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3 : VC Dimension

Lecturer: Varun Kanade

We have seen that a consistent learner can be used to design a PAC-learning algorithm,
provided the output hypothesis comes from a class that is not too large, in particular as long
as the log of the size of the hypothesis class is polynomial in the required factors. However,
when the concept class or hypothesis class is infinite, this result cannot be applied at all.
Concept classes that are uncountably infinite are often used in machine learning, linear threshold
functions (a.k.a. linear halfspaces) being the most common one. We have already studied the
class of axis-aligned rectangles, and proved the correctness of a PAC-learning algorithm for this
class using first principles. In this lecture, we’ll show that provided a specific capacity measure
called VC dimenion of a concept class can be bounded, then a consistent learner can be used to
design PAC-learning algorithms. In particular, the VC dimension can be finite even for concept
classes that are uncountably infinite.

1 VC Dimension

In order to keep the notation cleaner, we will avoid using the subscript n to indicate that we are
discussing the learning problem with instances of size n and that the concept class is over Xn.
However, it should be clear that the discussion applies to a concept class defined as

⋃
n≥1Cn.

Let S ⊂ X be a finite set of instances. For a concept c : X → {0, 1}, we can consider the
restriction of c to S, c|S : S → {0, 1}, where c|S(x) = c(x) for x ∈ S. We define the following:

ΠC(S) = {c|S | C ∈ C}. (1)

The set ΠC(S) is the number of distinct restrictions of concepts in C defined by the set S.
Alternatively, if S = {x1, . . . , xm}, we can associate each element of ΠC(S) with the values at
each of the m points,

ΠC(S) = {(c(x1), . . . , c(xm)) | c ∈ C} (2)

The set ΠC(S) is referred to as the set all possible dichotomies on S induced by C. Clearly
for a set S of size m, |ΠC(S)| ≤ 2m, as C contains boolean functions. If for a set S of size m,
|ΠC(S)| = 2m, we say that S is shattered by C.

Definition 1 (Shattering). We say that a finite set S ⊂ X is shattered by C, if |ΠC(S)| = 2|S|.
S is shattered by C if all possible dichotomies over S can be realised by C.

We can now define the notion of dimension for a concept class C, called the Vapnik-
Chervonenkis dimension, named after the authors of the seminal paper that introduced this
notion to learning theory.

Definition 2 (VC Dimension). The Vapnik-Chervonenkis dimension of C denoted as VCD(C)
is the cardinality d of the largest set S shattered by C. If C shatters arbitrarily large finite sets,
then VCD(C) =∞.

1.1 Examples

The language used to define VC-dimension is a bit different from that commonly used in machine
learning. Let us use some examples to clarify this idea. The notion of shattering can be phrased
as follows, given a set of points S ⊂ X, if we assign labels 0 or 1 (or + or −) to the points in S
arbitrarily, is there a concept c ∈ C that is consistent with the labels? If the answer is always
yes, then the set S is shattered by C, otherwise it is not.
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Figure 1: (a) All possible dichotomies on 2 points can be realised using intervals. (b) A di-
chotomy on three points that cannot be realised by intervals.
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Figure 2: (a) A set of 4 points on which all dichotomies can be realised using rectangles. (b) A
set of 4 points with a dichotomy that cannot be realised by rectangles. (c) Any set of 5 points
always has a dichotomy that cannot be realised using rectangles.

Intervals in R

Let X = R and let C = {ca,b | a, b ∈ R, a < b} be the concept class of intervals, where
ca,b : R → {0, 1} is defined as ca,b(x) = 1 if x ∈ [a, b] and 0 otherwise. What is VCD(C)? It is
easy to see that any subset S ⊂ R of size 2 can be shattered by C, but not a set of size 3 as
shown in Figure 1. Given a set of size three, if the middle point is labelled negative and the
other two positive, there is no interval consistent with the labelling. Thus, VCD(C) = 2.

Rectangles in R2

Let X = R2 and let C be the concept class of axis-aligned rectangles. Figure 2(a) shows a set
of size 4 that can be shattered, Fig. 2(b) shows a set of size 4 that cannot be shattered, by
providing an explicit labelling that cannot be achieved. However, the definition of VC dimension
only requires the existence of a set of a certain size that is shattered. It is possible to show that
no set of size 5 can be shattered. The reason being that there must be one of the five points
that is not the extreme left, right, bottom or top point. If this point is labelled as negative and
all the extreme points are labelled as positive, then there is no rectangle that can achieve this
dichotomy.

