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Abstract

In this paper we consider an adaptation of counter abstraction for the CSP/FDR setting. The technique
allows us to transform a concurrent system with an unbounded number of agents into a finite-state abstrac-
tion. The systems to which the method can be applied are composed of many identical node processes that
run in parallel with a controller process. Refinement checks on the abstract state machine can be performed
automatically in the traces and stable failures models using the model checker FDR. We illustrate the
method on an example based on a multiprocessor operating system.
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1 Introduction

One subclass of a Parameterised Model Checking Problem can be specified as follows:

Given a concurrent system System(N), consisting of N indentical and indepen-
dent processes, and a specification Spec, is it true that System(N) satisfies Spec

for all N?

It has been shown by Apt and Kozen [AK86] that this problem is in general unde-
cidable. The best we can do is to restrict the verification to a particular class of
systems and provide a method that is sound (but not necessarily complete) for this
class. The systems that we are going to consider consist of a number of identical
node processes. Given N , the number of node processes present in the system, the
general form of such systems is

System(N) = F (Nodes(N)),
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where F ( ) is any CSP context,

Nodes(N) = |||N−1

i=0
Node,

and Node models a single node process.
We do not allow node process identifiers anywhere in the definition of Node:

otherwise, the size of the alphabet of the implementation process, would depend
on N , and, because counter abstraction does not change alphabets, the abstraction
of the system would also depend on N , contrary to our requirements. In addition,
for the same reasons, we assume that the specification process Spec and the CSP
context F ( ) are independent of N .

In most practical situations we can expect the context F to describe some con-
troller process that is put in parallel with the nodes. The uniform verification of
the family of problems with such a context has been proven by German and Sistla
to be decidable [GS92]. However, the algorithm provided is double exponential and
therefore the verification is only possible for very small instances of a problem.

Counter abstraction is already a well-known abstraction method, probably best
presented by Pnueli et al. in [PXZ02]. It is an application of the more general
predicate abstraction [Das03,GS97,LB04], which in turn is a special case of finitary
abstraction [KP00], a method which transforms an infinite-state parameterised con-
current system into a finite-state abstraction. Counter abstraction aims to create
an abstraction of the system that is independent of the number of node processes,
to ensure that a single refinement check will prove a given result for all values of N .
The main idea is to replace the concrete state space representing a concurrent system
consisting of many similar processes by an abstract state space; each abstract state
is a tuple of integer counters (c0, c1, . . . , ck−1), where each cj counts how many node
processes are currently in the j-th state. The counters are also given a threshold z

and we interpret cj = z to mean that there are z or more processes in state j.
In the past, counter abstraction has been successfully applied to systems

where the verification property has been given in the form of a temporal for-
mula [CG87,PXZ02,Ver94,Xu05]. In [CG87], Clarke and Grümberg show that if
System(k) ‖ Abstr(System) and System(k + 1) ‖ Abstr(System) are equivalent
under an appropriate relation, then it is enough to consider only the instances of the
systems of size less than or equal to k in order to verify whether a given ICTL∗ for-
mula holds for all sizes of the system. A method similar to counter abstraction with
a threshold z = 1 is used to construct Abstr(System). However, in order for the
method to work, the user needs to provide two functions that match three special
conditions. This task usually requires some ingenuity, so the scope for automation
is limited.

Pnueli et al. in [PXZ02] and Xu in [Xu05] show how to verify a general temporal
formula in a concurrent system with unboundedly many similar processes running
in parallel. The model used is Fair Transition Systems [MP95] where the processes
are interleaved and communicate with each other via shared variables only. Each
process may also be given its own local variables (whose values may depend on
the process’s identity). However, this destroys the full symmetry of the system.
Before the verification procedure is performed, the user has to replace the local
variables by some appropriate global variables that will model the same behaviour.



Again, this task may require quite a lot of ingenuity. In the paper it is shown how,
given a concrete state space and a temporal formula, to create a corresponding
abstract machine and abstract temporal formula. Also some heuristics are provided
for extending the abstract formula so that liveness can be proven.

