex-local) information2. This section provides
the intuition and motivation for the transformations that we will be
performing in order to prevent sending meaningless messages and
to incrementalize the compiled program.We’ll use PageRank [14] as
it is defined in Figure 1 as a running example throughout this section.

3.1 Meaningful Messages
We can imagine many cases in which the compute() function
calculates the same pagerank value (msg) from one superstep to
another. In order to make sure that we don’t send the same message
twice in a row, we modify the code to check if the value of msg has
changed from the previous superstep before sending that value. We
thus replace lines 15-17 of Figure 1 with the following piece of code:
...

// Determine if we have a new value to send

if (msg != value (). old_msg) {

for (VertexID v : value (). neighbors) {

send_message(v, msg); // New value , so send

}

// Update most recently sent value

value (). old_msg = msg;

} // Otherwise , don't send

1At the beginning of the computation all vertices start out active.
2In other words, by accuratelymemoizing the vertex computation.
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1 void compute(const MessageContainer& messages) {

2 if(step_num () == 1) {

3 value ().pr = 1.0 / get_vnum ();

4 } else {

5 double sum = 0;

6 for(double message : messages) {

7 sum += message;

8 }

9 value ().pr = 0.15 + 0.85 *

10 (sum / get_vnum ());

11 }

12 if(step_num () < 30) {

13 double msg = value ().pr /

14 value (). neighbors.size ();

15 for (VertexID v : value (). neighbors) {

16 send_message(v, msg);

17 }

18 } else { vote_to_halt (); }

19 }

Figure 1: The compute() function for PageRank in Pregel+.

...

Where we remember the old value of msg in a new vertex field
value().old_msg. However after performing this transformation
we lose a key invariant of the computation: previously each vertex re-
ceived all of its neighbors pageranks at every superstep, however in
the transformedprogram,messagesareno longersentunless themes-
sage value has changed. Because of this, the summation of the neigh-
borspageranks in lines6-8ofFigure1 isno longer correct since (possi-
bly) not all of the neighbors pagerankswill be sent at every superstep.
We therefore need change howwe interact with the messages sent
by our neighbors, and change the way we calculate their sum.

3.2 Memoizing Aggregations
In order to get around this problem, we memoize the summation
of our neighbors pageranks from one superstep to the next. This
is possible since while we have lost the invariant that we receive the
pagerank for all of our neighbors, we have gained the invariants that

(1) If we receive a message it is non-equal to the previous
message sent from that vertex; and

(2) If we haven’t recieved a message from a vertex, then the
value of the message it would have sent is the same as the
most recent message from that vertex.

Using this knowledge, we can memoize the summation from one
superstep to the next by adding a field to our vertex—value().sum—
that records the sum computed at the previous superstep. This field
is then used (and updated) to get the sum for the current superstep
once we recieve a set of messages:

...

for (double message : messages) {

value (). sum += message;

}

...

But there’s a problemwith this method: we still don’t calculate the
correct sum. While we are only sending changing values, we are
sendingwhole messages i.e., our messages carry the new pagerank
for a vertex as opposed to the delta from the previous pagerank.
Thus when we memoize the aggregation as above, we wind up
double-counting the previous values for the message that we
received in the sum. In order to fix this, we need to change the values
that we send between vertices, fromwhole messages to ∆-messages;
instead of sending a value from which we can compute the new
value, we send a value that allows us to compute the change to the
already computed value in order to arrive at the correct new value.

3.3 ∆-Messages
As we have just seen, in order to only send meaningful messages,
we need to also memoize the aggregation operations operating
over the messages coming in. However in order to allow this inner
memoization of our vertex computations, we need to change the
messages that we send: from each neighbor sending its new value, to
each neighbor sending its “delta” from its previous value. e.g., for the
running example, if on superstep n a vertex computed msg = 0.001
and on superstep n + 1 it computed msg = 0.02 it would send a
∆-message of +0.019 instead of 0.02.

To send modified messages, we introduce a function
computeDelta that given an old message value, and a new
message value computes the delta betweeen the two:
double computeDelta(double oldMsg , double newMsg) {

return newMsg - oldMsg;

}

Calls to send_message are then updated so instead of directly send-
ing msg as was done previously, the delta between the old and new
message using computeDelta is computed and then the resulting ∆-
message is sent. Thus the final code now for lines 15-17 in Figure 1 is
...

for (VertexID v : value (). neighbors) {

// Determine if we have a new value to send

if (msg != value (). old_msg) {

// New value , so compute the delta

double delta = computeDelta(value (). old_msg , msg);

send_message(v, delta); // send the _delta_

// Update most recently sent value

value (). old_msg = msg;

} // Otherwise , don't send

}

...

