
AVoCS 2008

On Refinement-Closed Security Properties
and Nondeterministic Compositions

Toby Murray 1 Gavin Lowe 2

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract

Refinement-closed security properties allow the verification of systems for all possible implementations.
Some systems, however, have refinements that do not represent possible implementations. In particular,
real instantiations of abstract systems comprising security-critical components surrounded by maximally
hostile unrefined components are often characterised only by compositions of refinements of the abstract
system’s components, rather than all refinements of the abstract system. In this case, refinement-closed
security properties that examine multiple behaviours of a system at once can be falsely violated by the
presence of inconsistent pairs of behaviour arising from different, incompatible refinements of the system’s
components.
We show how to weaken a class of such properties, which includes both information flow and causation
properties, to allow them to be applied to these sorts of abstract systems. The weakened properties ignore
all pairs of inconsistent behaviour that would have violated the original property from which they are
derived. We also show how to adapt existing automated tests for these properties to allow them to be used
to test for their weakened counterparts instead. This enables greater flexibility in the application of these
sorts of properties to compositions of nondeterministic components.

Keywords: Refinement-closed security properties, nondeterminism, information flow, causation, CSP.

1 Introduction

1.1 Refinement-Closed Security Properties

When model checking security-critical components, it is customary to construct an
abstract system that contains the security-critical components surrounded by un-
trusted components that exhibit any and all behaviours permitted by the threat
model. For example, when modelling cryptographic protocols, a common approach
composes honest protocol agents with a maximally hostile intruder, in order to ver-
ify the security properties of the protocol being executed by the honest agents [14].
If the security-critical components, such as the honest protocol agents, function
correctly in the presence of this maximally hostile untrusted environment, we gain

1 Email: toby.murray@comlab.ox.ac.uk
2 Email: gavin.lowe@comlab.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:toby.murray@comlab.ox.ac.uk
mailto:gavin.lowe@comlab.ox.ac.uk

Toby Murray and Gavin Lowe

confidence that they uphold their security properties independently of the compo-
nents with which they are composed and, hence, should uphold these properties
universally.

Formalisms, such as CSP [13], that support a notion of behavioural refinement
greatly assist in this process. In this case, one component, Q , refines another, P ,
precisely when all behaviours of Q are also behaviours of P . To be useful, such
a formalism should support the notion that, when Q refines P , a system built by
placing Q in a particular context will always refine the system built by placing P
in that same context, for all possible contexts.

In this case, we can model untrusted components as the most unrefined com-
ponents that exhibit any and all feasible behaviours under the threat model. Any
refinement of an untrusted component thus represents the behaviour of a real compo-
nent with which the security-critical components may be composed in practice. An
abstract system can them be formed by composing the security-critical components
with the unrefined untrusted components. We can then apply refinement-closed
correctness properties to the abstract system in order to verify its security-critical
parts. A refinement-closed property is one that, if it holds for a system will also
hold for all of the system’s refinements. Applying refinement-closed properties to
the abstract system is sound because if a property holds for all refinements of the
abstract system, it is guaranteed to hold for all possible real instantiations of the sys-
tem. Hence, it will hold for all possible components with which the security-critical
components might be composed in practice.

1.2 Properties in CSP

CSP processes model individual components that when combined in parallel form
larger CSP processes that model whole systems. We restrict our attention to pro-
cesses that are divergence-free since a divergent process, which can reach states in
which it diverges by performing an infinite amount of internal activity, are almost
always incorrect by definition. CSP’s stable failures denotational semantic model is
useful for reasoning about divergence-free processes. It captures the behaviour of a
process P by two sets, traces(P) and failures(P). traces(P) is the set containing all
finite sequences of visible actions that the process P can perform. Each member of
the set failures(P) is known as a stable failure and is a pair, (s,X), representing that
P can perform the sequence of events s and then reach a “stable” state from which
no internal activity is possible and none of the events from X can be performed.
The traces and failures of a divergence-free process P are related by traces(P) =
{s | (s,X) ∈ failures(P)}. In this model, a process Q refines another P , written
P v Q , if and only if traces(Q) ⊆ traces(P) ∧ failures(Q) ⊆ failures(P). Further
details about the stable failures model and CSP appear in Appendix A.

Properties of CSP processes are typically expressed in terms of the process’s
representation in a particular model. In this paper, all properties are expressed in
terms of the traces and failures of a process – i.e. within the stable failures model.
We use the following sequence notation when expressing properties. We write se-
quences of events in between angle-brackets, 〈. . .〉. sˆt denotes the concatenation
of sequences s and t . s \ A is the sequence obtained by removing all events in the
set A from the sequence s, while s |̀ A denotes the sequence obtained by removing

2

Toby Murray and Gavin Lowe

all non-A events from s.
The property of determinism is an example of a property that is refinement-

closed. A process P is deterministic if and only if it is divergence-free and it can
never perform and refuse the same event e after some trace s. In this case we write
det(P). This property can be expressed in the stable failures model, for divergence-
free processes P , as

det(P) =6 ∃ s, e • sˆ〈e〉 ∈ traces(P) ∧ (s, {e}) ∈ failures(P).

We can see that for any process P , det(P)⇒ (∀Q • P v Q ⇒ det(Q)). Hence, det
is refinement-closed. This makes sense since deterministic processes have no proper
divergence-free refinements.

1.3 Refinement-Closed Independence Properties

In the context of CSP, a number of refinement-closed properties have recently been
proposed for verifying certain security properties of systems, including the absence
of information flows [7] and causation [10]. These properties differ from most of
their predecessors because they examine multiple behaviours of a system at once.
In particular, these kinds of security properties examine pairs of behaviours and
are violated by the presence of certain related pairs. We term these properties
refinement-closed independence properties, since they measure whether the occur-
rence of events from some set is independent of some other factor. The following
definition captures this idea formally.

Definition 1.1 [Refinement-Closed Independence Property] A refinement-closed
independence property, I, is one that can be expressed as

I(P) =6 ∃ s1 , e, t1 , s2 • s1 ˆ〈e〉ˆt1 ∈ traces(P) ∧ (s2 , {e}) ∈ failures(P) ∧

Pred(s1 , e, s2 , t1),

for some predicate Pred such that Pred(s1 , e, s2 , t1)⇒ s1 |̀ {e} = s2 |̀ {e}.

It is trivial to see that all such properties are refinement-closed. The relationship
Pred captures the other factor that the occurrences of events e are supposed to be
independent of. The requirement that Pred(s1 , e, s2 , t1)⇒ s1 |̀ {e} = s2 |̀ {e} simply
states that whatever factor that the occurrence of a specific event e is supposed to
be independent of, it is not the occurrence, or not, of the event e itself. This
seems entirely sensible to assume since it makes little sense to talk about whether
something is independent of itself.