The work that is probably the closest to ours is [Ver94]. It considers systems of
a similar structure to the one we use, and uses a model with synchronous communi-
cation between processes. The verification algorithm consists of two parts. The first
creates a finite abstraction, which is independent of the number of processes present
in the concrete system. This is similar to our method, but instead of using a fixed
threshold z (introduced in Section 4), it determines appropriate thresholds on-the-
fly (at the expense of compilation complexity). The second part of the algorithm
evaluates the CTL-X specification on the abstract state machine.

The novelty of our work is the application of the pure counter abstraction method
(rather than more general predicate or finitary abstraction) to concurrent reactive
systems where:

• interaction between any processes present in the system occurs through commu-
nication of events (the node processes are interleaved so they share no events
between themselves; however, there is shared communication between these pro-
cesses and the rest of the system as well as the environment);

• the specification is provided as a process definition (as opposed to a formula of
temporal logic) and is verified through a refinement check;

• failures are used in system analysis in order to allow verification of specifications
that talk not only about safety of the implementation (i.e. what the system can
do), but also about the availability of events (i.e. what the system cannot refuse
to do); and

• the node processes are put in a general context.

Even though counter abstraction has already been applied to some extent to
systems with processes interacting by communication [CG87,Ver94], we are not
aware of any application of the method where model checking occurs via a refinement
check. Refinement checking allows for a different range of properties to be verified
compared to verification using temporal formulae. Additionally, our system needs
to counter abstract only the implementation process: the specification side remains
unchanged.

We choose our language to be the process algebra CSP with two semantic models,
traces and stable failures. We give a brief overview of the syntax and semantics
of CSP and the idea of refinement in the next section; more details can be found in
[Hoa85,Ros97]. For simplicity, we assume that all the processes in our system are
non-divergent and do not contain termination events.

Our overall goal, given a CSP specification process Spec and a CSP implementa-
tion process System(N) = F (Nodes(N)), is to verify whether Spec v System(N)
for all values of N . The model checker FDR [Ros94,For99] can perform this refine-
ment check for small, fixed N ; however, it is unable to do so when N is large and
clearly it cannot help much with proving the refinement for all N . This is where we
will use the full potential of counter abstraction: we construct a process Abstr such



that Abstr v Nodes(N) by construction, and hence F (Abstr) v F (Nodes(N)) =
System(N); then the refinement check Spec v F (Abstr) can be easily performed
by FDR.

The rest of the paper is structured as follows. In the next section we give a
brief overview of CSP. In Section 3 we describe the idea of counter abstraction with
unbounded integer counters, and introduce our running example. It is observed
that, even though this may dramatically reduce the number of states in the state
machine representation of the system, the state space may be still unbounded in
size. We prove that such a modified system is bisimilar, and hence traces and stable-
failures equivalent, to the original one. The abstraction is improved further by
adding thresholds to the counters in Section 4. We show that this operation creates
an anti-refinement of the original system, which is independent of the number of
node processes. This allows us to perform a single refinement check against Spec

in order to conclude that System(N) refines Spec for all N . We also briefly talk
about a tool that automates the process of creating counter abstraction models,
suitable for checking using FDR. In addition, we present time comparison results
between explicit model checking and model checking using counter abstraction with
thresholds, based on the example used throughout the paper. We conclude the paper
in Section 5 with a short discussion of possible directions of further development of
the method.

2 Introduction to CSP

2.1 Syntax

The CSP process algebra was introduced by Hoare in 1978 [Hoa78] and then mod-
ified into its current form in 1985 [Hoa85]. Roscoe’s book [Ros97] is probably the
most complete description of the language.

For any process we define its alphabet, Σ, to be the set of all observable com-
munication events that this process can engage in, either with the environment or
with other processes. There are also a special event: the internal event τ , which a
process can communicate invisibly, without any interaction from the environment.
We write Στ to mean Σ ∪ {τ}.

The partial CSP syntax that we use in this paper is the following.

P ::= STOP | a → P | P 2 P | P u P | P [[b/a]] | b & P | P ‖
X

P | P ||| P.