At this point, our transformed program has the following new
properties:

(1) We only send a message when the value being sent is a
meaningful update;

(2) The “boundary” of the vertex-function has been incremen-
talizes so it only aggregates over the set of changed values
at each step instead of all neighbors; and

(3) The messages that we send represent changes to previous
message values as opposed to newmessage values.

It is important to realize the dependencies between each of the
program transformations that have just been performed in order to
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arrive at these properties; memoization (incrementalization) could
not be performed without incrementalizing the messages that are
sent, and both of these optimizations are only useful in the presence
of a meaningful-only messaging policy.

The series of program transformations that we have performed
to our PageRank program, can be mechanized as compiler
passes. Furthermore, the memoization and incrementalization
transformations can be generalized to arbitrary commutative
and associative operations. In the rest of this paper we formalize
the properties about vertex-centric computations, messages, and
program transformations that we have discussed in this section and
demonstrate the usefulness of the program transformations that
we have just introduced empirically.

4 MAKINGTHINGS PRECISE
Now that we have built our intuition about why, and howwe trans-
form programs we turn our attention to formalizing these notions.

4.1 TheMeaning ofMeaningful Messages
Earlier on we appealed to the reader’s intuition regarding what con-
stitutes a “meaningful” message. We nowmake this notion precise.
Definition 1 (Meaningful Messages). A messagem1 sent from a
vertexu1 to another vertexu2 at superstep n, ismeaningful if any of
the following statements hold:

(1) n = 0; or
(2) If m2 is the most recent message sent from u1 to u2, then

m1 ,m2; or
(3) Nomessage was sent fromu1 tou2 for all supersteps k , k < n.
In other words, at the beginning of the computation every

message is considered “meaningful”, and after that we never want
to send two messages with the same value in a row between the
same two vertices. This definition of what constitutes a meaningful
message is meant to encapsulate the idea of memoization in the
vertex-centric context: a message is meaningful iff there is no
efficient way for the other (receiving) vertex to cache that messages
value from the most recent value sent by that vertex.

In this meaningful-messages only setting, the absence of a mes-
sage to a vertex is meaningful in itself, since it tells us that the previ-
ous value of the sending vertex has not changed i.e., that the cache is
coherent for that vertex (as viewed from the receiving vertex), andwe
therefore do not need to invalidate the local “cache” for that vertex’s
value on the receivers side. Thus in this setting messages between
vertices not only represent new values to be used, but also in a sense
cache invalidations for the receiving vertex’s cache. However, due
to the distributed nature of the computation, how we update that
cache after we have “invalidated” it with a newmessage is a crucial.
This is where an incrementalization policy is brought into play.

4.2 Incrementalization
4.2.1 Memoization: The Inefficient Approach. When we think of

caching for vertices, the first idea that comes to mind is to cache the
individual value for each of the vertex’s neighbors locally within the
vertex’s state based on the approach in Figure 2b where we keep a
lookup table from vertex id to that vertex’s value. When we receive
a message we update this lookup table with the newmapping from
the sending vertex’s identifier to value, and instead of directly

iterating over the messageswithin the vertex function, we instead
use this lookup table as a proxy for the messages to that vertex.

While this lookup-table-based method of caching neighboring
vertices message values allows us to fulfil the requirement of only
sendingmeaningful messages throughout the computations, it has a
number of issues that make this method impractical and inefficient.
In particular: each message sent must be tagged with the sending
vertex’s id which in many cases can double the size of each message;
and each vertex keeping a local lookup table from vertex id to value
can increase the size of the vertex state and hence memory footprint
of the computation considerably.

As the reader has probably surmized after reading Section 3,
this is not the approach we take in this paper. While we are able to
get rid of meaningless messages through the above memoization
this reduction in messaging comes at such a considerable cost that
the resulting computation can run even slower than the original.
The key realization to resolving these issues lies in blurring the
interaction between the messages we receive and the computation
that we perform within the vertex function. In other words, we
don’t want to simply cache neighboring message values, but instead
incrementalize the interactions between vertices.

4.2.2 Efficiency Through Incrementalization. Automatically
incrementalizing programs is a well-studied and active field of
research, however in this setting we are only interested in methods
which allow us to statically incrementalize the program using
compile-time program transformations. While a standard way of
performing static incrementalization of programs is by deriving
a transformation ∂ [1] such that given a value a, a function f and
a change from that a, da, the following equation holds3

f (a ⊕ da) ≃ ( f a ) ⊕ (∂ f a da) (1)
However, in our case this version of incrementalization—while static
and only using program transformations—will not work since our
goal is to not necessarily incrementalize the vertex-program itself,
but instead incrementalize the vertex’s interactionswith other vertices
and through this incrementalize the vertex computation as a whole.