The information flow property referred to above is known as Refinement-Closed
Failures Non-Deducibility on Compositions (RCFNDC) [7]. RCFNDC asserts that
no information can flow from a system’s high interface, H , to its disjoint low inter-
face, L, where these two interfaces partition the entire external interface exposed
by the system. It does so by capturing whether all occurrences of low events e ∈ L
are independent of the occurrence of high events from H . Here, the predicate Pred
can be expressed as

e ∈ L ∧ t1 = 〈〉 ∧ ((s1 |̀ H 6= 〈〉 ∧ s2 = s1 \H) ∨ (s2 |̀ H 6= 〈〉 ∧ s1 = s2 \H)).

3

Toby Murray and Gavin Lowe

Lazy Independence [13] is another refinement-closed independence property for
a lack of information flow. Here Pred is e ∈ L ∧ t1 = 〈〉 ∧ s1 \H = s2 \H .

The refinement-closed property for a lack of causation referred to above is known
simply as Non-Causation [10]. Non-Causation asserts that the occurrence of events
from the set A cannot cause any of the events from the disjoint set B to occur.
It does so by capturing whether all occurrences of events from the set B and any
non-A event that precedes a B event are independent of the occurrence of events
from the set A. Here, the associated Pred may be written

e /∈ A ∧ last(t1) ∈ B ∧ s1 |̀ A 6= 〈〉 ∧ s2 = s1 \A.

Finally, it should be noted that the property of determinism is itself a refinement-
closed independence property; although, it is somewhat degenerate. Determinism
asserts that all events e occur independently of all unobservable factors. Here Pred
can be expressed simply as t = 〈〉 ∧ s1 = s2 .

1.4 The Problem with Compositions of Nondeterministic Components

Unfortunately, trying to apply one of these properties to an abstract system that
is formed as the composition of unrefined components can be problematic. This is
because it is possible for the property to be violated by the presence of a pair of
inconsistent behaviours that contains behaviours from multiple incompatible refine-
ments of the system’s components. For example, in the case of abstract systems that
comprise security-critical components surrounded by unrefined, untrusted compo-
nents, any real system that includes the security-critical components will be formed
by composing them with refinements of the untrusted ones. Pairs of behaviour that
cannot arise in any such implementation are considered to be inconsistent. In sit-
uations like these in which the only valid implementations can be formed as the
composition of refinements of the abstract system’s components, the presence of
inconsistent pairs of behaviour can lead to the property being falsely violated. This
differs from the usual interpretation of a CSP process in which all refinements are
considered to represent valid implementations and to which it is most appropriate
to apply ordinary refinement-closed independence properties.

As an example of nondeterminism leading to a refinement-closed independence
property being falsely violated, consider a system that is known to be built by
interleaving two components, High and Low , that run independently of each other.
We trust that High will only perform the single event h before refusing to perform
any further events. High could be modelled in CSP as

High = h → STOP .

However we are less certain about Low ’s behaviour. Low may perform the single
event l before refusing to perform any further events, or Low may immediately
refuse to perform any events at all, leading to the following model of Low in CSP
that is the nondeterministic choice between these two possibilities.

Low = l → STOP u STOP

The abstract system built by interleaving High and Low may be defined as

Sys = High ||| Low .

It contains a high interface, H = {h}, and a disjoint low interface, L = {l}.

4

Toby Murray and Gavin Lowe

The abstract system includes the following behaviours.

• 〈h, l〉 ∈ traces(Sys): When Low performs l , the system can perform the sequence
of events 〈h, l〉.

• (〈〉, {l}) ∈ failures(Sys): On the other hand, were Low to simply refuse all events,
then the system would initially refuse to perform the event l .

Notice that these behaviours arise from different proper refinements of Low ,
corresponding to implementations of Low in which it does, and does not, perform l
initially, respectively. But taken together, they violate RCFNDC.

What are we to make of the fact that this system apparently fails RCFNDC,
despite the fact that we know that its two components, High and Low , are inter-
leaved and, therefore, cannot influence each other at all, under any circumstances,
for any possible implementation of either? The only answer is that the two be-
haviours above must be inconsistent with one another. Loosely, we say that they
are inconsistent because in order for them to both be exhibited, Low must act
nondeterministically.

1.5 Why Nondeterminism Implies Inconsistency

To understand why the need for nondeterminism implies inconsistency, consider
the reasons for using nondeterminism when modelling in the first place. Lowe [7]
argues that nondeterminism is used for two reasons. The first is when modelling a
specification of the behaviour of some component. Nondeterminism is used in this
case to capture the various choices about how the component might be implemented
in practice; each way of resolving the nondeterminism in a component corresponds
to a different implementation choice that can be made. Here, a pair of behaviours
that can be exhibited only by a component acting nondeterministically cannot both
be exhibited by a single implementation of that component and, hence, cannot arise
in a real instantiation of it.

The second reason that nondeterminism is used when modelling a component
is to abstract away from low-level details of the component’s behaviour. Here,
different resolutions of the nondeterminism in a component correspond to different
behaviours occurring within the component below the level of abstraction at which
it has been modelled. Because abstraction necessarily occurs before components
are composed together, interactions between components will rarely be abstracted
away.

An exception to the above discussion concerns scheduling. If nondeterminism in
the models of components is caused by abstracting away details of the scheduling
decisions, and two components are run using a common scheduler, then it is possible
that the resolutions of nondeterminism in the two components are not independent.
The analysis in this paper is not appropriate when the nondeterminism is of this
form.

Under the reasonable assumption that independence properties are used to de-
tect influence only between components (and not within them), we see that con-
sidering pairs of behaviour that can arise only from different resolutions of nonde-
terminism within a single component is therefore normally faulty. This is because

5

Toby Murray and Gavin Lowe

independence properties seek to reason about whether the occurrence of an event
can be affected by some other factor – such as, in the case of RCFNDC, the oc-
currence of high events. In observing pairs of behaviour that can arise only from a
component acting nondeterministically, one has not only varied the supposed affect-
ing factor – the occurrence, or not, of high events, say – but also the component’s
internal choices that are independent of the supposed affecting factor.

1.6 Contribution

In this paper, we develop a technique that allows refinement-closed independence
properties to be applied to detect influence between the components of systems,
Sys, of the following form

Sys = ‖
1≤i≤n

(Ci ,Ai),

that comprise a set of divergence-free components 3 , {C1 , . . . ,Cn}, where each com-
ponent, Ci , has an associated alphabet of events, Ai , that it is able to partake in,
and which the only valid implementations can be constructed by composing refine-
ments, C ′i , of each component, Ci , to form a system Sys ′ = ‖

1≤i≤n
(C ′i ,Ai). The

technique takes an existing refinement-closed independence property and weakens
it to ignore all inconsistent pairs of behaviour that would ordinarily violate it.

