
Analysing Object-Capability Security

Toby Murray

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

toby.murray@comlab.ox.ac.uk

Abstract. Much of the power and utility of modern computing arises
in the different forms of cooperation that it enables. However, today this
power comes with great risk because those engaged in cooperation are
left vulnerable to one another. The Object-Capability (OCap) Model is
a promising remedy, because it enables the creation of security-enforcing
abstractions, or patterns, that can be composed with other code to build
systems that enable cooperation whilst minimising vulnerability. Unfor-
tunately, little work has been done to adequately formally analyse stan-
dard OCap patterns. In particular, their analysis requires frameworks
that are capable of reasoning about their, often novel, security proper-
ties whilst taking into account the variation that exists across different
OCap systems, particularly in concurrency semantics.
We use the process algebra CSP to examine the implementations of a
number of OCap patterns and their security properties in various kinds
of OCap system. CSP allows us to not only reason about security proper-
ties beyond the reach of previous approaches, such as revocation, but also
to consider different models of concurrency that various kinds of OCap
system exhibit. We find that while some implementations function cor-
rectly when moved from one kind of system to another, others exhibit
subtle differences or fail to preserve their security properties altogether.

Key words: Cooperation without vulnerability, Object-Capability se-
curity, security-enforcing abstractions, CSP, formal verification.

1 Introduction

The Object-Capability Model Modern computing technology is perhaps the
best enabler of cooperation that humankind has yet developed. Indeed, much
of the power and utility of modern computing arises in the different forms of
cooperation that it enables. However, today this power comes with great risk
because those engaged in cooperation are left vulnerable to one another. While
desktop machines enable users to run software developed by anyone in the world,
they do so at the risk of having their lives ruined by the actions that the software
might take on their behalf. While one can write modern software by composing
elements from various sources, each of which may have been written by different
people at different times, one does so at the risk that one of these components
might render the entire product faulty or malicious by its inclusion.

The benefits of enabling such cooperation are obvious and should not be
abandoned. Instead, modern security architectures should seek to enable and
promote new and better forms of cooperation without vulnerability1.

One architecture that shows significant promise in this area is the Object-
Capability Model [6]. Object-Capability (OCap) operating systems (OSs), such
as EROS and seL4, enable users to run arbitrary code whilst remaining safe from
its potential misbehaviour. OCap languages, such as E and Caja, enable code to
be composed from arbitrary sources whilst ensuring that malicious code cannot
harm the user or the rest of the application2.

Briefly, an OCap system is a collection of objects, connected to each other
by capabilities. An object is a protected entity comprising state and code that
together define its behaviour. An object’s state includes both data and the ca-
pabilities it possesses. A capability is an unforgeable object reference that allows
its holder to send messages to the object it references by invoking the capability.
An object’s code naturally governs how it will react to incoming messages.

The only way to pass capabilities is by sending messages. In practice, object o
can pass one of its capabilities, say c, directly to object p only by invoking a
capability it possesses to p, including c in the invocation. This implies that
capabilities can only be passed between objects that are connected, perhaps via
intermediate objects. An object may also create others. In doing so, it must
supply any resources required by the newly created object, including its code, as
well as any capabilities it is initially to possess. Hence, a newly created object
receives its first capabilities solely from its parent.

In OCap OSs like EROS and seL4, each OS process may be thought of as a
separate object. In OCap languages like E and Caja, objects are akin to those
from object-oriented languages and capabilities are simply object references.

Security-Enforcing Abstractions The OCap model is powerful because it
allows programmers to create security-enforcing abstractions [6], here called pat-
terns, that can be composed with other, perhaps non-security enforcing, code to
enable cooperation while minimising vulnerability.

As an example, suppose Alice, an architect, is to cooperate with Bob, a
builder. In particular, she needs to be able to send blueprints to Bob via the
file Fred which supports standard operations such as read and write. A naive
solution, as depicted in Figure 1(a), would give both Alice and Bob direct access
to Fred. But now Alice is potentially vulnerable to Bob, since Bob might choose
to write malicious contents to Fred. Instead, we can compose two patterns, the
ReadOnlyForwarder and the RevocableForwarder, with Alice, Bob and Fred
as depicted in Figure 1(b), in order to ensure they can cooperate without ex-
posing Alice to undue vulnerability. Here, the new objects have been grouped
according to the pattern they instantiate.

We instantiate the ReadOnlyForwarder pattern with Fred to produce an
object, TheReadOnlyFwdr, that provides read-only access to Fred. TheReadOn-

1 This phrase is borrowed directly from Miller et al. [7].
2 Appendix B lists references for each OCap system mentioned in this paper.

2

Alice {read, write}

{read, write}

Bob

Fred

(a) Alice is vulnerable to
Bob.

RevocableFwdr

ReadOnlyFwdr

Alice
The

ReadOnly
Fwdr

{read, write} {read, write}

{read}

{*}

{revoke}

{get,set} {get,set}The
Revoker

The
Revocable

Fwdr
Forward?

Bob

Fred

(b) By deploying security-enforcing patterns,
we minimise Alice’s vulnerability to Bob.