Beyond simply needing to incrementalize the interactions as
opposed to the vertex-program itself, we also want this transforma-
tion to be subject to the conditions that the resulting transformed
program is still efficient: the resulting program should use a
minimal amount of additional memory per vertex compared to
the non-incrementalized program, and the size of the messages
should not change.4 Furthermore, due to the highly distributed
nature of vertex-centric computations, given a newmessagem′ to
send, and the previous messagem we need to be able to determine
the incrementalized, or ∆-message, form′ on the senders side (i.e.,
only using the senders vertex state).5 This locally determinable
incrementalization of messages is a crucial property since it helps
ensure the efficiency of the incrementalization policy; without this
property we would incur massive communication overheads and
have to impose inefficient caching policies similar to the one dis-
cussed in Section 4.2.1. Thus as wewill see in Sections 6.4 and 6.5 the
compile-time transformations performed to the computationwithin
3Where ≃ is meant to denote denotational equality of expressions, and ⊕ is a binary
operation subsject to certain conditions [1].

4Or change as little as possible. We discuss this more in Section 9.
5If a message is not a ∆-message, we will call it a “full message”.
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(a) Caching of vertices neighboring message values using the
lookup-table based approach detailed in Section 4.2.1.

(b) Incrementalization of a vertex using the methodology
described in Section 4.2.2.

Figure 2: Different (vertex-internal) caching strategies for vertex-centric computation. Blue vertices are cached, while red
vertices have just been updated.

u ::= vertexName
uop ::= − | not
pop ::= min | max
op ::= + | − | ∗ | / | &&

| ∥ | < | > | ≥ | ≤ | ==

⊞ ::= + | ∗ | min | max | ∥ | &&
д ::= #in | #out | #neighbors
a ::= ref | xf
τ ::= int | bool | float
proд ::= init {e}; stmt
stmt ::= step {e} | iter i {e} until {e} | stmt ; stmt
e ::= x | xf | b | i | f | e op e | pop e1 e2 | uop e

| graphSize | infty | if e1 then e2
| if e1 then e2 else e3
| let x : τ = e1 in e2 | ⊞ [e | u ← д]
| e;e | u .a | x = e .

| for(u : д){e} | send(u,x ) | halt

Figure 3: The syntax of ∆V. Language forms that are
highlighted are forms that are not visible to the user,
and that are part of the internal representation of the AST
used by the compiler.

the vertex in order to allow us to send incremental messages—or
∆-messages—and the definition of the ∆-messages that we send are
defined in terms of (or at least need to take into account) one another.

5 THE LANGUAGE
The syntax of the language that we are compiling from is a small
imperative query language that we call∆V, and is defined in Figure 3.
It is designed to be small and not particularly special in any way
since we want the transformations we express over it to be easily
transferable to other languages. Further, we want the compilation
process to be as uncomplicated as possible for expository purposes.

A∆V program consists of an initialization expression init{e} that
is run at each vertex at the start of the computation, and before any
communication has taken place. After the initialization expression
has been run, each statement is run sequentially, in-order, and
homogeneously across all vertices. Each statement can either be
a single step{e}which represents a computation to be run for one
single superstep, or an iter i {e1} until {e2} which keeps iterating
e1 until the expression e2 is satisfied.

Being a small imperative language, the expressions in ∆V are
largely straightforward, with the only two interesting aspects being
the ⊞[e |u ← д] formwhich functions as an aggregation operation
over the vertices represented byд, and the vertex-field access form
u .a which states what field of the other vertex uwe are accessing
within the aggregation expression e . Thus if our vertex-state had
a field amt, and we wanted to compute the sum of the amts of our
neighboring vertices we could do so with the following aggregation
operation

+ [u .amt | u ← #neighbors] (2)
Where we always aggregate over a graph-expressionдwith #in and
#out corresponding to in- and out-vertices in the case that the graph
is directed, and #neighbors referring to the neighboring vertices
in the case that the graph is undirected.6

This aggregation operation represents a useful—but not crucial
for our optimization techniques—difference from the normal
programming model exposed for vertex-centric computation: the
vast majority are push-based where the programmer directly sends
and receives messages, 7 whereas in∆V the language is pull-based
where the (user-visible) vertex function directly operates over the
value of its neighbors, as opposed to the messages sent to it by other
vertices e.g., #in, or #out neighbors.8