The process STOP is a synonym of deadlock, i.e. it is the process that cannot
engage in any communication with the environment. a → P is a process that
can initially communicate the event a and then behave like process P . For two
processes P and Q, P 2 Q (external choice) is a process that offers the environment
the choice of performing any initial event of P or Q: if an initial event of P is
performed, then the choice is resolved to P , and if an initial event of Q is performed,
then the choice is resolved to Q. P u Q, on the other hand, represents an internal
or nondeterministic choice, where the process behaves either like P or like Q: the
choice is made by some mechanism that we do not model, and cannot be influenced
by the environment.



P [[b/a]] (renaming) is a process that behaves like P except that whenever the
process would normally perform a, it now performs b.

The processes b & P is equivalent to if b then P else STOP : P is enabled only
if the guard b is true.

The notion of parallel composition of processes plays an important role in CSP.
The process P ‖

X

Q is the parallel composition of P and Q, with handshaken syn-

chronisation on all the events from the set X. We also write ‖
s∈S

[A(s)]P (s) to
mean the parallel composition of processes P (s) indexed over S, where each P (s) is
only allowed to perform events from A(s) and the processes synchronise on common
events. P ||| Q is the interleaving of P and Q: the process are in parallel, but do
not synchronise on any event.

It is important to note that here we have presented only a subset of the CSP
syntax. However, since all our results are derived using operational semantics, they
all apply to the full CSP language provided the processes are non-divergent and
contain no termination events. The syntax presented in this section is only used for
our running example.

2.2 Semantics

In this paper we use the standard operational semantics for CSP (as defined
in [Ros97, chapter 7]). Given two processes P and Q and an event e, we write
P

e−→ Q to mean that P can perform an event e and then behave like Q. Also we
write P

tr=⇒ Q to mean that the process P can perform the trace tr of visible events
(and possibly some number of τ events) and then behave like process Q.

In this paper we consider CSP processes in two different denotational semantic
models: traces and stable failures. In the former each process P is described by its
set of traces (written traces(P )), which contains all the finite sequences of events
that P can communicate to the environment. In the stable failures model a pro-
cess P is represented by the set of its traces (defined as above) together with the set
of its failures (written failures(P )). A failure is a pair (s,X), which represents that
the process can perform the trace s to reach a stable state (i.e. where no internal
events are possible), where it can refuse the whole of X (i.e. none of the events of X

is available).
Central to the idea of model checking using CSP is the concept of refinement.

In the traces model, we say that a process P is refined by Q (or that Q refines P )
if whenever Q can perform a trace tr, then so can P . Formally

P vT Q ⇔ traces(Q) ⊆ traces(P ).

In the failures model, we also require the failures of Q to be in the failures of P :

P vF Q ⇔ traces(Q) ⊆ traces(P ) ∧ failures(Q) ⊆ failures(P ).

FDR can test whether such refinements hold, for finite state processes.
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Fig. 1. State diagram of the basic model for processes within an operating system

3 Counting the processes

In this section we present a transformation method, which generates a system that is
bisimilar to Nodes(N). Each state in the new system is a tuple of integer counters,
each counting how many node processes are in a given concrete state. We start by
introducing our running example, and then describe the transformation itself.

3.1 Multiprocessor operating system example

We will model a process scheduling mechanism in an operating system for a multi-
processor machine. Our implementation will consist of a number of nodes, each
representing a single operating system process requesting CPU access, and a sched-
uler.

We adopt the common model of process states [Tan87], as shown in Figure 1.
We model a node as below.

Node(new) = load → Node(runnable),
Node(runnable) = run → Node(running),

Node(running) = deschedule → Node(runnable)
2 block → Node(blocked)
2 terminate → STOP,

Node(blocked) = interrupt → Node(runnable).

The task of the scheduler is to divide the CPU time between the different pro-
cesses. Let cores be the number of processors present in the system. Then the
scheduler, below, consists of cores interleaved processes Core, each representing a
single processor resource. We abstract away the details of the algorithm that the
scheduler uses to decide which process should be given access to the CPU next
(letting it pick any available process nondeterministically), and hence our analysis
holds for all scheduling algorithms.