Linear Threshold Functions or Linear Halfspaces

The concept class of linear threshold functions is widely used in machine learning applications.
Let us show that the class of linear threshold functions in R2 has VC-dimension 3. Fig. 3(a)
shows a set of size 3 that can be shattered by linear threshold functions; Fig. 3(b) shows a set of
size 3 that cannot be shattered by linear threshold functions. No set of size 4 can be shattered
by linear threshold functions. There are two possibilities, either the convex hull has four vertices
in which case if the opposite ends of the quadrilateral are given the same labels, but adjacent
vertices are given opposite ones, then no linear threshold function can achieve this labelling
(Fig. 3 (c)). If on the other hand the convex hull only contains three vertices, if the vertices
of the convex hull are labelled positive and the point in the interior is labelled negative, this
labelling is not consistent with any linear threshold function (see Fig. 3 (d)). The degenerate
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Figure 3: (a) A set of 3 points shattered by linear threshold functions. (b) A dichotomy on
a set of 3 points that cannot be realised by linear threshold functions. (c) & (d) No set of 4
points can be shattered by linear threshold functions.

case when all four points lie on a line can be treated easily (e.g., as in the case of Fig. 3(b)).

Exercise: Show that the VC dimension of linear threshold functions in n dimensions is n+ 1.

2 Growth Function

Let C be a concept class, we define the growth function, as follows:

Definition 3 (Growth Function). For any natural number m, define,

ΠC(m) = max{|ΠC(S)| | |S| = m}

The function ΠC(m) indicates the growth of the number of realised dichotomies as the size
of the finite set increases. Clearly, for m ≤ d, where d = VCD(C), we have ΠC(m) = 2m. The
question of interest is what happens when m ≥ d? We show the remarkable result that in fact
ΠC(m) is bounded by a degree d polynomial in m.

Definition 4. Define the function Φd(m) as follows: Φd(0) = 1 for all d ∈ N, Φ0(m) = 1 for
all m ∈ N, and for d > 0,m > 0,

Φd(m) = Φd(m− 1) + Φd−1(m− 1)

Lemma 1. Let C be a concept class with VCD(C) = d, then ΠC(m) ≤ Φd(m).

Proof. We will prove this by induction simultaneously on d and m. We first check the base
cases. If d = 0, then no finite set can be shattered, so C only contains one concept. Thus, for
all m, ΠC(m) = 1. If m = 0, then clearly ΠC(0) ≤ Φd(0). Now, suppose that the result holds
for all d′ ≤ d and m′ ≤ m, when at least one of the inequalities is strict.

Let S be any set of size m. Let x be a distinguished point of S. Then,

|ΠC(S \ {x})| ≤ ΠC(m− 1) ≤ Φd(m− 1) (3)

Let us look at the difference between ΠC(S) and ΠC(S \ {x}). Consider the set,

C ′ = {c ∈ ΠC(S) | c(x) = 0 ∧ ∃c̃ ∈ ΠC(S), c̃(x) = 1,∀z ∈ S \ {x}, c(z) = c̃(z)}

In words, we look at a dichotomy in ΠC(S \ {x}) and see whether this can be extended in two
distinct ways in ΠC(S), i.e., whether we can keep the assignment on points in S \ {x} and then
still have a choice to label x as either 1 or 0. Then, we have

|ΠC(S)| = |ΠC(S \ {x})|+ |ΠC′(S \ {x})| (4)

The first term accounts for all the dichotomies on S \ {x}, and the second one accounts for the
dichotomies on S \ {x} that can be extended to two distinct dichotomies on S.
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If we show that VCD(C ′) ≤ d − 1, we would be done by induction. Let S′ ⊆ S \ {x} be
shattered by C ′. (Note that x cannot be included in any set shattered by C ′ since c′(x) = 0
for all c′ ∈ C ′.) Then, by definition S′ ∪ {x} is shattered by C, so it must be the case that
|S′| ≤ d− 1. This completes the proof.

Let us now give a bound on Φd(m) and show that it is bounded by a polynomial of degree
d in m.

Lemma 2. For all m, d,

Φd(m) =

d∑
i=0

(
m

i

)
Proof. By induction on d and m. The base cases can easily checked to be true. Suppose this
holds for all d′ ≤ d and m′ ≤ m as long as at least one inequality is strict.

Then, by definition,

Φd(m) = Φd(m− 1) + Φd−1(m− 1)

=
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Finally, we can use elementary inequalities to give a bound on Φd(m).

Lemma 3. For m ≥ d,
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Proof.
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3 Sample Complexity Upper Bound

In this section, we’ll prove that the VC dimension plays a role analogous to log |Hn| in the case
of finite hypothesis classes. Provided the learning algorithm outputs a consistent learner from
come class H which has bounded VC dimension, say d, and the sample size is modestly large
as a function of the d, 1/ε and 1/δ, then this yields a PAC-learning algorithm.