The difference between the push-based and pull-based program-
ming models can be seen by comparing the push-based version of
PageRank that we saw earlier in Figure 1 where the programmer
directly sends messages on one superstep that will be received as
messages on the next superstep, and the following definition of
PageRank in∆V
init {

// initialize the values

local vl : float = 1 / graphSize;

local pr : float = vl / |# neighbors|

};

iter i {

// sum neighbors PageRanks

let sum : float = + [ u.pr | u <- #neighbors ] in

// calculate new value and new pagerank for

// neighbors to see next superstep

vl = 0.15 + 0.85 * (sum / graphSize );

pr = vl / |# neighbors|

6In the case that the graph is undirected, #in and #out mean the same thing as
#neighbors.

7And in fact, all underlying implementations are push-based.
8Although in the compilation process we transform every “pull” into an appropriate
“push” from the other vertices.
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} until {

i >= 30 // stop after 30 iterations

}

As we will see when we start compiling the language, specifically
demarcating aggregation operations in this manner will make it eas-
ier for us to determine the best places to incrementalize the program.
However, having these forms is not crucial to the optimizations
that we present, and the aggregation points could be determined
through a fairly straightforward flow-analysis on the program.

6 IMPLEMENTATION
Notation. Since the transformations that we will be performing

on the AST are traversal independent, we use a context-based
rewriting notation to detail the program transformations that
we perform. Since they only take place over expressions, the
contexts can be viewed as expressions with “holes”. Thus when
we writeC[] we will mean an expression with a hole in it such as
C[] = if e1 then [] else e2, and C[e3] represents a filling of this
hole with the expression e3:C[e3] = if e1 then e3 else e2.

The holes in our contexts are restricted to only appearing in
places where an expression would be (i.e., expression context). Thus
the following contextwould be invalidC[] = u .[] since the hole does
not appear in an expression context. We say thatC[e1] = e if there
exists a valid contexC[] such thatC[e1] = e , and we will also say in
this case that e1 ∈ e . Using this notation,we define the context-based
compilation of an expression e by saying thatC[e1] ; C[e ′1] means
that for every e1 ∈ e , e1 is transformed into e ′1. Thus after this e1 < e .

Before moving to the description of our transformations, we
recall that we distinguish variables that are fields in our vertex state
by using an underlined teletype font for them. Furthermore,
before all of the below passes are run a type-annotation pass has
been run on our source program, so we can always get the type of
any expression e by calling the typeOf (e ) function.

6.1 Aggregation Conversion
In this pass we convert communication that is based on the
pull-based model of ∆V to the push-based model that we need
for Pregel. In order to do this we employ the same technique as
other pull-based vertex-centric languages such as Palgol [20],
Green-Marl [8], and Fregel [5], where the key realization is that
since the computation is homogeneous across the graph a “pull”
on a vertex, is a “push” by its neighbors on the previous superstep.
Since this is a standard compilation technique we don’t go into the
details here and simply summarize the process as follows:
• We first convert all aggregation expressions that are not the
immediate right hand side of an assignment (or let) and
bind the result of the aggregation to a new variable and then
substitute this variable in for occurences of that aggregation.9
After this all aggregations that we will encounter are of the
form x = ⊞[e | u ← д].10
• At the first superstep (i.e. immediately after initialization of
the vertex state) send the data from the neighbors perspective:
field accesses of a vertex within an aggregation expression

9i.e., we A-normalize [15] with respect to aggregations.
10Or let bound, but the reasoning for these is identical so we will WOLOG only handle
assignments in this section.

such asu .amt in Equation (2) become sends of that field (amt)
to that vertex’s neighbors.
• At subsequent steps every vertex inspects the message list
(messages in Figure 1) that it receives in order to obtain
values for its neighbors, and then executes the aggregation,
so the following transformation is performed:

C[x = +[u .amt|u ← д]] ;

C



let tmp : τ = default_init(+,τ ) in
for(m : messages){tmp = tmp +m.amt; };
x = tmp



(3)

where τ is the type of amt, and default_init(⊞,τ ) returns
the default initialization for the type τ and aggregation
operation ⊞. For the above example, since the aggregator is
+, we get that default_init(+,τ ) = 0.11

6.2 Adding Vertex State
In order to to remember the previous message sent from one su-
perstep to the next, for each expression e that appears within a
send(u,e ) expression we add a field to the vertex state to store the
computed value for e , unlesse is already a field of the vertex. This can
be viewed as a type ofA-normalization [15] except instead of binding
to let-bound variables we are binding to fields in our vertex state:

C[send(u,e )] ; C

[
freshVare = e;
send(u,freshVare)

]
(4)

where freshVare is a unique variable name and is associated with
the type τe = typeOf (e ). We then add, or “bind” each of these new
fields to our vertex state:

VertexState {

...