Scheduler = |||cores−1

i=0
Core(idle)



The process Core, below, models a single CPU resource. When Core is idle
it can run and become busy; and when busy, any of the events that imply that a
process no longer needs CPU time (i.e. deschedule, block or terminate) brings it
back to the idle state.

Core(idle) = run → Core(busy)

Core(busy) = deschedule → Core(idle)
2 block → Core(idle)
2 terminate → Core(idle).

To create our implementation, we interleave all the node processes and put them
in parallel with the scheduler process, synchronising on the common events. Finally
we rename all the events that imply that a process no longer needs CPU time
(i.e. deschedule, block or terminate) to a single event stopRun since, for specifica-
tion verification purposes, we need not to distinguish why a process no longer needs
a CPU.

Nodes(N) = |||N−1

i=0
Node(new),

System(N) = (Nodes(N) ‖
Alpha

Scheduler)

[[stopRun,stopRun,stopRun/deschedule,block,terminate]],
Alpha = {|run, deschedule, block, terminate|}.

Finally we would like our specification to say that we never have more than cores

processes in the running state, i.e. the number of run events minus the number of
stopRun events is never more than cores. Further, if there is at least one process
running, then it can stop running, so the event stopRun is not refused. Finally, the
events load and interrupt may or may not be available. Hence we define

Spec = Spec′(0),

Spec′(x) = x < cores & (run → Spec′(x + 1) u STOP )
2 x > 0 & stopRun → Spec′(x− 1)
2 (load → Spec′(x) u interrupt → Spec′(x) u STOP ).

We fix the value of cores. Our verification problem is then:

∀N ≥ 1 • Spec vF System(N).

3.2 Counter abstraction with unbounded counters

Counter abstraction works by transforming an (unbounded) concrete state machine
into a finite abstract state machine. The CSP language is equipped with full op-
erational semantics [Ros97, chapter 7], which allows us to convert a definition of
any CSP process into an explicit state machine. We will represent each such state
machine by a tuple

(S, s0, Στ , { e−→ | e ∈ Στ}),
where: S is the set of states that the process can be in; s0 is the initial state; Στ is
the set of events the process is allowed to communicate, extended with the internal



action τ ; and e−→ ⊆ S × S is the transition relation specifying the e-successors of
each state.

We represent a single node process Node as the state machine

SNode = (SNode, n0, Στ
Node, { e−→ | e ∈ Στ

Node}),
where SNode = {n0, n1, . . . , nk−1} (so that the number of states each of the node
processes can be in is k).

Each state of the state machine for Nodes(N) can be represented as a tuple of

the form (nj0 , nj1 , . . . , njN−1), which corresponds to the process |||N−1

i=0
nji (i.e. the

i-th node process is in the state nji).
We define an abstraction method that, using only SNode, automatically generates

an abstract state machine

A∞ = (A∞, a0,Στ
A, { e−→A∞ | e ∈ Στ

A})
that is bisimilar to Nodes(N). Each a in A∞ is a k-tuple of integer counters

(c0, c1, c2, . . . , ck−1),

which corresponds to a concrete state

(nj0 , nj1 , . . . , njN−1)

where each cj counts the number of nodes in state nj , i.e.

∀ j ∈ [0..k) • cj = #{i ∈ [0..N) | nji = nj}.
The abstract initial state a0 is then the tuple (N, 0, . . . , 0). This naturally cor-

responds to the situation where all the node processes are in their initial states.
To define the alphabet of the abstract machine, Στ

A it is enough to observe that
the abstract machine can only perform events that a node process could. Hence

Στ
A = Στ

Node.

Finally, we define the abstract transition relation e−→A∞ . Let e ∈ Στ
A be given.

Then

(c0, c1, . . . , ck−1)
e−→A∞ (c′0, c

′
1, . . . , c

′
k−1)

⇔
∃ i, j ∈ [0..k) • ni

e−→ nj ∧ ci > 0 ∧
((i 6= j ∧ c′i = ci − 1 ∧ c′j = cj + 1 ∧ ∀h 6= i, j • c′h = ch)
∨ (i = j ∧ ∀h • c′h = ch)).