Compositions of this sort are very general and can be used to express almost ar-
bitrary systems of interacting components, including the example from the previous
section, and have been used to model and verify various kinds of security-critical
components including cryptographic protocols [14], access control policies [3], least
privilege systems [10] and object-capability patterns [9]. Allowing the application of
refinement-closed independence properties to detect influence between the compo-
nents of these sorts of systems while ignoring inconsistent pairs of behaviour enables
greater flexibility when reasoning about more novel security properties based on the
notion of independence, such as information flow and causation.

This paper is organised as follows. In Section 2 we develop a formal, testable,
characterisation of what it means for two behaviours to be consistent. This allows
us to define the weakened counterpart for compositions of a refinement-closed inde-
pendence property, which applies the property but rejects all inconsistent pairs of
behaviour that would ordinarily violate it. In Section 3, we then show how to adapt
existing tests for refinement-closed independence properties to their weakened coun-
terparts, to enable their automatic verification using the CSP refinement checker
FDR [4]. In Section 4, we consider related work before concluding in Section 5.

2 Our Approach

2.1 Consistency

In Section 1, we argued that pairs of behaviour that can arise only when one or
more components act nondeterministically should be considered inconsistent. To

3 The fragment of CSP that we consider (see Appendix A) elides termination. Hence, as in common in this
area, we also implicitly restrict our attention throughout this paper to X-free processes.

6

Toby Murray and Gavin Lowe

be safe, we consider all other pairs of behaviour to be consistent. We now formalise
that intuition.

Definition 2.1 [Consistency] Given a pair of behaviours, s1 〈̂e 〉̂ t1 and (s2 , {e}), of
a system Sys = ‖

1≤i≤n
(Ci ,Ai), that violate some refinement-closed independence

property, we say that these behaviours are consistent when there exists some process
Sys ′ = ‖

1≤i≤n
(Di ,Ai) that can exhibit both behaviours, where ∀ 1 ≤ i ≤ n • Ci v

Di ∧ det(Di). We write Consistent(s1 ˆ〈e〉ˆt1 , (s2 , {e})) in this case. We say they
are inconsistent otherwise.

To apply a refinement-closed independence property, I, where

I(P) =6 ∃ s1 , e, t1 , s2 • s1 ˆ〈e〉ˆt1 ∈ traces(P) ∧ (s2 , {e}) ∈ failures(P) ∧

Pred(s1 , e, s2 , t1),

and Pred(s1 , e, s2 , t1)⇒ s1 |̀ {e} = s2 |̀ {e}, to some system Sys = ‖
1≤i≤n

(Ci ,Ai)
while rejecting inconsistent pairs of behaviour, we must therefore weaken I to be-
come IW , where

IW (Sys) =6 ∃ s1 , e, t1 , s2 • s1 ˆ〈e〉ˆt1 ∈ traces(Sys) ∧

(s2 , {e}) ∈ failures(Sys) ∧ Pred(s1 , e, s2 , t1)

∧ Consistent(s1 ˆ〈e〉ˆt1 , (s2 , {e})).

Unfortunately, in weakening I to IW , we have apparently made it infeasible
to test, because of the implicit quantification over all refinements of the system’s
components that occurs in the predicate Consistent . In order to remedy this, we
now consider an alternative, testable, characterisation of consistency and prove that
it is equivalent.

2.2 Apparent Consistency

Our alternative characterisation of consistency is based on the following simple
result. Sys = ‖

1≤i≤n
(Ci ,Ai) can exhibit both s1 ˆ〈e〉ˆt1 and (s2 , {e}) if and only

if both of the following conditions are met:

• All components involved in performing the traces s1 ˆ〈e〉ˆt1 and s2 are able to
perform their events at the appropriate time, i.e.

∀ i • (s1 ˆ〈e〉ˆt1) |̀ Ai ∈ traces(Ci) ∧ s2 |̀ Ai ∈ traces(Ci),
• and, at least one of the components that could be involved in refusing e after s2

is able to at the appropriate time, i.e.

∃ i • e ∈ Ai ∧ (s2 |̀ Ai , {e}) ∈ failures(Ci).

The intuition, therefore, behind the following alternative characterisation of con-
sistency is that in order for the two behaviours, s1 ˆ〈e〉ˆt1 and (s2 , {e}), to be con-
sistent, there must exist some component, Ci , involved in performing and refusing e
(i.e. for which e ∈ Ai), for whom the trace after which it must refuse e (namely
s2 |̀ Ai) is different from that after which it must perform e (namely s1 |̀ Ai), in
order for it to avoid having to act nondeterministically.

7

Toby Murray and Gavin Lowe

Definition 2.2 [Apparent Consistency] Given a pair of behaviours, s1 ˆ〈e〉ˆt1 and
(s2 , {e}), of a system Sys = ‖

1≤i≤n
(Ci ,Ai), that violate some refinement-closed

independence property, we say that these behaviours are apparently consistent if
and only if

∃ i • e ∈ Ai ∧ s1 |̀ Ai 6= s2 |̀ Ai ∧ (s2 |̀ Ai , {e}) ∈ failures(Ci).

We will show that apparent consistency is both sufficient and necessary for
consistency. We do so via a few lemmas. We begin by considering necessity.

Lemma 2.3 (Apparent consistency is necessary for consistency) If two
behaviours that violate a refinement-closed independence property are consistent,
then they are apparently consistent.

Proof. We prove the contrapositive, i.e. that two behaviours that are not appar-
ently consistent are inconsistent.

Suppose we have two behaviours, s1 ˆ 〈e〉ˆt1 and (s2 , {e}), of a system Sys =

‖
1≤i≤n

(Ci ,Ai) that violate a refinement-closed independence property. Then by

Definition 1.1, s1 |̀ {e} = s2 |̀ {e}. Suppose further that these behaviours are not
apparently consistent, i.e. by Definition 2.2 that

6 ∃ i • e ∈ Ai ∧ s1 |̀ Ai 6= s2 |̀ Ai ∧ (s2 |̀ Ai , {e}) ∈ failures(Ci).

Then, we have that

∀ i • (s1 ˆ〈e〉ˆt1) |̀ Ai ∈ traces(Ci)

and for some j , e ∈ Aj ∧ (s2 |̀ Aj , {e}) ∈ failures(Cj). Then we know that for Cj ,
s1 |̀ Aj = s2 |̀ Aj . Since e ∈ Aj , we also have that (s1 ˆ 〈e〉) |̀ Aj = s1 |̀ Aj ˆ 〈e〉.
Hence

s1 |̀ Aj ˆ〈e〉 ∈ traces(Cj) ∧ (s1 |̀ Aj , {e}) ∈ failures(Cj).