τe freshVare;

}

We then remember each of these fields of our vertex that is accessed
within sends for the next pass.

6.3 Inserting Change Checks
In the previous pass we made sure that we only send fields that are
unmodified from our vertex state, and we kept track of all of the
fields that were ever sent. We’ll call these the externally visible fields
of the vertex, since they are the only things that other vertices can
know about any other vertices.

We now add a “dirty-bit” to the vertex state to track whether
any of these externally-visible states have changed during a
computational step. Since we haven’t sent anything at the first
superstep, the dirty-bit is pre-set in the initial vertex state:

VertexState {

...

bool dirtied = true;

}

At the beginning of each superstep (except the first) we save the
current state of each externally visible field xf in a temporary
variable of . Then whenever we encounter an assignment to that
11It is important to pass in the type along with the aggregation operation to
default_init since for certain aggregation operations we would need to return
the maximum or minimum value for τ .
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fieldwe also possibly dirty this dirty-bit by comparing the new value
to our saved value of that field at the beginning of the superstep.

C[xf = e] ; C

[
xf = e;
dirtied = dirtied ∥ (xf , of )

]
(5)

Now, when we encounter sends of a field to neighboring vertices,
we check whether the dirty-bit has been set

C[send(u,xf )] ; C

[
if(dirtied)
then send(u,xf)

]
(6)

Furthermore, when we encounter such a send in a broadcast setting
wecan lift the if-expressionoutside of the loopandprevent execution
of the loop entirely if the message to be broadcast has not changed:

C[for(u : д){send(u,xf)}] ; C



if(dirtied) then
for(u : д){
send(u,xf)

}



(7)

6.4 Incrementalizing Aggregations
Having altered the program so messages are sent only when the
value of has changed from the most recently sent value, we turn to
incrementalizing the interaction between the vertices in the graph
computation as a whole. To do this, we first alter aggregations while
also taking into account how the ∆mu (m′) function in the next pass
will be determined.

We alter the aggregations by hoisting each aggregation operation
so that it is memoized in the vertex state. We thus go back and
change the operation that was performed in Equation (3), and
instead perform the following transformation:

C[x = ⊞[e |u ← д]] ; C



for(m : messages){
aggAccum = aggAccum ⊞ e

};
x = aggAccum



(8)

where aggAccum is a unique variable name associated with that
particular aggregation expression. We then add this accumulator
to the vertex state so that the previous value is rememembered from
one superstep to the next.

VertexState {

...

τ aggAccum = default_init(⊞, τ );
}

where τ and default_init are just as in Section 6.1. Thus this can
be seen as performing the same function as the transformation
that was done in Equation (3) with the exception that instead of
let-binding to a temporary variable as is standard when converting
to A-normal form, we instead use a vertex field so that we can use
this to memoize the aggregations. Thus each aggregation within the
vertex function starts with the value from the previous superstep.
This then means that the messages that are sent only need to say
how to change the previous value to get the new one, or in other
words how to calculate the delta from the previous value.

6.4.1 Dealing with multiplicative operations. Memoizing things
in the above manner works well in most cases, however in multi-
plicative contexts, such as with × or && aggregation operators, if
we receive a “nullary-message” of 0 or false our accumulator is
now nulled out, and there is no way to recover to a correct non-null
accumulatorwhile still keeping ameaningful-messages only policy—
even if the offending nullary-message subsequently becomes a non-
nullary value. In order to solve this problem, if we encounter a mul-
tiplicative aggregation operation instead of tracking one value we in
fact track three values locally within the vertex’s state. These consist
of the non-nulled result (nnAcc), the number of nullary expressions
(aggNulls) not included in the nnAcc field, and a final value for the
aggregation at that superstep (aggAccum). Whenwe have no nullary
expressions in the aggregation (i.e., aggNulls == 0) we set the value
of aggAccum to the value of the non-null result nnAcc, however if we
still havenullaryexpressions in theaggregation (aggNulls > 0) then
we set the final value of aggAccum to the nullary value for the type
and operation of the aggregation. Thus when we receive a nullary-
message we increment the number of nullary expressions in our ag-
gregation butwe do not do anything else.12 On the other hand, when
we receive a non-nullary message, we check the tag of the message
to see if it was a previously null message, and decrement the number
of nullary elements in the aggregation (aggNulls) if so.We thus per-
form the following transformation for multiplicative aggregations