Fig. 1: Security-enforcing patterns enable cooperation whilst reducing vulnerability.

lyFwdr responds only to read requests by forwarding the request to its target,
here Fred. We then instantiate the RevocableForwarder pattern with this to
produce three objects, only two of which are used directly by Alice or Bob.
The first, TheRevocableFwdr, provides indirect access to TheReadOnlyFwdr and
is handed to Bob to give him read-only access to Fred. The second, TheRevoker,
allows Bob’s read-only access to Fred to be revoked and is handed to Alice. When
invoked, TheRevocableFwdr forwards whatever message it received to its target,
here TheReadOnlyFwdr, so long as the object Forward? holds a boolean value of
true. However, when TheRevoker is invoked, it modifies the value held in For-
ward? to false, thereby preventing TheRevocableFwdr from forwarding any future
invocations. Finally, we also give Alice a direct reference to Fred. Now Alice and
Bob can cooperate without exposing Alice to undue vulnerability since Bob is
prevented from being able to write to Fred. Once they have finished cooperating,
Alice can revoke Bob’s access to Fred by invoking TheRevoker3.

The development of security-enforcing OCap patterns has had a long history,
of which Miller provides a good overview in [6, Section 9.5]. Over the years, many
patterns have been developed in a range of OCap systems. Some patterns in par-
ticular have consistently reappeared in a number of different systems, including
RevocableForwarders [8] and AttenuatingForwarders, such as the Read-
OnlyForwarder above, (in e.g. E, KeyKOS and Emily), Sealer-Unsealers [3]
(in e.g. E, KeyKOS, Emily and Caja) and Membranes [6] (in e.g. E, KeyKOS,
DCCS and Emily).

Despite their ubiquity, little work has been done to formally analyse the
implementations of these common patterns. The wide variety of OCap systems
necessitates the formal analysis of their implementations to determine in which
systems they can be applied. In particular, single-threaded OCap languages, like

3 Note that Bob is still vulnerable to Alice choosing to send him a malicious image.
Guarding against this involves being able to determine which images are malicious.

3

Caja and Joe-E, have vastly different models of concurrency than OCap OSs like
EROS and seL4, where each process runs concurrently to all others. Concurrency
is known to introduce subtle effects that can enable a system’s security properties
to be violated. Cryptographic protocols provide the perfect example [10]. Hence,
implementations that are originally designed in one kind of system may not
function correctly in another. These patterns must, therefore, be analysed in
a framework that is capable of expressing various levels of concurrency. This
rules out the application of traditional techniques like Take-Grant Models [4]
and Knowledge-Behaviour Models [12].

Contribution In this paper, we formally analyse the implementation of a num-
ber of common OCap patterns, within the different contexts of OCap languages
and operating systems, in order to verify their security properties and deter-
mine in which contexts they can be applied. Our formal analysis is conducted
using the process algebra CSP [9] and its model-checker FDR [1]. Appendix A
provides a brief overview of CSP. We chose CSP because it was explicitly de-
signed for reasoning about concurrency and has a rich and successful history
of detecting concurrency-related vulnerabilities, most notably in cryptographic
protocols [10].

CSP allows us to express a system’s security properties in the form of process
refinements. In this paper, we restrict our attention to simple trace-refinements
in which we assert that every sequence of events that can be performed by the
system, System, can also be performed by some specification process, Spec, that
is constructed to perform every sequence of events that does not violate the rele-
vant security property. Despite their name, simple trace-refinements can express
properties, such as revocation, that are beyond the reach of previous OCap for-
malisms (e.g. [12]). More complex refinements can be used to express subtler
properties still [5]. For finite-state Spec and System, FDR can automatically
test whether the refinement holds and return a counter-example in the form of
a behaviour of System that is not a behaviour of Spec when it does not.

Using CSP, we model a pattern in the two different contexts of a single-
threaded OCap language and a concurrent OCap OS to produce two different
processes that represent the pattern in each context. To compare the pattern
between the two contexts we simply apply the refinement tests that represent
its security properties to each of the processes and compare the results.

This paper is organised as follows. In Section 2, we describe our approach to
modelling OCap patterns in CSP, both within the context of OCap languages and
OSs, with the aid of the Membrane pattern as a running example. In Section 3,
we then apply this approach to the implementations of some common OCap
patterns to reason about their security properties within these two different
contexts. We consider the RevocableMembrane pattern, an extension to the
Membrane pattern that incorporates the logic of the RevocableForwarder
pattern and whose analysis requires reasoning about revocation. We also consider
an implementation of the Sealer-Unsealer pattern and find that its security
properties are greatly affected by shifts in concurrency semantics. Finally, we
conclude in Section 4 and consider some directions for future research.

4

2 Modelling OCap Patterns in CSP

In this section, we discuss how to model and reason about the various OCap
patterns in CSP within the context of OCap OSs and languages. We do so with
the aid of the first pattern that we will analyse, in order to help explain our
overall approach. Later, we apply these techniques to other patterns of interest.

The Membrane Pattern Figure 2 depicts an instance of the Membrane
pattern [6], which has been applied across many OCap systems, including in
OSs such as KeyKOS, languages such as E and distributed systems such as
DCCS. This pattern allows one to hand out a capability, c, to an object while
ensuring that some behaviour, such as enforcing read-only access to objects, is
transitively applied to all capabilities reachable from c. We see here that Alice
has been given a capability to a membrane object, TheMembrane. TheMembrane
forwards Alice’s invocations to Bob, thereby allowing her to invoke Bob. The
membrane might implement some behaviour, such as restricting the methods
that Alice is allowed to call. In response to an invocation, Bob might return to
TheMembrane his capability to Carol. In this case, TheMembrane returns to Alice
a capability to a new instance of itself that forwards invocations to Carol rather
than Bob. We say here that TheMembrane has wrapped the capability to Carol.
Alice can now invoke both Bob and Carol, but we ensure that TheMembrane’s
policy is applied in both cases. TheMembrane also wraps any capabilities that
Alice may pass it in her invocations, before forwarding them on. This prevents
Bob, for example, from obtaining a direct (not wrapped) capability to Alice,
which he could use to violate TheMembrane’s policy by sending Alice a direct
capability to himself.