Theorem 5. Let C be a concept class with VC-dimension d. Let L be a consistent learner for
C that outputs a hypothesis h ∈ C. Then L is a PAC-learning algorithm for C provided it is
given as input a random sample of size m drawn from EX(c,D) and the following bound on m
holds

m ≥ κ0

(
1

ε
log

1

δ
+
d

ε
log

1

ε

)
for some universal constant κ0.

Proof. Let c and c′ be two concepts in C. Denote by c′ ⊕ c the concept defined as follows:

(c′ ⊕ c)(x) =

{
1 if c′(x) 6= c(x)

0 if c′(x) = c(x)

Note that ifD is the target distribution and c is the target concept, then err(c′) = Px∼D
[
(c⊕ c′)(x) = 1

]
.

Let ∆c(C) = {c′ ⊕ c | c′ ∈ C}. The first thing to show is that VCD(∆c(C)) = VCD(C) (left
as an exercise to the reader). Furthermore, we define the class,

∆c,ε(C) = {c̃ ∈ ∆c(C) | Px∼D
[
c̃(x) = 1

]
≥ ε}

Thus, any c′ ∈ C such that c′ ⊕ c ∈ ∆c,ε(C) is potentially problematic as err(c′) ≥ ε.
We say that a set S is an ε-net for ∆c(C) if for every c̃ ∈ ∆c,ε(C), there exists x ∈ S, such

that c̃(x) = 1. Thus, our main goal is to bound the probability that a set S of size m drawn
from EX(c,D) fails to be an ε-net for ∆c(C). If S is an ε-net, then any c′ ∈ C that is consistent
with S is not in ∆c,ε(C) and hence satisfies, err(c′) ≤ ε.

We will draw a sample S in two phases. First draw a sample S1 of size m from EX(c,D).
Let A be the event that S1 is not an ε-net for ∆c(C). Now, suppose the event A occurs, then
there exists c̃ ∈ ∆c,ε(C) such that c̃(x) = 0 for all x ∈ S1. Fix such a c̃ and draw a second
sample S2 of size m. Now, let us obtain a lower bound on the number of elements x in S2 that
satisfy c̃(x) = 1. Let Xi denote the random variable that takes value 1 if the ith element of S2

satisfies c̃(x) = 1 and Xi takes value 0 otherwise. Thus, if X =
∑m

i=1Xi, then X is the (random
variable) number of such points in S2. Note that, E [X] ≥ εm, so by using a Chernoff bound
(see Appendix B),

P
[
X < εm/2

]
≤ P

[
|X − E [X] | > E [X]

2

]
≤ 2 exp

(
−εm

12

)
Provided εm ≥ 24 (which our final bound will ensure), the probability that at least εm/2 points
in S2 satisfy c̃ = 1 is at least 1/2.

Now consider the event B defined as follows: A sample S = S1 ∪ S2 of size 2m with
|S1| = |S2| = m is drawn from EX(c,D), there exists a c̃ ∈ Π∆c,ε(C)(S), such that |{x ∈
S | c̃(x) = 1}| ≥ εm/2 and c̃(x) = 0 for all x ∈ S1. Note that P [B] ≥ 1

2P [A], since if S1

fails to be an ε-net for ∆c(C), then the probability of there being a c̃ ∈ ∆c,ε(C) such that
|{x ∈ S2 | c̃(x) = 1}| ≥ εm/2 is at least 1/2. Thus, P [A] ≤ 2P [B].

We will bound P [B], which is a purely combinatorial problem. The question is the following:
We are given 2m balls out of which r ≥ εm/2 are red and the remaining are black. If we divided
them into two sets of size m each, without seeing the colours, what is the probability that the
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first set has no red balls and the second set has all of them? This probability is simply given
by
(
m
r

)
/
(

2m
r

)
. We can bound this as follows:(

m
r

)(
2m
r

) =
r−1∏
i=0

m− i
2m− i

≤ 1

2r

Thus, we have

P [A] ≤ 2 · P [B] ≤ 2 ·
∣∣∣Π∆c,ε(C)(S)

∣∣∣ 2− εm2 By the union bound over all c̃ ∈ Π∆c,ε(C)(S).

≤ 2 ·
∣∣∣Π∆c(C)(S)

∣∣∣ 2− εm2 ≤ 2 ·
(

2em

d

)d
2−

εm
2

Thus, there exists a universal constant, κ0, such that provided m is larger than the bound given
in the statement of the theorem, P [A] ≤ δ. This completes the proof.

In our final definition of PAC learning, we allowed the output hypothesis to be from a
different (and typically larger) class. Theorem 5 still applies, but d needs to be the VC-dimension
of the hypothesis class H. Provided C ⊆ H, it holds that VCD(C) ≤ VCD(H). This shows that
using a hypothesis class that is larger comes at a cost of increased sample complexity; however, as
we’ve seen it may allow us to solve problems that may otherwise be computationally intractable.