This proves that for the two behaviours to arise, Cj must act nondeterministically.
Hence, by Definition 2.1, they must be inconsistent. 2

We now show that apparent consistency is not only necessary but also sufficient
for inconsistency.

Lemma 2.4 (Apparent consistency is sufficient for consistency) If two be-
haviours that violate a refinement-closed independence property are apparently con-
sistent, then they are consistent.

Proof. We prove this by showing how to construct compositions of deterministic
refinements of a system’s components that exhibit both behaviours.

Suppose we have two behaviours, s1 ˆ 〈e〉ˆt1 and (s2 , {e}), of a system Sys =

‖
1≤i≤n

(Ci ,Ai) that violate a refinement-closed independence property. Then by

Definition 1.1, s1 |̀ {e} = s2 |̀ {e}. Suppose further that these behaviours are
apparently consistent, i.e. by Definition 2.2 that for some j , e ∈ Aj ∧ (s2 |̀ Aj , {e}) ∈
failures(Cj) ∧ s1 |̀ Aj 6= s2 |̀ Aj .

Now, we seek to build a set of deterministic refinements, {Di} where ∀ i • Ci v
Di ∧ det(Di), that when composed in parallel to form a system, Sys ′ = ‖

i
(Di ,Ai),

8

Toby Murray and Gavin Lowe

result in both behaviours being present in Sys ′, i.e. s1 ˆ〈e〉ˆt1 ∈ traces(Sys ′) and
(s2 , {e}) ∈ failures(Sys ′). This will hold if

∀ i • (s1 ˆ〈e〉ˆt1) |̀ Ai ∈ traces(Di) ∧ s2 |̀ Ai ∈ traces(Di),

and (s2 |̀ Aj , {e}) ∈ failures(Dj), for j above.
For the remaining Di , i 6= j , we simply require each to exhibit the appropriate

traces. We can achieve this simply by taking the deterministic trace-equivalent
refinement of each Ci . That is, for each i 6= j , we define Di to be the process that
has the same stable failures as Ci , except that whenever Ci can perform sˆ〈e〉, Di

cannot have any refusal (s,X) where e ∈ X . Lemma B.1 (in Appendix B), proves
that such a process exists for all divergence-free Ci .

We construct Dj in two steps. We first remove any traces that would prevent
a deterministic process from refusing e after s2 |̀ Aj , i.e. we remove all failures
associated with the trace s2 |̀ Aj ˆ 〈e〉 and any extension of it. Lemma B.3 (in
Appendix B), shows that for any divergence-free Cj , one can always do this to arrive
at a process, Rj , that refines Cj and for which s |̀ A2 ˆ〈e〉 /∈ traces(Rj). Hence, all
refinements of Rj (including Rj itself) must have the failure (s2 |̀ Aj , {e}). Also,
because s1 |̀ Aj 6= s2 |̀ Aj , it must be the case that s1 ˆ〈e〉ˆt1 ∈ traces(Rj), since it
wasn’t removed when forming Rj .

We then simply take Dj to be the deterministic trace-equivalent refinement of Rj .
Dj is thus guaranteed to have the stable failure (s2 |̀ Aj , {e}). It will also have the
trace s1 ˆ〈e〉ˆt1 . 2

The following theorem follows directly from Lemmas 2.3 and 2.4.

Theorem 2.5 Apparent consistency is equivalent to consistency.

2.3 Weakened Refinement-Closed Independence Properties for Compositions

We now have a testable characterisation for consistency in the form of apparent
consistency, given by Definition 2.2. We can use this to appropriately weaken
refinement-closed independence properties to avoid false positives created by in-
consistent pairs of behaviour when applied to compositions of nondeterministic
components. This idea is formalised by the following definition.

Definition 2.6 [Weakened Independence Property] Given a refinement-closed in-
dependence property, I, its weakened counterpart for compositions is denoted IW .
Given a system of the form Sys = ‖

1≤i≤n
(Ci ,Ai), IW is defined as

IW (Sys) =6 ∃ s1 , e, t1 , s2 • s1 ˆ〈e〉ˆt1 ∈ traces(Sys) ∧

(s2 , {e}) ∈ failures(Sys) ∧ Pred(s1 , e, s2 , t1) ∧

∃ i • e ∈ Ai ∧ s1 |̀ Ai 6= s2 |̀ Ai ∧

(s2 |̀ Ai , {e}) ∈ failures(Ci).

We say that a IW is a weakened refinement-closed independence property for com-
positions, hereafter abbreviated to weakened independence property.

Notice that in doing so, some independence properties will be weakened

9

Toby Murray and Gavin Lowe

sufficiently to become equivalent to true. This occurs, for example, when
Pred(s1 , e, s2 , t1) ⇒ (∀ i • e ∈ Ai ⇒ s1 |̀ Ai = s2 |̀ Ai). Recall that the property
for determinism, det , can be written as a refinement-closed independence property
where Pred(s1 , e, s2 , t1) =̂ t1 = 〈〉 ∧ s1 = s2 . Hence, the weakened counterpart of
determinism is equivalent to true. This makes sense, of course, since it is precisely
those behaviours that require the presence of nondeterminism that are being weeded
out when an independence property is weakened.

More interestingly, perhaps, is the case of RCFNDC when applied to a system
of two components with disjoint alphabets, H and L respectively. The system Sys
from Section 1.4 is an obvious example. Recall that for RCFNDC, Pred can be
defined as

e ∈ L ∧ t1 = 〈〉 ∧ ((s1 |̀ H 6= 〈〉 ∧ s2 = s1 \H) ∨ (s2 |̀ H 6= 〈〉 ∧ s1 = s2 \H)).

Under these circumstances, for systems comprising just two components with al-
phabets H and L respectively, we see that Pred satisfies the condition above and,
hence, the weakened counterpart of RCFNDC will be satisfied for all such systems.
This concurs with our earlier intuition that no information flow should exist from
High to Low in Sys from Section 1.4. By symmetry, we see that this argument
applies in the other direction also, for information flows from Low to High.

This further realisation agrees with the intuition that systems built as an in-
terleaving of components should contain no information flows between those com-
ponents. In [7], Lowe notes that such systems can fail RCFNDC, if they comprise
nondeterministic components, because the system can contain refinements that are
insecure. Here, we have shown how to weaken RCFNDC to allow it to properly
handle processes that model systems built as an interleaving of components, by
rejecting all such refinements. We revisit this idea later in Section 4.

3 Automatic Testing

In this section, we consider how to adapt existing automatic tests for indepen-
dence properties to produce tests for their weakened counterparts. We provide a
fairly general method that can be applied to an existing test for a refinement-closed
independence property like RCFNDC to produce a new test for its weakened coun-
terpart.