This is to say that there is an e-transition between two states in the abstract state
machine if and only if there is an e-transition of some node process from state ni

to state nj , with ci > 0 (so at least one node process is in state ni); and the
corresponding counters in the abstract state changed correctly: if ni and nj are
different states then counter i is decreased by 1, counter j increased by 1 and all
the other counters remained unchanged; if ni and nj are the same state then all the
counters remain unchanged.

For the rest of the paper, we let CANodes∞(N) be a process whose state machine
is the abstract state machine A∞ generated from SNode as above.

Proposition 3.1 CANodes∞(N) and Nodes(N) are strongly bisimilar.



Proof: These two systems are strongly bisimilar by construction, with bisimulation
relation:{(|||N−1

i=0
nji , (c0, c1, . . . , ck−1)

)∣∣∣∀ j ∈ [0..k) • cj = #{i ∈ [0..N) | nji = nj}
}

.

2

Corollary 3.2 CANodes∞(N) ≡F Nodes(N).

4 Counter abstraction with thresholds

In the previous section we showed how to create an abstraction of a concurrent
system by using unbounded integer counters. Even though such an abstraction
offers a dramatic decrease in the number of states by factoring the states with
respect to bisimulation, it is likely that the state space will still be unbounded in
size. More importantly, its size will still depend on N . In this section we present
an improved abstraction method, where we introduce a threshold z for the values
each of the counters can take.

4.1 Constructing the state machine

Let z be a positive integer. Our aim is to create the abstract model

Az = (Az, a0, Στ
Az

, { e−→Az | e ∈ Στ
Az
})

by defining its set of states, the initial state, the alphabet and the transition rela-
tions.

For each state (c0, c1, . . . , ck−1) ∈ A∞ we define a state a ∈ Az such that

a = (z u c0, z u c1, . . . , z u ck−1),

where x u y = min(x, y). The purpose of the variable z is to put an upper bound
on the values that each of the integer counters can attain. This allows us to count
the processes in the domain {0, 1, 2, . . . , z − 1, z or more}.

The addition of the threshold z requires a new definition for the initial state.
Throughout this section, assume N ≥ z (the value of z is usually small, so all the
refinement checks for N < z can be performed directly). Then

a0 = (z, 0, . . . , 0).

The alphabet of the abstract state machine stays unchanged. Hence

Στ
Az

= Στ
A.

Suppose s1 = (c0, c1, . . . , ck−1) and s2 = (d0, d1, . . . , dk−1) are two states in
A∞ and Az, respectively. Then we say that s1 and s2 are corresponding, written
cor(s1, s2), if for all j ∈ [0..k) we have dj = z u cj .

Now, let e ∈ Στ
Az

be given. Intuitively, we want two states in Az to be related by
e−→Az if and only if there exist two corresponding states in A∞ related by e−→A∞ .

Formally we define

d
e−→Az d′ ⇔ ∃ c, c′ ∈ A∞ • cor(c, d) ∧ cor(c′, d′) ∧ c

e−→A∞ c′.

For the rest of the paper, we let CANodesz be a process whose state machine is
the abstract state machine Az generated as above.



We can easily generate CANodesz for our running example. The counter ab-
straction will contain five counters, one for each of the states that a single node
process can be in. Below are the first two branches of the definition; the other
branches are similar and can be found in Appendix A.

CANodesz = CANodes′z(z, 0, 0, 0, 0)

CANodes ′z(c0, c1, c2, c3, c4) =
c0 > 0 & load → (if c0 = z

then CANodes ′z(c0 − 1, z u (c1 + 1), c2, c3, c4)
u CANodes ′z(c0, z u (c1 + 1), c2, c3, c4)

else CANodes ′z(c0 − 1, z u (c1 + 1), c2, c3, c4))
2

c1 > 0 & run → (if c1 = z

then CANodes ′z(c0, c1 − 1, z u (c2 + 1), c3, c4)
u CANodes ′z(c0, c1, z u (c2 + 1), c3, c4)

else CANodes ′z(c0, c1 − 1, z u (c2 + 1), c3, c4))
2

. . .