Alice

Membrane

The
Membrane Bob Carol

Fig. 2: An instance of the Membrane pattern.

2.1 System Model

When modelling a pattern, we consider a small system that comprises an in-
stance of the pattern, composed with some other objects. In the case of the
Membrane pattern, the pattern is instantiated by the single object, TheMem-
brane. It is composed with the other objects, Alice, Bob and Carol. Ideally, we
wish to determine whether a pattern preserves its security properties regardless
of the objects it is composed with. Hence, when modelling the Membrane pat-
tern, we would ideally like to specify that Alice, Bob and Carol exhibit maximum
possible behaviour. Most patterns inevitably place some obvious constraints on
the objects with which they’re composed. In this paper, we take these into ac-
count as necessary.

5

Each system comprises a set, Object , of objects. For the Membrane, we
have Object = {Alice,TheMembrane,Bob,Carol}. We use events of the form,
o1.o2.op.arg , to represent the sending and receipt of a message from object o1 to
object o2 specifying the operation op and containing the argument arg . For sim-
plicity, the only operations we distinguish are Call and Return which correspond
to an object invocation and return in an OCap language, or an inter-process send
and reply in an OCap OS. The set of operations, Op, is simply {Call,Return}. The
argument, arg , may either be a capability or the value null. We avoid modelling
data explicitly and instead assume that any message might contain arbitrary
data. This gives us the following alphabet for our systems.

{o1.o2.op.arg | o1 ∈ Object , o2 ∈ Object , op ∈ Op, arg ∈ Object ∪ {null}}
Each object, o ∈ Object , has its own alphabet of events in which

it can participate, denoted α(o). An object o can be involved in invok-
ing another, o′, or in o′ invoking it. Hence, we define its alphabet as
α(o) = {|o.o′, o′.o | o′ ∈ Object − {o}|}. Note that this means that, in our model,
messages can only be sent between distinct objects and not from an object to
itself.

2.2 Modelling Object Behaviours

We define a CSP process for each type of behaviour within our system. In order
to ease both the writing and understanding of these object behaviour definitions,
we introduce some convenience notation. The event send.other .op.arg represents
the object sending a message to another object, other , specifying operation op
and argument arg . Its dual is recv.from.op.arg and represents the receipt of a
message from the object from for operation op containing the argument arg . In
the case of the Membrane, we might specify its behaviour as follows.

Membrane(target , self) = Membrane ′({target}, self)

wrap(null, self) = null ; wrap(other , self) = self

Membrane ′(targets, self) = recv?from!Call?arg →
send?to : targets!Call!wrap(arg , self) → recv!to!Return?res →
send!from!Return!wrap(res, self) →
Membrane′(targets ∪ (Object ∩ {res, arg}), self)

In order to ensure that our systems are finite-state and their analysis is, thus,
decidable, we choose not to model object creation explicitly. Instead, we borrow
the idea of Spiessens [12] and aggregate the behaviour of any of an object’s
children into itself. A membrane that is initially forwarding invocations to Bob
and who subsequently creates a child membrane to forward invocations to Carol,
will act like the aggregation of both itself and its child. A membrane who is
initially forwarding requests to target and whose identity is self is represented
by the process Membrane(target , self). TheMembrane’s behaviour is captured by
the process Membrane(Bob,TheMembrane).

The function wrap(arg , self) returns the capability that results from the
membrane whose identity is self wrapping the argument arg . When arg is null,

6

no wrapping is required. Hence, wrap(null, self) = null. Otherwise, the argument
is a capability and is wrapped by creating a new membrane object that forwards
invocations to it. In our case, the new object is aggregated into its parent whose
identity is self . Hence, a capability to the parent, self , is returned to repre-
sent the capability to the newly created child that has been aggregated into the
parent. Hence, for target 6= null, wrap(target , self) = self .

We define the process Membrane ′(targets, self) to represent a membrane that
is the aggregation of the membranes for all of the targets in the set targets and
whose own identity is self . Initially, the membrane is aggregating nothing but
itself, hence it is forwarding to its original target only. Once an aggregated
membrane has received an invocation, it wraps whatever argument, arg , it was
passed and offers the choice of forwarding it to any of its targets. Whatever
response is received, res, it wraps this and returns it to its invoker. It is now
aggregating any new membranes that might have been created while wrapping
arg and res. Note that the set targets is only ever increased by adding object
names from the finite set Object . Therefore, targets is always bounded and, thus,
our membrane model is finite-state.

Given an object, o ∈ Object , whose behaviour is represented by some pro-
cess, Behaviour , we can then represent this object within our system by the
process that acts like Behaviour except that all send.other .op.arg events are re-
named to o.other .op.arg and likewise all recv.from.op.arg events are renamed to
from.o.op.arg . CSP naturally supports this kind of renaming (see Appendix A).

After renaming, the system is then built as the alphabetised parallel compo-
sition of these processes, with their corresponding alphabets. Hence, because of
CSP’s synchronous semantics, the system can perform an event o1.o2.op.arg only
when the process representing o1 is willing to perform the event send.o2.op.arg
while the process representing o2 is willing to perform recv.o1.op.arg .

2.3 Modelling Objects Exhibiting Maximum Possible Behaviour

We now discuss how to represent objects, such as Alice, Bob and Carol that are
to exhibit maximum possible behaviour as described earlier in Section 2.1. We
consider how to represent objects exhibiting maximum possible behaviour within
OCap OSs and languages respectively. Their representation differs in each case
since each kind of system places different constraints on the possible behaviours
an object can exhibit within it.