3.1 Testing Independence Properties

Refinement-closed independence properties come from a larger class of properties
known as binary failures properties. This is the class of properties that examine
pairs of stable failures and are violated by the presence of certain related pairs.
Lowe [6] has shown that all binary failures properties can be expressed equivalently
in the form of CSP refinement tests; most of these tests are finite state, enabling
them to be automatically tested by CSP’s refinement checker FDR [4]. Any such
property, φ(P), can be expressed in terms of a CSP refinement test that runs two
copies of the process P in a test harness, Harness(P), looking for pairs of failures
(one from the first copy, the other from the second) that violate the property. The

10

Toby Murray and Gavin Lowe

harness can be defined as

Harness(P) = (left .P ||| right .P) ‖
{|left ,right |}

Sched

for some deterministic scheduler process, Sched , that allows the two copies of P
to exhibit all behaviours that could lead to violations of the property in question.
Each copy of P performs its events on separate fresh channels, left and right , in
order to allow them to be distinguished.

A specification process, Spec, is constructed that is the most general process
that mimics the behaviour of the test harness, except that it exhibits none of the
pairs of failures that violate the property. One can test whether the property holds
for some process P then by testing whether

Spec v Harness(P).

Lowe provides a method of deriving both Spec and Harness to ensure they are
correct by construction that, although not complete, works for all cases considered
to date.

Indeed, when RCFNDC and Non-Causation were first proposed (in [7] and [10]
respectively, before [6]), refinement tests of this form were presented in order to
facilitate the automatic verification of these properties. We now consider how such
tests can be modified in order to allow weakened independence properties to be
automatically tested using FDR.

We use the test for RCFNDC as an example, but the general process that we
follow here can be applied with equal success to other independence properties,
such as Non-Causation, in order to express their weakened counterparts in terms
of refinement tests. The following is a slight adaptation of the Spec process derived
in [6] for RCFNDC.

Spec =

left?h : H → Spec′

2 left?l : L→ (right .l → Spec u STOP)

2 right?l : L→ (left .l → Spec u STOP)

 u STOP

Spec′=

left?h : H → Spec′

2 left?l : L→ right .l → Spec′

2 right?l : L→ left .l → Spec′

 u STOP

The test works as follows. The scheduler (not shown), Sched , is the deterministic
trace-equivalent refinement (see Lemma B.1 of Appendix B) of Spec obtained by
removing all of Spec’s “u STOP” clauses. Sched allows the left copy of P to perform
events in H and L. The right copy of P is allowed to perform only L events.
Both copies must perform the same L events. The first specification process, Spec,
corresponds to states in which no H event has yet been performed by the left copy
of P . Once an H event is performed, the specification evolves to Spec′. Spec′ is
constructed to ensure that (0) assuming both copies perform the same L events,
that once some H event has been performed by the left copy, (1) whenever an L
event is performed by either copy of P , (2) the other copy cannot refuse it. This

11

Toby Murray and Gavin Lowe

corresponds exactly to the definition of RCFNDC, which is equivalent to

6 ∃ s1 , e, s2 • (1) s1 ˆ〈e〉 ∈ traces(P) ∧ e ∈ L ∧ (2) (s2 , {e}) ∈ failures(P) ∧
(0) ((s1 |̀ H 6= 〈〉 ∧ s2 = s1 \H) ∨ (s2 |̀ H 6= 〈〉 ∧ s1 = s2 \H)).

3.2 Testing Weakened Independence Properties

We now show a fairly general method that can be applied to adapt a refinement
test for an independence property, like that above for RCFNDC, to instead test for
its weakened counterpart.

We begin by observing that we can rewrite a weakened independence property
IW (see Definition 2.6) equivalently as

IW (Sys) =6 ∃ s1 , e, t1 , s2 • s1 ˆ〈e〉ˆt1 ∈ traces(Sys) ∧ s2 ∈ traces(Sys) ∧

Pred(s1 , e, s2 , t1) ∧

∃ i • e ∈ Ai ∧ s1 |̀ Ai 6= s2 |̀ Ai ∧

(s2 |̀ Ai , {e}) ∈ failures(Ci).

Hence, weakened refinement-closed independence properties are violated by the
presence of three behaviours: two traces of the system Sys and one stable failure of
one of the system’s components.

At first glance, this suggests that in order to express such a property as a re-
finement test, we would need to create a test harness that runs two copies of the
process Sys (in order to test if the two traces can be exhibited), as well as a copy
of each component of Sys (in order to test if the stable failure can be exhibited).
However, we can achieve the same result by simply running two copies of each com-
ponent of Sys. We run two copies of a modified system, WSys, that allows us to
observe both system-level traces as well as the behaviour of individual components
by applying a renaming to each component before composing them. Given a system,
Sys = ‖

1≤i≤n
(Ci ,Ai), we can create a process, WSys, that allows us to observe

both system-level traces and individual component behaviours as follows.

WSys = ‖
1≤i≤n

(Ci [[sys.x , cmp.Ci .x/x , x]], {sys.x , cmp.Ci .x | x ∈ Ai}).

Here sys and cmp are fresh channels over which WSys performs system-level and
individual component events respectively. Ci [[sys.x , cmp.Ci .x/x , x]] is the process that
can perform either of the events sys.x or cmp.Ci .x , whenever Ci can perform the
event x . The alphabetised parallel composition forces all of the transformed Ci to
synchronise on all events performed on the channel sys, while events performed on
any of the cmp channels occur without any synchronisation. This means that we
can observe system-level traces by observing the sys channel. At some point in
time, we can then observe the behaviour of individual components by observing the
various cmp channels.

This allows us to build a modified test harness, WHarness, that can be applied
to a system Sys = ‖

1≤i≤n
(Ci ,Ai) as follows.

WHarness(Sys) = (left .WSys ||| right .WSys) ‖
{|left ,right |}

WSched .

12

Toby Murray and Gavin Lowe

WSched is explained shortly, as it is derived from the specification process, WSpec,
against which WHarness is tested for refinement. WSpec is constructed by adapting
Spec as follows. In general, the specification process, Spec, for a (non-weakened)
independence property applied to some process P , is constructed so that whenever
the left (respectively right) copy of P performs a trace s1 ˆ 〈e〉ˆ t1 and the right
(respectively left) copy of P performs the related trace s2 , Spec never refuses the
event right .e (respectively left .e). Hence, it will be refined by Harness(P) if and only
if the right (respectively left) copy of P cannot refuse the event e after performing
the trace s2 . We call the states in which Spec never refuses the event right .e
(respectively left .e) above, the critical states.