C[x = ⊞ [e | u ← д]] ;

C



for(m : messages){
if (is_nullary(m))
then aggNulls = aggNulls + 1;
else
nnAcc = nnAcc ⊞ e;
if (prev_nullary(m))
then aggNulls = aggNulls − 1;

}

if (aggNulls == 0)
then aggAccum = nnAcc;
else aggAccum = nullary_elem(⊞,τ );
x = aggAccum



(9)

and add the following fields to the vertex state
VertexState {

...

int aggNulls = 0;

τ nnAcc = default_init(⊞, τ );
τ aggAccum = default_init(⊞, τ );

}

The ∆mu (m′) needs to track nullary messages values and tag
non-nullary messages with whether or not the previous message
(m) from that vertex was a nullary message or not.

6.5 ∆-Message Insertion
Now that we have memoized the aggregation operations between
supersteps, we now turn to we determine the ∆mu (m′) function that
computes the incrementalized messages. However before we do
12Due to the meaningful-messages only policy, we know that it was a non-previously
null message, and we therefore increment the number of nullary results.
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this, we insert calls to calculate ∆-messages. Since we already saved
the values of our externally visible fields by the transformation
in Section 6.3 we use this saved value when computing the
∆-message. We thus perform the following transformation

C[send(u,xf)] ; C[send(u,∆ofu (xf))] (10)

Now that calls to our message incrementalization function have
been inserted, we determine what exactly this function should be
by the following equation:

x ⊞m′ ≃ (x ⊞m) ⊞ ∆mu (m′) (11)
where x is an accumulator, ⊞ is an aggregation operation, and ≃ is
(as before) denotational equality. In more intuitive language, for
each aggregationwe track the fields that are sent to that aggregation,
and the aggregation operation performed (e.g., for the PageRank
example we would get {+ 7→ pr}). Then for an aggregation
operation ⊞, we synthesize ∆mu (m′) such that Equation (11) holds.

In the case that the aggregation is multiplicative (subject to
possible nulling) we tag each message with whether or not the
previous message was nullary or not. Tagging for multiplicative
operations is very useful here, since e.g., in the ⊞ = × case, we need
to avoid division by zero in the ∆mu (m′) function, and in this case
we calculate the incrementalized message by the following:

∆mu (m′) =

{
m′/m ifm , 0
taд(m′) ifm = 0

6.6 Addition of Halts
While this pass is not necessary for correctness, the transformations
that we have performed in order to ensure a meaningful-only
messaging policy exposes a powerful characteristic that we can take
advantage of. Recall that in our meaningful-only messaging policy,
messages also serve as cache invalidations, thus once a vertex has
computed a specific value and sent its messages, the only way the
values of the messages that it sends can change is by it receiving
new messages.13 However any halted vertex will be woken up
if it receives any new messages. Since we only send meaningful
messages, this means that after sending its messages, every vertex
can halt after every superstep.

As opposed to the previous transformations which all applied
to expressions e in ∆V, this pass is instead a straightforward
transformation on statements in∆Vwhich simply inserts halts at
the end of every statement given by the following:
step{e}; step{e; halt}

iter i {e} until {e}; iter i {e; halt} until {e; halt}
(12)

7 EVALUATION
In this section we evaluate the usefulness of the transformations
that we have presented by evaluating them on a number of
standard benchmarks. In particular we compare the number of
messages sent, and total computation time for PageRank (PG) [14],
Single-Source-Shortest Paths (SSSP), Connected Components (CC),
and a non-converging version of Hyperlink-Induced Topic Search
(HITS) [10] where we perform the hub and authority updates
13We assume here that all operations are deterministic, and we don’t have access to
functions such as rand().

Table 1: Datasets used in our evaluation.

Dataset Type |V| |E|
Wikipedia Directed 18.27M 136.54M

LiveJournal-DG Directed 4.85M 68.48M
Facebook Undirected 59.22M 185.04M

LiveJournal-UG Undirected 3.99M 34.68M

Table 2: Size (in bytes) of vertex state for ∆V, and ∆Vwithout
incrementalization (∆V⋆) as compared to Pregel+ and Palgol
vertex state.