OCap OSs The case of an object in an OCap OS, such as EROS or seL4, is
perhaps the simplest. It is represented by the CSP process UntrustedOS(caps)
that models an object that initially possesses the capabilities in the set caps as
follows.

UntrustedOS(caps) =
send?to : caps?op?arg : caps ∪ {null} → UntrustedOS(caps) �
recv?from?op?arg → UntrustedOS(caps ∪ ({arg , from} ∩Object))

This object may invoke any of its capabilities, passing any argument it has
access to, at any time. It need not necessarily wait for a response before choosing

7

to invoke another capability. Hence, after doing so, it returns to its initial state.
Alternatively, it can choose to block waiting for a message. Once it received a
message it acquires the capability it contains as well as a capability to the sender;
this allows us to model mechanisms like EROS’s “resume” capabilities [11], which
are included in inter-process messages in order to allow the invokee to send back
a response.

OCap Languages We now consider how to model an object exhibiting maxi-
mum possible behaviour in an OCap language, like Caja or Joe-E.

We distinguish between when an object is active and when it is inactive. An
object is active precisely when one of its methods is currently being executed and
is inactive otherwise. Naturally, in the sorts of single-threaded OCap languages
that we are modelling, only one object is ever active at a time.

We define the process Untrusted lang(caps) that represents an initially inactive
object in an OCap language that exhibits maximum possible behaviour and
initially possesses the capabilities in the set caps.

Untrusted lang(caps) = recv?from?op?arg →
UntrustedActive lang(caps ∪ (Object ∩ {arg , from}))

It waits to be invoked, at which point it obtains whatever capability may
have been passed with the invocation, as well as a capability to the invoker that
it can use later to respond to the invocation. Once invoked, the object becomes
active.

An object that is active and exhibits maximum possible behaviour and
possesses the capabilities in the set caps is represented by the process
UntrustedActive lang(caps), which is defined as follows.

UntrustedActive lang(caps) = send?to : caps?op?arg : caps ∪ {null} →
Untrusted lang(caps)

It can choose to invoke any of its capabilities and pass any argument it has access
to. After doing so, it becomes inactive.

Note that this model is very permissive and allows behaviours that would
be impossible in languages like Joe-E and Caja that enforce strict call-return
semantics. Patterns that uphold their properties in this model will, therefore,
also uphold them in more restrictive settings that disallow these impossible be-
haviours. Patterns that fail to uphold their properties in our permissive model
may do so either because they are broken (i.e. fail to uphold their properties
in real languages like Joe-E and Caja) or because their security properties are
violated by a behaviour that would be impossible in a real language. In cases
where a pattern is subverted by a clearly impossible behaviour, we can further
restrict the model to remove the impossible behaviour. If the pattern works in
the restricted model, we have evidence to believe it will work in real languages
like Joe-E and Caja that enforce strict call-return semantics.

2.4 Completing the Analysis

We are now in a position to complete the models of the Membrane pattern and
reason about its security properties. Alice, Bob and Carol are each initially given

8

the capabilities {Alice,TheMembrane}, {Bob,Carol} and {Carol}, respectively.
Recall that each are to exhibit maximum possible behaviour in order to reason
about the security properties of the pattern as independently of the behaviour
of the objects it is composed with as possible. Recall also that TheMembrane is
represented by the process Membrane(Bob,TheMembrane).

The pattern is instantiated in the context of an OCap OS by instantiat-
ing each of Alice, Bob and Carol as UntrustedOS(caps), where caps denotes the
appropriate set of capabilities defined above, and coupling these with the repre-
sentation of TheMembrane to produce a process representing the system denoted
MSystemOS .

Alternatively, we can instantiate this pattern within the context of
an OCap language. First we must decide which object is initially ac-
tive. Alice appears the only sensible choice. Hence, we represent Alice as
UntrustedActive lang(AliceCaps), where AliceCaps denotes her initial capabili-
ties defined above. Bob and Carol are represented as Untrusted lang(caps), where
caps denotes the appropriate set of capabilities for each. Coupling the represen-
tations of Alice, Bob and Carol with that of TheMembrane produces a system
represented by the process denoted MSystem lang .

We now have two instances of the same Membrane pattern, modelled in
two different kinds of OCap system, to compare. The main property that we
wish to reason about is how the pattern affects the propagation of capabilities.
This corresponds to a safety analysis in conventional access control models, such
as [2], and reasons about how a pattern affects which objects can directly interact
with each other.

In the case of the Membrane, the obvious property to check is whether
Alice can obtain a capability to Bob or Carol. If this occurs, then the system
will perform an event from A = {|Alice.Bob,Alice.Carol|}. We can test whether
this is the case by checking whether the process that represents the system
trace-refines CHAOSΣ−A, the most general process that never performs any
event in A. FDR reveals that both MSystemOS and MSystem lang trace-refine
CHAOSΣ−A, indicating that the pattern does uphold this property in both
kinds of system.

3 Analysing Other OCap Patterns

We now consider two other OCap patterns. The first deals with revocation,
which is beyond the scope of traditional OCap formalisms to reason about (see
e.g. [12]). The second highlights the problems of trying to port language-based
patterns to OCap operating systems, whose concurrency semantics can break
their security properties.

3.1 The RevocableMembrane Pattern

The RevocableMembrane pattern is an extension of the Membrane pattern
that incorporates the logic of the RevocableForwarder, discussed earlier in

9

Section 1, to allow all capabilities obtained through the membrane to be revoked.
The membrane is enhanced to hold a capability to a bool object that contains
a boolean value. When invoked, the membrane first checks that its bool holds
the value true before forwarding the invocation. For each membrane, there is a
corresponding revoker object that also holds a capability to the membrane’s bool.
When invoked, the revoker simply alters the contents of the bool to false in order
to prevent the membrane from forwarding any further invocations. A membrane’s
children use the same bool as its parent, thereby allowing all capabilities wrapped
by the same membrane to be revoked together.