For a weakened independence property applied to some composition, Sys =
‖

1≤i≤n
(Ci ,Ai), we require that, once in a critical state, rather than the other

copy of Sys not being able to refuse the event e, that instead none of the individual
components, Ci , that have e in their alphabets (e ∈ Ai) and have performed different
traces (s1 |̀ Ai 6= s2 |̀ Ai) can refuse e. This gives us a recipe for adapting Spec, to
make WSpec, as follows.

• Change all references to the channels left and right to left .sys and right .sys
respectively.

• Maintain a set, S , of components that have performed different traces so far,
i.e. for whom s1 |̀ Ai 6= s2 |̀ Ai ; S is initially empty.

• For each system-level event that is performed, determine which components have
now performed different traces, and add those to the set S .

• The critical states in which Spec could not refuse the event right .e (respectively
left .e) are expressed as right .e → Q for some process Q . Have WSpec instead do
right .sys.e → Q . NR(right ,S , e) (respectively left .sys.e → Q . NR(left ,S , e)),
where

NR(chan,S , e) = ?a : {chan.cmp.Ci .e | Ci ∈ S ∧ e ∈ Ai} → STOP .

This instead allows WSpec to perform (but also refuse) right .sys.e (respectively
left .sys.e) while preventing it from refusing any of the events right .cmp.Ci .e
(respectively left .cmp.Ci .e) for all Ci that have performed different traces so far
and that have e in their alphabets. We have WSpec become STOP after refusing
none of the right .cmp.Ci .e (respectively left .cmp.Ci .e) since at this point only a
subset of the components that have e in their alphabets may have performed e
and, hence, the composition might have lost synchronisation. Note that the
scheduler, WSched , explained directly, also becomes STOP in the corresponding
state to ensure the test remains sound.

WSched is formed by simply taking the deterministic trace-equivalent refinement
of WSpec, which can usually be derived syntactically as shown below. The test is
carried out, then, by testing the refinement

WSpec vWHarness(P).

In order to apply the recipe to develop WSpec from Spec, we simply need to
determine how to update the set S after each system-level event has been performed.
We use the test for RCFNDC as an example. Observe that with RCFNDC, it is only
the events from H that can add differences between s1 and s2 , since both copies of

13

Toby Murray and Gavin Lowe

the system perform the same L events. Hence, for each h ∈ H that is performed,
for all i , s1 |̀ Ai 6= s2 |̀ Ai , if and only if h ∈ Ai . Therefore, S needs to be updated
only for each H event, h, that is performed by simply adding all of the Ci for whom
h ∈ Ai ; we denote this set by cmpsWith(h):

cmpsWith(h) = {Ci | 1 ≤ i ≤ n ∧ h ∈ Ai}.
This leads to the following definition of WSpec for RCFNDC:

WSpec =

left .sys?h : H →WSpec′(cmpsWith(h))

2 left .sys?l : L→ (right .sys.l →WSpec u STOP)

2 right .sys?l : L→ (left .sys.l →WSpec u STOP)

 u STOP ,

WSpec′(S) =

left .sys?h : H →WSpec′(S ∪ cmpsWith(h)) 2

left .sys?l : L→ (right .sys.l →WSpec′(S) . NR(right ,S , l))

2 right .sys?l : L→ (left .sys.l →WSpec′(S) . NR(left ,S , l))

u STOP .

As stated earlier, WSched is the deterministic trace-equivalent refinement of
WSpec. It can be derived syntactically from WSpec by removing all “u STOP”
clauses and replacing all “.” symbols with “2” instead.

4 Related Work

In Section 3.1, we said that refinement-closed independence properties form part of
a class of properties known as binary failures properties [7]. These are properties
that are violated by pairs of stable failures. Our weakened independence properties
are not binary failures properties because, in general, one cannot determine from
two system-level behaviours alone whether they are inconsistent. Whether two
behaviours are inconsistent depends on how the system has been constructed. This
is why we need to consider the behaviours of individual components in order to
determine whether two system-level behaviours are inconsistent.

In Section 2.3, we showed that the weakened counterpart of RCFNDC does
not detect information flows between components High and Low of a system
Sys = High H ‖L Low where H and L are disjoint. In [12], Roscoe and Wulf
consider whether systems that can be expressed as the composition of two com-
ponents with disjoint alphabets can contain information flows. They note, as did
Lowe in [7], that systems containing nondeterministic components can be refined
by others that do contain information flows. When all refinements represent valid
implementations, then the original refinement-closed independence property should
be applied. Its weakened counterpart, on the other hand, should be applied only
when all real implementations can be constructed by composing refinements of the
system’s components.

Our approach could be considered to be akin to defining an alternate refinement
relation 4, that for a process Sys = ‖

1≤i≤n
(Ci ,Ai), is defined as

Sys 4 Sys ′ ⇔ Sys ′ = ‖
1≤i≤n

(Di ,Ai) ∧ ∀ i • Ci v Di .

14

Toby Murray and Gavin Lowe

A system is then secure if and only if all of its maximal refinements under 4 are se-
cure. The idea of defining alternative refinement relations in the context of security
properties is not new. In particular, Mantel [8] has shown how to define alternative
refinement relations over trace sets that preserve information flow properties that
are ordinarily not refinement-closed. Under these alternative traces refinement rela-
tions, a secure system can only be refined by other secure systems. Others (e.g. [2]
and [1]) have also considered the problem of constructing security-preserving re-
finements. Here, however, the refinement relation is defined between terms of an
operational semantics (namely labelled transition systems), rather than between
terms of a denotational semantics.

These approaches subordinate the refinement-relation to the security property,
while employing a refinement-closed property subordinates the security property to
the refinement-relation. Our approach differs from both of these in that we consider
the form of the original composition to be superior and, depending on one’s point
of view, we subordinate either the refinement relation or the security property to it.

Refinement-closed independence properties naturally test whether certain events
occur independently of some potential affecting factor. In this sense, they can be
viewed as non-causation properties that assert that the potential affecting factor
cannot cause certain events to, or to not, occur. It could be argued that their
complexity comes about from trying to reconstruct causal information solely from
a system’s traces and failures. Other denotational semantics, however, more readily
capture a notion of causation. In particular, models that represent concurrency
without resorting to interleaved execution traces – so-called “true” concurrency
semantics – usually incorporate information about the causal relationship between
events. Event structures [16] are a notable example with many variations.

Unfortunately, using typical event structure encodings of CSP-like languages
yields causal information that is less useful for our purposes than one would like.
For example, under an encoding using bundle event structures (as in [15]), event h
causes event l in system trace s when h comes before l in all system traces containing
the same events as s [5]. This means that, under such an encoding, in the process
h → l → STOP 2 l → STOP , h would be identified as a unique cause of l in
the trace 〈h, l〉. This conflicts with the usual intuition that no information can
flow from High to Low in this process, assuming natural alphabets for both. The
problem with the notion of causation that is typically employed in these sorts of
semantics is that it ignores whether l can occur without h having first occurred. In
contrast, this is at the heart of the notion of independence considered in this paper.
Overcoming this limitation appears to be no less complicated than extracting causal
information from sets of traces and failures (see e.g. [11]).