The nondeterminism present above comes from the fact that whenever one of
the counters cj is equal to z, it can mean there are either exactly z or strictly more
than z node processes in state nj .

It is intuitive to expect that counter abstracting a process using the threshold
creates an anti-refinement of a counter abstraction of the same process without the
threshold. The rest of the section proves this formally.

Lemma 4.1 Suppose that

CANodes∞(N) tr=⇒ (c0, c1, . . . , ck−1).

Then

CANodesz
tr=⇒ (z u c0, z u c1, . . . , z u ck−1).

Proof: This follows from the definition of CANodesz, by induction on the number
of transitions corresponding to tr. 2

Lemma 4.2 Let z ≥ 1 and suppose that ∀ j ∈ [0..k) • z u cj = z u c′j. Then for all
events e:

(c0, c1, . . . , ck−1)
e−→A∞ ⇔ (c′0, c

′
1, . . . , c

′
k−1)

e−→A∞ .

Proof: From each state, the event e is available if and only if there is at least one
node process in a state nj where it can perform e (since there is no synchronisation
between the nodes). This will be true if, respectively, cj > 0 or c′j > 0, for some
such j. However, z ≥ 1 and ∀ j ∈ [0..k) • z u cj = z u c′i, so ∀ j ∈ [0..k) • cj > 0 ⇔
c′j > 0. Hence e is available from the two states under the same circumstances.

2

Proposition 4.3 CANodesz vF CANodes∞(N).

Proof: By Lemma 4.1 we have that traces(CANodes∞(N)) ⊆ traces(CANodesz).



Let (tr,X) ∈ failures(CANodes∞(N)). Then for some (c0, c1, . . . , ck−1),
CANodes∞(N) tr=⇒ (c0, c1, . . . , ck−1) and (c0, c1, . . . , ck−1) refuses X. Then for each
e ∈ X ∪ {τ}, (c0, c1, . . . , ck−1) 6 e−→A∞ .

By Lemma 4.1 we have that CANodesz
tr=⇒ (z u c0, z u c1, . . . , z u ck−1). Let

c′0, c
′
1, . . . , c

′
k−1 be such that z u ci = z u c′i for all i. Then by Lemma 4.2,

(c′0, c
′
1, . . . , c

′
k−1) 6

e−→A∞ , for each e ∈ X ∪ {τ}. Hence (z u c0, z u c1, . . . , z u ck−1)
6 e−→Az , by definition of the transition relation in Az, for each e ∈ X∪{τ}. Therefore
(tr,X) ∈ failures(CANodesz). 2

Corollary 4.4 CANodesz vF Nodes(N).

Proof: This follows from Corollary 3.2, Proposition 4.3 and transitivity of refine-
ment. 2

Theorem 4.5 If F ( ) is any CSP context, and Spec is any process, then

Spec v F (CANodesz) ⇒ ∀N ≥ z • Spec v F (Nodes(N)),

where the refinements are either both in the traces or both in the failures model.

Proof: By Corollary 4.4 and monotonicity of the CSP operators, we have
F (CANodesz) vF F (Nodes(N)), and hence F (CANodesz) vT F (Nodes(N)), for
all N ≥ z. The result then follows from transitivity of refinement. 2

4.2 Tool support

We have created a simple automated tool called TomCAT 3 that, given an appro-
priate CSP script and the value of z, automatically produces the CSP definition
of the counter-abstracted process CANodesz. Most of the parsing work is done by
FDR: given a CSP script, it produces the concrete state machine of a single node
process. Then the tool produces an output CSP script identical to the original one
with the exception that the original definition of the process Nodes is replaced by
its counter-abstracted version.

The definition from Section 4.1 is inefficient to compile in FDR, as it uses a
single sequential process with (z +1)k states. TomCAT produces a CSP-equivalent,
but more efficient definition, using a parallel composition of k separate processes,
one for each counter, giving a total of k(z + 1) states to compile.