Variant PageRank SSSP CC HITS
∆V 48 B 48 B 48 B 80 B
∆V⋆ 40 B 40 B 40 B 64 B
Palgol 40 B 64 B 40 B 64 B
Pregel+ 32 B 40 B 32 B 56 B

simultaneously. For each of these benchmarks, we compare∆V to ref-
erence implementations for each benchmarkwritten in Pregel+ [19],
and compare∆V to itselfwithout message-reduction optimizations
(∆V⋆). All experiments were conducted on an Amazon EC2 cluster
with 8 m4.xlarge nodes, each having 4 vCPUs and 16GB of memory
running two workers per node, and connected by 750Mbps ethernet.
The datasets that we use are listed in Table 1.

7.1 Change in Vertex State Size
Since we want the compiled and incrementalized program to
use as little additional memory as possible as compared to a
non-incrementalized version, we compare the size of the vertex
states generated by both∆V and∆V⋆, and compare this to the vertex
states generated by Palgol [20]—another language that compiles
to Pregel+—in addition to the size of the vertex state in the reference
implementations in Pregel+.

As we see from Table 2 compiled vertex state sizes in general
are larger than their comparable vertex state in a hand-written
Pregel+ program. This difference is due to the fact that the source
program needs to be compiled to a state machine within the Pregel+
compute() function, and therefore additional internal state is
required in order to track these states and transitions. However, we
are not really interested in the size difference between the compiled
and hand-written versions. Instead the more useful comparison
is between∆Vand the two non-incrementalized languages∆V⋆ and
Palgol. In this case we see that while incrementalization adds some
additional space overhead, this additional space is fairly minimal
compared to the overall size of the vertex state.

7.2 Performance andMessage Reduction
In order to evaluate the viability of the transformations that we
have presented, we want to show that we don’t slow computations
down in which the transformations are not applicable, and that the
language itself is efficient enough to be useable, and therefore that
these optimizations can be practical in the real-world. In order to
evaluate both of these properties we compare∆V to itself without
the optimizations that we have presented—∆V⋆—along with the



Automatic Incrementalization of Vertex-Centric Programs ICPP ’18, August 2018, Eugene, Oregon USA
Ru

nt
im

e 
(in

 s
ec

)

0

12.5

25

37.5

50

SSSP HITS PG

Ru
nt

im
e 

(in
 s

ec
)

0

7.5

15

22.5

30

SSSP HITS PG

# 
m

es
sa

ge
s

0E+00

3.5E+08

7E+08

1.05E+09

1.4E+09

SSSP HITS PG

∆V ∆V* Pregel+

# 
m

es
sa

ge
s

0E+00

2.25E+08

4.5E+08

6.75E+08

9E+08

SSSP HITS PG

Wikipedia

LiveJournal-DG

Figure 4: Execution time (left) and number of messages sent
(right) for PageRank, SSSP, andHITS.

Ru
nt

im
e 

(in
 se

c)

21

22.5

24

25.5

27

CC

Facebook

Ru
nt

im
e 

(in
 se

c)

2.4

2.55

2.7

2.85

3

CC
∆V ∆V* Pregel+

LJ-UG

Figure 5: Execution time for Connected Components on
Facebook (left) and LiveJournal-undirected (right).

same algorithms implemented in Pregel+. The results of these
benchmarks are presented in Figures 4 and 5 and are obtained by
taking the average of three runs. PageRank was run for 30 iterations,
and HITS for 7 (5 after 2 initialization steps).

As we see from Figure 4, while Pregel+ is always faster than∆V⋆,
on certain iterative algorithms (PG &HITS) the optimizations that
we have performed in ∆V can increase performance significantly.
With PageRank having an average speedup of 4.4X across the
Wikipedia and LiveJournal graphs and HITS showing an average
speedup of 1.9X as well, as compared to Pregel+. Furthermore, we
see a 5.8X and 1.9X reduction in the number of messages sent for

the PageRank and HITS programs respectively.
On other programs that are less amenable to incrementalization,

such as CC (Figure 5) and SSSP (Figure 4), we do not see any perfor-
mance improvement at all. With∆V⋆ and∆V in fact sending the exact
same number of messages in both cases14. The lack of a speedup
from our optimizations for these programs makes sense; in both CC
and SSSP the standard algorithm is in a sense “pre-incrementalized”:
the compute() function only sends new messages when a new
value has been attained at that vertex. The most important thing
then for these two benchmarks is that the optimizations that we
have performed in∆V have not slowed the computation down. Thus,
while our optimizations have the ability to drastically increase the
performance of certain types of programs, they do not negatively
effect programs when they have nothing to contribute.