We represent a bool whose identity is me and initial boolean value is val as
Bool(me, val) which is defined as follows.

boolRet(me, true) = me ; boolRet(me, false) = null

Bool(me, val) = recv?from!Call?arg → send!from!Return!boolRet(me, val)
→ (Bool(me, val)<I arg = null>I Bool(me,¬val))

In response to an invocation, the bool returns its current value. If the argument
passed with the invocation is not null, the bool then toggles its value; otherwise
it retains its current value. Since the bool can only return values from the set
Object ∪ {null}, a value of false is represented by the bool returning null. Any
non-null return represents true but the bool will always return a capability that
refers to itself in this case.

We enhance the membrane presented earlier so that it now holds a reference,
bool , to its bool that it invokes to check its value before deciding whether to
forward an invocation. Only if the bool returns non-null does it continue and
forward the invocation as before.

RMembrane(target , self , bool) = RMembrane ′({target}, self , bool)

RMembrane ′(targets, self , bool) = recv?from!Call?arg →
send.bool .Call.null → recv.bool .Return?bVal →
bVal 6= null & (send!to : targets!Call!wrap(arg , self) →

recv!to!Return?res → send!from!Return!wrap(res, self) →
RMembrane ′(targets ∪ (Object ∩ {res, arg}), self , bool))

The only kind of behaviour left to define is that for the revoker. A revoker,
whose bool is bool , is simply defined as follows.

Revoker(bool) = recv?from!Call!null → send!bool !Call!bool →
recv!bool !Return?oldVal → send!from!Return!null → STOP

The revoker simply waits to be invoked, at which point it Calls its bool, passing
it a non-null argument which causes the bool to toggle its value. Once the bool
returns, the revoker simply returns null to its caller and then disallows any further
invocation.

The instantiation of this pattern in both kinds of system is based on
that for the Membrane pattern presented earlier. We instantiate three
objects, TheMembrane, TheBool and TheRevoker to represent this pat-
tern, as RMembrane(Bob,TheMembrane,TheBool), Bool(TheBool, true) and
Revoker(TheBool) respectively. Bob and Carol are instantiated as before. Alice is

10

also instantiated as before in each kind of system, except that now she is also
initially given a capability to TheRevoker.

The same properties hold for this pattern in each kind of system as do for
the Membrane presented earlier. We would like to verify that it also enforces
revocation. In order to do this, we need to test whether, once TheRevoker has
been invoked and this invocation has Returned, that TheMembrane can no longer
Call Alice, Bob or Carol. We can test for this using FDR as follows.

We define the most general process, Spec, that can never perform an event
representing TheMembrane Calling Alice, Bob or Carol once it has performed an
event representing TheRevoker Returning from an invocation. The revocation
property holds, then, if the system trace-refines Spec.

Spec =?e : Σ − {|TheRevoker.o.Return | o ∈ Object |} → Spec
� TheRevoker?o!Return?arg → CHAOSΣ−A,
where A = {|TheMembrane.abc.Call | abc ∈ {Alice,Bob,Carol}|}

FDR reveals that this test does hold for the language-based system but not
for the system modelled in the OS context. It gives the following trace as a
counter-example.

〈Alice.TheMembrane.Call.null, TheMembrane.TheBool.Call.null,
TheBool.TheMembrane.Return.TheBool, Alice.TheRevoker.Call.null,
TheRevoker.TheBool.Call.TheBool, TheBool.TheRevoker.Return.TheBool,
TheRevoker.Alice.Return.null, TheMembrane.Bob.Call.null〉

Here, TheMembrane checks TheBool, then TheRevoker alters its value and re-
turns, after which TheMembrane Calls Bob since TheBool was true when The-
Membrane checked it. This is an example of a race condition that exhibits itself
as a time-of-check-time-of-use (TOCTOU) vulnerability. It shows that patterns
can exhibit subtle differences in behaviour when moved from the language envi-
ronment into OCap OSs, due to the greater level of concurrency they allow. We
see further evidence of this when we examine the next pattern, whose security
properties are completely destroyed when moving it into the OS environment
from its original language context.

3.2 The Sealer-Unsealer Pattern

The final pattern we consider is the Sealer-Unsealer pattern [3]. It is used to
create two corresponding objects, a sealer and an unsealer. The sealer can be
invoked with a message containing a capability, c, at which point it returns a new
capability c′. c′ cannot be used for any purpose on its own. However, an object
that possesses the unsealer can invoke it, passing c′, at which point it will return
the original capability, c. Many implementations of this pattern have appeared
in both OCap languages, like E and Caja, and OCap OSs like KeyKOS. One
of its primary uses is to allow one to transport a sensitive capability, c, via an
untrusted intermediary in the form of the innocuous capability c′.

Here, we consider a particular implementation of this pattern, originally de-
veloped by Stiegler [13] in E and since ported to Caja, in order to verify its

11

security properties within the context of an OCap language and to determine
whether they carry over to OCap OSs.