The CSP script produced by TomCAT for the running example is below. Here
States and Transitions define the set of states and transitions of the abstract state
machine, respectively. Given a state s, incoming(s), selfloops(s) and outgoing(s)
are sets of transitions for which s is the end state only, both the start and the end
state and the start state only, respectively. Each member of these sets is defined
to be a tuple (s0, e, s1) and represents the corresponding transition s0 e−→ s1.
Counter(s, x) represents a single counter for the state s storing its value in x.
Further, Counters is the parallel composition of all the counters; the alphabets
alpha(s), are chosen to ensure that each counter Counter(s, x) participates in those
events coresponding to state s. Finally, CANodesz is the process whose state
machine is the abstract state machine generated from the process Node using the

3 Available from http://web.comlab.ox.ac.uk/oucl/work/tomasz.mazur/.



counter abstraction method with threshold (Section 4.1). It is obtained by hiding
the events TAU that represent internal actions in order to achieve the true τ ’s,
and then replacing the events representing other transitions by the labels of these
transitions.

z = cores + 1
States = {0..4}
initState = 0

Transitions = {(0, load, 1), (1, run, 2), (2, terminate, 4), (2, deschedule, 1),
(2, block, 3), (3, interrupt, 1)}

incoming(s) = {(s0, e, s1) | (s0, e, s1) ∈ Transitions, s0 6= s ∧ s1 = s}
selfloops(s) = {(s0, e, s1) | (s0, e, s1) ∈ Transitions, s0 = s ∧ s1 = s}
outgoing(s) = {(s0, e, s1) | (s0, e, s1) ∈ Transitions, s0 = s ∧ s1 6= s}
Counter(s, x) =

do?t : incoming(s) → Counter(s,min(x + 1, z))
2 x > 0 & do?t : selfloops(s) → Counter(s, x)
2 x > 0 & do?t : outgoing(s) →

if x = z then Counter(s, x) u Counter(s, x− 1)
else Counter(s, x− 1)

alpha(s) = {do.t | t ∈ ⋃{incoming(s), selfloops(s), outgoing(s)}}
Counters = ‖

s∈States
[alpha(s)]Counter(s, if s = initState then z else 0)

CANodesz =
(Counters \ {do.(s0, e, s1) | (s0, e, s1) ∈ Transitions, e = TAU })

[[e/do.(s0,e,s1) | (s0, e, s1) ∈ Transitions, e 6= TAU ]]

Most of the definitions above are common for all outputs. The only parts that
change are the definitions of the threshold z (supplied by the user on the command
line) and States and Transitions (both of which are generated by FDR).

4.3 Experimental results

Going back to our example, let

F (P ) = (P ‖
Alpha

Scheduler)[[stopRun,stopRun,stopRun/deschedule,block,terminate]],

with Alpha as before. We can use FDR to verify that

Spec v F (CANodesz).

In this case we need to take z to be at least cores + 1 for the refinement to hold.
Then, by Theorem 4.5, we can deduce

∀N ≥ z • Spec v System(N).

Table 1 shows the time it takes to model check the concrete and abstract state
machines for our example, with cores = 1, 2, . . . , 5 and N = 5, 6, . . . , 10. FDR
completed all the checks with counter abstraction models in less than 1 second.



cores = 1 cores = 2 cores = 3 cores = 4 cores = 5

N = 5 < 1 < 1 < 1 < 1 1
N = 6 < 1 < 1 1 3 5
N = 7 1 3 6 12 22
N = 8 5 13 28 63 123
N = 9 18 61 167 371 806
N = 10 94 336 1026 1978 4368

Table 1
Time comparison (in seconds) for explicit model checking.

The number of states for the concrete state machine grows exponentially 4 in N .
The number of abstract states, on the other hand, remains constant for all values
of N .

More generally, the abstraction of the nodes has O((z + 1)k) states, which is
exponential in the size of the concrete state machine of a single node process; how-
ever, in most practical situation many of these states are unreachable so the typical
case is much better.