4 Sample Complexity Lower Bounds

The notion of VC dimension also allows us to show sample complexity lower bounds. These lower
bounds apply no matter what algorithm we use and hold even for algorithms using unbounded
computation. These lower bounds are purely information-theoretic in nature.

Theorem 6. Let C be a concept class with VCD(C) = d, with d ≥ 25.1 Then any PAC-learning
algorithm for C requires at least d−1

32ε examples.

Proof. (Note: We will be a little hand-wavy and only convey the essential ideas of the proof.
For a fully formal proof, please refer to the book by Mohri et al. (2012).)

Let S be a set of size d that is shattered by C. Suppose S = {x1, x2, . . . , xd}. Let D be
a distribution defined as follows: D(x1) = 1 − 8ε, and D(xj) = 8ε/(d − 1) for j = 2, . . . , d.
Suppose the learning algorithm receives m = (d−1)/(32ε) examples drawn according to D. We
claim that in fact it receives very few examples from the set {x2, . . . , xd}. Let Zi be the random
variable that is 1 if the ith example drawn from D is in the set S \ {x1} and 0 otherwise. Then
Zi = 1 with probability 8ε and 0 with probability 1 − 8ε. Let Z =

∑m
i=1 Zi be the number of

examples seen from the set S \ {x1} (possibly with repetitions). Then E [Z] = d−1
4 and using a

Chernoff bound,

P
[
Z ≥ d− 1

2

]
≤ P

[
|Z − E [Z] | ≥ E [Z]

]
≤ 2 exp

(
−d− 1

12

)
We can simulate the example oracle by drawing examples from D and assigning a random label
(out of 0 or 1) to any newly seen example. For examples, that were seen previously, we retain
the label initially given to them. Since S is shattered by C, this labelling is consistent with
some c ∈ C. Thus, any hypothesis output by the algorithm errs with probability at least 1/2 on

any example that it has not seen. Thus, with probability at least 2 exp
(
−d−1

12

)
≥ 1/2 (provided

d ≥ 25), the error of any hypothesis output by the algorithm is at least 2ε, as it has not seen
at least half the examples from the set {x2, . . . , xd} which has a total probability mass of 8ε
(equally distributed).

1The condition d ≥ 25 is not really necessary, with a slightly improved argument this can be shown for any
d ≥ 2.
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A Consistent Learner for Linear Threshold Functions

Let us define the class of linear threshold functions over Rn,

LTFn = {x 7→ 1≥0(w · x+ w0) | w ∈ Rn, ‖w‖2 = 1, w0 ∈ R}, (5)

where 1≥0(z) = 1 if z ≥ 0 and 0 otherwise.
We would like to design a consistent learner for the class of linear threshold functions. The

problem is the following: Given (x1, y1), . . . , (xm, ym), where xi ∈ Rn and yi ∈ {0, 1}, such that
there exists w∗ ∈ Rn, ‖w∗‖2 = 1 and w∗0 ∈ R such that yi = 1≥0(w∗ · xi +w∗0), find some w, w0,
such that yi = 1≥0(w · xi + w0).

We consider the following linear program with variables, w0, w1, . . . , wn. The objective
function is constant, so we are in fact only looking for a feasible point. The constraints are
given by:

w0 + w1xi1 + w2xi2 + · · ·wnxin ≥ 0 For all i such that yi = 1 (6)

−w0 − w1xi1 − w2xi2 − · · ·wnxin ≥ 1 For all i such that yi = 0 (7)

Let us first discuss the second inequality (7). An example is classified as negative if w∗ ·x+w∗0 <
0; however, strict inequalities cannot be given as part of the linear program. The choice of 1
is arbitrary, we could have used any strictly positive real number. Let us show that the above
linear program has a feasible solution; given that a feasible solution exists, there are known
polynomial time algorithms to find one.

Let the target linear threshold function be defined by w∗, w∗0. Let α = min{−(w∗ · xi +
w∗0) | yi = 0}; we know that α > 0. Consider w∗

α ∈ Rn, w0
α ∈ R; it can be checked that this is a

feasible solution to the constraints defined by (6) and (7).

B Chernoff Bounds

We’ll use the following version of the Chernoff bound frequently. For other versions and a proof,
please refer to the notes by Goemans (2015).

Theorem 7. Let X1, . . . , Xn be independent random variables, where Xi = 1 with probability
pi and Xi = 0 with probability 1 − pi. Let X =

∑n
i=1Xi and µ = E [X] =

∑n
i=1 pi. Then for

α ∈ [0, 1],

P
[
|X − µ| > αµ

]
≤ 2 exp

(
−µα

2

3

)
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