The implementation works as follows. Each sealer and unsealer have access
to a common object, called a slot, that can store a single capability. When the
sealer is invoked with a capability, c, it creates a new object called a box. It
gives the box c and a capability to the slot that is shared with the unsealer. The
purpose of the box is to place a copy of c into the slot when it is invoked. The
unsealer works as follows. When invoked with a potential box, it first clears the
slot. It then invokes the potential box. If the box was created by the matching
sealer, then it will have access to the same slot as the unsealer. Hence, once the
invocation of the box returns, the slot should contain c if the box was sealed
by the corresponding sealer. If the slot contains a capability, then the unsealer
takes a copy of it and clears the slot before returning the capability.

A model of this pattern is depicted in Figure 3. Here, a sealer (not depicted)
has been used to seal a capability to a valuable object, TheCash, to produce an
innocuous box, TheBox, which has been handed to Bob. Alice has been given
a capability to the corresponding unsealer, TheUnsealer. The pattern should
prevent both Alice and Bob from obtaining TheCash.

Sealer-Unsealer

The
Unsealer

The
Slot

The
CashAlice

TheBox

Bob

Fig. 3: Modelling the Sealer-Unsealer pattern.

The behaviour of a slot is approximated by the following process.
Slot(val) = recv?from!Call?new → send!from!Return!val → Slot(new)

Our model cannot distinguish read and write messages. Hence, the slot is imple-
mented as a one-place buffer. When invoked, it stores whatever argument it is
passed and returns its old value to the caller.

The behaviour of a box is represented by this process.
Box (slot , contents) = recv?from!Call?arg →

send.slot .Call.contents → recv.slot .Return?val →
send.from.Return.null → Box (slot , contents)

It receives an invocation, places its contents in the slot by Calling it and receiving
its response, then Returns the value null to its invoker.

The behaviour of an unsealer is represented as follows.
Unsealer(slot) = recv?from!Call?box : Object →

send.slot .Call.null → recv.slot .Return?oldVal →
send.box .Call.null → recv.box .Return.null →
send.slot .Call.null → recv.slot .Return?contents : Object →
send.from.Return.contents → Unsealer(slot)

12

It receives an invocation, ensuring that it contains a capability to a supposed box.
It then Calls the slot to clear its contents, receiving its old value, and then invokes
the box. Once the box Returns, the unsealer Calls its slot to check whether the
box placed any contents within it and to clear whatever value it might contain.
It accepts only Return messages from the slot that contain a capability. Hence,
it will proceed only if the slot contained a capability. It then Returns the slot’s
contents to its caller.

When modelling this pattern in the context of an OCap language, both Alice
and Bob will be initially inactive. Hence, we need to add an extra driver object
that is initially active that can invoke both Alice and Bob. This object should not
allow either to pass capabilities to the other, however. We define its behaviour
as follows.

Driver(caps) = send?to : caps!Call!null → recv!to!Return?arg → Driver(caps)

The object that instantiates this behaviour we call TheDriver.
We instantiate the model of this pattern in the context of each kind of system

as follows. In both kinds of system, TheUnsealer, TheSlot and TheBox are instan-
tiated as Unsealer(TheSlot), Slot(null) and Box (TheSlot,TheCash), respectively.
The initial capabilities possessed by Alice, TheCash and Bob in both kinds of sys-
tem are {Alice,TheUnsealer}, {TheCash} and {Bob,TheBox}, respectively. Each
is instantiated in the OS context as UntrustedOS(caps), where caps denotes the
appropriate set of initial capabilities, to produce a system represented by the
process denoted SUSystemOS . Likewise, each of Alice, TheCash and Bob are in-
stantiated in the language context as Untrusted lang(caps) where caps denotes
the appropriate set of initial capabilities. Finally, TheDriver is instantiated in
the language context as Driver({Alice,Bob}) to produce a system represented
by the process denoted SUSystem lang .

To test that this pattern enforces its security properties, we simply need to
test whether Alice or Bob can obtain TheCash, i.e. whether the system can ever
perform an event from the set A = {|o.TheCash | o ∈ {Alice,Bob}|}.

FDR indicates that this property does not hold for SUSystem lang . This is
somewhat surprising until one examines the counter-example returned by FDR,
which is as follows.

〈TheDriver.Alice.Call.null, Alice.TheUnsealer.Call.Alice,
TheUnsealer.TheSlot.Call.null, TheSlot.TheUnsealer.Return.null,
TheUnsealer.Alice.Call.null, Alice.TheDriver.Return.null,
TheDriver.Bob.Call.null, Bob.TheBox.Call.null,
TheBox.TheSlot.Call.TheCash, TheSlot.TheBox.Return.null,
TheBox.Bob.Return.null, Bob.TheDriver.Return.TheBox,
TheDriver.Alice.Call.null, Alice.TheUnsealer.Return.null,
TheUnsealer.TheSlot.Call.null, TheSlot.TheUnsealer.Return.TheCash,
TheUnsealer.Alice.Return.TheCash, Alice.TheCash.Call.TheDriver〉

Here, the first four events in which Alice partakes have been underlined. Observe
that this sequence of events is impossible in languages that enforce strict call-
return semantics, such as Joe-E and Caja. In the counter-example, Alice Returns
to TheDriver when she ought first return to TheUnsealer. This occurs because,

13

as explained earlier in Section 2.3, our model of an object exhibiting maximum
possible behaviour in an OCap language is too permissive.

In order to overcome this weakness, we restrict the system so that Alice can
never perform this impossible sequence of events and then repeat the test in
the restricted system. The system, SUSystem lang , is restricted by placing it in
parallel with a process, R, synchronising on all of Alice’s events to form the
restricted system SUSystem ′

lang as follows.