5 Future work

An important question to ask is what value to choose for the threshold z. If it
is too low, then if the refinement Spec v CANodesz does not hold, it is likely
that we get a spurious counterexample that does not occur in the concrete system.
We can automate the processes of finding the smallest possible z (if one exists) for
which our final refinement check holds, or produces a counterexample that occurs in
the original system, using techniques similar to counterexample-guided abstraction
refinement [CGJ+00], as below:

Step 1: Let z = 1.
Step 2: If Spec v F (CANodesz), then done.
Step 3: Else check if the counterexample for the refinement is also a counter-
example for Spec v F (Nodes(N)).
Step 4: If yes then conclude that Spec 6v F (Nodes(N)).
Step 5: Else let z = z + 1 and go to Step 2.

This procedure is not guaranteed to terminate, but if it does, then it gives us the z

we want.
Another possibility is to replace the single threshold z by a tuple of thresholds,

one for each of the integer counters. In this way each of the counters could have a
different cut-off value.

Another possible area of improvement is the family of systems allowed for the
application of our method. At the moment we do not allow the node processes to
use the node identifiers inside their definitions, for otherwise the state space of the
node processes would be dependent on N . This limits the number of systems that
could be analysed using counter abstraction and FDR. We intend to address this

4 The exact number of states that FDR checks is in fact
Pcores

k=0

`cores
k

´`N
k

´
4N−k.



problem using techniques from data independence [Laz99,Ros97] to collapse, within
each node process, the type [0..N) of node identifiers to some fixed finite type T ,
and then to proceed using the methods described in this paper.
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anonymous referees for helpful comments on this work. The research was partially
supported by a grant from the EPSRC.

References

[AK86] K R Apt and D C Kozen. Limits for automatic verification of finite-state concurrent systems.
Inf. Process. Lett., 22(6):307–309, 1986.

[CG87] E. M. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal logic model
checking. In PODC ’87: Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, pages 294–303, New York, NY, USA, 1987. ACM Press.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-
guided abstraction refinement. In Computer Aided Verification, pages 154–169, 2000.

[Das03] Satyaki Das. Predicate Abstraction. PhD thesis, Stanford University, December 2003.

[For99] Formal Systems (Europe) Ltd. Failures-Divergence Refinement-FDR 2 User Manual, 1999.

[GS92] Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992.
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A Full definition of CANodesz for the running example

CANodesz(c0, c1, c2, c3, c4) =
c0 > 0 & load → (if c0 = z

then CANodesz(c0 − 1, z u (c1 + 1), c2, c3, c4)
u CANodesz(c0, z u (c1 + 1), c2, c3, c4)

else CANodesz(c0 − 1, z u (c1 + 1), c2, c3, c4))
2

c1 > 0 & run → (if c1 = z

then CANodesz(c0, c1 − 1, z u (c2 + 1), c3, c4)
u CANodesz(c0, c1, z u (c2 + 1), c3, c4)

else CANodesz(c0, c1 − 1, z u (c2 + 1), c3, c4))
2

c2 > 0 & deschedule → (if c2 = z

then CANodesz(c0, z u (c1 + 1), c2 − 1, c3, c4)
u CANodesz(c0, z u (c1 + 1), c2, c3, c4)

else CANodesz(c0, z u (c1 + 1), c2 − 1, c3, c4)
2

c2 > 0 & block → (if c2 = z

then CANodesz(c0, c1, c2 − 1, z u (c3 + 1), c3)
u CANodesz(c0, c1, c2, z u (c3 + 1), c4)

else CANodesz(c0, c1, c2 − 1, z u (c3 + 1), c4))
2

c2 > 0 & terminate → (if c2 = z

then CANodesz(c0, c1, c2 − 1, c3, z u (c4 + 1))
u CANodesz(c0, c1, c2, c3, z u (c4 + 1))

else CANodesz(c0, c1, c2 − 1, c3, z u (c4 + 1))
2

c3 > 0 & interrupt → (if c3 = z

then CANodesz(c0, z u (c1 + 1), c2, c3 − 1, c4)
u CANodesz(c0, z u (c1 + 1), c2, c3, c4)

else CANodesz(c0, z u (c1 + 1), c2, c3 − 1, c4)).