5 Conclusion

In this paper we have considered the problem of applying refinement-closed secu-
rity properties that examine pairs of behaviours of systems composed from non-
deterministic components. In particular, we have considered refinement-closed in-
dependence properties that detect influence between components by determining
whether all occurrences of some events are independent of some other factor. These

15

Toby Murray and Gavin Lowe

include properties to detect information flows and causation. In cases in which
these systems are implemented only by composing refinements of their components,
standard refinement-closed independence properties will detect inconsistent pairs
of behaviour that could not arise in a real implementation and, hence, lead to false
positives. We have shown how to weaken such properties to allow them to be ap-
plied to these sorts of systems, rejecting all pairs of inconsistent behaviour that
would have ordinarily violated the property. We have also shown how to adapt ex-
isting refinement tests for refinement-closed independence properties to allow them
to be used to test for their weakened counterparts. This enables greater flexibility
in the application of these sorts of properties to compositions of nondeterministic
components.

References

[1] Alur, R., P. Cerný and S. A. Zdancewic, Preserving secrecy under refinement, in: Proceedings of the
33rd International Colloquium on Automata, Languages and Programming, LNCS 4052, 2006, pp.
107–118.

[2] Bossi, A., R. Focardi, C. Piazza and S. Rossi, Refinement operators and information flow security,
in: Proceedings of the IEEE International Conference on Software Engineering and Formal Methods
(SEFM’03), 2003, pp. 44–53.

[3] Bryans, J., Reasoning about XACML policies using CSP, in: SWS ’05: Proceedings of the 2005 workshop
on Secure web services (2005), pp. 28–35.

[4] Formal Systems (Europe), Limited, “Failures Divergences Refinement: FDR2 User Manual,” (2005),
available at: http://www.fsel.com/documentation/fdr2/fdr2manual.ps.

[5] Langerak, R., E. Brinksma and J.-P. Katoen, Causal ambiguity and partial orders in event structures,
in: Proceedings of the 8th International Conference on Concurrency Theory (CONCUR ’97) (1997),
pp. 317–331.

[6] Lowe, G., On CSP refinement tests that run multiple copies of a process, in: Proceedings of the Seventh
International Workshop on Automated Verification of Critical Systems, AVoCS ’07, 2007.

[7] Lowe, G., On information flow and refinement-closure, in: Proceedings of the Workshop on Issues in
the Theory of Security (WITS ’07), 2007.

[8] Mantel, H., Preserving information flow properties under refinement, in: Proceedings of the 2001 IEEE
Symposium on Security and Privacy, 2001, p. 78.

[9] Murray, T., Analysing object-capability security, in: Proceedings of the Joint Workshop on Foundations
of Computer Security, Automated Reasoning for Security Protocol Analysis and Issues in the Theory
of Security (FCS-ARSPA-WITS’08), 2008, pp. 177–194.

[10] Murray, T. and G. Lowe, Authority analysis for least privilege environments, in: Proceedings of the
Joint Workshop on Foundations of Computer Security and Automated Reasoning for Security Protocol
Analysis (FCS-ARSPA’07), 2007, pp. 113–130.

[11] MyThS, Models of information flow based on non-interleaving, causal models of concurrency (2005),
available at: http://www.informatics.sussex.ac.uk/users/vs/myths/deliver/mythsD1.3.pdf.

[12] Roscoe, A. and L. Wulf, Composing and decomposing systems under security properties, in: Proceedings
of the Eighth IEEE Computer Security Foundations Workshop, 1995, pp. 9–15.

[13] Roscoe, A. W., “The Theory and Practice of Concurrency,” Prentice Hall, Upper Saddle River, NJ,
USA, 1997.

[14] Ryan, P., S. Schneider, M. Goldsmith, G. Lowe and B. Roscoe, “Modelling and Analysis of Security
Protocols: the CSP Approach,” Addison Wesley, 2000.

[15] van Glabbeek, R. and F. Vaandrager, Bundle event structures and CCSP, in: Proceedings of the 14th
International Conference on Concurrency Theory (CONCUR ’03) (2003), pp. 57–71.

[16] Winskel, G., An introduction to event structures, in: REX School of Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency (1989), pp. 364–397.

16

http://www.fsel.com/documentation/fdr2/fdr2manual.ps
http://www.informatics.sussex.ac.uk/users/vs/myths/deliver/mythsD1.3.pdf

Toby Murray and Gavin Lowe

Acknowledgments

We would like to thank the anonymous reviewers for their comments and feedback.

A A Brief Overview of CSP

In this appendix, we present a brief overview of the fragment of CSP that is used
in this paper. In particular, this fragment elides termination. Further details about
CSP can be found in [13].

CSP is used to describe processes that, when composed in parallel, can commu-
nicate with each other by synchronising on common events. The occurrence of an
event can be thought of as an atomic communication between the processes that
synchronise on it. An event that is synchronised on by a set of processes can be
performed only when all of the processes in the set agree to perform it and is refused
otherwise.

We say that a process offers the set of events A, if it can perform all of the
events in A and can refuse none of them. The alphabet of a process is the set of
events that it can perform and, hence, in which it can partake.

A.1 Syntax

The process STOP performs no events; it refuses everything. The process a → P
offers the event a. If a is performed, it acts like P . The process ?a : A→ Pa offers
the set A. If a specific event a from A is performed, it then acts like Pa . The “→”
operator binds tighter than all others.

CSP allows multi-part events where each part is separated by an infix dot “.”,
such as the event up.3. The process up?a : A → Pa initially offers the set of
events {up.a | a ∈ A}. The output operator “!” is used to offer specific events. The
process move?x :X !3 → P initially offers the set of events {move.x .3 | x ∈ X }. The
notation {|move|} denotes the set of events whose first part is move. The first part
of a multi-part event is sometimes called a channel.

The process P 2 Q represents an external choice between P and Q ; the initial
events of both processes are offered; when an event is performed, the choice is
resolved. P u Q represents an internal or nondeterministic choice between P and Q ;
the process can act like either P or Q , with the choice being made according to
some criteria that we do not model. If P offers A and Q offers B , then, unlike
P 2 Q , P u Q can offer either A or B but not both. P . Q is the process that
can act like either P or Q , except that it offers only the initial events of Q ; it can
refuse the initial events of P .

If c is a channel, then c.P represents the process that acts like P except every
event x is renamed to c.x . The process P [[a1 , . . . , an/b1 , . . . , bn]] represents the process
that acts like P except that for all 1 ≤ i ≤ n, whenever P offers bi , it instead offers
ai .