SUSystem ′
lang = SUSystem lang ‖

α(Alice)

R

R =?e : α(Alice) → R′<I e ∈ {|TheDriver.Alice.Call|}>I R

R′ =?e : α(Alice) → R′′<I e ∈ {Alice.TheUnsealer.Call.Alice}>I R

R′′ =?e : α(Alice) → R′′′<I e ∈ {TheUnsealer.Alice.Call.null}>I R

R′′′ =?e : α(Alice)− {|Alice.TheDriver.Return|} → R
.

Repeating the test for SUSystem ′
lang reveals that, in the restricted system,

the pattern does enforce its security property as expected. This indicates that
the patter should enforce its security properties in languages like Caja and Joe-E
that enforce strict call-return semantics.

While the property does hold in the language context, FDR indicates that
in the OS context, represented by the process SUSystemOS , the property does
not hold. The counter-example that FDR returns is the following trace.

〈Alice.TheUnsealer.Call.Alice, TheUnsealer.TheSlot.Call.null,
TheSlot.TheUnsealer.Return.null, Bob.TheBox.Call.null,
TheBox.TheSlot.Call.TheCash, TheUnsealer.Alice.Call.null,
TheSlot.TheBox.Return.null, Alice.TheUnsealer.Return.null,
TheUnsealer.TheSlot.Call.null, TheSlot.TheUnsealer.Return.TheCash,
TheUnsealer.Alice.Return.TheCash, Alice.TheCash.Return.TheCash〉

Unlike in the case of the language context, this trace is an obviously valid
behaviour. It reveals that Alice can obtain TheCash if she invokes TheUnsealer,
passing herself, and Bob subsequently chooses to invoke TheBox between when
the TheUnsealer clears and checks TheSlot. In this case, TheCash is still sitting
in TheSlot when TheUnsealer checks its contents. Hence, TheUnsealer returns
TheCash to Alice, despite the fact that she doesn’t possess TheBox.

This means that while the implementation of this pattern has been shown
to uphold its security properties in the language context, it cannot be directly
applied in OCap OSs.

4 Conclusion

In this paper, we have considered the formal analysis of the implementations of
OCap patterns in CSP, in order to compare how they function when moved from
OCap languages, like Joe-E and Caja, to OCap OSs, like EROS and seL4. Our
analysis has extended beyond the scope of previous OCap formalisms (e.g. [12]),
in that we have explicitly reasoned about revocation and concurrency.

14

Some implementations, like that of the Membrane, appear to enforce their
security properties in both kinds of system. Others, like that of the Revocable-
Membrane, show subtle differences when moved into the context of an OCap
OS. Even worse are others, like that of the Sealer-Unsealer considered in
Section 3.2, which, when moved to an OCap OS, fail to uphold their security
properties entirely.

It should be noted that these results apply only to the implementations of
the patterns considered. For example, they do not show that it is impossible
to implement the Sealer-Unsealer pattern in an OCap OS, but rather that
simply applying a successful implementation from an OCap language does not
guarantee success.

Despite its utility, our approach does have its shortcomings. We finish by
considering these in order to shed light on opportunities for future research. One
shortcoming of our approach is the need to ensure that systems remain finite-
state in order that they may be checked using FDR. This prevents us from being
able to explicitly model object creation. However, it should be noted that this
same limitation also applies when modelling cryptographic protocols in CSP and
has not prevented success in that area [10]. Hence, while recognising that this
limitation does exist, we also have reason to believe that it shouldn’t prevent the
successful verification of OCap patterns in general. One way to try to overcome
this problem is to model object creation explicitly while allocating children from
a pre-defined finite pool. For example, in the case of the Membrane pattern,
besides TheMembrane, the system comprises only Alice, Bob and Carol. Bob is
the target of the initial membrane, TheMembrane, meaning that only two other
child membranes can ever be required: one to wrap Alice and one to wrap Carol.
Hence, the pool of children from which to allocate child membranes is finite.
Modelling object creation in this way would afford greater precision whilst still
keeping the system finite-state.

Another difficulty arises in trying to express systems in single-threaded OCap
languages as the composition of a number of processes executing in parallel.
Without doing this, we cannot reliably compare the operation of a pattern be-
tween the two contexts. However, it does make it difficult to detect vulnerabilities
that might arise as a result of recursive invocation, since our security enforcing
objects cannot be recursively Called4. We are currently investigating various
techniques to try to overcome this limitation.

Finally, CSP’s natural synchronous semantics make it difficult to reason di-
rectly about asynchronous invocation between objects. Common approaches to
modelling asynchrony in CSP, such as using buffers, might be applicable here
and this is an area we intend to investigate. Doing so would allow us to model
asynchronous invocation that exists in many OCap systems, including languages
like E and OSs like Coyotos.

4 See [14] for a real example of this kind of vulnerability in a Sealer-Unsealer imple-
mentation.

15

Acknowledgments

The author would like to thank Gavin Lowe, who provided insightful review of
early drafts of this paper and suggested the model of untrusted objects in OCap
languages; Michael Goldsmith, who suggested the idea of explicitly modelling
object creation by allocating children from a finite pool; and the anonymous
reviewers for their comments.

References

1. Formal Systems (Europe) Limited. Failures Divergences Refinement: FDR2
User Manual, 2005. Available at: http://www.fsel.com/documentation/fdr2/

fdr2manual.ps.

2. M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating systems.
Communications of the ACM, 1976.

3. J. James H. Morris. Protection in programming languages. Communications of
the ACM, 16(1):15–21, 1973.

4. R. J. Lipton and L. Snyder. A linear time algorithm for deciding subject security.
Journal of the ACM, 24(3):455–464, 1977.

5. G. Lowe. On CSP refinement tests that run multiple copies of a process. In
Proceedings of the Seventh International Workshop on Automated Verification of
Critical Systems, AVOCS ’07, 2007.