8 RELATEDWORK
The majority of previous work for vertex-centric computation
has taken a library-oriented, or shallow embedding view such as
Pregel [12], Pregel+ [19], Apache Giraph [6], Graphlab [11] and
many others [2, 9, 16]. While this library-based approach has the
benefit of being lightweight and portable, a library-based system
is unable to gather information about the program as a whole, or
transform it. Thus a library-oriented approach is not suitable for
determining and preventing non-meaningful messages, and we
need to instead compile, or deeply-embed our language.

For compilation, we have followed the approach of other
deeply-embedded, or language-based approaches to vertex-centric
programming such as Palgol [20], Green-Marl [8], and Fregel [5]
in which the programmer writes a vertex-centric algorithm
kernel which is then compiled to a vertex-centric (library-based)
framework. However, the approach that we have taken towards
incrementalization of the language can be seen as an extension
of different techniques in the wider library-based vertex-centric
community over the past years. Particularly, Apache Flink [2] has
supported delta iterations—which are very similar to our idea of
an incrementalization of a vertex-centric program—for a number
of years, however the user still needs to hand-write and transform
their code in order to use these capabilities. Other compiled DSLs for
vertex-centric computations have also worked on communication
optimizations as well [8, 20], however none have sought to
automatically incrementalize the program during the compilation
process for vertex-centric computations, or to reduce the number
of messages sent in the compiled program in this manner.

9 CONCLUSIONS & FUTUREWORK
In this paper we have introduced a family of program transforma-
tions that together incrementalize the interaction between vertex
computations and through this incrementalize the computation as a
whole (Section 6), and demonstrated the usefuleness of these trans-
formations (Section 7). We have shown that programs written in
our prototype language∆V that have been incrementalized by these
transformatuions always achieve at least the same performance as
programs that have not been optimized, and that these optimizations
have the ability to drastically increase performance on iterative

14For CC∆V,∆V⋆ , and Pregel+ sent the exact same number of messages so this graph
has been elided.
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algorithms: we can therefore perform these transformations on a
source program and not worry about possibly slowing the computa-
tion down. Furthermore, these transformations are straightforward,
readily applicable to other (compiled) DSLs for vertex-centric com-
putation, and not only do not restrict other standard optimization
techniques for vertex-centric programs but open up other low-level
optimization techniques. Indeed, while we have demonstrated the
effectiveness of incrementalization there are still a number of future
directions and possibilties to explore that are directly related to the
method of automatic incrementalization that we have presented.

FutureWork
One future direction for this work is to extend the incremental-
ization policy to allow removing vertices from the graph during
the computation; while ∆V is a query language and thus cannot
manipulate the graph, the incrementalization approach that we
have presented can be extended to handle these manipulations.
A vertex could be deleted from the graph in the same manner as
described in Pregel [12], however with the addition that the vertex
being deleted first broadcasts a message that zeros out the value
of the vertex to its neighbors before the deletion of the edges is
performed (i.e. the vertex needs to set the neighbors value for that
vertex’s most recent message to a unitary value.).

Recent work in vertex-centric frameworks has explored
separating messages into different “channels” based upon how
those messages are meant to be used in the computation, and the
overarching communication patterns known about the computation.
Once messages are separated in this manner specific messaging
policies such as request-respond, broadcast, and others can be used
to optimize the different types of communication that can happen
between vertices. It would be interesting to explore how further
optimization of the compiled program could be done by performing
static analysis during compilation to determine what types of
message-passing channels should be used, and to possibly build a
channel type for incremental messages.

Another future direction is to allow the programmer to define an
“allowable slop” parameterϵ to the programwhere amessage value is
counted as changed if it is no longerwithinϵ of the oldmessage. Thus
wewouldn’t sendamessage fromavertex as longas thenewmessage
is within the ϵ of the most recently sent message, but the change to
the outgoing message value is tracked internally within the vertex’s
state from one superstep to another. Once the message value differs
by at least ϵ from the most recently sent message it is counted as
changed, and a message is sent. With this view, the work described
in this paper could be seen as a degenerate case of this where ϵ = 0.

We currently do not take advantage of the halt-by-default policy
that we have in a compiled ∆V program. However, we believe
that there is significant performance benefits that can be seen
by changing the way Pregel+ determines (and schedules) which
vertices should be run at any given superstep under this policy.
In a none halt-by-default setting, at each superstep each vertex in
the graph needs to be accessed in order to determine if it should be
run (since the vertex may be active). However, in a halt-by-default
setting, with the exception of the first superstep, the vertices that
run at any given step are determined by the messages that are
received at the previous superstep. Using this knowledge, we could
use the message passing framework to build a work-queue based

scheduler for the computation, as opposed to how it currently stands
where we need to loop through each and every vertex in the graph
at every superstep, in order to determine which vertices should run.
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