P ‖
A

Q represents the parallel composition of P and Q , synchronising on events

from A. For a set of processes, {P1 , . . . ,Pn}, and a set of alphabets {A1 , . . . ,An},
‖

1≤i≤n
(Pi ,Ai) represents the parallel composition of the Pi , where each Pi is

17

Toby Murray and Gavin Lowe

allowed to perform events only from the set Ai , and all processes that share a
common event must synchronise on it. P1 A1 ‖A2 P2 is equivalent to‖

1≤i≤2
(Pi ,Ai).

P ||| Q represents the interleaving of P and Q , i.e., parallel composition with no
synchronisation.

A.2 Stable Failures Semantics

Recall that the stable failures denotational semantic model of CSP represents a
process P by its traces, traces(P) and stable failures, failures(P). We write Σ for
the set of visible events. For any CSP process P , traces(P) ⊆ Σ∗ and failures(P) ⊆
Σ∗×P(Σ). For a divergence-free process P , traces(P) = {s | (s,X) ∈ failures(P)}.
Hence, within the stable failures model, a divergence-free process is completely
characterised by its stable failures. In this case, its stable failures F and traces,
T = {s | (s,X) ∈ F}, satisfy the following axioms.

F1. T is non-empty and prefix closed.

F2. (v ,X) ∈ F ∧ Y ⊆ X ⇒ (v ,Y) ∈ F .

F3. (v ,X) ∈ F ∧ vˆ〈a〉 /∈ T ⇒ (v ,X ∪ {a}) ∈ F .

B Subsidiary Proofs

Here, we prove two results about how one can refine a divergence-free process.
We first show (in Lemma B.1) that one can refine a divergence-free process P to
reach a deterministic process Q that has the same traces as P . We then show (in
Lemma B.3) that if a process has a failure (s, {e}), it can be refined to a process
that does not have the trace sˆ〈e〉. This proof is a simple generalisation of one from
earlier work with Gavin Lowe [10].

Lemma B.1 (Trace-equivalent deterministic refinements) Every process P
with finite alphabet that is both X-free and divergence-free has a deterministic re-
finement, Q, that is trace equivalent to it.

Proof. Suppose we have a X- and divergence-free process, P . We mechan-
ically define the set of stable-failures of Q , FQ , as follows, with Q ’s traces,
TQ = {s | (s,X) ∈ FQ}.

FQ = failures(P)− {(s,X) | ∃ e • sˆ〈e〉 ∈ traces(P) ∧ e ∈ X }

Clearly, the FQ is contained in failures(P). Also, since we never remove any stable
failure (s, {}), TQ = traces(P). Also, there exists no stable-failure (s, {e}) ∈ FQ ,
for which sˆ〈e〉 ∈ TQ . Hence, if there exists some process Q that has these traces
and failures, then this Q will be a deterministic, trace-equivalent refinement of P .

In order to show that such a Q exists, we need the following result.

Theorem B.2 Assuming the alphabet Σ is finite, for any choice of F and T =
{s | (s,X) ∈ F} that satisfies the axioms (see Section A) of the stable failures model,
there is a CSP process whose traces and stable failures are T and F respectively.

Hence it will be enough to show that TQ and FQ satisfy the axioms F1–F3 of
the stable failures model.

18

Toby Murray and Gavin Lowe

Axiom F1. Clearly TQ is non-empty and prefix-closed since it is equal to
traces(P), which satisfies these conditions.

Axiom F2. Q satisfies F2 since P does, and whenever we remove a failure, we
remove all failures with larger refusal sets.

Axiom F3. We prove this by contradiction. Suppose (v ,X) ∈ FQ and vˆ〈a〉 /∈ TQ

but (v ,X ∪{a}) /∈ FQ . Since the traces and failures of P satisfy this axiom and we
remove none of P ’s traces when forming TQ , it must be the case that (v ,X ∪ {a})
was one of the failures removed from failures(P). Hence, there must exist some e,
where sˆ〈e〉 ∈ traces(P) ∧ e ∈ X ∪{a}. Since (v ,X) ∈ FQ by assumption, we have
that ∀ e ′ ∈ X • v ˆ 〈e ′〉 /∈ traces(P) or else this failure would have been removed.
Hence, it must be the case that e = a, i.e. that v ˆ 〈a〉 ∈ traces(P), equivalently
vˆ〈a〉 ∈ TQ , which clearly contradicts our assumptions. Hence this axiom must be
satisfied. 2

Lemma B.3 Given a divergence- and X-free process P, and some failure (s, {e}) ∈
failures(P), there exists a divergence-free refinement, Q, of P that does not have
the trace sˆ〈e〉 and whose failures are defined as follows:

FQ = failures(P)−

{(sˆ〈e〉ˆt ,X) | t ∈ Σ∗,X ⊆ Σ} −

{(s,X) | (s,X ∪ {e}) /∈ failures(P)}.

The traces of Q are simply defined as TQ = {s | (s,X) ∈ FQ}.

Proof. We must show that TQ and FQ satisfy the axioms F1–F3 of the stable
failures model.

Axiom F1. Clearly TQ is non-empty: it contains, at least, the empty trace. It is
prefix-closed since traces(P) is, and we remove an extensions-closed set of traces.

Axiom F2. Q satisfies F2 since P does, and whenever we remove a failure, we
remove all failures with larger refusal sets.

Axiom F3. Suppose (v ,X) ∈ FQ and v ˆ〈a〉 /∈ TQ . Then (v ,X) ∈ failures(P).
We perform a case analysis.

• Case vˆ〈a〉 6= sˆ〈e〉. Then vˆ〈a〉 /∈ traces(P), and so (v ,X ∪ {a}) ∈ failures(P),
since P satisfies F3. And hence (v ,X ∪ {a}) ∈ FQ , by construction.

• Case v = s ∧ a = e. Recall that (s, {e}) ∈ failures(P). Hence (s,X ∪ {e}) ∈
failures(P). And hence (v ,X ∪ {a}) = (s,X ∪ {e}) ∈ FQ , by construction.

2

19

	Introduction
	Refinement-Closed Security Properties
	Properties in CSP
	Refinement-Closed Independence Properties
	The Problem with Compositions of Nondeterministic Components
	Why Nondeterminism Implies Inconsistency
	Contribution

	Our Approach
	Consistency
	Apparent Consistency
	Weakened Refinement-Closed Independence Properties for Compositions

	Automatic Testing
	Testing Independence Properties
	Testing Weakened Independence Properties

	Related Work
	Conclusion
	References
	A Brief Overview of CSP
	Syntax
	Stable Failures Semantics

	Subsidiary Proofs