6. M. S. Miller. Robust Composition: Towards a Unified Approach to Access Con-
trol and Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore,
Maryland, USA, May 2006.

7. M. S. Miller, C. Morningstar, and B. Frantz. Capability-based financial instru-
ments. In Proceedings of Financial Cryptography 2000, February 2000. Available
at: http://www.erights.org/elib/capability/ode/index.html.

8. D. D. Redell. Naming and Protection in Extendable Operating Systems. PhD thesis,
University of California, Berkeley, 1974. Published as Project MAC Technical
Report TR-140, Massachusetts Institute of Technology.

9. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, Upper
Saddle River, NJ, USA, 1997.

10. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and
Analysis of Security Protocols: the CSP Approach. Addison Wesley, 2000.

11. J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A fast capability system. In
SOSP ’99: Proceedings of the Seventeenth ACM Symposium on Operating Systems
Principles, pages 170–185, 1999.

12. A. Spiessens. Patterns of Safe Collaboration. PhD thesis, Université catholique de
Louvain, Louvain-la-Neuve, Belgium, February 2007.

13. M. Stiegler. A picturebook of secure cooperation, 2004. Presentation. Available
at: http://erights.org/talks/efun/SecurityPictureBook.pdf.

14. D. Wagner. A broken brand?, March 2008. E-mail communication to the
e-lang mailing list, available at: http://www.eros-os.org/pipermail/e-lang/

2008-March/012508.html.

16

A A brief overview of CSP

In this section we give a brief overview of CSP. More details can be obtained
elsewhere [9].

CSP is a process algebra for describing and reasoning about concurrent sys-
tems. A system modelled in CSP comprises a set of concurrently executing pro-
cesses. Each process usually models some particular component of the system in
question. Processes execute by performing events. An event represents an atomic
communication; this might either be between two processes or between a process
and the environment. Processes communicate with each other by synchronising
on common events. We write Σ for the set of all visible events.

The process STOP can perform no events. The process a → P can perform
the event a, and then act like P . The process ?a : A → Pa offers the set of
events A; if a particular event a is performed, the process then acts like Pa.
(The prefixing operator “→” binds tighter than all other operators.)

CSP allows multi-part events where each part is separated by an infix dot
“.”, such as the event up.3. The process up?a : A → Pa initially offers the
set of events {up.a | a ∈ A}. The output operator “!” is used to offer specific
events to the environment. The process move?x:X!3 → P initially offers the set
of events {move.x.3 | x ∈ X}. The notation {|move|} denotes the set of events
whose first part is move. The first part of a multi-part event is sometimes called
a channel.

The process P � Q represents an external choice between P and Q; the
initial events of both processes are offered to the environment; when an event is
performed, that resolves the choice.

The process P <I b>I Q acts like P if the boolean condition b is true; otherwise
it acts like Q. b & P is shorthand for P <I b>I STOP .

The process CHAOSA is the most nondeterministic, nondivergent process
with alphabet A; it can perform any sequence of events from A, and refuse any
events.

If f is a function whose domain includes events of P , then f [P] is the process
that can perform f(x) whenever P can perform x, i.e. every event, x, of P in
the domain of f is renamed to f(x).

P ‖
A

Q represents the parallel composition of P and Q, synchronising on events

from A. For a set of processes, {P1, . . . , Pn}, and a set of alphabets {A1, . . . , An}
(each a subset of Σ), ‖

1≤i≤n
(Pi, Ai) represents the alphabetised parallel com-

position of the Pi, where each Pi is allowed to perform events only from the set
Ai, and all processes that share a common event must synchronise on it.

We say that one process, Q, trace-refines another, P , written P vT Q, when
every sequence of visible events that Q can perform, can also be performed by
P . Q trace-refines P if and only if it never performs a sequence of events that P
cannot perform.

17

B References to OCap Systems

This paper refers to a number of different OCap systems. In this appendix, we
provide references to further information about each.

B.1 OCap OSs

DCCS J. E. Donnelley. A distributed capability computing system. In Proceed-
ings of the Third International Conference on Computer Communication,
pages 432–440, 1976.

KeyKOS N. Hardy. The KeyKOS architecture. Operating Systems Review,
19(4):8–25, 1985.

EROS J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A fast capability
system. In SOSP ’99: Proceedings of the Seventeenth ACM Symposium on
Operating Systems Principles, pages 170–185, 1999.

seL4 P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T. Chakravarty.
A memory allocation model for an embedded microkernel. In Proceedings
of the 1st International Workshop on Microkernels for Embedded Systems,
January 2007.

Coyotos J. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, and M. Miller.
Towards a verified, general-purpose operating system kernel. In Proceedings
of the 1st NICTA Workshop on Operating System Verification, October 2004.

B.2 OCap Languages

E M. S. Miller. Robust Composition: Towards a Unified Approach to Access
Control and Concurrency Control. PhD thesis, Johns Hopkins University,
Baltimore, Maryland, USA, May 2006.

Emily M. Stiegler. Emily: A high performance language for enabling secure co-
operation. In Proceedings of the Fifth International Conference on Creating,
Connecting and Collaborating through Computing, C5 ’07, pages 163–169,
2007.

Joe-E A. M. Mettler and D. Wagner. The Joe-E language specification (draft).
Technical Report UCB/EECS-2006-26, EECS Department, University of
California, Berkeley, March 2006.

Caja M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja:
Safe active content in sanitized JavaScript (draft), 2008. Draft from Jan-
uary 15, 2008, available at: http://google-caja.googlecode.com/files/
caja-spec-2008-01-15.pdf.

18

